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DESY 13-046Edinburgh 2013/03Liverpool LTH 972Perturbatively improving RI-MOM renormalizationonstantsM. Constantinou1, M. Costa1, M. G�okeler2, R. Horsley3,H. Panagopoulos1, H. Perlt4, P. E. L. Rakow5, G. Shierholz6 andA. Shiller41 Department of Physis, University of Cyprus, P.O.Box 20537, Niosia CY-1678, Cyprus2 Institut f�ur Theoretishe Physik, Universit�at Regensburg, 93040 Regensburg, Germany3 Shool of Physis, University of Edinburgh, Edinburgh EH9 3JZ, UK4 Institut f�ur Theoretishe Physik, Universit�at Leipzig, 04103 Leipzig, Germany5 Theoretial Physis Division, Department of Mathematial Sienes,University of Liverpool, Liverpool L69 3BX, UK6 Deutshes Elektronen-Synhrotron DESY, 22603 Hamburg, GermanyAbstratThe determination of renormalization fators is of ruial importane in lattieQCD. They relate the observables obtained on the lattie to their measured ounter-parts in the ontinuum in a suitable renormalization sheme. Therefore, they haveto be omputed as preisely as possible. A widely used approah is the nonper-turbative Rome-Southampton method. It requires, however, a areful treatment oflattie artifats. In this paper we investigate a method to suppress these artifatsby subtrating one-loop ontributions to renormalization fators alulated in lattieperturbation theory. We ompare results obtained from a omplete one-loop sub-tration with those alulated for a subtration of ontributions proportional to thesquare of the lattie spaing.1 IntrodutionRenormalization fators in lattie Quantum Chromodynamis (QCD) relate observablesomputed on �nite latties to their ontinuum ounterparts in spei� renormalizationshemes. Therefore, their determination should be as preise as possible in order to al-low for a reliable omparison with experimental results. One approah is based on lattieperturbation theory [1℄. However, it su�ers from its intrinsi omplexity, slow onver-gene and the impossibility to handle mixing with lower-dimensional operators. Therefore,nonperturbative methods have been developed and applied. Among them the so-alledRome-Southampton method [2℄ (utilizing the RI-MOM sheme) is widely used beause ofits simple implementation. It requires, however, gauge �xing.Like (almost) all quantities evaluated in lattie QCD also renormalization fators su�erfrom disretization e�ets. One an attempt to ope with these lattie artifats by extrap-olating the nonperturbative sale dependene to the ontinuum (see Ref. [3℄) or one an
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try to suppress them by a subtration proedure based on perturbation theory. Here weshall deal with the latter approah.In a reent paper of the QCDSF/UKQCD ollaboration [4℄ a omprehensive disussionand omparison of perturbative and nonperturbative renormalization have been given.Partiular emphasis was plaed on the perturbative subtration of the unavoidable lattieartifats. For simple operators this an be done in one-loop order ompletely by omput-ing the orresponding diagrams for �nite lattie spaing numerially. While being verye�etive this proedure is rather involved and not suited as a general method for moreomplex operators, espeially for operators with more than one ovariant derivative, andompliated lattie ations. An alternative approah an be based on the subtration ofone-loop terms of order a2 with a being the lattie spaing. The omputation of thoseterms has been developed by the authors of Ref. [6℄ and applied to various operators fordi�erent ations. In this paper we use some of those results for the analysis of Monte Carlodata for renormalization oeÆients.We study the avor-nonsinglet quark-antiquark operators given in Table 1. The or-Operator