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5D Maximally Supersymmetri
 Yang-Millsin 4D Superspa
e: Appli
ationsMoritz M
Garrie1;y1 Deuts
hes Elektronen-Syn
hrotron,DESY, Notkestrasse 85, 22607 Hamburg, GermanyAbstra
tWe reformulate 5D maximally supersymmetri
 Yang-Mills in 4D Superspa
e, for amanifold with boundaries. We emphasise 
ertain features and 
onventions ne
essary toallow for supersymmetri
 model building appli
ations. Finally we apply the holographi
interpretation of a sli
e of AdS and show how to generate Dira
 soft masses betweenexternal sour
e �elds, as well as kineti
 mixing, as a boundary e�e
tive a
tion.1 Introdu
tionConvin
ing eviden
e has been shown that maximal super Yang-Mills in 5D is a goode�e
tive des
ription of the 6D (2; 0) M5-brane CFT on an S1, for example see [1, 2℄.This suggestion is interesting from the perspe
tive of beyond standard model building.Whilst we usually think of quantum �eld theories as e�e
tive �eld theories, with someperhaps unmentioned 
uto�, extra dimensional models su�er more than most fromtheir la
k of UV 
ompletion as they appear, at least from power 
ounting, to be nonrenormalisable. If 5D MSYM is indeed UV �nite, after a

ounting for both the per-turbative and non-perturbative spe
trum, then it may be possible to build 5D modelswhi
h have a self 
ontained UV 
ompletion.Pre
edents for this sort of model building are well known: The Horava-Witten
onstru
tion in eleven dimensional supergravity [3℄ motivated studies of 5D globalsuper Yang-Mills with boundaries [4℄. Later Randall-Sundrum [5℄ models motivatedwarped or \a sli
e of" AdS5 models. AdS/QCD 
onstru
tions [6,7℄ have also 
ourishedas they 
apture the relevant lo
al quantum �eld theory degrees of freedom of stringymoritz.m
garrie�desy.de 1
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theory, in �ve dimensions. Already in [1, 2℄ a T 2 
ompa
ti�
ation of the (2; 0) theorywas used to 
onsider four dimensional physi
s. As the Torus is the produ
t of two
ir
les T 2 = S1�S1 with Radii R5 and R4, naturally the 5D MSYM a
tion is the limitthat R5 is small relative to R4. We would like to explore the resulting a
tion where R4is an orbifold S1=Z2. In 4d superspa
e notation this leads to a ve
tor super�eld and
hiral adjoint with positive parity (V;H) and two 
hiral super�elds with negative parity(�;H
). In some sense this model is already in use for model building: whenever onewishes for a positive parity ve
tor V and H for instan
e to generate Dira
 soft massesbetween the fermions 
ontained in those multiplets as in [8, 9℄, it may be natural to
onsider MSYM in 5D and not simply SYM in 5D. Furthermore in the examples we
hoose despite � and H
 having negative parity, they a
tually play a signi�
ationrole, due to the equations of motion between the left and right handed fermions ofea
h multiplet. Additional 
hiral adjoints su
h as (Hadj) of SU(3)
 are indeed wellmotivated extensions whi
h have been shown to be able to in
rease the Higgs masssubstantially [10℄. Indeed theories with more supersymmetry may fair better thanmodels with less, as dis
ussed in [11℄. Brane 
onstru
tions, su
h as those found inthis paper, o�er the possibility that matter multiplets appear in N = 1 multiplets andgauge �elds in N = 2 multiplets, something that arises quite naturally in supersoftsupersymmetry breaking.In this paper we do not 
on
ern ourselves with the question of UV �niteness, in-stead wish to study this setup from the perspe
tive of model building. A natural �rststep to make use of the 5D MSYM a
tion for model building purposes is to redu
ethis a
tion to 4D superspa
e, in two 
omponent spinor notation. Conventions are im-portant here: we have 
hosen the gamma matri
es of the various dimensions to bebuilt from natural tensor produ
ts of the four dimensional Weyl representation. Inthis paper we will 
ompa
tify on an interval S1=Z2 the x4 dire
tion, preserving x5 asthe dire
tion of M-theory, and hen
e hopefully preserving some of the UV-�nitenessof this theory. In parti
ular the 
hoi
e of an interval instead of a 
ir
le allows for thepossibility to break some supersymmetry, leaving a theory with only 8 super
hargesfrom the four dimensional perspe
tive. In addition the orbifold �xed points allows oneto introdu
e boundary lo
alised matter, whi
h may break the supersymmetry downfurther, hopefully in whi
h the �nal supersymmetry (last 4 real super
harges) 
an bebroken dynami
ally.The 
urrent paper establishes the pro
edure for redu
ing MSYM in 5D startingfrom 11D spinors, to four dimensionalN = 1 superspa
e notation, with two 
omponentspinors. The redu
tion of N = 1, 5D SYM has been 
arried out in [4, 12, 13℄. Thepro
edure, starting from N = 1, 7d SYM, may be found in [14℄. Re
ent papers onsupersymmetry breaking and model building using the 5D SYM a
tion may be foundin [15{19℄. It is also interesting to 
onsider their de
onstru
tion [8, 20{23℄.This stru
ture of the paper is as follows: In se
tion 2 we outline the maximal2



