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DESY-13-044The S
ale of In
ation in the Lands
apeF. G. Pedro and A. WestphalDeuts
hes Elektronen-Syn
hrotron DESY, Theory Group, D-22603 Hamburg, GermanyWe determine the frequen
y of regions of small-�eld in
ation in the Wigner lands
ape as anapproximation to random supergravities/type IIB 
ux 
ompa
ti�
ations. We show that small-�eld in
ation o

urs exponentially more often than large-�eld in
ation The power of primordialgravitational waves from in
ation is generi
ally tied to the s
ale of in
ation. For small-�eld modelsthis is below observational rea
h. However, we �nd small-�eld in
ation to be dominated by thehighest in
ationary energy s
ales 
ompatible with a sub-Plan
kian �eld range. Hen
e, we expe
t atypi
al tensor-to-s
alar ratio r � O(10�3) 
urrently undete
table in up
oming CMB measurements.I. INTRODUCTIONRe
ent years have seen both the advent of pre
ision
osmology giving strong indi
ations [1{9℄ for an earlyphase of 
osmologi
al in
ation [10{14℄, and theoreti
aleviden
e for an exponentially large lands
ape of meta-stable de Sitter va
ua [15{20℄ 
ombined with the �rstmodels of in
ation in string theory [21{23℄. As the num-ber of in
ationary model realizations and �nal states pro-vided by dS va
ua with small va
uum energy is quite pos-sibly extremely large, a des
ription of in
ationary observ-ables is in need for a statisti
al des
ription if one wishesto move beyond the lamp posts given by existing model
onstru
tions.In
ationary models are generi
ally sensitive to thepresen
e of higher-dimension operators (e.g. from ra-diative 
orre
tions or integrating out heavy �elds), andthis sensitivity naturally splits the model spa
e into twoparts [14℄. In small-�eldmodels of in
ation [11, 12℄ the ef-fe
tive 
anoni
ally normalized in
aton s
alar �eld evolvesparametri
ally less than a Plan
k distan
e in �eld spa
eduring the 60 efolds of 
osmologi
ally ne
essary in
ation-ary expansion. Control of dimension-six 
orre
tions tothe s
alar potential is suÆ
ient for this 
lass. Large-�eldmodels [13℄ involve the in
aton 
rossing a parametri
allysuper-Plan
kian distan
e ��60 during the same 60 efolds.In su
h models, su

essful slow-roll in
ation ne
essitatesthe suppression of 
orre
tions at any dimension whi
hamounts to the presen
e of a prote
ting symmetry [14℄.The only extant symmetry 
apable of prote
ting large-�eld in
ation and whi
h has been embedded into stringtheory so far has been a shift symmetry of an axion-like pseudo-s
alar �eld. These axions arise generi
allyin string 
ompa
ti�
ations [24{27℄ where they 
an yieldlarge-�eld in
ation using monodromy [28℄.Generi
ally, these two 
lasses are a

ompanied byan observational dis
riminator. In
ation produ
es pri-mordial 
urvature perturbations and gravitational waveswith nearly s
ale-invariant power spe
tra (�2R � H2=�,and �2T � H2, respe
tively) originating as quantum 
u
-tuations stret
hed to super-horizon wavelengths. Thefra
tional power in gravity waves (tensor modes) r =�2T =�2R = 16� is 
ontrolled by the �rst slow-roll param-eter � = Lkin=2H2 � 1. Its smallness enfor
es a va
uum-energy like equation of state during in
ation whi
h is ne
-

essary to drive a

elerated expansion. For a large 
lassof models the slow-roll of the in
aton translates into amonotoni
ally in
reasing evolution of �. This leads to arelation between ��60 and the s
ale of in
ation H whi
himplies that large-�eld in
ation is ne
essary to produ
ea sizable tensor mode fra
tion r & 0:01 in rea
h te
hno-logi
ally during the next few years [29℄.[52℄By being tied to the s
ale of in
ation, the tensor modefra
tion r is an in
ationary observable whi
h will at mosthave a statisti
al des
ription on the lands
ape. Hen
e, weneed to determine the distribution of in
ationary va
uumenergies for a

