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Abstract

Cosmological B−L breaking is a natural and testable mechanism to generate the

initial conditions of the hot early universe. If B−L is broken at the grand unifi-

cation scale, the false vacuum phase drives hybrid inflation, ending in tachyonic

preheating. The decays of heavy B−L Higgs bosons and heavy neutrinos gener-

ate entropy, baryon asymmetry and dark matter and also control the reheating

temperature. The different phases in the transition from inflation to the radiation

dominated phase produce a characteristic spectrum of gravitational waves. We

calculate the complete gravitational wave spectrum due to inflation, preheating

and cosmic strings, which turns out to have several features. The production of

gravitational waves from cosmic strings has large uncertainties, with lower and

upper bounds provided by Abelian Higgs strings and Nambu-Goto strings, im-

plying ΩGWh2 ∼ 10−13−10−8, much larger than the spectral amplitude predicted

by inflation. Forthcoming gravitational wave detectors such as eLISA, advanced

LIGO and BBO/DECIGO will reach the sensitivity needed to test the predictions

from cosmological B−L breaking.
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1 Introduction

Relic gravitational waves (GWs) are a fascinating window to the very early universe [1].

They are generated by quantum fluctuations during inflation [2] as well as in the form

of classical radiation from cosmic strings [3]. Another important source is preheating

after inflation via resonant decay of an oscillating inflaton field [4] or violent collisions

of bubble-like structures [5] in tachyonic preheating [6].

We have recently proposed a detailed picture of pre- and reheating where the initial

conditions of the hot early universe are generated by the spontaneous breaking of

B−L, the difference of baryon and lepton number [7–9]. The false vacuum phase of

unbroken B−L symmetry yields hybrid inflation with an energy density set by the scale

of grand unification [10, 11]. In the B−L breaking phase transition ending inflation

most of the vacuum energy density is rapidly transferred to non-relativistic B−L Higgs

bosons, a sizable fraction also into cosmic strings. The decays of heavy Higgs bosons

and heavy Majorana neutrinos generate entropy and baryon asymmetry via thermal

and nonthermal leptogenesis [12, 13]. The temperature evolution during reheating is

controlled by the interplay between the B−L Higgs and the neutrino sector. The origin

of dark matter are thermally produced gravitinos [14].

In this paper we compute the GW spectrum predicted by cosmological B−L break-

ing. It receives contributions from all the possible sources mentioned above: inflation,

cosmic strings and preheating. Much work has already been done on the stochastic

gravitational background from inflation (see, e.g. Refs. [15, 16]). We are particularly

interested in features of the GW spectrum caused by the change of the equation of

state in the cosmological evolution. This has previously been studied in Ref. [17] with

the goal of determining the reheating temperature of the early universe. Our results

are consistent with those of Ref. [17]. The main difference is that we can resort to

a time-resolved description of the entire reheating process, studied in Ref. [9]. This

allows us to gain a better understanding of the connection between features in the GW

spectrum and the evolution of the temperature of the thermal bath, pinpointing to

which model parameters certain features in the spectrum are related.

A very interesting but also rather uncertain source of GWs are cosmic strings [18].

In the B−L breaking phase transition local cosmic strings are formed. The initial

state of such a network can be simulated numerically, and recently the amplitude of

the scale-invariant spectrum of GWs produced during the radiation dominated epoch
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has been determined [19]. Based on these results we obtain the GW spectrum for

our model, thereby extending the analysis to GWs produced during reheating and

during matter domination. For Abelian Higgs (AH) strings it is usually assumed that

strings lose their energy mostly via radiation of massive particles. In this case we

find a GW spectrum which has a very similar shape to that generated by inflation,

but is amplified by several orders of magnitude. This result opens up the possibility

to measure features in the GW spectrum related to the temperature evolution during

reheating. Alternatively, one also considers the possibility that, beyond a certain length,

strings can be described as Nambu-Goto (NG) strings, which lose their energy by

radiating GWs, see e.g. Refs. [21–23]. We shall also study the implications of NG strings

for the GW spectrum and compare the results with those obtained for AH strings.

Tachyonic preheating leads to GWs with a spectrum peaked at very high frequencies.

For certain parameter regimes of hybrid inflation the spectrum has been determined

numerically [24, 25]. We shall base our discussion on analytical estimates for the peak

frequencies, which we apply to our model.