super Yang-Mills a
tion in �ve dimensions written using eleven dimensional spinors.In se
tion 3 we 
onstru
t the same a
tion using symple
ti
 Majorana spinors, whi
hare the natural spinors of �ve dimensions. In se
tion 4 we start from se
tion 3 andtake an orbifold of the �fth dire
tion x4, 
onstru
ting the resulting lagrangian andnotation for the theory in superspa
e. In se
tion 5 we demonstrate an appli
ation ofthis setup by generating an e�e
tive a
tion for Dira
 soft masses between boundaryexternal sour
es. We 
on
lude in se
tion 6. A very 
onvenient set of 
onventions maybe found in appendix A, whi
h also brie
y 
omments on this 
onstru
tion's des
entfrom N = 1 super Yang-Mills in seven dimensions.2 5D maximal super Yang-MillsIn this se
tion we outline the maximal super Yang-Mills a
tion in �ve dimensionswritten using eleven dimensional spinors living in the spa
etime of M-theory.The 5D maximal super Yang-Mills a
tion [2℄ is given bySMSYM = Z d5xLMSYM (2.1)where the lagrangian LMSYM is given bytr0��14FMNFMN� 12DMXIDMXI + i2 �	�MDM	+ ig52 �	�5�I [XI ;	℄ + g254 XI;J [XI ;XJ ℄21A(2.2)The indi
es �; � are 4D, � = 0; 1; 2; 3. M;N are 5D indi
es with metri
 �MN =diag(�1; 1; 1; 1; 1). A;B are the 11D indi
es. I; J = 6; 7; 8; 9; 10. The spinors are realwith 32 
omponents. �	 = 	y�0. We have 
hosen to de�ne DM = �M + ig5AM , whi
hres
ales the 1=g25 inside the �eld strength tensor. In this non 
anoni
al normalisation1,the mass dimensions of [DM ; AM ;XI ;	℄ are [1; 3=2; 3=2; 2℄. Similarly [Æ�; �; �;Q℄ has[0;�12 ;�12 ; 12 ℄. The 
omplete 
onventions may be found in appendix A.The supersymmetry transformations are given byÆ�AM = i���M�5	 (2.3)Æ�XI = i���I	 (2.4)Æ�	 = 12FMN�MN�5�+DMXI�M�I�� ig52 [XI ;XJ ℄�IJ�5� (2.5)where � is a supersymmetry transformation parameter. Useful identities are�MN = 12[�M ;�N ℄ (2.6)1This form of the a
tion is more suited to perturbation theory in g5, the 
anoni
al form being most suitedto �nding solitoni
 solutions. 3



DMXI = �MXI � ig5[AM ;XI ℄ (2.7)FMN = �MAN � �NAM � ig5[AN ; AM ℄: (2.8)This theory has 16 super
harges, 	 = 	+ +	� (2.9)	� = ��5	� (2.10)�� = ��5��: (2.11)For more details see [14℄. The a
tion is written in terms of full 11D M-theory spinors,whi
h are un
onstrained real 32-
omponent spinors, despite only the proje
tion of thespinor with respe
t to �5 a
tually living on the M5-brane.2.1 Important boundary termsWe will wish to study the in
lusion of supersymmetri
 matter �elds in both the orbifoldand boundary perspe
tives. In the orbifold pi
ture one 
an negle
t total derivatives insatisfying the supersymmetry transformations. The are however two types of boundary
onditions that must be satis�ed for delta-fun
tion lo
alised matter: primary bound-ary 
onditions make the bulk and boundary supersymmetri
 and se
ondary boundary
onditions also make the boundary 
onditions themselves supersymmetri
. These arenaturally in
luded in the superspa
e formulation, but must be introdu
ed to the 
om-ponent a
tion to 
omplete supersymmetry. These terms are of parti
ular interest as,in the boundary pi
ture, they are the boundary terms for this a
tion (analogous tothe Gibbons-Hawking-York boundary terms of gravity as dis
ussed in [24,25℄). For anexample of 
ompleting a
tions with the 
orre
t supersymmetri
 boundary term see [26℄and also for double �eld theory [27℄.These terms play a signi�
ant role in AdS systems, where this a
tion determinesthe boundary to boundary two point fun
tions using the operator �eld 
orresponden
e,for a given bulk a
tion with boundary sour
es [19, 28℄.On a manifold with a boundary at x4 = 0 one must in addition in
lude the boundaryterms (in 
anoni
al normalisation)1g25 Z�M d4x��4M�PQFMPAQ � �4M (DMXI)XI + 12 �		� (2.12)for full 
losure of supersymmetry of the bulk a
tion. Stri
tly speaking it is a
tuallythe se
ond two terms that are the additional boundary terms, the �rst term beingalready 
ontained in the Yang-Mills a
tion, but we in
lude them together be
ause oftheir equivalent roles in the boundary a
tion. As we shall see later, the super�eldnotation automati
ally in
ludes these boundary terms and are related to the boundary
onditions of the bulk �elds. 4



