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tThe determination of renormalization fa
tors is of 
ru
ial importan
e in latti
eQCD. They relate the observables obtained on the latti
e to their measured 
ounter-parts in the 
ontinuum in a suitable renormalization s
heme. Therefore, they haveto be 
omputed as pre
isely as possible. A widely used approa
h is the nonper-turbative Rome-Southampton method. It requires, however, a 
areful treatment oflatti
e artifa
ts. In this paper we investigate a method to suppress these artifa
tsby subtra
ting one-loop 
ontributions to renormalization fa
tors 
al
ulated in latti
eperturbation theory. We 
ompare results obtained from a 
omplete one-loop sub-tra
tion with those 
al
ulated for a subtra
tion of 
ontributions proportional to thesquare of the latti
e spa
ing.1 Introdu
tionRenormalization fa
tors in latti
e Quantum Chromodynami
s (QCD) relate observables
omputed on �nite latti
es to their 
ontinuum 
ounterparts in spe
i�
 renormalizations
hemes. Therefore, their determination should be as pre
ise as possible in order to al-low for a reliable 
omparison with experimental results. One approa
h is based on latti
eperturbation theory [1℄. However, it su�ers from its intrinsi
 
omplexity, slow 
onver-gen
e and the impossibility to handle mixing with lower-dimensional operators. Therefore,nonperturbative methods have been developed and applied. Among them the so-
alledRome-Southampton method [2℄ (utilizing the RI-MOM s
heme) is widely used be
ause ofits simple implementation. It requires, however, gauge �xing.Like (almost) all quantities evaluated in latti
e QCD also renormalization fa
tors su�erfrom dis
retization e�e
ts. One 
an attempt to 
ope with these latti
e artifa
ts by extrap-olating the nonperturbative s
ale dependen
e to the 
ontinuum (see Ref. [3℄) or one 
an
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try to suppress them by a subtra
tion pro
edure based on perturbation theory. Here weshall deal with the latter approa
h.In a re
ent paper of the QCDSF/UKQCD 
ollaboration [4℄ a 
omprehensive dis
ussionand 
omparison of perturbative and nonperturbative renormalization have been given.Parti
ular emphasis was pla
ed on the perturbative subtra
tion of the unavoidable latti
eartifa
ts. For simple operators this 
an be done in one-loop order 
ompletely by 
omput-ing the 
orresponding diagrams for �nite latti
e spa
ing numeri
ally. While being verye�e
tive this pro
edure is rather involved and not suited as a general method for more
omplex operators, espe
ially for operators with more than one 
ovariant derivative, and
ompli
ated latti
e a
tions. An alternative approa
h 
an be based on the subtra
tion ofone-loop terms of order a2 with a being the latti
e spa
ing. The 
omputation of thoseterms has been developed by the authors of Ref. [6℄ and applied to various operators fordi�erent a
tions. In this paper we use some of those results for the analysis of Monte Carlodata for renormalization 
oeÆ
ients.We study the 
avor-nonsinglet quark-antiquark operators given in Table 1. The 
or-Operator Notation Repre- Operator basis(multiplet) sentation�ud OS � (1)1 OS�u
� d OV� � (4)1 OV1 ;OV2 ;OV3 ;OV4�u
�
5 d OA� � (4)4 OA1 ;OA2 ;OA3 ;OA4�u��� d OT�� � (6)1 OT12;OT13;OT14;OT23;OT24;OT34�u
� $D� d O�� ! Ov2;a � (6)3 Of12g;Of13g;Of14g;Of23g;Of24g;Of34g�u
� $D� d O�� ! Ov2;b � (3)1 1=2(O11 +O22 �O33 �O44),1=p2(O33 �O44); 1=p2(O11 �O22)Table 1: Operators and their representations as investigated in the present paper. Thesymbol f:::g means total symmetrization. A detailed group theoreti
al dis
ussion is givenin [5℄.responding renormalization fa
tors have been measured (and 
hirally extrapolated) at� = 5:20; 5:25; 5:29 and 5:40 using Nf = 2 
lover improved Wilson fermions with pla-quette gauge a
tion [4℄. All results are 
omputed in Landau gauge. The 
lover parameter
SW used in the perturbative 
al
ulation dis
ussed below is set to its lowest order value
SW = 1.2 Renormalization group invariant operatorsWe de�ne the renormalization 
onstant Z of an operator O from its amputated Greenfun
tion (or vertex fun
tion) �(p), where p is the external momentum and the operatoris taken at vanishing momentum. The 
orresponding renormalized vertex fun
tion andthe Born term (with all latti
e artifa
ts in
luded) are denoted by �R(p) and �Born(p),2



