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5D Maximally Supersymmetri Yang-Millsin 4D Superspae: AppliationsMoritz MGarrie1;y1 Deutshes Elektronen-Synhrotron,DESY, Notkestrasse 85, 22607 Hamburg, GermanyAbstratWe reformulate 5D maximally supersymmetri Yang-Mills in 4D Superspae, for amanifold with boundaries. We emphasise ertain features and onventions neessary toallow for supersymmetri model building appliations. Finally we apply the holographiinterpretation of a slie of AdS and show how to generate Dira soft masses betweenexternal soure �elds, as well as kineti mixing, as a boundary e�etive ation.1 IntrodutionConvining evidene has been shown that maximal super Yang-Mills in 5D is a goode�etive desription of the 6D (2; 0) M5-brane CFT on an S1, for example see [1, 2℄.This suggestion is interesting from the perspetive of beyond standard model building.Whilst we usually think of quantum �eld theories as e�etive �eld theories, with someperhaps unmentioned uto�, extra dimensional models su�er more than most fromtheir lak of UV ompletion as they appear, at least from power ounting, to be nonrenormalisable. If 5D MSYM is indeed UV �nite, after aounting for both the per-turbative and non-perturbative spetrum, then it may be possible to build 5D modelswhih have a self ontained UV ompletion.Preedents for this sort of model building are well known: The Horava-Wittenonstrution in eleven dimensional supergravity [3℄ motivated studies of 5D globalsuper Yang-Mills with boundaries [4℄. Later Randall-Sundrum [5℄ models motivatedwarped or \a slie of" AdS5 models. AdS/QCD onstrutions [6,7℄ have also ourishedas they apture the relevant loal quantum �eld theory degrees of freedom of stringymoritz.mgarrie�desy.de 1
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theory, in �ve dimensions. Already in [1, 2℄ a T 2 ompati�ation of the (2; 0) theorywas used to onsider four dimensional physis. As the Torus is the produt of twoirles T 2 = S1�S1 with Radii R5 and R4, naturally the 5D MSYM ation is the limitthat R5 is small relative to R4. We would like to explore the resulting ation where R4is an orbifold S1=Z2. In 4d superspae notation this leads to a vetor super�eld andhiral adjoint with positive parity (V;H) and two hiral super�elds with negative parity(�;H). In some sense this model is already in use for model building: whenever onewishes for a positive parity vetor V and H for instane to generate Dira soft massesbetween the fermions ontained in those multiplets as in [8, 9℄, it may be natural toonsider MSYM in 5D and not simply SYM in 5D. Furthermore in the examples wehoose despite � and H having negative parity, they atually play a signi�ationrole, due to the equations of motion between the left and right handed fermions ofeah multiplet. Additional hiral adjoints suh as (Hadj) of SU(3) are indeed wellmotivated extensions whih have been shown to be able to inrease the Higgs masssubstantially [10℄. Indeed theories with more supersymmetry may fair better thanmodels with less, as disussed in [11℄. Brane onstrutions, suh as those found inthis paper, o�er the possibility that matter multiplets appear in N = 1 multiplets andgauge �elds in N = 2 multiplets, something that arises quite naturally in supersoftsupersymmetry breaking.In this paper we do not onern ourselves with the question of UV �niteness, in-stead wish to study this setup from the perspetive of model building. A natural �rststep to make use of the 5D MSYM ation for model building purposes is to reduethis ation to 4D superspae, in two omponent spinor notation. Conventions are im-portant here: we have hosen the gamma matries of the various dimensions to bebuilt from natural tensor produts of the four dimensional Weyl representation. Inthis paper we will ompatify on an interval S1=Z2 the x4 diretion, preserving x5 asthe diretion of M-theory, and hene hopefully preserving some of the UV-�nitenessof this theory. In partiular the hoie of an interval instead of a irle allows for thepossibility to break some supersymmetry, leaving a theory with only 8 superhargesfrom the four dimensional perspetive. In addition the orbifold �xed points allows oneto introdue boundary loalised matter, whih may break the supersymmetry downfurther, hopefully in whih the �nal supersymmetry (last 4 real superharges) an bebroken dynamially.The urrent paper establishes the proedure for reduing MSYM in 5D startingfrom 11D spinors, to four dimensionalN = 1 superspae notation, with two omponentspinors. The redution of N = 1, 5D SYM has been arried out in [4, 12, 13℄. Theproedure, starting from N = 1, 7d SYM, may be found in [14℄. Reent papers onsupersymmetry breaking and model building using the 5D SYM ation may be foundin [15{19℄. It is also interesting to onsider their deonstrution [8, 20{23℄.This struture of the paper is as follows: In setion 2 we outline the maximal2