3 As symple
ti
 Majorana spinorsIn this se
tion we de�ne the maximal super Yang-Mills a
tion using symple
ti
 Ma-jorana spinors, whi
h are the natural obje
ts of �ve dimensions. This a
tion has andSO(5)R symmetry and no additional auxiliary �elds. This a
tion may be 
omparedwith that of N = 1 SYM [12℄, in whi
h the a
tion has an SU(2)R symmetry and atriplet of auxiliary �elds Xa, under the SU(2)R.The lagrangian is given byLMSYM = � 14FMNFMN � 12DMXIDMXI + i2 � I�MDM I+ g254 Xa;b [Xa;Xb℄2 + g52 � I(Ga)IJ [Xa;  J ℄ (3.1)
where the tra
e, tr, is impli
it. The I; J label the full SP (2) R-symmetry, whi
hde
omposes into two 
opies of the usual SU(2) R-symmetry for 5D symple
ti
 Majoranaspinors, labelled by i; j. In
identally, ��I = (�I)y�0.We de�ne a basis of fermions I = 0BBBB� 	1	2
1
2 1CCCCA ; � � I�T = 0BBBB� �	1�	2�
1�
2

1CCCCA ; �I = 0BBBB� �1�2�1�2 1CCCCA ; (��I)T = 0BBBB� ��1��2��1��2
1CCCCA :(3.2)The supersymmetry transformations are given byÆ�Xa = i��I(Ga)IJ J (3.3a)Æ�AM = i��i
M	i + i��i
M
i (3.3b)Æ I = FMN�MN�I + =DXa (Ga)I J�J + g52 [Xa;Xb℄(Gab)IJ�J (3.3
)The super algebra may be written asfQiA; �QjBg = 2�MPMÆijÆAB (3.4)A;B = 1; 2 where the Q's labelled A = 1 
ouple to �i and those labelled A = 2 to �i.We label Xa = X6; : : : ;X10 (3.5)while the matri
es Ga are explained below in se
tion 3.2. We will not need the full R-symmetry in the following dis
ussions and therefore we singled out half of the fermionsin writing (3.2).We also brie
y 
omment that we 
ould have written the a
tion using un
onstrainedDira
 spinors (of �ve dimensions). The resulting a
tion would 
ontainL � i2 ���MDM�+ i2 ���MDM� (3.6)5



where � = 	1 and � = 
1 as in Eqn. (4.1). Although in this 
ase the R-symmetrywould not have been so manifest.3.1 The boundary termThe 5D maximal super Yang-Mills boundary term with symple
ti
 Majorana spinorsis 1g25 Z�M d4x�G4MGPQFMPAQ � 12G4M (DMXa)Xa + 14 � I I� : (3.7)It is straightforward to determine from this the boundary terms in 2 
omponent spinornotation.3.2 The SO(5) R-symmetryThe 5D maximally supersymmetri
 Yang-Mills theory has SO(5) �= Sp(2) R-symmetry.The two pairs of symple
ti
-Majorana fermions transform as 4 of Sp(2) whereas the�ve s
alars transform as 5 of SO(5). These two representations 
an be related by using�ve-dimensional, Eu
lidean gamma matri
es(Ga)I J=( 0 �i�3i�3 0 ! ; 0 1212 0! ; 0 �i�2i�2 0 ! ; 0 �i�1+i�1 0 ! ; 12 00 �12!) :(3.8)They satisfy fGa; �Gbg = �2Æab; a; b = 6; : : : ; 10: (3.9)The index a relates to the s
alar 
omponents Xa for whi
h X10 � �.4 In terms of 4D superspa
eWe now wish to rewrite the maximal super Yang-Mills des
ription in terms of fourdimensional super�elds. For dimensional redu
tion to four dimensional superspa
e, itis more natural to �rst formulate a des
ription using 5D symple
ti
 Majorana spinors,whi
h ea
h de
ompose into two 4D Weyl spinors. This will also make the R-symmetrymore manifest. The spinors of Eqn. (3.2) are given by	1 =  �L��� _�R ! ; 
1 =  �L��� _�R ! ; 	2 =  �R���� _�L ! ; 
2 =  �R���� _�L ! : (4.1)The reality 
ondition de�nes the barred fermions by	i = �ijC5 �	Tj and 	i = �ijB5	�j : (4.2)where the SU(2)R symmetry indi
es are raised and lowered with�ij =  0 1�1 0! : (4.3)6