Measuring the GW spectrum thus provides a unique possibility to test different as-

pects of a phase transition in the early universe. Forthcoming space- and ground-based

interferometers such as advanced LIGO [20], BBO/DECIGO [26,27] and eLISA [28] will

reach the sensitivity necessary to probe this scenario. At the same time, millisecond

pulsar timing experiments already now put stringent bounds on NG cosmic strings [29]

and future experiments such as SKA [30] will further increase this sensitivity. It will

however remain a challenge to disentangle the GW spectrum from a phase transition

in the early universe from other sources of GWs, due to both astrophysical processes

and subsequent cosmological phase transitions, see e.g. Refs. [31, 32].

The paper is organized as follows. In Sec. 2 we recall some basic formulas for

the production of GWs and the transfer function which are needed in the subsequent

chapters. The main ingredients of our model for pre- and reheating are described in

Sec. 3. Secs. 4 and 5 deal with the production of GWs during inflation and preheating,

and in Secs. 6 and 7 GWs from cosmic strings are discussed, for the case of AH strings

and NG strings, respectively. Sec. 8 focuses on probing the reheating temperature by

measuring a feature in the GW spectrum. Constraints from the cosmic microwave

background and observational prospects are the topic of Sec. 9, and we conclude in

Sec. 10. Three appendices deal with the scale factor and temperature evolution during

reheating as well as the analytical calculation of the GW background from NG strings.
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2 Cosmic Gravitational Wave Background

In this section we recall some basic formulas which we shall need in our calculation

of the various contributions to the GW background. GWs are tensor perturbations of

the homogeneous background metric. In a flat Friedmann Robertson Walker (FRW)

background, these perturbations can be parametrized as [31]

ds2 = a2(τ)(ηµν + hµν)dx
µdxν . (1)

Here ηµν = diag(−1, 1, 1, 1), a is the scale factor and xµ are conformal coordinates,

with xi denoting the comoving spatial coordinates and τ = x0 the conformal time.

These are related to the physical coordinates and the cosmic time as xphys = a(τ)x

and dt = a(τ) dτ , respectively1.

Introducing

h̄µν = hµν −
1

2
ηµνh

ρ
ρ , (2)

the linearized Einstein equations describing the generation and propagation of GWs

read

h̄′′
µν(x, τ) + 2

a′

a
h̄′
µν(x, τ)−∇2

x
h̄µν(x, τ) = 16πGTµν(x, τ) , (3)

with a prime denoting the derivative with respect to conformal time; G is Newton’s

constant and Tµν is the anisotropic part of the stress energy tensor of the source. The

total stress energy tensor is the sum of Tµν and an isotropic part which determines the

background metric. Outside the source, we can choose the transverse traceless (TT)

gauge for the GW, i.e. h0µ = 0, hi
i = 0, ∂jhij = 0, which implies h̄µν = hµν . The mode

equation which describes the generation and propagation of these degrees of freedom

(DOFs) can be obtained by using an appropriate projection operator [31] on the Fourier

transform2 of Eq. (3),

h̃
′′

ij(k, τ) +

(
k2 − a

′′

a

)
h̃ij(k, τ) = 16πGaΠij(k, τ) , (4)

where h̃ij = ahij, Πij denotes the Fourier transform of the TT part of the anisotropic

stress tensor Tµν , k = |k|, and k is the comoving wavenumber, related to the physical

wave number through kphys = k/a.

1Here and in the following, Greek letters denote Lorentz indices, µ, ν = 0, 1, 2, 3, whereas Latin

letters refer to the spatial indices, i, j = 1, 2, 3, with bold letters indicating 3-vectors.

2Our convention for the Fourier transformation is hij(x, τ) =
∫

d3k
(2π)3 hij(k, τ) exp(ikx).
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A useful plane wave expansion of GWs is given by

hij (x, τ) =
∑

A=+,×

∫ +∞

−∞

dk

2π

∫
d2k̂ hA (k) eAij

(
k̂
)
Tk(τ)e

−ik(τ−k̂x) . (5)

Here, k̂ = k/k, A = +,× labels the two possible polarization states of a GW in the

TT gauge and e+,×
ij denote the two corresponding polarization tensors satisfying the

normalization condition eAije
ij B = 2δAB. hA(k) are the coefficients of the expansion and

the red-shift due to the expansion of the universe is captured in the so-called ‘transfer

function’ Tk(τ).