super Yang-Mills ation in �ve dimensions written using eleven dimensional spinors.In setion 3 we onstrut the same ation using sympleti Majorana spinors, whihare the natural spinors of �ve dimensions. In setion 4 we start from setion 3 andtake an orbifold of the �fth diretion x4, onstruting the resulting lagrangian andnotation for the theory in superspae. In setion 5 we demonstrate an appliation ofthis setup by generating an e�etive ation for Dira soft masses between boundaryexternal soures. We onlude in setion 6. A very onvenient set of onventions maybe found in appendix A, whih also briey omments on this onstrution's desentfrom N = 1 super Yang-Mills in seven dimensions.2 5D maximal super Yang-MillsIn this setion we outline the maximal super Yang-Mills ation in �ve dimensionswritten using eleven dimensional spinors living in the spaetime of M-theory.The 5D maximal super Yang-Mills ation [2℄ is given bySMSYM = Z d5xLMSYM (2.1)where the lagrangian LMSYM is given bytr0��14FMNFMN� 12DMXIDMXI + i2 �	�MDM	+ ig52 �	�5�I [XI ;	℄ + g254 XI;J [XI ;XJ ℄21A(2.2)The indies �; � are 4D, � = 0; 1; 2; 3. M;N are 5D indies with metri �MN =diag(�1; 1; 1; 1; 1). A;B are the 11D indies. I; J = 6; 7; 8; 9; 10. The spinors are realwith 32 omponents. �	 = 	y�0. We have hosen to de�ne DM = �M + ig5AM , whihresales the 1=g25 inside the �eld strength tensor. In this non anonial normalisation1,the mass dimensions of [DM ; AM ;XI ;	℄ are [1; 3=2; 3=2; 2℄. Similarly [Æ�; �; �;Q℄ has[0;�12 ;�12 ; 12 ℄. The omplete onventions may be found in appendix A.The supersymmetry transformations are given byÆ�AM = i���M�5	 (2.3)Æ�XI = i���I	 (2.4)Æ�	 = 12FMN�MN�5�+DMXI�M�I�� ig52 [XI ;XJ ℄�IJ�5� (2.5)where � is a supersymmetry transformation parameter. Useful identities are�MN = 12[�M ;�N ℄ (2.6)1This form of the ation is more suited to perturbation theory in g5, the anonial form being most suitedto �nding solitoni solutions. 3



DMXI = �MXI � ig5[AM ;XI ℄ (2.7)FMN = �MAN � �NAM � ig5[AN ; AM ℄: (2.8)This theory has 16 superharges, 	 = 	+ +	� (2.9)	� = ��5	� (2.10)�� = ��5��: (2.11)For more details see [14℄. The ation is written in terms of full 11D M-theory spinors,whih are unonstrained real 32-omponent spinors, despite only the projetion of thespinor with respet to �5 atually living on the M5-brane.2.1 Important boundary termsWe will wish to study the inlusion of supersymmetri matter �elds in both the orbifoldand boundary perspetives. In the orbifold piture one an neglet total derivatives insatisfying the supersymmetry transformations. The are however two types of boundaryonditions that must be satis�ed for delta-funtion loalised matter: primary bound-ary onditions make the bulk and boundary supersymmetri and seondary boundaryonditions also make the boundary onditions themselves supersymmetri. These arenaturally inluded in the superspae formulation, but must be introdued to the om-ponent ation to omplete supersymmetry. These terms are of partiular interest as,in the boundary piture, they are the boundary terms for this ation (analogous tothe Gibbons-Hawking-York boundary terms of gravity as disussed in [24,25℄). For anexample of ompleting ations with the orret supersymmetri boundary term see [26℄and also for double �eld theory [27℄.These terms play a signi�ant role in AdS systems, where this ation determinesthe boundary to boundary two point funtions using the operator �eld orrespondene,for a given bulk ation with boundary soures [19, 28℄.On a manifold with a boundary at x4 = 0 one must in addition inlude the boundaryterms (in anonial normalisation)1g25 Z�M d4x��4M�PQFMPAQ � �4M (DMXI)XI + 12 �		� (2.12)for full losure of supersymmetry of the bulk ation. Stritly speaking it is atuallythe seond two terms that are the additional boundary terms, the �rst term beingalready ontained in the Yang-Mills ation, but we inlude them together beause oftheir equivalent roles in the boundary ation. As we shall see later, the super�eldnotation automatially inludes these boundary terms and are related to the boundaryonditions of the bulk �elds. 4



3 As sympleti Majorana spinorsIn this setion we de�ne the maximal super Yang-Mills ation using sympleti Ma-jorana spinors, whih are the natural objets of �ve dimensions. This ation has andSO(5)R symmetry and no additional auxiliary �elds. This ation may be omparedwith that of N = 1 SYM [12℄, in whih the ation has an SU(2)R symmetry and atriplet of auxiliary �elds Xa, under the SU(2)R.The lagrangian is given byLMSYM = � 14FMNFMN � 12DMXIDMXI + i2 � I�MDM I+ g254 Xa;b [Xa;Xb℄2 + g52 � I(Ga)IJ [Xa;  J ℄ (3.1)
where the trae, tr, is impliit. The I; J label the full SP (2) R-symmetry, whihdeomposes into two opies of the usual SU(2) R-symmetry for 5D sympleti Majoranaspinors, labelled by i; j. Inidentally, ��I = (�I)y�0.We de�ne a basis of fermions I = 0BBBB� 	1	2
1
2 1CCCCA ; � � I�T = 0BBBB� �	1�	2�
1�
2