The supersymmetry transformation parameters �i; �i are de�ned similarly:�1 =  �L��� _�R ! ; �1 =  �L��� _�R ! ; �2 =  �R���� _�L ! ; �2 =  �R�����L ! : (4.4)For these spinors ��1 = (�1)y
0 = (��R; ��L; _�) and ��2 = (���L; ��R; _�). It will be useful tolabel � � X10.We are a
tually interested to explore manifolds with boundaries, as they have themost useful pra
ti
al appli
ations. The presen
e of 
onstant boundaries preserves onlyhalf the supersymmetry of the bulk system. As the 
ommutator of a supersymmetrytransformation generates a translation, we may de�ne the translation parameter aMin terms of the supersymmetry transformation parameters,aM = 2i(��I�M�I): (4.5)Allowing only a5 = 0 to break translation invarian
e, �xes a relation between thesupersymmetry transformations that2i(��1
5�1 � ��2
5�2 � ��1
5~�1 + ��2
5~�2) = 0 (4.6)(�R�L � ��L��R � �L�R + ��R��L)� (�R~�L � ��L�~�R � �L~�R + ��R�~�L) = 0 (4.7)This means we 
an either make the �'s be related to the �'s i.e. �i = ��i, or we 
anmake �L = ��R and �L = ��R. In the �rst 
ase the �'s would be preserved and we
ould set �i = 0. To solve the 
oupled fermion equations of motion, it turns out to bemore pra
ti
al to use �R = �R = 0. This se
ond 
ase is a
tually more familiar as itallows for parity (+;�) to be related to handedness (L;R).Setting �R = �R = 0, preserves only �L and �L or 8 real super
harges of N = 2supersymmetry. We may also temporarily set �L = 0 to obtain N = 1 multiplets. Thepositive parity �elds �ll a ve
tor multiplet V and a 
hiral multipletH: the �eld 
ontentof the preserved N = 2 SYM. The negative parity �elds �ll two 
hiral multiplets � andH
 in the adjoint whi
h amount to an N = 2 Hypermultiplet. This matter 
ontent alsohas a natural des
ent from applying a quiver to 4D N = 4 super Yang-Mills [29, 30℄.4.1 The LagrangianIn order to write the a
tion for the 5D maximally supersymmetri
 Yang-Mills theoryin the 4D superspa
e, we need to 
olle
t the �eld 
ontent in N = 1 multiplets. In otherwords, we need to show that, after spe
ialising to a N = 1 subset of the full supersym-metry, the �elds, or 
ertain linear 
ombinations of them, transform as 
omponents ofthree 
hiral super�elds and a ve
tor super�eld.The terms in the Lagrangian for the Ve
tor super�eld and Chiral �eld � isL = 12trZ d2�W�W� + Z d2�� �W _� �W _� + 12g25 Z d4� trZ2 (4.8)7



Field V � H H
Parity + � + �Table 1: The parity assignments of the bulk �eldswith Z = e�2g5V ��4e2g5V + ig5 ��e2g5V � ig5e2g5V �� : (4.9)The �eld strength tensor W� is a left handed 
hiral Super�eld de�ned by W� =�14 �D2D�V . The lagrangian for the additional adjoint �elds are given byL = Z d4�tr� e�g5VHyeg5VH + e�g5V (H
)yeg5VH
�+ 14 Z d2� tr (H
�4H + g5�[H;H
℄) + 
:
: (4.10)The gauge transformations are given bye�V ! e��e�V e��y ; Hy ! e�yHye��y : (4.11)The ve
tor super�eld in Wess-Zumino gauge isV = ������A� + i�2����L � i��2��L + 12�2��2(D) (4.12)where D = D4� = D4X10. The adjoint 
hiral Super�eld is� = (� + iA4) +p2�(�ip2�R) + �2(F�) (4.13)These �eld assignments within the multiplet are determined by the preserved supersym-metry transformations, below. We wish to 
hoose the boundary 
onditions followingtable 1, and so have 
hosen to preserve �L and �L and set �R = �R = 0 and thenP (�5) = �1 as normal. The resulting 4D N = 2 ve
tor multiplet is the 
ombinationV +H instead of V +�.It is also instru
tive to see that if we 
hoose to preserve only �L and set �R = 0 wemay then break the symmetry down to N = 1 SYM and three adjoint 
hiral super�elds.In the orbifold dire
tion x4 there is still a residual gauge transformation and we 
an
onstru
t a super gauge 
ovariant derivative operator in this dire
tionr4 � �4 + g5� where r4(�) � �4(�) + g5�(�)� g5(�)�; (4.14)when a
ting on 
hiral obje
ts andr4(�) � �4(�)� g5�y(�)� g5(�)�; (4.15)8



when a
ting on real linear obje
ts e.g. (�) = e2V . The 
hiral super �eld strength tensoris W� = �i�L +p2��(Æ��D � (���)��F��) + �2������L (4.16)and the additional adjoint �elds areH = (X8 + iX9) +p2�(�ip2�L) + �2(FH ) (4.17)H
 = (X6 + iX7) +p2�(p2�R) + �2(FH
): (4.18)The F-terms of the 
hiral �elds are given byF y� = �12g5[(X6 + iX7); (X8 + iX9)℄ (4.19)F yH = �12 ��4(X6 + iX7) + g5[(� + iA4); (X6 + iX7)℄� (4.20)F yH
 = �12 ��4(X8 + iX9) + g5[(� + iA4); (X8 + iX9)℄� : (4.21)If one 
hooses �L = �R = ��L = ��R = �R = ��R = 0 and 
onsiders only the supersym-metry transformations parameterised by �L and ��L, in other words only N = 1 in fourdimensions, the general transformations (3.3) for the s
alars redu
es toN = 2 N = 1ÆX6 = �R�L + ��R��L � ��R ��L � �R�L Æ�LX6 = �R�L + ��R��L (4.22a)ÆX7 = i(��R��L � �R�L + ��R ��L � �R�L) Æ�LX7 = �i�R�L + i��R��L (4.22b)ÆX8 = i(��L��L � �L�L � ��L ��L + �L�L) Æ�LX8 = �i�L�L + i��L��L (4.22
)ÆX9 = ���L��L � �L�L + ��L ��L + �L�L Æ�LX9 = ��L�L � ��L��L (4.22d)Æ� = i(��L��R � �L�R � ��R ��L + �R�L); Æ�L� = �i�R�L + i��R��L: (4.22e)This gives some natural 
ombinations under N = 2Æ�(X6 + iX7) = 2(�L�L � ��R ��L) (4.23)Æ�(X8 + iX9) = 2i(�L�L � �L�L) (4.24)The gauge �eld transforms asN = 2 N = 1Æ�LA� = i(�L����L+��L����L+��L����L+�L�� ��L) Æ�LA� = i�L����L + i��L����L(4.25a)Æ�A4 = �(��L ��R + �L�R)� (��L��R + �L�R) Æ�LA4 = �(�L�R + ��L��R) (4.25b)9