essible regions of the lands
ape. A guid-ing motivation here is that an analysis of the distributionof extremely small va
uum energies 
lose to zero on thelands
ape has already been su

essful in providing an an-thropi
 explanation of the smallness of the observed pos-itive late-time 
osmologi
al 
onstant (
.
.) [15, 35℄. Theva
uum energy distribution very roughly fa
tors into a
ontribution 
oming from a number 
ount of in
ationarysolutions, and a 
osmologi
al fa
tor whi
h involves va
-uum transitions des
ribed by tunneling events [36℄ andthe subtleties of eternal in
ation.Re
ent work has analyzed the 
osmologi
al probabilitydistribution fa
tor [37℄. This led to the surprising answerthat the physi
s of tunneling-mediated va
uum transi-tions and eternal in
ation largely de
ouple from the dis-tribution of va
uum energies parametri
ally smaller thanthe Plan
k density. Hen
e, the 
osmologi
al prior is 
atwhi
h leaves the in
ationary va
uum energy distributionon the lands
ape to be determined to leading order bymodel realization and va
uum 
ounting. We are thusleft with 
omparing the relative number frequen
ies ofsmall-�eld and large-�eld in
ation models on an a

es-sible region of the lands
ape whi
h we here 
hoose tobe the lands
ape of type IIB 
ux 
ompa
ti�
ations onwarped Calabi-Yau manifolds (CYs).Hen
e, in this note we determine the number frequen
y
ount of small-�eld in
ation models on the lands
ape ofsupersymmetri
 type IIB CY 
ux va
ua. Using randommatrix theory, we �nd that there are exponentially manymore small-�eld in
ation models in the moduli potentialof the type IIB 
ux lands
ape than there are proper dSva
ua. Comparing this with the restri
tions on large-�eldmodels o

urring on this lands
ape dis
ussed in [37℄, wetherefore statisti
ally expe
t the absen
e of primordial
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2tensor modes r & 0:01 in up
oming CMB observations.II. THE WIGNER ENSEMBLE AND RANDOMSUPERGRAVITIESThe F-term potential of N = 1 supergravityV = eK �FA �FA � 3jW j2� (1)is the starting point of the analysis of 
riti
al points inthe lands
ape. As usual FA = �AW +W�AK and Wand K are the superpotential and the K�ahler potentialrespe
tively. Criti
al points are de�ned by the 
ondition�AV j
p = 0 (2)and 
an be maxima, minima or saddles. To determinethe nature of a given 
riti
al point one must analyse theeigenvalues of the Hessian matrix, de�ned in terms ofthe F-term potential as Hmn = �mnV where m;n 
anbe holomorphi
 or anti-holomorphi
 indi
es. Taking intoa

ount the stru
ture of the F-term potential of Eq. (1),the Hessian de
omposes into a sum of the formH = HSUSY +HK(3)| {z }Wishart+Wishart +Hpure +HK(4)| {z }Wigner +Hshift: (3)Ea
h of these matri
es is de�ned in terms of the K�ahlerpotential, the superpotential and their derivatives [19,38℄. For our purposes it suÆ
es to review the de�nitionsand some properties of the Wishart and Wigner matri
es(for a review see [41{43℄).A Wishart matrix [40℄ is a 
omplex matrix de�ned asM = AAy where A is a random Nf �Nf 
omplex matrixdrawn from some distribution with mean � and varian
e�: 
(�; �). Its eigenvalue spe
trum has support on theinterval [0; 4Nf�2[, is peaked towards the origin and isgiven by the Mar
enko-Pastur law [44℄.AWigner matrix is a Hermitian matrix de�ned asM =A + Ay, where A is drawn from a distribution 
(�; �).The eigenvalue spe
trum of the Wigner ensemble is givenby the Wigner semi-
ir
le law�(�) = 12�Nf�2q4Nf�2 � �2 (4)whi
h 
an be obtained by un
onstrained integration ofthe joint probability density fun
tion (pdf)dP (�1; :::; �Nf ) = exp0�� 1�2 NfXi=1 �2i1AYi<j(�i � �j)2 (5)over all but one variable. Equation (5) gives the probabil-ity of generating a matrix with eigenvalues in [�i; �i+Æ�℄and it will be 
ru
ial for the analysis of the probabilityof in
ation in the lands
ape of random supergravities wewill present later. A rather useful physi
al interpretationof Eq. (5) was put forward by Dyson in [45℄ in terms of