1CCCCA ; �I = 0BBBB� �1�2�1�2 1CCCCA ; (��I)T = 0BBBB� ��1��2��1��2
1CCCCA :(3.2)The supersymmetry transformations are given byÆ�Xa = i��I(Ga)IJ J (3.3a)Æ�AM = i��iM	i + i��iM
i (3.3b)Æ I = FMN�MN�I + =DXa (Ga)I J�J + g52 [Xa;Xb℄(Gab)IJ�J (3.3)The super algebra may be written asfQiA; �QjBg = 2�MPMÆijÆAB (3.4)A;B = 1; 2 where the Q's labelled A = 1 ouple to �i and those labelled A = 2 to �i.We label Xa = X6; : : : ;X10 (3.5)while the matries Ga are explained below in setion 3.2. We will not need the full R-symmetry in the following disussions and therefore we singled out half of the fermionsin writing (3.2).We also briey omment that we ould have written the ation using unonstrainedDira spinors (of �ve dimensions). The resulting ation would ontainL � i2 ���MDM�+ i2 ���MDM� (3.6)5



where � = 	1 and � = 
1 as in Eqn. (4.1). Although in this ase the R-symmetrywould not have been so manifest.3.1 The boundary termThe 5D maximal super Yang-Mills boundary term with sympleti Majorana spinorsis 1g25 Z�M d4x�G4MGPQFMPAQ � 12G4M (DMXa)Xa + 14 � I I� : (3.7)It is straightforward to determine from this the boundary terms in 2 omponent spinornotation.3.2 The SO(5) R-symmetryThe 5D maximally supersymmetri Yang-Mills theory has SO(5) �= Sp(2) R-symmetry.The two pairs of sympleti-Majorana fermions transform as 4 of Sp(2) whereas the�ve salars transform as 5 of SO(5). These two representations an be related by using�ve-dimensional, Eulidean gamma matries(Ga)I J=( 0 �i�3i�3 0 ! ; 0 1212 0! ; 0 �i�2i�2 0 ! ; 0 �i�1+i�1 0 ! ; 12 00 �12!) :(3.8)They satisfy fGa; �Gbg = �2Æab; a; b = 6; : : : ; 10: (3.9)The index a relates to the salar omponents Xa for whih X10 � �.4 In terms of 4D superspaeWe now wish to rewrite the maximal super Yang-Mills desription in terms of fourdimensional super�elds. For dimensional redution to four dimensional superspae, itis more natural to �rst formulate a desription using 5D sympleti Majorana spinors,whih eah deompose into two 4D Weyl spinors. This will also make the R-symmetrymore manifest. The spinors of Eqn. (3.2) are given by	1 =  �L��� _�R ! ; 
1 =  �L��� _�R ! ; 	2 =  �R���� _�L ! ; 
2 =  �R���� _�L ! : (4.1)The reality ondition de�nes the barred fermions by	i = �ijC5 �	Tj and 	i = �ijB5	�j : (4.2)where the SU(2)R symmetry indies are raised and lowered with�ij =  0 1�1 0! : (4.3)6



The supersymmetry transformation parameters �i; �i are de�ned similarly:�1 =  �L��� _�R ! ; �1 =  �L��� _�R ! ; �2 =  �R���� _�L ! ; �2 =  �R�����L ! : (4.4)For these spinors ��1 = (�1)y0 = (��R; ��L; _�) and ��2 = (���L; ��R; _�). It will be useful tolabel � � X10.We are atually interested to explore manifolds with boundaries, as they have themost useful pratial appliations. The presene of onstant boundaries preserves onlyhalf the supersymmetry of the bulk system. As the ommutator of a supersymmetrytransformation generates a translation, we may de�ne the translation parameter aMin terms of the supersymmetry transformation parameters,aM = 2i(��I�M�I): (4.5)Allowing only a5 = 0 to break translation invariane, �xes a relation between thesupersymmetry transformations that2i(��15�1 � ��25�2 � ��15~�1 + ��25~�2) = 0 (4.6)(�R�L � ��L��R � �L�R + ��R��L)� (�R~�L � ��L�~�R � �L~�R + ��R�~�L) = 0 (4.7)This means we an either make the �'s be related to the �'s i.e. �i = ��i, or we anmake �L = ��R and �L = ��R. In the �rst ase the �'s would be preserved and weould set �i = 0. To solve the oupled fermion equations of motion, it turns out to bemore pratial to use �R = �R = 0. This seond ase is atually more familiar as itallows for parity (+;�) to be related to handedness (L;R).Setting �R = �R = 0, preserves only �L and �L or 8 real superharges of N = 2supersymmetry. We may also temporarily set �L = 0 to obtain N = 1 multiplets. Thepositive parity �elds �ll a vetor multiplet V and a hiral multipletH: the �eld ontentof the preserved N = 2 SYM. The negative parity �elds �ll two hiral multiplets � andH in the adjoint whih amount to an N = 2 Hypermultiplet. This matter ontent alsohas a natural desent from applying a quiver to 4D N = 4 super Yang-Mills [29, 30℄.4.1 The LagrangianIn order to write the ation for the 5D maximally supersymmetri Yang-Mills theoryin the 4D superspae, we need to ollet the �eld ontent in N = 1 multiplets. In otherwords, we need to show that, after speialising to a N = 1 subset of the full supersym-metry, the �elds, or ertain linear ombinations of them, transform as omponents ofthree hiral super�elds and a vetor super�eld.The terms in the Lagrangian for the Vetor super�eld and Chiral �eld � isL = 12trZ d2�W�W� + Z d2�� �W _� �W _� + 12g25 Z d4� trZ2 (4.8)7