The fermions transform under N = 1 asÆ�L�L = F������L � iD4��L + 2[X6;X7℄�L + 2[X8;X9℄�L (4.26a)Æ�L�R = �i��F�4��L �D������L + 2[X6 � iX7;X8 � iX9℄�L (4.26b)Æ�L�L = ���D�X8��L � i��D�X9��L � 2[X6 � iX7;�℄�L +D4(X6 � iX7)℄�L (4.26
)Æ�L�R = i��D�X6��L � ��D�X7��L � 2i[X8 � iX9;�℄�L + iD4(X8 � iX9)℄�L: (4.26d)Under N = 2 the fermions transform asÆ��L = +F������L � iD4��L � 2[X6;X7℄�L + 2[X8;X9℄�L+ (4.27a)�L(D4X6 � iD4X7) + �� ��LD�X8 + i�� ��LD�X9 + 2�L[X6;�℄� 2i�L[X7;�℄Æ��R = i��F4���L � ��D����L +D��(����L)� 12[X6 � iX7;X8 + iX9℄�L (4.27b)+�LD4X8 + �� ��LD�X6 � i�� ��lD�X7 � i�LD5X9 � 2�L[X8 + iX9;�℄Æ��L = D5(X6 � iX7)�L � 12[X6 � iX7;�℄�L � i2 [�;X8 � iX9℄�L (4.27
)i�LD4�+ �L(F����� � 2[X6;X7℄ + 2[X8;X9℄)Æ��R = iD�(X6 + iX7)����L � i2 [�;X8 + iX9℄�L +D5(X6 + iX7)�R (4.27d)� iF�4�� ��L + �� ��LD�X6 + 2�L([X6;X8 � iX9℄ + [X7;X8 + iX9℄):This 
ompletes our analysis of the orbifolded MSYM theory redu
ed to N = 2 in fourdimensional superspa
e. Additional 
onventions may be found in the appendix. Theprimary purpose of this detailed exposition of the orbifolded MSYM a
tion was thatit may have future model building appli
ations. So next we 
hange tone slightly anddemonstrate an appli
ation of this setup.5 The boundary e�e
tive a
tionIn this se
tion we explore appli
ations of maximal super Yang Mills on a �ve dimen-sional orbifold. There are likely to be many uses to the 
onstru
tion of the MSYSMwith an orbifold, but we wish to dis
uss one parti
ular example that makes appli
ationalso of the boundary terms. In addition all �elds V;H and �;H
, with both posi-tive and negative parity play an important role. The appli
ation is to supersymmetrybreaking in gauge mediation.In this se
tion we will imagine that the se
tor that breaks supersymmetry is astrongly 
oupled system and admits something analogous to an AdS dual. In addi-tion, for gauge mediated supersymmetry breaking, we expe
t that this strongly 
oupled10



se
tor has some subset that is 
harged under the standard model gauge groups. Asenvisaged in [16,17,19℄, we may wish to imagine a situation in whi
h there is a weaklygauged global symmetry SU(NF ) of the strongly 
oupled system, whi
h will be identi-�ed with the standard model gauge groups (or some GUT embedding). We will modelthis system with a bulk sli
e of AdS5 with extra dimension ranging L0 < z < L1. Inthose papers N = 1 super Yang-Mills is 
onsidered for the bulk �elds. Here we extendthis to maximal super Yang-Mills and fo
us here only on new results not 
ontainedin [19℄. The metri
 is given byds2 = a2(z)(���dx�dx� + dz2) where a2(z) = �Rz �2 : (5.1)The a
tion of this paper may be extended to warped or AdS spa
e following [31{34℄.In parti
ular, 
onsisten
y with AdS spa
e means that the a
tion 
ontainsLAdS � �m � I I + 12m2XIXIXI� : (5.2)These mass terms have m R = 
 with � = 32 + j
+ 12 j (5.3)� is the s
aling dimension and 
 is a real number whi
h 
ontrols the lo
alisation of the�eld pro�les in the z dire
tion (
 = 1=2 is 
at). For the s
alars one �ndsm2XIR = 
2 + 
� 154 (5.4)where 
! �
 is also possible [33℄, although � = 2.The boundary terms of the MSYM theory will now play an important role for us ingenerating a boundary e�e
tive a
tion. The boundary values of the bulk gauge �eldsare the sour
es and we wish to 
ompute the tree level e�e
tive a
tion, essentially the
orrelators of operators that 
ouple to these sour
es:hO(p)O(�p)i = LimL0!0(p2�(p2) + UV 
ounter terms): (5.5)p; q are four dimensional momentum. For this model, the sour
es areA0�(x); �0�;L(x);D0(x); �0�;L(x); �06(x); �07(x); �08(x); �09(x); (5.6)where x is the four dimensional position and the s
alar sour
es are given by�06;7 = �zX6;7jz=L0 D0 = �zX10jz=L0 and �08;9j = X8;9jz=L0 : (5.7)The other fermions �R; �R are free to vary [19℄, it is just the sour
es that are �xed.A0, D0, �0L and �0L have even parity. These sour
e �elds are sour
es for (non) CFToperators. As well as the identi�
ation of operators and �elds found in [19℄, the ad-ditional s
alars and fermions are identi�ed as in table 2, where in this instan
e the L11