Notation Repre- Operator basis(multiplet) sentation�ud OS � (1)1 OS�u� d OV� � (4)1 OV1 ;OV2 ;OV3 ;OV4�u�5 d OA� � (4)4 OA1 ;OA2 ;OA3 ;OA4�u��� d OT�� � (6)1 OT12;OT13;OT14;OT23;OT24;OT34�u� $D� d O�� ! Ov2;a � (6)3 Of12g;Of13g;Of14g;Of23g;Of24g;Of34g�u� $D� d O�� ! Ov2;b � (3)1 1=2(O11 +O22 �O33 �O44),1=p2(O33 �O44); 1=p2(O11 �O22)Table 1: Operators and their representations as investigated in the present paper. Thesymbol f:::g means total symmetrization. A detailed group theoretial disussion is givenin [5℄.responding renormalization fators have been measured (and hirally extrapolated) at� = 5:20; 5:25; 5:29 and 5:40 using Nf = 2 lover improved Wilson fermions with pla-quette gauge ation [4℄. All results are omputed in Landau gauge. The lover parameterSW used in the perturbative alulation disussed below is set to its lowest order valueSW = 1.2 Renormalization group invariant operatorsWe de�ne the renormalization onstant Z of an operator O from its amputated Greenfuntion (or vertex funtion) �(p), where p is the external momentum and the operatoris taken at vanishing momentum. The orresponding renormalized vertex funtion andthe Born term (with all lattie artifats inluded) are denoted by �R(p) and �Born(p),2



respetively. If there is no mixing, Z an then be obtained by imposing the ondition112 tr ��R(p) �Born(p)�1� = 1 (1)for vanishing quark mass at p2 = �2, where � is the renormalization sale. The Z fatorrelates the renormalized and the unrenormalized vertex funtion through�R(p) = Z�1q Z �(p) ; (2)with Zq being the quark �eld renormalization onstant determined byZq(p) = tr [�iP� � sin(ap�) aS�1(p)℄12P� sin2(ap�) (3)in the hiral limit again at p2 = �2. Condition (1) together with (3) de�nes the RI0-MOMrenormalization sheme. Here S�1 is the inverse quark propagator. Using (1) we omputeZ from Z�1q Z 112 tr ��(p) �Born(p)�1� = 1 : (4)For operators transforming as singlets under the hyperubi group H(4), suh as OS, Zan depend on the omponents of p only through H(4) invariants.For operators belonging to an H(4) multiplet of dimension greater than 1 the ondition(1) violates H(4) ovariane and would in general lead to di�erent Z fators for eahmember of the multiplet. In Ref. [4℄ an averaging proedure has been proposed to alulateone ommon Z fator for every multiplet. Labeling the hosen operator basis by i =1; 2; : : : ; d the ommon Z was alulated fromZ�1q Z 1d dXi=1 112 tr ��i(p)�Borni (p)�1� = 1 : (5)This ondition leads to anH(4)-invariantZ for the operators without derivatives in Table 1.However, in general this is not the ase.It is not diÆult to devise a renormalization ondition that respets the hyperubisymmetry. Choosing a basis of operators (again labeled by i), transforming aording to aunitary irreduible representation of H(4), the relationZ�1q Z Pdi=1 tr ��i(p)�Borni (p)y�Pdj=1 tr ��Bornj (p)�Bornj (p)y� = 1 (6)de�nes a Z fator whih is invariant under H(4), provided that the quark �eld renormal-ization fator is also H(4) invariant. The derivation of renormalization ondition (6) isgiven in the Appendix. For the operators without derivatives the de�nitions (6) and (5)are equivalent. For the onsidered operators with one derivative the resulting di�erenesturn out to be negligible. In the following the Z fators will be determined from (6) usingthe operator bases given in Table 1. This is our version of the RI0-MOM sheme.3