Field V � H HParity + � + �Table 1: The parity assignments of the bulk �eldswith Z = e�2g5V ��4e2g5V + ig5 ��e2g5V � ig5e2g5V �� : (4.9)The �eld strength tensor W� is a left handed hiral Super�eld de�ned by W� =�14 �D2D�V . The lagrangian for the additional adjoint �elds are given byL = Z d4�tr� e�g5VHyeg5VH + e�g5V (H)yeg5VH�+ 14 Z d2� tr (H�4H + g5�[H;H℄) + :: (4.10)The gauge transformations are given bye�V ! e��e�V e��y ; Hy ! e�yHye��y : (4.11)The vetor super�eld in Wess-Zumino gauge isV = ������A� + i�2����L � i��2��L + 12�2��2(D) (4.12)where D = D4� = D4X10. The adjoint hiral Super�eld is� = (� + iA4) +p2�(�ip2�R) + �2(F�) (4.13)These �eld assignments within the multiplet are determined by the preserved supersym-metry transformations, below. We wish to hoose the boundary onditions followingtable 1, and so have hosen to preserve �L and �L and set �R = �R = 0 and thenP (�5) = �1 as normal. The resulting 4D N = 2 vetor multiplet is the ombinationV +H instead of V +�.It is also instrutive to see that if we hoose to preserve only �L and set �R = 0 wemay then break the symmetry down to N = 1 SYM and three adjoint hiral super�elds.In the orbifold diretion x4 there is still a residual gauge transformation and we anonstrut a super gauge ovariant derivative operator in this diretionr4 � �4 + g5� where r4(�) � �4(�) + g5�(�)� g5(�)�; (4.14)when ating on hiral objets andr4(�) � �4(�)� g5�y(�)� g5(�)�; (4.15)8



when ating on real linear objets e.g. (�) = e2V . The hiral super �eld strength tensoris W� = �i�L +p2��(Æ��D � (���)��F��) + �2������L (4.16)and the additional adjoint �elds areH = (X8 + iX9) +p2�(�ip2�L) + �2(FH ) (4.17)H = (X6 + iX7) +p2�(p2�R) + �2(FH): (4.18)The F-terms of the hiral �elds are given byF y� = �12g5[(X6 + iX7); (X8 + iX9)℄ (4.19)F yH = �12 ��4(X6 + iX7) + g5[(� + iA4); (X6 + iX7)℄� (4.20)F yH = �12 ��4(X8 + iX9) + g5[(� + iA4); (X8 + iX9)℄� : (4.21)If one hooses �L = �R = ��L = ��R = �R = ��R = 0 and onsiders only the supersym-metry transformations parameterised by �L and ��L, in other words only N = 1 in fourdimensions, the general transformations (3.3) for the salars redues toN = 2 N = 1ÆX6 = �R�L + ��R��L � ��R ��L � �R�L Æ�LX6 = �R�L + ��R��L (4.22a)ÆX7 = i(��R��L � �R�L + ��R ��L � �R�L) Æ�LX7 = �i�R�L + i��R��L (4.22b)ÆX8 = i(��L��L � �L�L � ��L ��L + �L�L) Æ�LX8 = �i�L�L + i��L��L (4.22)ÆX9 = ���L��L � �L�L + ��L ��L + �L�L Æ�LX9 = ��L�L � ��L��L (4.22d)Æ� = i(��L��R � �L�R � ��R ��L + �R�L); Æ�L� = �i�R�L + i��R��L: (4.22e)This gives some natural ombinations under N = 2Æ�(X6 + iX7) = 2(�L�L � ��R ��L) (4.23)Æ�(X8 + iX9) = 2i(�L�L � �L�L) (4.24)The gauge �eld transforms asN = 2 N = 1Æ�LA� = i(�L����L+��L����L+��L����L+�L�� ��L) Æ�LA� = i�L����L + i��L����L(4.25a)Æ�A4 = �(��L ��R + �L�R)� (��L��R + �L�R) Æ�LA4 = �(�L�R + ��L��R) (4.25b)9