4D: operator Field � m2OI(x) ! XI(x; z) 2 -4O�(x)L ! ��(x; z)L 5/2 or 3/2 1/2Table 2: Operators 
orresponding to the bulk �elds of the model.on the fermion labels parity under 
4 Eqn. (A.14) (and should not be 
onfused with a
avour symmetry label). The non vanishing boundary terms at z = L0 are1g25 Z d4p(2�)4 �a(z)2 (���A�(p; z)�zAv(�p; z)� 2���A�(p; z)��A5(�p; z))�+1g25 Z d4p(2�)4 �ia3(z)(�zXI)XI + a4(z) ��L�R + �L�R + ��L��R + ��L ��R�� : (5.8)with XI ; I = 6; 7; 8; 9; 10 and X10 = �. One may 
ompute the e�e
tive a
tions forthese �elds, taking into a

ount the bulk to boundary �eld pro�les and 
anoni
alnormalisation, �0 ! �0a3=2(L0) ; �0 ! �0a(L0) ; A0 ! A0: (5.9)In parti
ular the bulk fermion �eld �L is 
oupled to �R��� _�p� ��0R = pQ�(q; L0)Q+(q; L0)�0L (5.10)where Q�(q; z) are bulk pro�le fun
tions that are solutions to the bulk fermion equa-tions of motion. The bulk �elds may be de
omposed in terms of a sour
e and a bulkpro�le(f�L; �Lg; f�R; �Rg)(q; z) = 1Q�(q; L0)(f�0L; �0Lg+; f�0R; �0Rg�)Q�(q; z); (5.11)suitably normalised by the boundary value of the pro�le fun
tion. A parti
ular solutionis Q+(q; z) = z5=2 [J�(qz)Y�(qL1)� J�(qL1)Y�(pz)℄ ; (5.12)with � = 
 + 1=2 and � = � � 1. When this is 
arried out for all the bulk �elds oneobtains a boundary e�e
tive a
tionZ d4q(2�)4 ��1(q2)F ��0 F0;�� � i��L1=2(q2)�0L������0L � i��L1=2(q2)�0L���� ��0L + 12�0(q2)D20�+ Z d4q(2�)4 ��(q2)�6(�06)2 +�(q2)�7(�07)2 +�(q2)�8(�08)2 +�(q2)�9(�09)2� : (5.13)One should interpret (�0)2 in the above to mean �0(q)�0(�q) et
. This e�e
tive a
tion
ould not be generated without the additional �elds su
h as �R; �R 
ontained in the12



MSYSM a
tion. This is the boundary a
tion for a four dimensional N = 2 SYMSU(NF ) 
avour symmetry, in a large N
 strongly 
oupled system.The a
tual form of the 
orrelators turn out to be similar to those found in [19℄. Aswe have not broken supersymmetry yet, these boundary to boundary 
orrelators of thetree level e�e
tive a
tion should 
an
el, in sets for instan
eh�0(q2)� 4��L1=2(q2) + 3�1(q2)i � 0: (5.14)But now there is also ��L1=2(q2) and �0(q2)�I (5.15)The general form is ��L1=2(q2) = a(z)qg25 � Q�(q; z)Q+(q; L0)�z=L0 : (5.16)where the tree level mat
hing 
ondition is given byRg25 = N
12�2 : (5.17)It is also interesting to 
onsider that the sour
e-�eld 
onstru
tion on the UV boundarymay be written in superspa
e,a3(L0)Z d4xZ d2� ��0�(L0) +H
(L0)H0 +H(L0)H
;0� (5.18)whi
h also in
orporate F 0 term sour
es, for instan
eZ d2� �H
H0� = FO(�08 + i�09) +O��0L;� +OF 0H (5.19)although for our use we �nd it easier to work with 
omponents.5.1 Dira
 masses from a strongly 
oupled systemThese results have some interesting appli
ations. Not only does it extend the workof [7,35℄ in exploring how one may use 5D supersymmetri
 models to study 4D strongly
oupled systems, importantly this setup will allow for Dira
 soft masses [8, 36{39℄to arise in AdS5 between the external sour
e �elds �0L and �0L (
ontained in V andHadj). Extending the 
urrent 
orrelator programme of [38℄, we take an IR lo
alisedsuperpotential W = YXHadjJ2 (5.20)with J2(y) = J2 +p2#j2 + #2F2, a 
hiral super�eld made of operators that may livein the bulk or IR boundary. Applying [19℄, a Dira
 soft mass 
an be interpreted asadditional terms in a supersymmetry breaking e�e
tive a
tion on the UV boundary, aswell as interesting kineti
 mixing terms:Seff � Z d4p(2�)4 hgSM ~YXM ~H1=2(p2)�0L�0L � igSM ~YX ~G1=2(p2)�0L������0Li (5.21)13