We de�ne a so-alled RGI (renormalization group invariant) operator, whih is inde-pendent of sale M and sheme S, by [4℄ORGI = �ZS(M)OS(M) = ZRGI(a)Obare (7)with �ZS(M) = �2�0gS(M)216 �2 ��(0=2�0) exp(Z gS(M)0 dg0�S(g0)�S(g0) + 0�0g0�) (8)and the RGI renormalization onstant (depending on a via the lattie oupling)ZRGI(a) = �ZS(M)ZSbare(M; a) : (9)Here gS, S and �S are the oupling onstant, the anomalous dimension and the �-funtionin sheme S, respetively. Relations (7), (8) and (9) allow us to ompute the operator Oin any sheme and at any sale we like, one ZRGI is known. Therefore, the knowledgeof ZRGI is very useful for the renormalization proedure in general. Ideally, ZRGI dependsonly on the bare lattie oupling, but not on the momentum p. Computed on a lattie,however, it su�ers from lattie artifats, e.g., it ontains ontributions proportional to a2p2,(a2p2)2 et. For a preise determination it is essential to have these disretization errorsunder ontrol.As the RI0-MOM sheme is in general not O(4)-ovariant even in the ontinuum limit,it is not very suitable for omputing the anomalous dimensions needed in (8). Thereforewe use an intermediate sheme S with known anomalous dimensions and alulate ZRGIas follows: ZRGI(a) = �ZS(M = �)ZSRI0�MOM(M = �)ZRI0�MOMbare (�; a) : (10)It turns out that a type of momentum subtration sheme is a good hoie for S (fordetails see Ref. [4℄). The formula whih is used to ompute the transformation fatorZSRI0�MOM(�) is given there together with all needed oeÆients of the �-funtion andanomalous dimensions, whih are based on ontinuum three-loop alulations suh as thosein [7, 8, 9℄.On a lattie with linear extent L the sale � should ideally ful�ll the relation1=L2 � �2QCD � �2 � 1=a2 : (11)In that ase ZRGI(a) would be independent of �, and from the resulting plateau we ouldread o� the orresponding �nal value. However, in pratie a� is not neessarily smallleading to non-negligible lattie artifats that have to be tamed. A promising tool toontrol lattie artifats in a systemati way is lattie perturbation theory: We expet thatafter subtrating these perturbative terms the alulation of the Z fators an be donemore aurately.
4



3 Subtration of all lattie artifats in one-loop orderIn standard lattie perturbation theory the one-loop renormalization onstants are givenin the form Z(�; a) = 1 + g2CF16 �2 (0 ln(a�) + �) ; CF = 43 : (12)This means that the a-dependene is retained only in the logarithm and impliitly in g,while in all other ontributions the limit a! 0 has been taken.However, there is no need to do so. We an keep a �nite everywhere and thus evaluatethe lattie artifats at one-loop order ompletely, proeeding as follows. Let us denote byF (p; a) the total one-loop orretion and by ~F (p; a) the expression resulting from F (p; a)by negleting all ontributions whih vanish for a! 0. The di�ereneD(p; a) = F (p; a)� ~F (p; a) (13)represents the lattie artifats in one-loop perturbation theory and is used to orret forthe disretization errors:ZRI0�MOMbare (p; a)MC;sub = ZRI0�MOMbare (p; a)MC � g2?16 �2CF D(p; a) : (14)There is a ertain freedom in hoosing the oupling g? in (14). It turned out that the useof the boosted oupling g2B = g2P (g) = g2 +O(g4) (15)(P (g) being the measured plaquette at � = 6=g2) is quite suessful in estimating thehigher-order disretization e�ets. With the presription (14) all lattie artifats in one-loop order are subtrated.In Fig. 1 we show the e�et of subtration on the RGI renormalization fators forseleted operators of Table 1. For all operators we reognize after subtration a remarkablesmoothing and a pronouned plateau as a funtion of p2 for p2 & 10GeV2. The largebending in the small p2 region might indiate the breakdown of perturbation theory (f. thedisussion in [4℄). The examples show that the one-loop subtration of lattie artifats (14)works very well and, moreover, is needed for a preise determination of the renormalizationonstants. The �nal values for ZRGI from (10) are obtained by a �t with an ansatz [4℄ZSRI0�MOM(p)ZRI0�MOMbare (p; a)MC;sub = ZRGI(a)�ZS(p) [1 + b1 (gS)8℄ + 1 a2p2 : (16)The free parameter b1 takes into aount that the transformation fator ZSRI0�MOM(p) isknown to three-loop order �gS�6 only. Further possible lattie artifats are parametrizedby 1 a2p2.For pratial reasons the numerial alulation of F (p; a) - and therefore the alulationof ZRGI using (16) - is restrited to operators with at most one derivative and for Nf = 2only. In order to perform the subtration for a wider lass of operators and/or forNf = 2+1(where the onsidered lattie ation beomes more ompliated) we have to look for an5