The fermions transform under N = 1 asÆ�L�L = F������L � iD4��L + 2[X6;X7℄�L + 2[X8;X9℄�L (4.26a)Æ�L�R = �i��F�4��L �D������L + 2[X6 � iX7;X8 � iX9℄�L (4.26b)Æ�L�L = ���D�X8��L � i��D�X9��L � 2[X6 � iX7;�℄�L +D4(X6 � iX7)℄�L (4.26)Æ�L�R = i��D�X6��L � ��D�X7��L � 2i[X8 � iX9;�℄�L + iD4(X8 � iX9)℄�L: (4.26d)Under N = 2 the fermions transform asÆ��L = +F������L � iD4��L � 2[X6;X7℄�L + 2[X8;X9℄�L+ (4.27a)�L(D4X6 � iD4X7) + �� ��LD�X8 + i�� ��LD�X9 + 2�L[X6;�℄� 2i�L[X7;�℄Æ��R = i��F4���L � ��D����L +D��(����L)� 12[X6 � iX7;X8 + iX9℄�L (4.27b)+�LD4X8 + �� ��LD�X6 � i�� ��lD�X7 � i�LD5X9 � 2�L[X8 + iX9;�℄Æ��L = D5(X6 � iX7)�L � 12[X6 � iX7;�℄�L � i2 [�;X8 � iX9℄�L (4.27)i�LD4�+ �L(F����� � 2[X6;X7℄ + 2[X8;X9℄)Æ��R = iD�(X6 + iX7)����L � i2 [�;X8 + iX9℄�L +D5(X6 + iX7)�R (4.27d)� iF�4�� ��L + �� ��LD�X6 + 2�L([X6;X8 � iX9℄ + [X7;X8 + iX9℄):This ompletes our analysis of the orbifolded MSYM theory redued to N = 2 in fourdimensional superspae. Additional onventions may be found in the appendix. Theprimary purpose of this detailed exposition of the orbifolded MSYM ation was thatit may have future model building appliations. So next we hange tone slightly anddemonstrate an appliation of this setup.5 The boundary e�etive ationIn this setion we explore appliations of maximal super Yang Mills on a �ve dimen-sional orbifold. There are likely to be many uses to the onstrution of the MSYSMwith an orbifold, but we wish to disuss one partiular example that makes appliationalso of the boundary terms. In addition all �elds V;H and �;H, with both posi-tive and negative parity play an important role. The appliation is to supersymmetrybreaking in gauge mediation.In this setion we will imagine that the setor that breaks supersymmetry is astrongly oupled system and admits something analogous to an AdS dual. In addi-tion, for gauge mediated supersymmetry breaking, we expet that this strongly oupled10



setor has some subset that is harged under the standard model gauge groups. Asenvisaged in [16,17,19℄, we may wish to imagine a situation in whih there is a weaklygauged global symmetry SU(NF ) of the strongly oupled system, whih will be identi-�ed with the standard model gauge groups (or some GUT embedding). We will modelthis system with a bulk slie of AdS5 with extra dimension ranging L0 < z < L1. Inthose papers N = 1 super Yang-Mills is onsidered for the bulk �elds. Here we extendthis to maximal super Yang-Mills and fous here only on new results not ontainedin [19℄. The metri is given byds2 = a2(z)(���dx�dx� + dz2) where a2(z) = �Rz �2 : (5.1)The ation of this paper may be extended to warped or AdS spae following [31{34℄.In partiular, onsisteny with AdS spae means that the ation ontainsLAdS � �m � I I + 12m2XIXIXI� : (5.2)These mass terms have m R =  with � = 32 + j+ 12 j (5.3)� is the saling dimension and  is a real number whih ontrols the loalisation of the�eld pro�les in the z diretion ( = 1=2 is at). For the salars one �ndsm2XIR = 2 + � 154 (5.4)where ! � is also possible [33℄, although � = 2.The boundary terms of the MSYM theory will now play an important role for us ingenerating a boundary e�etive ation. The boundary values of the bulk gauge �eldsare the soures and we wish to ompute the tree level e�etive ation, essentially theorrelators of operators that ouple to these soures:hO(p)O(�p)i = LimL0!0(p2�(p2) + UV ounter terms): (5.5)p; q are four dimensional momentum. For this model, the soures areA0�(x); �0�;L(x);D0(x); �0�;L(x); �06(x); �07(x); �08(x); �09(x); (5.6)where x is the four dimensional position and the salar soures are given by�06;7 = �zX6;7jz=L0 D0 = �zX10jz=L0 and �08;9j = X8;9jz=L0 : (5.7)The other fermions �R; �R are free to vary [19℄, it is just the soures that are �xed.A0, D0, �0L and �0L have even parity. These soure �elds are soures for (non) CFToperators. As well as the identi�ation of operators and �elds found in [19℄, the ad-ditional salars and fermions are identi�ed as in table 2, where in this instane the L11