respe
tively. If there is no mixing, Z 
an then be obtained by imposing the 
ondition112 tr ��R(p) �Born(p)�1� = 1 (1)for vanishing quark mass at p2 = �2, where � is the renormalization s
ale. The Z fa
torrelates the renormalized and the unrenormalized vertex fun
tion through�R(p) = Z�1q Z �(p) ; (2)with Zq being the quark �eld renormalization 
onstant determined byZq(p) = tr [�iP� 
� sin(ap�) aS�1(p)℄12P� sin2(ap�) (3)in the 
hiral limit again at p2 = �2. Condition (1) together with (3) de�nes the RI0-MOMrenormalization s
heme. Here S�1 is the inverse quark propagator. Using (1) we 
omputeZ from Z�1q Z 112 tr ��(p) �Born(p)�1� = 1 : (4)For operators transforming as singlets under the hyper
ubi
 group H(4), su
h as OS, Z
an depend on the 
omponents of p only through H(4) invariants.For operators belonging to an H(4) multiplet of dimension greater than 1 the 
ondition(1) violates H(4) 
ovarian
e and would in general lead to di�erent Z fa
tors for ea
hmember of the multiplet. In Ref. [4℄ an averaging pro
edure has been proposed to 
al
ulateone 
ommon Z fa
tor for every multiplet. Labeling the 
hosen operator basis by i =1; 2; : : : ; d the 
ommon Z was 
al
ulated fromZ�1q Z 1d dXi=1 112 tr ��i(p)�Borni (p)�1� = 1 : (5)This 
ondition leads to anH(4)-invariantZ for the operators without derivatives in Table 1.However, in general this is not the 
ase.It is not diÆ
ult to devise a renormalization 
ondition that respe
ts the hyper
ubi
symmetry. Choosing a basis of operators (again labeled by i), transforming a

ording to aunitary irredu
ible representation of H(4), the relationZ�1q Z Pdi=1 tr ��i(p)�Borni (p)y�Pdj=1 tr ��Bornj (p)�Bornj (p)y� = 1 (6)de�nes a Z fa
tor whi
h is invariant under H(4), provided that the quark �eld renormal-ization fa
tor is also H(4) invariant. The derivation of renormalization 
ondition (6) isgiven in the Appendix. For the operators without derivatives the de�nitions (6) and (5)are equivalent. For the 
onsidered operators with one derivative the resulting di�eren
esturn out to be negligible. In the following the Z fa
tors will be determined from (6) usingthe operator bases given in Table 1. This is our version of the RI0-MOM s
heme.3



We de�ne a so-
alled RGI (renormalization group invariant) operator, whi
h is inde-pendent of s
ale M and s
heme S, by [4℄ORGI = �ZS(M)OS(M) = ZRGI(a)Obare (7)with �ZS(M) = �2�0gS(M)216 �2 ��(
0=2�0) exp(Z gS(M)0 dg0�
S(g0)�S(g0) + 
0�0g0�) (8)and the RGI renormalization 
onstant (depending on a via the latti
e 
oupling)ZRGI(a) = �ZS(M)ZSbare(M; a) : (9)Here gS, 
S and �S are the 
oupling 
onstant, the anomalous dimension and the �-fun
tionin s
heme S, respe
tively. Relations (7), (8) and (9) allow us to 
ompute the operator Oin any s
heme and at any s
ale we like, on
e ZRGI is known. Therefore, the knowledgeof ZRGI is very useful for the renormalization pro
edure in general. Ideally, ZRGI dependsonly on the bare latti
e 
oupling, but not on the momentum p. Computed on a latti
e,however, it su�ers from latti
e artifa
ts, e.g., it 
ontains 
ontributions proportional to a2p2,(a2p2)2 et
. For a pre
ise determination it is essential to have these dis
retization errorsunder 
ontrol.As the RI0-MOM s
heme is in general not O(4)-
ovariant even in the 
ontinuum limit,it is not very suitable for 
omputing the anomalous dimensions needed in (8). Thereforewe use an intermediate s
heme S with known anomalous dimensions and 
al
ulate ZRGIas follows: ZRGI(a) = �ZS(M = �)ZSRI0�MOM(M = �)ZRI0�MOMbare (�; a) : (10)It turns out that a type of momentum subtra
tion s
heme is a good 
hoi
e for S (fordetails see Ref. [4℄). The formula whi
h is used to 
ompute the transformation fa
torZSRI0�MOM(�) is given there together with all needed 
oeÆ
ients of the �-fun
tion andanomalous dimensions, whi
h are based on 
ontinuum three-loop 
al
ulations su
h as thosein [7, 8, 9℄.On a latti
e with linear extent L the s
ale � should ideally ful�ll the relation1=L2 � �2QCD � �2 � 1=a2 : (11)In that 
ase ZRGI(a) would be independent of �, and from the resulting plateau we 
ouldread o� the 
orresponding �nal value. However, in pra
ti
e a� is not ne
essarily smallleading to non-negligible latti
e artifa
ts that have to be tamed. A promising tool to
ontrol latti
e artifa
ts in a systemati
 way is latti
e perturbation theory: We expe
t thatafter subtra
ting these perturbative terms the 
al
ulation of the Z fa
tors 
an be donemore a