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ZA = 1 + g2CF16�2 �� 13:7927+a2 �S2��0:92273 + 151240 log(a2S2)�+ S4S2 �2:89896� 101120 log(a2S2)��� ;ZT = 1 + g2CF16�2 �� 11:1325� log(a2S2) (17)+a2�S2��1:72760 + 221240 log(a2S2)� + S4S2 �3:21493� 101120 log(a2S2)��� ;Zv2;a = 1 + g2CF16�2 �6:93831� 83 log(a2S2)� 29 S4(S2)2+a2 �S2 ��1:50680 + 167180 log(a2S2)�+S4S2 �2:63125� 197180 log(a2S2)�� 71540 S42(S2)3 � 82135 S6(S2)2�� ;Zv2;b = 1 + g2CF16�2 �5:78101� 83 log(a2S2) + 49 S4(S2)2+a2 �S2 ��0:56888 + 130 log(a2S2)�+S4S2 ��0:51323 + 1930 log(a2S2)�+ 71270 S42(S2)3 + 164135 S6(S2)2�� :Here we have introdued the notationSn = 4X�=1 pn� ; (18)with p� being the momentum omponents. Note that terms of type (S4=S2) log(a2S2),appearing in ZS; ZV ; ZA; ZT , all have the same oeÆient whih arises solely from thequark wave funtion renormalization onstant Zq. The orresponding one-loop vertexfuntions �i(p) in (6) do not ontain suh a struture. For later purposes we write theZ fators generially asZ = 1 + g2CF16�2 Z1�loop + a2g2Z(a2)1�loop(p; a) : (19)We emphasize that the numerial oeÆients in the above expressions are either exatrationals or an be omputed to a very high preision.In Figs. 2, 3 and 4 we present a2g2Z(a2)1�loop(p; a) for seleted operators as a funtion ofa2p2 on a �nite lattie, where we hoose the lattie momenta as p� = (2� i�)=(aL�). Here,i� are integers and L� is the lattie extension in diretion �. We ompare the orretionterms for a general set of momenta with those obtained for the momenta used in thisinvestigation at � = 5:40 on 243 � 48 latties and with 'diagonal' momenta, i.e., momentaon the diagonal of the Brillouin zone. 7
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Figure 3: The same as Fig. 2 but for operators OA (left) and OT (right).
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The �gures show that the momenta of the atually measured Z fators are very lose tothe diagonal. Furthermore, one reognizes that the magnitude of the alulated one-loopa2 orretions in the used momentum range is small but not negligible ompared to themeasured values whih are of order 1 (see also Fig. 1). Therefore, one an expet that thesubtration of those terms yields a notieable e�et.4.2 Subtration of lattie artifats up to order a2The subtration proedure of order a2 terms is not unique - we an use di�erent de�nitions.The only restrition is that at one-loop order they should agree (treating ZRI0�MOMbare (p; a)MCin perturbation theory). We investigate the following possibilities,ZRI0�MOMbare (p; a)MC;sub;s = ZRI0�MOMbare (p; a)MC � a2 g2? Z(a2)1�loop(p; a) ; (20)ZRI0�MOMbare (p; a)MC;sub;m = ZRI0�MOMbare (p; a)MC � �1� a2 g2? Z(a2)1�loop(p; a)� ; (21)where g? an be hosen to be either the bare lattie oupling g or the boosted ouplinggB (15). (In the following we denote subtration type (20) by (s) and (21) by (m)).With ansatz (s) the one-loop a2 orretion is subtrated 'diretly' from ZRI0�MOMbare (p; a)MC.Subtration type (m) fatorizes the one-loop a2 orretion from the nonperturbative Zfator.The ZRGI are omputed from (10) using (s) or (m), where we expet slightly dif-ferent numbers depending on the hoie of oupling g?. The only signi�ant errors toZRI0�MOMbare (p; a)MC;sub are due to the Monte Carlo simulations.In Fig. 5 we show how the subtration of lattie artifats (omplete and a2) a�ets