4D: operator Field � m2OI(x) ! XI(x; z) 2 -4O�(x)L ! ��(x; z)L 5/2 or 3/2 1/2Table 2: Operators orresponding to the bulk �elds of the model.on the fermion labels parity under 4 Eqn. (A.14) (and should not be onfused with aavour symmetry label). The non vanishing boundary terms at z = L0 are1g25 Z d4p(2�)4 �a(z)2 (���A�(p; z)�zAv(�p; z)� 2���A�(p; z)��A5(�p; z))�+1g25 Z d4p(2�)4 �ia3(z)(�zXI)XI + a4(z) ��L�R + �L�R + ��L��R + ��L ��R�� : (5.8)with XI ; I = 6; 7; 8; 9; 10 and X10 = �. One may ompute the e�etive ations forthese �elds, taking into aount the bulk to boundary �eld pro�les and anonialnormalisation, �0 ! �0a3=2(L0) ; �0 ! �0a(L0) ; A0 ! A0: (5.9)In partiular the bulk fermion �eld �L is oupled to �R��� _�p� ��0R = pQ�(q; L0)Q+(q; L0)�0L (5.10)where Q�(q; z) are bulk pro�le funtions that are solutions to the bulk fermion equa-tions of motion. The bulk �elds may be deomposed in terms of a soure and a bulkpro�le(f�L; �Lg; f�R; �Rg)(q; z) = 1Q�(q; L0)(f�0L; �0Lg+; f�0R; �0Rg�)Q�(q; z); (5.11)suitably normalised by the boundary value of the pro�le funtion. A partiular solutionis Q+(q; z) = z5=2 [J�(qz)Y�(qL1)� J�(qL1)Y�(pz)℄ ; (5.12)with � =  + 1=2 and � = � � 1. When this is arried out for all the bulk �elds oneobtains a boundary e�etive ationZ d4q(2�)4 ��1(q2)F ��0 F0;�� � i��L1=2(q2)�0L������0L � i��L1=2(q2)�0L���� ��0L + 12�0(q2)D20�+ Z d4q(2�)4 ��(q2)�6(�06)2 +�(q2)�7(�07)2 +�(q2)�8(�08)2 +�(q2)�9(�09)2� : (5.13)One should interpret (�0)2 in the above to mean �0(q)�0(�q) et. This e�etive ationould not be generated without the additional �elds suh as �R; �R ontained in the12



MSYSM ation. This is the boundary ation for a four dimensional N = 2 SYMSU(NF ) avour symmetry, in a large N strongly oupled system.The atual form of the orrelators turn out to be similar to those found in [19℄. Aswe have not broken supersymmetry yet, these boundary to boundary orrelators of thetree level e�etive ation should anel, in sets for instaneh�0(q2)� 4��L1=2(q2) + 3�1(q2)i � 0: (5.14)But now there is also ��L1=2(q2) and �0(q2)�I (5.15)The general form is ��L1=2(q2) = a(z)qg25 � Q�(q; z)Q+(q; L0)�z=L0 : (5.16)where the tree level mathing ondition is given byRg25 = N12�2 : (5.17)It is also interesting to onsider that the soure-�eld onstrution on the UV boundarymay be written in superspae,a3(L0)Z d4xZ d2� ��0�(L0) +H(L0)H0 +H(L0)H;0� (5.18)whih also inorporate F 0 term soures, for instaneZ d2� �HH0� = FO(�08 + i�09) +O��0L;� +OF 0H (5.19)although for our use we �nd it easier to work with omponents.5.1 Dira masses from a strongly oupled systemThese results have some interesting appliations. Not only does it extend the workof [7,35℄ in exploring how one may use 5D supersymmetri models to study 4D stronglyoupled systems, importantly this setup will allow for Dira soft masses [8, 36{39℄to arise in AdS5 between the external soure �elds �0L and �0L (ontained in V andHadj). Extending the urrent orrelator programme of [38℄, we take an IR loalisedsuperpotential W = YXHadjJ2 (5.20)with J2(y) = J2 +p2#j2 + #2F2, a hiral super�eld made of operators that may livein the bulk or IR boundary. Applying [19℄, a Dira soft mass an be interpreted asadditional terms in a supersymmetry breaking e�etive ation on the UV boundary, aswell as interesting kineti mixing terms:Seff � Z d4p(2�)4 hgSM ~YXM ~H1=2(p2)�0L�0L � igSM ~YX ~G1=2(p2)�0L������0Li (5.21)13