An analytical expression for Tk can be obtained by studying the homogeneous, i.e.

source-free, version of Eq. (4). Using the Friedmann equations, we find a′′/a ∼ a2H2.

The mode equation describes two distinct regimes. On sub-horizon scales, k ≫ aH,

we can neglect the a′′/a term. The solution is thus simply h̃ij ∼ cos(ωτ) and hence

hij ∼ cos(ωτ)/a, i.e. the modes decay as 1/a inside the horizon. On the other hand, on

super-horizon scales, k ≪ aH, we can neglect the k2 term. This yields 2a′h′
ij+ah′′

ij = 0,

with the solution

hij(τ) = A+B

∫ τ dτ ′

a2(τ ′)
, (6)

where A and B are constants of integration. This solution is a constant plus a decaying

mode which can be neglected. Hence on super-horizon scales the amplitude of the mode

remains constant, the mode is ‘frozen’.

With this, we identify the transfer function Tk capturing the effects due to the

expansion of the universe as

Tk(τ∗, τ) =
hE
ij(k, τ)

hE
ij(k, τ∗)

. (7)

with hE
ij(k, τ) denoting the envelope of the oscillating function hij(k, τ). For modes

present on super-horizon scales, i.e. GWs produced by inflation, the reference time τ∗

can be equally replaced by any τ < τk, where τk denotes the time when a given mode

with wavenumber k enters the horizon, k = a(τk)H(τk). To good approximation, the

transfer function can then be estimated as (see e.g. [16])

Tk(τ∗, τ) ≈
a(τ∗)

a(τ)
with τ∗ =




τi for sub-horizon sources

τk for super-horizon sources
, (8)

with τi marking the time when the GW is generated. Here in the latter case, we

assume the amplitude to be constant until τ = τk and then to drop as 1/a immediately
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afterwards. The actual solution to the mode equation yields corrections to both of these

assumptions, however as a numerical check reveals the effects compensate each other so

that Eq. (8) reproduces the full result very well. We will quantify this statement at the

end of Sec. 4 after discussing the transfer function in more detail. For super-horizon

sources we will in the following use the more compact notation Tk(τ) = Tk(τk, τ).

The GW background is a superposition of GWs propagating with all frequencies

in all directions. An important observable characterizing the GW background is the

ensemble average of the energy density [31], which is expected to be isotropic,

ρGW(τ) =
1

32πG

〈
ḣij (x, τ) ḣ

ij (x, τ)
〉
=

∫ ∞

−∞

d ln k
∂ρGW(k, τ)

∂ ln k
, (9)

with the angular brackets denoting the ensemble average and the dot referring to the

derivative with respect to cosmic time. Alternatively, one also uses the ratio of the

differential energy density to the critical density ρc = 3H2/(8πG),

ΩGW(k, τ) =
1

ρc

∂ρGW(k, τ)

∂ ln k
, (10)

where H denotes the Hubble parameter. In the model considered in this paper, the

energy density receives contributions of quantum as well as of classical origin,

ρGW(τ) = ρquGW(τ) + ρclGW(τ) . (11)

The quantum part is due to inflation and therefore stochastic, whereas the classical

part is determined by the contributions to the stress energy tensor from cosmic strings

and from tachyonic preheating,

ρclGW(τ) = ρCS
GW + ρTP

GW(τ) . (12)

For a stochastic GW background the Fourier modes hA (k) in Eq. (5) are random

variables and their ensemble average is determined by a time-independent spectral

density Sh(k) [31],

〈hA (k)h∗
B (k′)〉 = 2πδ (k − k′)

1

4π
δ(2)

(
k̂ − k̂

′
)
δAB

1

2
Sh(k) . (13)

This relation reflects the fact that different modes are uncorrelated and that the back-

ground is isotropic. On sub-horizon scales, k ≫ aH, Eqs. (5), (8) and (13) yield

〈
hij (x, τ)h

ij (x, τ)
〉
=

1

π

∫ ∞

−∞

dk Sh(k)
a2(τ∗)

a2(τ)
, (14)
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and 〈
ḣij (x, τ) ḣ

ij (x, τ)
〉
=

1

πa2(τ)