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small p2 � 10GeV2 the subtration methods (s) and (14) already agree, as they should.However, as disussed above, ZRGI an only be determined from suÆiently large momenta(p2 & 10GeV2), where di�erenes arise between the various proedures. Therefore theresults for ZRGI may di�er depending on the kind of subtration. As an be seen in Fig. 5,this e�et varies strongly from operator to operator.4.3 Fit proedureCompared to the omplete one-loop subtration we expet that ZRI0�MOMbare (p; a)MC;sub asomputed from (s) or (m) ontains terms proportional to a2n (n � 2) even at order g2, aswell as the lattie artifats from higher orders in perturbation theory, onstrained only byhyperubi symmetry. Therefore, we parametrize the subtrated data for eah � in termsof the hyperubi invariants Sn de�ned in (18) as followsZSRI0�MOM(p)ZRI0�MOMbare (p; a)MC;sub = ZRGI(a)�ZS(p) [1 + b1 (gS)8℄ + (22)a2�1 S2 + 2 S4S2 + 3 S6(S2)2�+ a4 �4 (S2)2 + 5 S4�+ a6 �6 (S2)3 + 7 S4 S2 + 8 S6� :There are also further non-polynomial invariants at order a4; a6, but their behavior isexpeted to be well desribed by the invariants whih have been inluded already. Ansatz(22) is a generalization of (16): After the 'redued' one-loop subtration of lattie artifatsthe Z fators are expeted to depend more strongly on a4 or a6 hyperubi invariants thanafter the omplete one-loop subtration (see Fig. 5). The parameters 1; : : : ; 8 desribethe lattie artifats.Together with the target parameter ZRGI(a) we have ten parameters for this generalase. In view of the limited number of data points for eah single � value (5:20, 5:25, 5:29,5:40) we apply the ansatz (22) to several � values simultaneously withZRGI(a)�ZS(p) [1 + b1 (gS)8℄ ! ZRGI(ak)�ZSk (p) [1 + b1 (gS)8℄ ; (23)where k labels the orresponding � value (ak = a(�k)). The parameters i are taken tobe independent of �. This enhanes the ratio (number of data points)/(number of �tparameters) signi�antly and we obtain several ZRGI(ak) at one. The �t is performedby a nonlinear model �t whih uses - depending on the atual onvergene - either theNelder-Mead or a di�erential evolution algorithm [12℄. Additionally, we have heked someof the �t results using MINUIT [13℄.The renormalization fators are inuened by the hoie for r0 �MS. This quantityenters �ZS(M) in (8) via the orresponding oupling gS(M) (for details see [4℄). We hooser0 �MS = 0:700 [14℄. In order to estimate the inuene of the hoie of r0 �MS we also user0 �MS = 0:789 alulated in [15℄. The Sommer sale r0 is hosen to be r0 = 0:501 fm andthe relation between the lattie spaing a and the inverse lattie oupling � is given byr0=a = 6:050 (� = 5:20); 6:603 (� = 5:25); 7:004 (� = 5:29) and 8:285 (� = 5:40) [16℄.10



5 Renormalization fators for loal and one-link op-eratorsThe �t proedure as skethed above has quite a few degrees of freedom and it is essential toinvestigate their inuene arefully. A riterion for the hoie of the minimal value of p2 isprovided by the breakdown of perturbation theory at small momenta. The data suggest [4℄that we are on the 'safe side' when hoosing p2min = 10GeV2. As the upper end of the �tinterval we take the maximal available momentum at given oupling �.Other important fators are� Type of subtration: As disussed above the proedure of the one-loop subtra-tion is not unique. We hoose di�erent de�nitions (s) and (m) with either bare g orboosted oupling gB.