+ Z d4p(2�)4 "� ~Y 2X2 M ~I1=2(p2)�0L�0L � i2 ~Y 2X ~E1=2(p2)�0L���� ��0L#+ 
:
: (5.22)The �elds have been 
anoni
ally normalised. We expe
t that these soft masses are takenin the limit p2 ! 0, su
h that any dressing fun
tions �(p2) (whi
h may in
identally beaborbed into the de�nition of the Yukawa ~YX), asso
iated with the intermediate states,will not suppress this result: �(0) = 1 typi
ally. In summary, this e�e
tive a
tion isfound by integrating out the bulk states and generate e�e
tive Dira
 masses betweenexternal sour
e �elds of fermions �0Land �0L .5.2 Cross se
tions for Dira
 soft massesIn [40℄ 
ross se
tions of visible to hidden se
tor matter were 
onsidered for a straightfor-ward messenger model. These te
hniques may be applied to the 
orrelators asso
iatedwith Dira
 soft masses, and moreover, if the hidden se
tor is strongly 
oupled these
orrelators may develop 
ertain form fa
tors as do
umented in [19, 41℄. For these rea-sons we explore the 
ross-se
tions for the Dira
 soft mass 
orrelators. In general these
ross se
tions will be valid for both �(�L ! hidden) or �(�L ! hidden).If a hidden U(1) gauge �eld develops a vev W 0� = ��D the messenger �elds Q; ~Qwith opposite 
harges under the U(1) are split M2 �D with a 
urrent [38℄J2 = Q ~Q (5.23)
oupled to an adjoint 
hiral super�eldW � YXHadjJ2 (5.24)then one obtains a Dira
 soft mass between �L and �LmD = gYXM ~H1=2(0): (5.25)As the fun
tion ~H1=2(p2=M2) is stru
turally the same as M ~B1=2 we may 
ompute the
ross se
tion to be�D = (4�)�Xm0s Im hiM ~H1=2(s)i = (4�)�Xm0s 12iDis
 hiM ~H1=2(s)i (5.26)where we have de�ned �X = gSMYX=4� andDis
 hiM ~H1=2(s)i = m04�s�1=2(s;m20;m2+)�(s� (m0 +m+)2)� (m+ ! m�) (5.27)In the result above we have used some notation. We have introdu
e the `trianglefun
tion':�(s;m21;m22) = 4sjpj2 = (s2 +m41 +m42)� 2sm21 � 2sm22 � 2m21m22 (5.28)14



where s is the 
entre of mass energy squared Mandelstam variable s = (p1 + p2)2.Multiplying by �(s� (m1 +m2)2) (5.29)whi
h is equivalent to�1=2(s;m21;m22) = 2psjp!j =p[s� (m1 +m2)2℄[s� (m1 �m2)2℄�(s� (m1 +m2)2):(5.30)For equal mass s
attering it has a very simple form�1=2(s;m;m) = [s(s� 4m2)℄1=2 = sr1� 4m2s (5.31)and for unequal masses with m0 = M; m2� = M2 � F (or similarly, m2� = M2 �D)one gets �1=2(s;m0;m+) =qs2 + F 2 � 2s(m20 +m2+) (5.32)�1=2(s;m0;m+) =qs2 + F 2 � 2s(m20 +m2�) (5.33)�1=2(s;m�;m+) =qs2 � 4m20s+ 4F 2: (5.34)Conversely, for a model with an R-symmetri
 F term [38℄, the Dira
 mass is given by~H1=2(p2=M2) = 1p2M 
os(�=v)Z d4q(2�)4 1(q + p)2 +M2 (5.35)�� 1q2 +m2+ + 1q2 +m2� � 2q2 +M2� :This will give a 
ross se
tion Dis
 hiM ~H1=2(s)i = (5.36)
os(�=v)p2 M4�s h�1=2(s;m20;m2+)� + �1=2(s;m20;m2�)� � 2�1=2(s;m20;m20)�i :These 
ross se
tions may be dressed by the appropriate form fa
tor squared jF (s)j2F (s) = Q�(s; L1)Q+(s; L0) = �g5Xn=1 Fn n(L1)s�m2n (5.37)asso
iated with the bulk to boundary propagator between the UV boundary and theIR brane. We hope that these ideas have aided in extending the Dira
 soft massprogramme [8, 38℄ also to 
ertain strongly 
oupled systems.
15