+ Z d4p(2�)4 "� ~Y 2X2 M ~I1=2(p2)�0L�0L � i2 ~Y 2X ~E1=2(p2)�0L���� ��0L#+ :: (5.22)The �elds have been anonially normalised. We expet that these soft masses are takenin the limit p2 ! 0, suh that any dressing funtions �(p2) (whih may inidentally beaborbed into the de�nition of the Yukawa ~YX), assoiated with the intermediate states,will not suppress this result: �(0) = 1 typially. In summary, this e�etive ation isfound by integrating out the bulk states and generate e�etive Dira masses betweenexternal soure �elds of fermions �0Land �0L .5.2 Cross setions for Dira soft massesIn [40℄ ross setions of visible to hidden setor matter were onsidered for a straightfor-ward messenger model. These tehniques may be applied to the orrelators assoiatedwith Dira soft masses, and moreover, if the hidden setor is strongly oupled theseorrelators may develop ertain form fators as doumented in [19, 41℄. For these rea-sons we explore the ross-setions for the Dira soft mass orrelators. In general theseross setions will be valid for both �(�L ! hidden) or �(�L ! hidden).If a hidden U(1) gauge �eld develops a vev W 0� = ��D the messenger �elds Q; ~Qwith opposite harges under the U(1) are split M2 �D with a urrent [38℄J2 = Q ~Q (5.23)oupled to an adjoint hiral super�eldW � YXHadjJ2 (5.24)then one obtains a Dira soft mass between �L and �LmD = gYXM ~H1=2(0): (5.25)As the funtion ~H1=2(p2=M2) is struturally the same as M ~B1=2 we may ompute theross setion to be�D = (4�)�Xm0s Im hiM ~H1=2(s)i = (4�)�Xm0s 12iDis hiM ~H1=2(s)i (5.26)where we have de�ned �X = gSMYX=4� andDis hiM ~H1=2(s)i = m04�s�1=2(s;m20;m2+)�(s� (m0 +m+)2)� (m+ ! m�) (5.27)In the result above we have used some notation. We have introdue the `trianglefuntion':�(s;m21;m22) = 4sjpj2 = (s2 +m41 +m42)� 2sm21 � 2sm22 � 2m21m22 (5.28)14



where s is the entre of mass energy squared Mandelstam variable s = (p1 + p2)2.Multiplying by �(s� (m1 +m2)2) (5.29)whih is equivalent to�1=2(s;m21;m22) = 2psjp!j =p[s� (m1 +m2)2℄[s� (m1 �m2)2℄�(s� (m1 +m2)2):(5.30)For equal mass sattering it has a very simple form�1=2(s;m;m) = [s(s� 4m2)℄1=2 = sr1� 4m2s (5.31)and for unequal masses with m0 = M; m2� = M2 � F (or similarly, m2� = M2 �D)one gets �1=2(s;m0;m+) =qs2 + F 2 � 2s(m20 +m2+) (5.32)�1=2(s;m0;m+) =qs2 + F 2 � 2s(m20 +m2�) (5.33)�1=2(s;m�;m+) =qs2 � 4m20s+ 4F 2: (5.34)Conversely, for a model with an R-symmetri F term [38℄, the Dira mass is given by~H1=2(p2=M2) = 1p2M os(�=v)Z d4q(2�)4 1(q + p)2 +M2 (5.35)�� 1q2 +m2+ + 1q2 +m2� � 2q2 +M2� :This will give a ross setion Dis hiM ~H1=2(s)i = (5.36)os(�=v)p2 M4�s h�1=2(s;m20;m2+)� + �1=2(s;m20;m2�)� � 2�1=2(s;m20;m20)�i :These ross setions may be dressed by the appropriate form fator squared jF (s)j2F (s) = Q�(s; L1)Q+(s; L0) = �g5Xn=1 Fn n(L1)s�m2n (5.37)assoiated with the bulk to boundary propagator between the UV boundary and theIR brane. We hope that these ideas have aided in extending the Dira soft massprogramme [8, 38℄ also to ertain strongly oupled systems.
15