� Seletion of hyperubi invariants: For the quality of the �t it is essential howwell we desribe the lattie artifats whih remain after subtration [17, 18℄. This isonneted to the question whether the a2 subtration has been suÆient to subtrat(almost) all a2 artifats. Therefore, we perform �ts with various ombinations ofstrutures with oeÆients i in (22). One should mention that the onrete optimal(i.e. minimal) set of i depends strongly on the momenta of the available MonteCarlo data - nearly diagonal momenta require fewer strutures to be �tted than faro�-diagonal ones.The analysis should provide an optimal restrited set of parameters whih an be usedas a guideline for other lasses of operators. Nevertheless, one has to inspet every newase arefully.The results for ZRGI will depend on the above mentioned fators. As a detailed pre-sentation for all operators and �-values would be too lengthy, we selet some operatorsand/or � values and take the orresponding results as a kind of referene. All results pre-sented in this setion are omputed for r0 �MS = 0:700. The hoie r0 �MS = 0:789 leadsto qualitatively similar results. The large number of parameters in ansatz (22) alls for aombined use of the data sets at � = (5:20; 5:25; 5:29; 5:40) for our �t analysis as indiatedin (23). With the hoie p2min = 10GeV2 this results in 94 data points available for theorresponding �ts. Additionally, we should note that the errors on our �t parameters arethose obtained from the nonlinear model �t. They di�er from the error alulation for theZRGI based on (16) and used in [4℄.5.1 Dependene on the subtration typeIn Fig. 6 we present the ZRGI for operators OS, OV , OT and Ov2;a for the di�erent subtra-tion types using the �t ansatz (22) with all i 6= 0, i.e., we inlude a2, a4 and a6 terms. Fromthe disussion in Setion 4.2 we expet that the resulting di�erenes vary from operator tooperator (f. Fig. 5).From Fig. 6 we observe that the omplete one-loop subtration (1) and the subtration(2) agree within 1%. This is not unexpeted beause the subtration shemes are similar11
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Op. r0 �MS ZRGIj�=5:20 ZRGIj�=5:25 ZRGIj�=5:29 ZRGIj�=5:40OS 0:700 0:4530(34) 0:4475(33) 0:4451(32) 0:4414(30)0:789 0:4717(44) 0:4661(65) 0:4632(54) 0:4585(27)OV 0:700 0:7163(26) 0:7253(26) 0:7308(25) 0:7451(24)0:789 0:7238(72) 0:7319(94) 0:7365(99) 0:7519(50)OA 0:700 0:7460(41) 0:7543(40) 0:7590(39) 0:7731(37)0:789 0:7585(46) 0:7634(77) 0:7666(81) 0:7805(30)OT 0:700 0:8906(43) 0:9036(42) 0:9108(41) 0:9319(39)0:789 0:8946(85) 0:9041(111) 0:9075(120) 0:9316(49)Ov2;a 0:700 1:4914(55) 1:5131(55) 1:5266(54) 1:5660(53)0:789 1:4635(108) 1:4776(112) 1:4926(90) 1:5397(58)Ov2;b 0:700 1:5061(37) 1:5218(37) 1:5329(36) 1:5534(35)0:789 1:4601(151) 1:4727(206) 1:4863(165) 1:5115(140)Table 2: ZRGI values using the subtration (s) with gB.in both tables agree within 1%. The Z fators of the one-link operators di�er at most by2%.Let us ompare our results in Table 3 for the loal vetor urrent with ZRGIV obtainedfrom an analysis of the proton eletromagneti form fator [19℄ following [20℄, whih arelisted in Table 4. The numbers agree within less than 1% with the numbers in Table 3(r0 �MS = 0:700), supporting the omplete one-loop subtration as our referene point.From the present investigation we onlude: The alternatively proposed 'redued' sub-tration algorithm an be used for the determination of the renormalization fators if theomplete subtration method is not available. Possible appliations ould be Z fators forNf = 2+1 alulations with more ompliated fermioni and gauge ations where one-loopresults to order a2 are available (for the fermioni SLiNC ation with improved Symanzikgauge ation see Ref. [10℄).In this study we have analyzed data sets with momenta lose to the diagonal of theBrillouin zone. The one-loop a2 ontributions to the Z fators are ompletely general andan be used for arbitrary (also non-diagonal) momentum sets. Our ansatz (22) allows totake into aount the remaining artifats after subtrating these one-loop a2 terms. To getreasonable �t results the ratio (number of data points)/(number of �t parameters) has tobe suÆiently large.As we pointed out the subtration type is not unique. With (s) and (m) we tested twodi�erent types. The resulting �ts do not give a lear preferene for one of these. Even16