urately.
4



3 Subtra
tion of all latti
e artifa
ts in one-loop orderIn standard latti
e perturbation theory the one-loop renormalization 
onstants are givenin the form Z(�; a) = 1 + g2CF16 �2 (
0 ln(a�) + �) ; CF = 43 : (12)This means that the a-dependen
e is retained only in the logarithm and impli
itly in g,while in all other 
ontributions the limit a! 0 has been taken.However, there is no need to do so. We 
an keep a �nite everywhere and thus evaluatethe latti
e artifa
ts at one-loop order 
ompletely, pro
eeding as follows. Let us denote byF (p; a) the total one-loop 
orre
tion and by ~F (p; a) the expression resulting from F (p; a)by negle
ting all 
ontributions whi
h vanish for a! 0. The di�eren
eD(p; a) = F (p; a)� ~F (p; a) (13)represents the latti
e artifa
ts in one-loop perturbation theory and is used to 
orre
t forthe dis
retization errors:ZRI0�MOMbare (p; a)MC;sub = ZRI0�MOMbare (p; a)MC � g2?16 �2CF D(p; a) : (14)There is a 
ertain freedom in 
hoosing the 
oupling g? in (14). It turned out that the useof the boosted 
oupling g2B = g2P (g) = g2 +O(g4) (15)(P (g) being the measured plaquette at � = 6=g2) is quite su

essful in estimating thehigher-order dis
retization e�e
ts. With the pres
ription (14) all latti
e artifa
ts in one-loop order are subtra
ted.In Fig. 1 we show the e�e
t of subtra
tion on the RGI renormalization fa
tors forsele
ted operators of Table 1. For all operators we re
ognize after subtra
tion a remarkablesmoothing and a pronoun
ed plateau as a fun
tion of p2 for p2 & 10GeV2. The largebending in the small p2 region might indi
ate the breakdown of perturbation theory (
f. thedis
ussion in [4℄). The examples show that the one-loop subtra
tion of latti
e artifa
ts (14)works very well and, moreover, is needed for a pre
ise determination of the renormalization
onstants. The �nal values for ZRGI from (10) are obtained by a �t with an ansatz [4℄ZSRI0�MOM(p)ZRI0�MOMbare (p; a)MC;sub = ZRGI(a)�ZS(p) [1 + b1 (gS)8℄ + 
1 a2p2 : (16)The free parameter b1 takes into a

ount that the transformation fa
tor ZSRI0�MOM(p) isknown to three-loop order �gS�6 only. Further possible latti
e artifa
ts are parametrizedby 
1 a2p2.For pra
ti
al reasons the numeri
al 
al
ulation of F (p; a) - and therefore the 
al
ulationof ZRGI using (16) - is restri
ted to operators with at most one derivative and for Nf = 2only. In order to perform the subtra
tion for a wider 
lass of operators and/or forNf = 2+1(where the 
onsidered latti
e a
tion be
omes more 
ompli
ated) we have to look for an5
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complete subtractionFigure 1: ZRGIS (left) and ZRGIT (right) for � = 5:40. The Z fa
tors obtained withoutsubtra
tion are shown as red squares, those with 
omplete one-loop subtra
tion (14) asblue triangles. (The ne
essary s
ale transformation fa
tors for the momenta are given atthe end of Se
tion 4.)alternative method. One possibility whi
h will be dis
ussed in the next se
tions is a'redu
ed' subtra
tion: Instead of subtra
ting the 
omplete one-loop latti
e artifa
ts wesubtra
t only the one-loop terms proportional to a2, if they are known for the given a
tion.4 Subtra
tion of order a2 one-loop latti
e artifa
ts4.1 Latti
e perturbation theory up to order g2a2The diagrammati
 approa
h to 
ompute the one-loop a2 terms for the Z fa
tors of lo
aland one-link operators has been developed by some of us [6, 10℄. The general 
ase ofWilson type improved fermions is dis
ussed in [11℄. For details of the 
omputations werefer to these referen
es. Here we give expli
itly the results for the operators and a
tionsinvestigated in this paper (massless improved Wilson fermions with 
SW = 1, plaquettegauge a
tion, Landau gauge).Using the relation (6) we 
ompute a 
ommon Z fa
tor for ea
h multiplet given inTable 1. The results are as follows:ZS = 1 + g2CF16�2 �� 23:3099 + 3 log(a2S2)+a2 �S2�1:64089� 239240 log(a2S2)�+ S4S2 �1:95104� 101120 log(a2S2)��� ;ZV = 1 + g2CF16�2 �� 15:3291+a2 �S2��1:33855 + 151240 log(a2S2)�+ S4S2 �2:89896� 101120 log(a2S2)��� ;6