∫ ∞

−∞

dk k2 Sh(k)
a2(τ∗)

a2(τ)
. (15)

Comparing this with Eq. (9) yields the differential energy density

∂ρGW (k, τ)

∂ ln k
=

a2(τ∗)

16π2Ga4(τ)
k3Sh(k) . (16)

The classical contribution to the GW energy density is obtained by integrating

Eq. (4) from the initial time τi of GW production until today,

hij(k, τ) = 16πG
1

a(τ)

∫ τ

τi

dτ ′a(τ ′)G(k, τ, τ ′)Πij(k, τ
′) , (17)

where G(k, τ, τ ′) is the retarded Green’s function of the differential operator on the

left-hand side of Eq. (4). For sub-horizon modes, i.e. kτ ≫ 1, one has G(k, τ, τ ′) =

sin(k(τ − τ ′))/k. It is now straightforward to evaluate the ensemble average 〈ḣ2〉.
Assuming translational invariance and isotropy of the source,

〈
Πij(k, τ)Π

ij(k′, τ ′)
〉
= (2π)3Π2(k, τ, τ ′)δ(k + k

′) , (18)

the resulting differential energy density simplifies to

∂ρGW (k, τ)

∂ ln k
=

2G

π

k3

a4(τ)

∫ τ

τi

dτ1

∫ τ

τi

dτ2a(τ1)a(τ2) cos(k(τ1 − τ2))Π
2(k, τ1, τ2) , (19)

Here, in order to perform the ensemble average, we have also averaged the integrand

over a period ∆τ = 2π/k, assuming ergodicity.

3 Cosmological B−L Breaking

The main goal of this paper is to derive the full spectrum of GWs whose origin is either

directly or indirectly related to the B−L phase transition. In the next chapters, we are

going to discuss in turn all of the relevant sources for GWs. For now, let us first review

how spontaneous B−L breaking at the end of hybrid inflation can be embedded into

supersymmetric theories.

Cosmological B−L breaking is implemented by the superpotential

WB−L =

√
λ

2
Φ
(
v2B−L − 2S1S2

)
, (20)
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where the chiral superfields Φ, S1 and S2 represent standard model gauge singlets

carrying B−L charges 0, −2 and +2, respectively. The radial component ϕ of the

complex scalar φ = ϕ/
√
2eiθ ⊂ Φ is identified as the inflaton. Similarly, the Higgs

multiplet S breaking B−L at the scale vB−L is contained in the fields S1,2 = S/
√
2e±iΛ.

The actual scalar B−L breaking Higgs boson σ corresponds in particular to the real

part of the complex scalar s ⊂ S. The parameter λ is a dimensionless coupling constant.

Assuming a canonical Kähler potential for φ, the tree-level scalar potential induced

by WB−L is exactly flat in the direction of the inflaton ϕ. For ϕ larger than some

critical value, ϕ > ϕc = vB−L, the complex scalars in S1 and S2 are stabilized at

their origin, S1,2 = 0, such that B−L is unbroken. In this phase of unbroken B−L,

the energy density of the vacuum is non-zero, V0 = 1
4
λv4B−L, corresponding to an

explicit breaking of supersymmetry and entailing a stage of hybrid inflation. The

supersymmetric vacuum is stabilized by radiative corrections at the one-loop level,

forcing ϕ to slowly roll down to ϕ = 0. Once ϕ passes below ϕc, the B−L Higgs

boson becomes tachyonically unstable, i.e. it acquires a negative mass squared. This

triggers the sudden end of inflation and the spontaneous breaking of B−L. In the true

groundstate, we eventually have ϕ = 0 and S1,2 = vB−L/
√
2.