Op. r0 �MS ZRGIj�=5:20 ZRGIj�=5:25 ZRGIj�=5:29 ZRGIj�=5:40OS 0:700 0:4508(20) 0:44952(32) 0:44788(70) 0:4460(20)0:789 0:4620(85) 0:4603(60) 0:4585(61) 0:4560(48)OV 0:700 0:7225(44) 0:7321(31) 0:7370(46) 0:7511(41)0:789 0:7219(53) 0:7316(41) 0:7364(55) 0:7506(50)OA 0:700 0:7529(17) 0:76046(70) 0:76463(33) 0:77731(20)0:789 0:7530(14) 0:76054(48) 0:7647(14) 0:7774(10)OT 0:700 0:9020(12) 0:91427(24) 0:9206(14) 0:94009(69)0:789 0:8948(40) 0:9072(32) 0:9137(48) 0:9333(38)Ov2;a 0:700 1:5018(48) 1:5190(64) 1:5321(52) 1:5681(29)0:789 1:473(18) 1:490(14) 1:504(12) 1:540(14)Ov2;b 0:700 1:5083(51) 1:524(14) 1:5362(92) 1:5706(61)0:789 1:480(15) 1:497(28) 1:509(23) 1:5436(69)Table 3: ZRGI using a omplete one-loop subtration of lattie artifats.ZRGIj�=5:20 ZRGIj�=5:25 ZRGIj�=5:29 ZRGIj�=5:400:7296(4) 0:7355(3) 0:7401(2) 0:7521(3)Table 4: ZRGI values for operator V from the proton eletromagneti form fator analysis.the additional hoie for the oupling (g? = g or g? = gB) does not lead to signi�antlydi�erent results. Therefore, our �nal hoie (s) (eq. (20) with g? = gB) was supportedby 'external' arguments: the improved behavior of the boosted perturbative series and theresults obtained by omplete one-loop subtration [4℄.We have shown that already the one-loop a2 subtration improves the behavior of theZ fators signi�antly: In the small p2 region the ontributions of the remaining lattieartifats are smaller than the orresponding one-loop a2 terms. As mentioned above, theauray to determine the Z fators is already at the 1% level for loal operators and atthe 2% level for operators with one ovariant derivative ompared to the omplete one-loopsubtration of lattie artifats. Additional systemati unertainties are due to the hoieof the r0 �MS and r0=a.
17



AppendixIn this Appendix we show that the de�nition (6) leads to renormalization fators whihare invariant under the hyperubi group H(4).We onsider a multiplet of loal quark-antiquark operators Oi(x) (i = 1; 2; : : : ; d) inposition spae whih transform aording toOi(x)! Sij(R)Oj(R�1x) (A.1)when  (x)! D(R) (R�1x) ; � (x)! � (R�1x)D(R)y (A.2)for allN = 384 elements R ofH(4). Here D(R) denotes the (unitary) spinor representationof H(4) (or O(4)): D(R)y�D(R) = R��� : (A.3)We assume that the operators Oi(x) have been hosen suh that the d� d-matries S(R)form a unitary irreduible representation of H(4).Denoting the unrenormalized vertex funtion at external momentum p of the operatorOi by �i(p) we have �i(p) = dXj=1 Sij(R)D(R) �j(R�1p)D(R)y (A.4)for all R 2 H(4), and analogously for the orresponding Born term �Borni (p). Consequentlywe get dXi=1 tr ��i(p)�i(p)y� = dXi=1 tr ��i(Rp)�i(Rp)y� : (A.5)Using the orthogonality relations for the matrix elements of irreduible representations one�nds in additionXR tr ��i(Rp)�j(Rp)y� = 1dÆij dXk=1XR tr ��k(Rp)�k(Rp)y� ; (A.6)where the sum extends over all R 2 H(4). The same relations hold when one of the vertexfuntions or both are replaed by the orresponding Born terms, e.g.,dXi=1 tr ��i(p)�Borni (p)y� = dXi=1 tr ��i(Rp)�Borni (Rp)y� : (A.7)Therefore the renormalization onditionZ�1Zq = Pdi=1 tr ��i(p) �Borni (p)y�Pdj=1 tr ��Bornj (p) �Bornj (p)y� (A.8)18
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