ZA = 1 + g2CF16�2 �� 13:7927+a2 �S2��0:92273 + 151240 log(a2S2)�+ S4S2 �2:89896� 101120 log(a2S2)��� ;ZT = 1 + g2CF16�2 �� 11:1325� log(a2S2) (17)+a2�S2��1:72760 + 221240 log(a2S2)� + S4S2 �3:21493� 101120 log(a2S2)��� ;Zv2;a = 1 + g2CF16�2 �6:93831� 83 log(a2S2)� 29 S4(S2)2+a2 �S2 ��1:50680 + 167180 log(a2S2)�+S4S2 �2:63125� 197180 log(a2S2)�� 71540 S42(S2)3 � 82135 S6(S2)2�� ;Zv2;b = 1 + g2CF16�2 �5:78101� 83 log(a2S2) + 49 S4(S2)2+a2 �S2 ��0:56888 + 130 log(a2S2)�+S4S2 ��0:51323 + 1930 log(a2S2)�+ 71270 S42(S2)3 + 164135 S6(S2)2�� :Here we have introdu
ed the notationSn = 4X�=1 pn� ; (18)with p� being the momentum 
omponents. Note that terms of type (S4=S2) log(a2S2),appearing in ZS; ZV ; ZA; ZT , all have the same 
oeÆ
ient whi
h arises solely from thequark wave fun
tion renormalization 
onstant Zq. The 
orresponding one-loop vertexfun
tions �i(p) in (6) do not 
ontain su
h a stru
ture. For later purposes we write theZ fa
tors generi
ally asZ = 1 + g2CF16�2 Z1�loop + a2g2Z(a2)1�loop(p; a) : (19)We emphasize that the numeri
al 
oeÆ
ients in the above expressions are either exa
trationals or 
an be 
omputed to a very high pre
ision.In Figs. 2, 3 and 4 we present a2g2Z(a2)1�loop(p; a) for sele
ted operators as a fun
tion ofa2p2 on a �nite latti
e, where we 
hoose the latti
e momenta as p� = (2� i�)=(aL�). Here,i� are integers and L� is the latti
e extension in dire
tion �. We 
ompare the 
orre
tionterms for a general set of momenta with those obtained for the momenta used in thisinvestigation at � = 5:40 on 243 � 48 latti
es and with 'diagonal' momenta, i.e., momentaon the diagonal of the Brillouin zone. 7



0 1 2 3 4 5 6 7 8 9 10
(a p)

2

-0.06

-0.04

-0.02

0.00

0.02

0.04

0.06
arbitrary momenta
diagonal
actual momenta

0 1 2 3 4 5 6 7 8 9 10
(a p)

2

0.00

0.02

0.04

0.06

0.08

0.10

0.12
arbitrary momenta
diagonal
actual momenta

Figure 2: a2g2Z(a2)1�loop(p; a) for operators OS (left) and OV (right) as a fun
tion of a2p2 ona 243 � 48 latti
e at � = 5:40. The green �lled 
ir
les are the values for an arbitrary setof (mostly non-diagonal) momenta, whereas the red �lled squares are obtained from themomenta used in this investigation. The blue line is 
omputed from diagonal momenta.
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The �gures show that the momenta of the a
tually measured Z fa
tors are very 
lose tothe diagonal. Furthermore, one re
ognizes that the magnitude of the 
al
ulated one-loopa2 
orre
tions in the used momentum range is small but not negligible 
ompared to themeasured values whi
h are of order 1 (see also Fig. 1). Therefore, one 
an expe
t that thesubtra
tion of those terms yields a noti
eable e�e
t.4.2 Subtra
tion of latti
e artifa
ts up to order a2The subtra
tion pro
edure of order a2 terms is not unique - we 
an use di�erent de�nitions.The only restri
tion is that at one-loop order they should agree (treating ZRI0�MOMbare (p; a)MCin perturbation theory). We investigate the following possibilities,ZRI0�MOMbare (p; a)MC;sub;s = ZRI0�MOMbare (p; a)MC � a2 g2? Z(a2)1�loop(p; a) ; (20)ZRI0�MOMbare (p; a)MC;sub;m = ZRI0�MOMbare (p; a)MC � �1� a2 g2? Z(a2)1�loop(p; a)� ; (21)where g? 
an be 
hosen to be either the bare latti
e 
oupling g or the boosted 
ouplinggB (15). (In the following we denote subtra
tion type (20) by (s) and (21) by (m)).With ansatz (s) the one-loop a2 
orre
tion is subtra
ted 'dire
tly' from ZRI0�MOMbare (p; a)MC.Subtra
tion type (m) fa
torizes the one-loop a2 
orre
tion from the nonperturbative Zfa
tor.The ZRGI are 
omputed from (10) using (s) or (m), where we expe
t slightly dif-ferent numbers depending on the 
hoi
e of 
oupling g?. The only signi�
ant errors toZRI0�MOMbare (p; a)MC;sub are due to the Monte Carlo simulations.In Fig. 5 we show how the subtra
tion of latti
e artifa
ts (
omplete and a2) a�e
ts
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ted and subtra
ted renormalization 
onstants for the s
alar operatorOS (left) and the tensor operator OT (right) at � = 5:40, for p2 & 10GeV2 and r0 �MS =0:700. The 
omplete subtra
tion is based on (14), whereas the a2 subtra
tions are of type(s) and (m) with g? = gB.the renormalization 
onstants for the s
alar and tensor operators. The 
omplete one-loopsubtra
tion results in a 
lear plateau for both ZRGI fa
tors. Using the a2 subtra
tionsthere remains a more or less pronoun
ed 
urvature whi
h has to be �tted. From thede�nitions of the subtra
tion terms it is 
lear that they vanish at a2p2 = 0. Moreover, for9