The slow-roll parameters ǫ and η of hybrid inflation as well as the amplitude ∆2
s of

the scalar metric perturbations can be readily expressed in terms of λ and vB−L,

ǫ ≈ λ

16π2
|η| , η ≈ − λM2

Pl

32π3 ϕ2
∗

≈ − 1

2N∗
e

, (21)

∆2
s(k∗) =

H2
inf

8π2ǫM2
Pl

≈ 64π2

3
N∗

e

(
vB−L

MPl

)4

. (22)

Here, MPl = (8πG)−
1

2 = 2.44×1018 GeV is the reduced Planck mass, k∗ = 0.002 Mpc−1

is the chosen pivot scale, which is probed by observations of the CMB, and N∗
e ≃ 50

denotes the number of e-folds before the end of inflation, at field value ϕ∗ when the

pivot scale leaves the Hubble horizon. In Eq. (22) we have used the slow-roll relation

3M2
PlH

2
inf = V0, where Hinf denotes the Hubble parameter during inflation. The value of

∆2
s measured by the PLANCK satellite, ∆2

s ≃ 2.18×10−9 [33], fixes vB−L to a value close

to the GUT scale. More precisely, in a detailed study of hybrid inflation that also takes

into account the production of cosmic strings as well as non-canonical contributions to

the Kähler potential, the authors of Ref. [34] find consistency among all relevant obser-

vations for vB−L values ranging between 3× 1015 GeV and 7× 1015 GeV and couplings

in the range 10−4 .
√
λ . 10−1. Taking into account the recent PLANCK data [33],
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the upper bound on vB−L comes down to vB−L . 6 × 1015 GeV. For definiteness, we

shall work with vB−L = 5× 1015 GeV in the following.

Let us now turn to tensor perturbations. As evident from Eq. (21), ǫ is suppressed

by a loop factor as compared to η. This results in a very small tensor-to-scalar ratio r

and hence a very small amplitude ∆2
t of the tensor metric perturbations,

∆2
t =

2H2
inf

π2M2
Pl

=
λ

6π2

(
vB−L

MPl

)4

= r∆2
s ≃ r × 2.18× 10−9 , (23)

r = 16 ǫ ≃ 1.0× 10−7

(
λ

10−4

)(
50

N∗
e

)
. (24)

According to the consistency relation nt = −r/8, we then immediately conclude that

our inflationary model always predicts a negligibly small tensor spectral index nt. In

the calculation of the GW spectrum, we can therefore neglect any variation of the

Hubble scale during inflation.

The spontaneous breaking of B−L at the end of hybrid inflation is accompanied

by two important non-perturbative processes. The first is tachyonic preheating which

denotes the transfer of the initial vacuum energy density V0 into a gas of non-relativistic

B−L Higgs bosons σ along with the non-adiabatic production of all particle species

coupled to the B−L Higgs field.3 The second process is the production of topological

defects in the form of cosmic strings. They are characterized by their energy density

per unit length µ, which, in the Abelian Higgs model, is given by [36]

µ = 2πv2B−L B

(
mS

mZ

)
, with B(β) = 2.4

(
ln

2

β

)−1

for β < 10−2 , (25)

where mS and mZ denote the masses of the B−L Higgs and gauge bosons, respectively.

Preheating as well as cosmic strings act as sources of GWs and we will discuss their

respective contributions to the GW spectrum in Secs. 5, 6 and 7.

The B−L breaking sector couples to the supersymmetric standard model (sup-

plemented by three generations of right-handed neutrinos) via Yukawa terms in the

superpotential,

W ⊃ WMSSM +Wn , Wn = hν
ij5

∗
in

c
jHu +

1

2
hn
i n

c
in

c
iS , (26)

where nc
i denote the superfields containing the charge conjugates of the right-handed

neutrinos, the matrices hn
ij and hν

ij encompass Yukawa coupling constants, and WMSSM is

3An interesting question in this context, which requires further investigation, concerns the effect of

the inflaton on tachyonic preheating, see e.g. Ref. [35].
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the superpotential of the minimal supersymmetric standard model (MSSM). We assume

that the flavour structure of our superpotential derives from a U(1) flavour symmetry of

the Froggatt-Nielsen type that commutes with SU(5), cf. Ref. [37]. This is the reason

why we arrange all the superfields of our model in SU(5) multiplets. In particular,

we have 5∗
i = (dci , ℓi), i = 1, 2, 3. Furthermore, we also assume that the colour triplet

partners of the electroweak Higgs doublets Hu and Hd have been projected out. During

the B−L and the electroweak phase transitions, the fields S and Hu,d acquire vacuum

expectation values vB−L and vu,d, respectively. After electroweak symmetry breaking,

the superpotential Wn hence turns into the usual seesaw superpotential featuring a

neutrino Dirac as well as a neutrino Majorana mass term, thereby providing us with a

natural explanation for the smallness of the standard model neutrino masses.