6 Disussion and onlusionsIn this paper we have determined the superspae formulation of maximal super Yang-Mills in �ve dimensions, on a manifold with boundaries. This type of setup perhapso�ers a new resolution of the issue of non renormalisability of �ve dimensional modelbuilding [1,2℄. In addition it allows for a positive parity vetor V and hiral �eld Hadj ,onsistent with supersymmetry and dimensional redution, whih may allow for Dirasoft masses in a natural manner.In addition we have looked at the boundary terms that result from losure of su-persymmetry of the ation. This motivated us to disuss various examples where theboundary ation, and neessity of desending from the full MSYM, allows one to om-pute the omplete boundary to boundary orrelators and Dira soft masses betweenexternal soures, in a slie of AdS5.In partiular, by applying the holographi interpretation of this setup, we haveshown that some fermioni soure �elds �0L and �0L whih ouple to some (non) CFToperators OL;R, may develop Dira soft masses after the bulk ation is ompletelyintegrated out. This setup an be straightforwardly extended to more general or moreompliated AdS models. It is natural to also write this ation in a fully warpedsuperspae following [32{34℄. It ould also be possible to onstrut an entirely fourdimensional quiver Deonstrution of this setup, whih is likely to be more palatableto some. Finally it might be interesting to see M-theory play a more prominent role inphenomenology.Aknowledgements I am funded by the Alexander von Humboldt Foundation.I am espeially greatful for the assistane of �Omer G�urdo�gan, as well as Daniel C.Thompson, Ingo Kirsh, Steven Abel and Neil Lambert for useful disussions or om-ments. I would also like to aknowledge the warm hospitality of the IPPP-Durham,whilst some of this work was ompleted.A Conventions and spinorsIn this appendix we outline the onventions used. The indies �; � are 4D , � = 0; 1; 2; 3.M;N are 5D indies with metri �MN = diag(�1; 1; 1; 1; 1). A;B are the 11D indies.I; J = 6; 7; 8; 9; 10. In partiular the �M̂N̂ multiply 7d spinors, the MN multiplysympleti Majorana spinors and the �MN multiply 2-omponent spinors.We de�ne the 11d Gamma matries to satisfy the Cli�ord algebraf�A;�Bg = �2�AB1 (A.1)(�A)T = C11�AC�111 (A.2)(�A)� = B11�AB�111 (A.3)16



B11 = C11�0: (A.4)To dimensionally redue to four dimensions we hoose the expliit representation�M = �3 
 �3 
 �3 
 M (A.5)�6 = �3 
 �3 
 �1 
 14 (A.6)�7 = �3 
 �3 
 �2 
 14 (A.7)�8 = �2 
 12 
 12 
 14 (A.8)�9 = ��1 
 12 
 12 
 14 (A.9)�10 = �3 
 �1 
 12 
 14 (A.10)�5 = �3 
 �2 
 12 
 14: (A.11)�5 should satisfy: �5 = i�0�1:::�9�10: (A.12)In two omponent spinor notationM =   0 ��� _���� _�� 0 ! ; �i 00 i !! ; and C5 =  ���� 00 � _� _� ! ; (A.13)where ��� _� = (1; ~�) and ��� _�� = (1;�~�). �; _� are spinor indies of SL(2; C). The45d = �i54d where expliitly 54d =  I 00 �I ! : (A.14)This may also be written as 54d = i01245. C5 is the 5d harge onjugation matrixsuh that C5MC�15 = �M�T : (A.15)We may also de�ne the omplex onjugation matrixB5 = C50 =  0 ����� _� _� 0 ! : (A.16)We inlude also the Pauli matries�1 =  0 11 0 ! �2 =  0 �ii 0 ! �3 =  1 00 �1 ! ; (A.17)suh that one may verify the tensor produts.
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A.1 Seven dimensionsFor obtaining the 5d Lagrangian from seven-dimensional N = 1 supersymmetri Yang-Mills theory [14℄, the following set of gamma matries is partiularly onvenient:�M̂ = ��3 
 M ; �1 
 14; �2 
 14	 : (A.18)Note that the �ve dimensional matries are embedded in the �rst �ve omponentsof �M̂ . Moreover, �5 and �6 at as the identity operator to the two halves of theeight-omponent spinors of seven dimensions.Sympleti Majorana spinors in seven dimensions are de�ned as follows: I = �IJC7 � � T �J ;  I = �IJB7 ( �)J ; (A.19)with the seven-dimensional harge onjugation matrix beingC7 = i�0̂�2̂�4̂�5̂ = �2 
 12 
 �2 = �i�2 
 C5 (A.20)and omplex onjugation is de�ned asB7 = C7�0̂: (A.21)In this basis, a pair of seven-dimensional sympleti Majorana spinors satisfying (A.19)have the form 1 =  
1	1 ! ;  2 =  	2
2 ! ; �1 =  �1�1 ! ; �2 =  �2�2 ! ; (A.22)where (
1;
2) and (	1;	2) are pairs of four omponent spinors, separately satisfyingthe �ve-dimensional sympleti Majorana ondition:
i = �ijC �
Tj ; 	i = �ijC �	Tj : (A.23)The 7d supersymmetry parameters may be written(��1)T =  ��1���1 ! ; (��2)T =  ��2���2 ! : (A.24)It is useful to identify the degrees of freedom of the 7d and 5d theories(B1 + iB2) = (X8 + iX9) and B3 = X10 = �; (A.25)where � is a real adjoint salar mathing the notation of N = 1 5d SYM. The sevendimensional SYM boundary ation ( of x4) is given by1g25 Z d4x�G4MGPQFMPAQ � 12G4M (DMBi)Bi + 14 � I I� (A.26)whih are naturally ontained in the super�eld, but not the omponent ation of [14℄.18
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