small p2 � 10GeV2 the subtra
tion methods (s) and (14) already agree, as they should.However, as dis
ussed above, ZRGI 
an only be determined from suÆ
iently large momenta(p2 & 10GeV2), where di�eren
es arise between the various pro
edures. Therefore theresults for ZRGI may di�er depending on the kind of subtra
tion. As 
an be seen in Fig. 5,this e�e
t varies strongly from operator to operator.4.3 Fit pro
edureCompared to the 
omplete one-loop subtra
tion we expe
t that ZRI0�MOMbare (p; a)MC;sub as
omputed from (s) or (m) 
ontains terms proportional to a2n (n � 2) even at order g2, aswell as the latti
e artifa
ts from higher orders in perturbation theory, 
onstrained only byhyper
ubi
 symmetry. Therefore, we parametrize the subtra
ted data for ea
h � in termsof the hyper
ubi
 invariants Sn de�ned in (18) as followsZSRI0�MOM(p)ZRI0�MOMbare (p; a)MC;sub = ZRGI(a)�ZS(p) [1 + b1 (gS)8℄ + (22)a2�
1 S2 + 
2 S4S2 + 
3 S6(S2)2�+ a4 �
4 (S2)2 + 
5 S4�+ a6 �
6 (S2)3 + 
7 S4 S2 + 
8 S6� :There are also further non-polynomial invariants at order a4; a6, but their behavior isexpe
ted to be well des
ribed by the invariants whi
h have been in
luded already. Ansatz(22) is a generalization of (16): After the 'redu
ed' one-loop subtra
tion of latti
e artifa
tsthe Z fa
tors are expe
ted to depend more strongly on a4 or a6 hyper
ubi
 invariants thanafter the 
omplete one-loop subtra
tion (see Fig. 5). The parameters 
1; : : : ; 
8 des
ribethe latti
e artifa
ts.Together with the target parameter ZRGI(a) we have ten parameters for this general
ase. In view of the limited number of data points for ea
h single � value (5:20, 5:25, 5:29,5:40) we apply the ansatz (22) to several � values simultaneously withZRGI(a)�ZS(p) [1 + b1 (gS)8℄ ! ZRGI(ak)�ZSk (p) [1 + b1 (gS)8℄ ; (23)where k labels the 
orresponding � value (ak = a(�k)). The parameters 
i are taken tobe independent of �. This enhan
es the ratio (number of data points)/(number of �tparameters) signi�
antly and we obtain several ZRGI(ak) at on
e. The �t is performedby a nonlinear model �t whi
h uses - depending on the a
tual 
onvergen
e - either theNelder-Mead or a di�erential evolution algorithm [12℄. Additionally, we have 
he
ked someof the �t results using MINUIT [13℄.The renormalization fa
tors are in
uen
ed by the 
hoi
e for r0 �MS. This quantityenters �ZS(M) in (8) via the 
orresponding 
oupling gS(M) (for details see [4℄). We 
hooser0 �MS = 0:700 [14℄. In order to estimate the in
uen
e of the 
hoi
e of r0 �MS we also user0 �MS = 0:789 
al
ulated in [15℄. The Sommer s
ale r0 is 
hosen to be r0 = 0:501 fm andthe relation between the latti
e spa
ing a and the inverse latti
e 
oupling � is given byr0=a = 6:050 (� = 5:20); 6:603 (� = 5:25); 7:004 (� = 5:29) and 8:285 (� = 5:40) [16℄.10