6 Dis
ussion and 
on
lusionsIn this paper we have determined the superspa
e formulation of maximal super Yang-Mills in �ve dimensions, on a manifold with boundaries. This type of setup perhapso�ers a new resolution of the issue of non renormalisability of �ve dimensional modelbuilding [1,2℄. In addition it allows for a positive parity ve
tor V and 
hiral �eld Hadj ,
onsistent with supersymmetry and dimensional redu
tion, whi
h may allow for Dira
soft masses in a natural manner.In addition we have looked at the boundary terms that result from 
losure of su-persymmetry of the a
tion. This motivated us to dis
uss various examples where theboundary a
tion, and ne
essity of des
ending from the full MSYM, allows one to 
om-pute the 
omplete boundary to boundary 
orrelators and Dira
 soft masses betweenexternal sour
es, in a sli
e of AdS5.In parti
ular, by applying the holographi
 interpretation of this setup, we haveshown that some fermioni
 sour
e �elds �0L and �0L whi
h 
ouple to some (non) CFToperators OL;R, may develop Dira
 soft masses after the bulk a
tion is 
ompletelyintegrated out. This setup 
an be straightforwardly extended to more general or more
ompli
ated AdS models. It is natural to also write this a
tion in a fully warpedsuperspa
e following [32{34℄. It 
ould also be possible to 
onstru
t an entirely fourdimensional quiver De
onstru
tion of this setup, whi
h is likely to be more palatableto some. Finally it might be interesting to see M-theory play a more prominent role inphenomenology.A
knowledgements I am funded by the Alexander von Humboldt Foundation.I am espe
ially greatful for the assistan
e of �Omer G�urdo�gan, as well as Daniel C.Thompson, Ingo Kirs
h, Steven Abel and Neil Lambert for useful dis
ussions or 
om-ments. I would also like to a
knowledge the warm hospitality of the IPPP-Durham,whilst some of this work was 
ompleted.A Conventions and spinorsIn this appendix we outline the 
onventions used. The indi
es �; � are 4D , � = 0; 1; 2; 3.M;N are 5D indi
es with metri
 �MN = diag(�1; 1; 1; 1; 1). A;B are the 11D indi
es.I; J = 6; 7; 8; 9; 10. In parti
ular the �M̂N̂ multiply 7d spinors, the 
MN multiplysymple
ti
 Majorana spinors and the �MN multiply 2-
omponent spinors.We de�ne the 11d Gamma matri
es to satisfy the Cli�ord algebraf�A;�Bg = �2�AB1 (A.1)(�A)T = C11�AC�111 (A.2)(�A)� = B11�AB�111 (A.3)16



B11 = C11�0: (A.4)To dimensionally redu
e to four dimensions we 
hoose the expli
it representation�M = �3 
 �3 
 �3 
 
M (A.5)�6 = �3 
 �3 
 �1 
 14 (A.6)�7 = �3 
 �3 
 �2 
 14 (A.7)�8 = �2 
 12 
 12 
 14 (A.8)�9 = ��1 
 12 
 12 
 14 (A.9)�10 = �3 
 �1 
 12 
 14 (A.10)�5 = �3 
 �2 
 12 
 14: (A.11)�5 should satisfy: �5 = i�0�1:::�9�10: (A.12)In two 
omponent spinor notation
M =   0 ��� _���� _�� 0 ! ; �i 00 i !! ; and C5 =  ���� 00 � _� _� ! ; (A.13)where ��� _� = (1; ~�) and ��� _�� = (1;�~�). �; _� are spinor indi
es of SL(2; C). The
45d = �i
54d where expli
itly 
54d =  I 00 �I ! : (A.14)This may also be written as 
54d = i
0
1
2
4
5. C5 is the 5d 
harge 
onjugation matrixsu
h that C5
MC�15 = �
M�T : (A.15)We may also de�ne the 
omplex 
onjugation matrixB5 = C5
0 =  0 ����� _� _� 0 ! : (A.16)We in
lude also the Pauli matri
es�1 =  0 11 0 ! �2 =  0 �ii 0 ! �3 =  1 00 �1 ! ; (A.17)su
h that one may verify the tensor produ
ts.
17



A.1 Seven dimensionsFor obtaining the 5d Lagrangian from seven-dimensional N = 1 supersymmetri
 Yang-Mills theory [14℄, the following set of gamma matri
es is parti
ularly 
onvenient:�M̂ = ��3 
 
M ; �1 
 14; �2 
 14	 : (A.18)Note that the �ve dimensional matri
es are embedded in the �rst �ve 
omponentsof �M̂ . Moreover, �5 and �6 a
t as the identity operator to the two halves of theeight-
omponent spinors of seven dimensions.Symple
ti
 Majorana spinors in seven dimensions are de�ned as follows: I = �IJC7 � � T �J ;  I = �IJB7 ( �)J ; (A.19)with the seven-dimensional 
harge 
onjugation matrix beingC7 = i�0̂�2̂�4̂�5̂ = �2 
 12 
 �2 = �i�2 
 C5 (A.20)and 
omplex 
onjugation is de�ned asB7 = C7�0̂: (A.21)In this basis, a pair of seven-dimensional symple
ti
 Majorana spinors satisfying (A.19)have the form 1 =  
1	1 ! ;  2 =  	2
2 ! ; �1 =  �1�1 ! ; �2 =  �2�2 ! ; (A.22)where (
1;
2) and (	1;	2) are pairs of four 
omponent spinors, separately satisfyingthe �ve-dimensional symple
ti
 Majorana 
ondition:
i = �ijC �
Tj ; 	i = �ijC �	Tj : (A.23)The 7d supersymmetry parameters may be written(��1)T =  ��1���1 ! ; (��2)T =  ��2���2 ! : (A.24)It is useful to identify the degrees of freedom of the 7d and 5d theories(B1 + iB2) = (X8 + iX9) and B3 = X10 = �; (A.25)where � is a real adjoint s
alar mat
hing the notation of N = 1 5d SYM. The sevendimensional SYM boundary a
tion ( of x4) is given by1g25 Z d4x�G4MGPQFMPAQ � 12G4M (DMBi)Bi + 14 � I I� (A.26)whi
h are naturally 
ontained in the super�eld, but not the 
omponent a
tion of [14℄.18
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