After preheating most of the total energy density is stored in non-relativistic σ par-

ticles. These then slowly decay into all three generations of heavy Majorana neutrinos

Ni and sneutrinos Ñi via the second operator in the superpotential Wn. Subsequently,

the heavy (s)neutrinos decay in turn into the lepton-Higgs pairs of the MSSM via the

first operator in Wn. The (s)neutrino decay products thermalize immediately, thereby

giving rise to a hot thermal bath of MSSM radiation. This chain of decay and ther-

malization processes represents the actual reheating phase of the early universe. As

explained in more detail in Refs. [8,9], it is accompanied by the generation of a primor-

dial lepton asymmetry in the decay of the heavy (s)neutrinos as well as the production of

a thermal abundance of gravitinos. Electroweak sphaleron processes convert the lepton

asymmetry into the baryon asymmetry of the universe. Our scenario of cosmological

B−L breaking hence naturally accommodates baryogenesis via leptogenesis. Moreover,

given an appropriate superparticle mass spectrum, the thermally produced gravitinos

either account themselves for the relic density of dark matter or they generate the dark

matter abundance in the form of MSSM neutralinos in their decays.

The two main quantities controlling the time evolution of the reheating process are

Γ0
S and Γ0

N1
, i.e. the vacuum decay rate of the B−L Higgs bosons and its superpartners

as well as the vacuum decay rate of the heavy (s)neutrinos of the first generation,4

Γ0
S =

mS

32π

(
M1

vB−L

)2
[
1−

(
2M1

mS

)2
]1/2

, Γ0
N1

=
m̃1

4π

(
M1

vu

)2

, (27)

4For simplicity, we shall assume that the decay of the B−L Higgs multiplet into the two heavier

(s)neutrino generations is kinematically forbidden (cf. also Ref. [9]).
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with m̃1 denoting the effective neutrino mass of the first generation,

m̃1 =
[
(hν)† hν

]
11

v2u
M1

. (28)

According to the Froggatt-Nielsen flavour model that our earlier study in Ref. [9] is

based on, the Higgs and (s)neutrino masses, mS and M1, are expected to differ by some

power of the Froggatt-Nielsen hierarchy parameter η ≃ 1/
√
300. Just as in our previous

work, we shall thus assume for definiteness that mS = M1/η
2. This reduces the number

of free and independent parameters to two, namely the two neutrino masses M1 and

m̃1 which then end up being in one-to-one correspondence to the two decay rates Γ0
S

and Γ0
N1
. A further important quantity, which can be determined as a function of Γ0

S

and Γ0
N1
, is the effective (s)neutrino decay rate ΓS

N1
,

ΓS
N1
(a) = γ−1(a) Γ0

N1
, γ−1(a) =

〈
M1

EN1

〉(S)

a

, (29)

which accounts the for the fact that the (s)neutrinos which are produced with very

high momenta pN1
≫ M1 in the decay of the B−L Higgs particles remain relativistic

up to their decay. Correspondingly, the factor γ−1 multiplying Γ0
N1

in Eq. (29) denotes

the time-dependent inverse Lorentz factor for the heavy (s)neutrinos averaged over the

entire (s)neutrino phase space (cf. Ref. [8] for an explicit computation of γ−1).

In order to obtain a detailed and time-resolved picture of the reheating process, one

needs to solve the set of Boltzmann equations describing the evolution of all relevant

particle species. Such a study has been performed in Ref. [9]. For completeness, we now

recall some of the results of our earlier work (cf. Fig. 1, upper panel). A remarkable

feature of reheating after the B−L phase transition is an approximate plateau in the

radiation temperature around the time when the heavy (s)neutrinos decay (cf. Fig. 1,

lower panel). This constancy of the temperature over some extended period of time is a

direct consequence of a temporary balance between entropy production and cosmic ex-

pansion. The temperature at which the plateau is located represents the characteristic

temperature scale for leptogenesis as well as for the thermal production of gravitinos.

It is typically larger by some O(1) factor than the actual reheating temperature TRH,

which is reached towards the end of reheating when half of the total energy has been

converted into relativistic particles, cf. Sec. 8.
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