5 Renormalization fa
tors for lo
al and one-link op-eratorsThe �t pro
edure as sket
hed above has quite a few degrees of freedom and it is essential toinvestigate their in
uen
e 
arefully. A 
riterion for the 
hoi
e of the minimal value of p2 isprovided by the breakdown of perturbation theory at small momenta. The data suggest [4℄that we are on the 'safe side' when 
hoosing p2min = 10GeV2. As the upper end of the �tinterval we take the maximal available momentum at given 
oupling �.Other important fa
tors are� Type of subtra
tion: As dis
ussed above the pro
edure of the one-loop subtra
-tion is not unique. We 
hoose di�erent de�nitions (s) and (m) with either bare g orboosted 
oupling gB.� Sele
tion of hyper
ubi
 invariants: For the quality of the �t it is essential howwell we des
ribe the latti
e artifa
ts whi
h remain after subtra
tion [17, 18℄. This is
onne
ted to the question whether the a2 subtra
tion has been suÆ
ient to subtra
t(almost) all a2 artifa
ts. Therefore, we perform �ts with various 
ombinations ofstru
tures with 
oeÆ
ients 
i in (22). One should mention that the 
on
rete optimal(i.e. minimal) set of 
i depends strongly on the momenta of the available MonteCarlo data - nearly diagonal momenta require fewer stru
tures to be �tted than faro�-diagonal ones.The analysis should provide an optimal restri
ted set of parameters whi
h 
an be usedas a guideline for other 
lasses of operators. Nevertheless, one has to inspe
t every new
ase 
arefully.The results for ZRGI will depend on the above mentioned fa
tors. As a detailed pre-sentation for all operators and �-values would be too lengthy, we sele
t some operatorsand/or � values and take the 
orresponding results as a kind of referen
e. All results pre-sented in this se
tion are 
omputed for r0 �MS = 0:700. The 
hoi
e r0 �MS = 0:789 leadsto qualitatively similar results. The large number of parameters in ansatz (22) 
alls for a
ombined use of the data sets at � = (5:20; 5:25; 5:29; 5:40) for our �t analysis as indi
atedin (23). With the 
hoi
e p2min = 10GeV2 this results in 94 data points available for the
orresponding �ts. Additionally, we should note that the errors on our �t parameters arethose obtained from the nonlinear model �t. They di�er from the error 
al
ulation for theZRGI based on (16) and used in [4℄.5.1 Dependen
e on the subtra
tion typeIn Fig. 6 we present the ZRGI for operators OS, OV , OT and Ov2;a for the di�erent subtra
-tion types using the �t ansatz (22) with all 
i 6= 0, i.e., we in
lude a2, a4 and a6 terms. Fromthe dis
ussion in Se
tion 4.2 we expe
t that the resulting di�eren
es vary from operator tooperator (
f. Fig. 5).From Fig. 6 we observe that the 
omplete one-loop subtra
tion (1) and the subtra
tion(2) agree within 1%. This is not unexpe
ted be
ause the subtra
tion s
hemes are similar11
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subtypeFigure 6: ZRGI of sele
ted operators at � = 5:40 as a fun
tion of the subtra
tion type(subtype): 1: 
omplete subtra
tion (14) with g? = gB, 2: (s) with g? = gB, 3: (m) withg? = gB, 4: (s) with g? = g, 5: (m) with g? = g. The horizontal borders of the shadedarea show a 1% deviation from 
ase 1.and the gauge 
ouplings 
oin
ide. The di�eren
es in the results for (2) and (3) 
an beused as an indi
ation for a systemati
 un
ertainty in the determination of ZRGI basedon the s
hemes (s,m). We observe that both subtra
tion approa
hes are numeri
allyalmost equivalent. Choi
es (4) and (5) lead to ZRGI fa
tors whi
h are partly outside the1% deviation. Generally, we re
ognize that all subtra
tion pro
edures for both bare andboosted 
ouplings produ
e �t results within a reasonable error band width.In order to test the e�e
t of subtra
tion we 
ompare the g2a2 
ontributions as given in(17) with the remaining latti
e artifa
ts of the Monte Carlo data �tted after subtra
tion, i.e.the result for (22) setting ZRGI(a) = 0. In Fig. 7 we show the results for the same sele
tedoperators 
hoosing gB. In the small p2 region the remaining latti
e artifa
ts are signi�
antlysmaller than the one-loop a2 terms (operators OS, OT and Ov2;a). In 
ase of already smallone-loop a2 artifa
ts (operator OV ) the �nal artifa
ts remain small. This behavior stronglysuggests to subtra
t the one-loop a2 terms before applying the �t pro
edure.Sin
e the boosted 
oupling gB is assumed to remove large latti
e artifa
ts due to tadpole
ontributions in the perturbative series, we will use gB in the following. In addition, werestri
t ourselves to subtra
tion type (s), whi
h is 
losest in spirit to the 
omplete one-loopsubtra
tion studied in [4℄ (leading approximately to a plateau in the ZRGI as a fun
tion ofp2). 12
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Figure 7: Latti
e artifa
ts for ZRGI of sele
ted operators for � = 5:40 as a fun
tion of p2
hoosing g? = gB. The blue �lled 
ir
les are the 
orresponding g2a2 
orre
tion terms, thered open 
ir
les are the �t results for (22) setting ZRGI(a) = 0.5.2 Dependen
e on hyper
ubi
 invariantsNow we dis
uss the dependen
e on the hyper
ubi
 invariants in
luded in the �t ansatz(22). The goal is to sele
t a reasonable set of parameters to parametrize the remaininglatti
e artifa
ts. Figure 8 shows the �t results for some ZRGI utilizing di�erent parametersets f
kg. We use the subtra
tion type (s) with g? = gB. In that 
ase the results from the
omplete one-loop subtra
tion (1) serve as referen
e values.Generally, we re
ognize that the resulting RGI renormalization fa
tors do not varysigni�
antly. Most �t results for ZRGI are lo
ated in a 1% deviation band around the
orresponding 
omplete subtra
tion results (1). In addition, parametrizations (2) and (3)give almost identi
al �t results. This re
e
ts, of 
ourse, the fa
t that our momenta arevery 
lose to the diagonal in the Brillouin zone. These restri
ted momentum sets might bethe reason that even 'in
omplete' hyper
ubi
 invariant sets (4, 5) 
an be used to obtainreasonable �ts. For the �nal results we use the �t with all 
i 6= 0 whi
h would be naturalin the 
ase of more o�-diagonal momenta.In Figs. 9, 10 and 11 we show the results for all operators using the parameter sets withall 
i 
ompared to the results obtained by the subtra
tion s
heme based on (14).
13
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al and one-link operators and 
on
lu-sionsAs a result of the pre
eding dis
ussions we use subtra
tion type (s) (eq. (20)) with boosted
oupling gB and the �tting formula (22) with all 
i and b1 
oeÆ
ients to determine theZRGI. The �nal renormalization fa
tors are 
olle
ted in Table 2 using the two di�erentr0 �MS values 0:700 and 0:789. This shows the in
uen
e of the 
hoi
e of r0 �MS (dependingon the anomalous dimension of the operator). For the investigated operators and � valueswe found for the relative di�eren
es of the ZRGIÆZRGI = ����ZRGIr0 �MS=0:700 � ZRGIr0 �MS=0:789ZRGIr0 �MS=0:700 ���� . 0:04 : (24)For 
omparison we 
olle
t in Table 3 the values for ZRGI 
omputed by means of �ts withthe ansatz (16) to data where a 
omplete one-loop subtra
tion of latti
e artifa
ts (a

ordingto (14) with g? = gB) has been performed. Note that here the errors are determined fromthe variation of the subtra
ted data between the s
ales �2 = 10; 20; 30GeV2 [4℄. Thereported renormalization fa
tors are 
al
ulated for the values r0=a given at the end ofSe
tion 4 and, therefore, di�er from those given in [4℄. The Z fa
tors of the lo
al operators15



Op. r0 �MS ZRGIj�=5:20 ZRGIj�=5:25 ZRGIj�=5:29 ZRGIj�=5:40OS 0:700 0:4530(34) 0:4475(33) 0:4451(32) 0:4414(30)0:789 0:4717(44) 0:4661(65) 0:4632(54) 0:4585(27)OV 0:700 0:7163(26) 0:7253(26) 0:7308(25) 0:7451(24)0:789 0:7238(72) 0:7319(94) 0:7365(99) 0:7519(50)OA 0:700 0:7460(41) 0:7543(40) 0:7590(39) 0:7731(37)0:789 0:7585(46) 0:7634(77) 0:7666(81) 0:7805(30)OT 0:700 0:8906(43) 0:9036(42) 0:9108(41) 0:9319(39)0:789 0:8946(85) 0:9041(111) 0:9075(120) 0:9316(49)Ov2;a 0:700 1:4914(55) 1:5131(55) 1:5266(54) 1:5660(53)0:789 1:4635(108) 1:4776(112) 1:4926(90) 1:5397(58)Ov2;b 0:700 1:5061(37) 1:5218(37) 1:5329(36) 1:5534(35)0:789 1:4601(151) 1:4727(206) 1:4863(165) 1:5115(140)Table 2: ZRGI values using the subtra
tion (s) with gB.in both tables agree within 1%. The Z fa
tors of the one-link operators di�er at most by2%.Let us 
ompare our results in Table 3 for the lo
al ve
tor 
urrent with ZRGIV obtainedfrom an analysis of the proton ele
tromagneti
 form fa
tor [19℄ following [20℄, whi
h arelisted in Table 4. The numbers agree within less than 1% with the numbers in Table 3(r0 �MS = 0:700), supporting the 
omplete one-loop subtra
tion as our referen
e point.From the present investigation we 
on
lude: The alternatively proposed 'redu
ed' sub-tra
tion algorithm 
an be used for the determination of the renormalization fa
tors if the
omplete subtra
tion method is not available. Possible appli
ations 
ould be Z fa
tors forNf = 2+1 
al
ulations with more 
ompli
ated fermioni
 and gauge a
tions where one-loopresults to order a2 are available (for the fermioni
 SLiNC a
tion with improved Symanzikgauge a
tion see Ref. [10℄).In this study we have analyzed data sets with momenta 
lose to the diagonal of theBrillouin zone. The one-loop a2 
ontributions to the Z fa
tors are 
ompletely general and
an be used for arbitrary (also non-diagonal) momentum sets. Our ansatz (22) allows totake into a

ount the remaining artifa
ts after subtra
ting these one-loop a2 terms. To getreasonable �t results the ratio (number of data points)/(number of �t parameters) has tobe suÆ
iently large.As we pointed out the subtra
tion type is not unique. With (s) and (m) we tested twodi�erent types. The resulting �ts do not give a 
lear preferen
e for one of these. Even16



Op. r0 �MS ZRGIj�=5:20 ZRGIj�=5:25 ZRGIj�=5:29 ZRGIj�=5:40OS 0:700 0:4508(20) 0:44952(32) 0:44788(70) 0:4460(20)0:789 0:4620(85) 0:4603(60) 0:4585(61) 0:4560(48)OV 0:700 0:7225(44) 0:7321(31) 0:7370(46) 0:7511(41)0:789 0:7219(53) 0:7316(41) 0:7364(55) 0:7506(50)OA 0:700 0:7529(17) 0:76046(70) 0:76463(33) 0:77731(20)0:789 0:7530(14) 0:76054(48) 0:7647(14) 0:7774(10)OT 0:700 0:9020(12) 0:91427(24) 0:9206(14) 0:94009(69)0:789 0:8948(40) 0:9072(32) 0:9137(48) 0:9333(38)Ov2;a 0:700 1:5018(48) 1:5190(64) 1:5321(52) 1:5681(29)0:789 1:473(18) 1:490(14) 1:504(12) 1:540(14)Ov2;b 0:700 1:5083(51) 1:524(14) 1:5362(92) 1:5706(61)0:789 1:480(15) 1:497(28) 1:509(23) 1:5436(69)Table 3: ZRGI using a 
omplete one-loop subtra
tion of latti
e artifa
ts.ZRGIj�=5:20 ZRGIj�=5:25 ZRGIj�=5:29 ZRGIj�=5:400:7296(4) 0:7355(3) 0:7401(2) 0:7521(3)Table 4: ZRGI values for operator V from the proton ele
tromagneti
 form fa
tor analysis.the additional 
hoi
e for the 
oupling (g? = g or g? = gB) does not lead to signi�
antlydi�erent results. Therefore, our �nal 
hoi
e (s) (eq. (20) with g? = gB) was supportedby 'external' arguments: the improved behavior of the boosted perturbative series and theresults obtained by 
omplete one-loop subtra
tion [4℄.We have shown that already the one-loop a2 subtra
tion improves the behavior of theZ fa
tors signi�
antly: In the small p2 region the 
ontributions of the remaining latti
eartifa
ts are smaller than the 
orresponding one-loop a2 terms. As mentioned above, thea

ura
y to determine the Z fa
tors is already at the 1% level for lo
al operators and atthe 2% level for operators with one 
ovariant derivative 
ompared to the 
omplete one-loopsubtra
tion of latti
e artifa
ts. Additional systemati
 un
ertainties are due to the 
hoi
eof the r0 �MS and r0=a.
17



AppendixIn this Appendix we show that the de�nition (6) leads to renormalization fa
tors whi
hare invariant under the hyper
ubi
 group H(4).We 
onsider a multiplet of lo
al quark-antiquark operators Oi(x) (i = 1; 2; : : : ; d) inposition spa
e whi
h transform a

ording toOi(x)! Sij(R)Oj(R�1x) (A.1)when  (x)! D(R) (R�1x) ; � (x)! � (R�1x)D(R)y (A.2)for allN = 384 elements R ofH(4). Here D(R) denotes the (unitary) spinor representationof H(4) (or O(4)): D(R)y
�D(R) = R��
� : (A.3)We assume that the operators Oi(x) have been 
hosen su
h that the d� d-matri
es S(R)form a unitary irredu
ible representation of H(4).Denoting the unrenormalized vertex fun
tion at external momentum p of the operatorOi by �i(p) we have �i(p) = dXj=1 Sij(R)D(R) �j(R�1p)D(R)y (A.4)for all R 2 H(4), and analogously for the 
orresponding Born term �Borni (p). Consequentlywe get dXi=1 tr ��i(p)�i(p)y� = dXi=1 tr ��i(Rp)�i(Rp)y� : (A.5)Using the orthogonality relations for the matrix elements of irredu
ible representations one�nds in additionXR tr ��i(Rp)�j(Rp)y� = 1dÆij dXk=1XR tr ��k(Rp)�k(Rp)y� ; (A.6)where the sum extends over all R 2 H(4). The same relations hold when one of the vertexfun
tions or both are repla
ed by the 
orresponding Born terms, e.g.,dXi=1 tr ��i(p)�Borni (p)y� = dXi=1 tr ��i(Rp)�Borni (Rp)y� : (A.7)Therefore the renormalization 
onditionZ�1Zq = Pdi=1 tr ��i(p) �Borni (p)y�Pdj=1 tr ��Bornj (p) �Bornj (p)y� (A.8)18



or, equivalently, Z�1ZqÆij = dN PR tr ��i(Rp) �Bornj (Rp)y�Pdk=1 tr [�Bornk (p) �Bornk (p)y℄ (A.9)respe
ts the hyper
ubi
 symmetry, i.e., writing more pre
isely Z = Z(p) we have Z(Rp) =Z(p) for all R 2 H(4), and all latti
e artefa
ts in Z must be invariant under the hyper
ubi
group. Of 
ourse, here it has been assumed that Zq(Rp) = Zq(p), as is the 
ase for ourde�nition (3) of Zq.A
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