a one dimensional gas of 
harged parti
les moving underthe in
uen
e of an attra
tive quadrati
 potential and arepulsive mutual intera
tion. This pi
ture proves veryuseful in qualitatively estimating behaviour of the sys-tem.A 
ru
ial property of the eigenvalue spe
trum of theWigner ensemble is that for the 
ases of interest, inwhi
h the random matri
es are drawn form a distri-bution 
(0; 1=p2Nf ), it has support on the interval[�p2;p2℄ M2P . So unlike the Wishart ensemble, whi
hhas all eigenvalues positive, a typi
al Nf �Nf matrix inthe Wigner ensemble will haveNf=2 ta
hyoni
 dire
tions.The typi
al eigenvalue spe
trum of random supergrav-ities, as de�ned by H, was found analyti
ally in [38℄through the free 
onvolution of the 
onstituent spe
-tra. The spe
trum has support in � [�0:7; 7:5℄ M2P(for Minkowski va
ua) and so it typi
ally features sev-eral ta
hyoni
 dire
tions, meaning that the most likely
riti
al points in random supergravity are steep saddlesrather than a lo
al minima.While the eigenvalue spe
trum of the full random su-pergravity is distin
t from that of a Wigner matrix, it is
ertainly true that its ta
hyoni
 part has its origin in theWigner matrix sin
e the spe
trum of the sum of Wishartmatri
es is positive de�nite.The presen
e of the positive semi-de�nite 
ontributionfrom the Wishart matri
es in the full random supergrav-ity leads to a substantially enhan
ed frequen
y of lo
alminima 
ompared to a Wigner matrix based estimated.However, as the frequen
y of in
ationary regions relativeto lo
al minima is dominated by the ta
hyoni
 part ofthe spe
trum originating in the Wigner matrix spe
trumalone, this relative likelihood of in
ation is still deter-mined to leading order by the Wigner matrix estimate inthe full random supergravity as well. Conversely, the ab-solute frequen
y of in
ationary regions will be enhan
edin the full random supergravity proportional to the in-
reased o

urren
e of lo
al minima.Studies of the string lands
ape often involve 
ompu-tation of the probability of o

urren
e of 
riti
al points,with parti
ular emphasis on minima, suited for des
rip-tion of the present day Universe. These spe
tra 
orre-spond a large the shift of the smallest eigenvalue to theright of its typi
al position and are exponentially unlikely[38, 39, 46℄:Pmin � e�
Npf+O(N) p � O(1): (6)In this letter we analyse small �eld in
ation in thesame light and try to determine how likely it is to �ndsuÆ
iently 
at saddle points in the lands
ape using theWigner ensemble as our main tool. The reasons to ap-proximate the full Hessian by a single Wigner matrix aretwofold: �rstly it is the Wigner matrix that gives rise tothe ta
hyoni
 dire
tions and so by fo
using on these onehopes to un
over the in
ationary stru
ture behind thefull Hessian; se
ondly for the Wigner ensemble we arein possession of the joint pdf, Eq. (5), whose numeri
al



3integration allows us to estimate probabilities without re-
urring to dire
t 
ounting. The joint pdf that lies behindthe full Hessian of random supergravities, Eq. (3), isunknown and so dire
t 
ounting, the generation of largesamples of matri
es and the 
ounting of the ones thathave the spe
tra we are looking for, is the only probeavailable. Sin
e we are looking for minima and 
at saddlepoints, whi
h are extremely rare events, dire
t 
ountingis 
omputationally expensive.We therefore fo
us our analysis on the Wigner ensem-ble, presenting the results in the next se
tion.III. INFLATION IN THE LANDSCAPEWe start by deriving an identity regarding the proba-bility for in
ation in the Wigner lands
ape. As explainedabove, the distribution of saddle points in a random su-pergravity will be given by the Wigner ensemble as theleading approximation to the full supergravity Hessian.By simple manipulation of the integration limits it is pos-sible to prove that in
ationary saddle points are exponen-tially more abundant than minima with masses greaterthan the in
ationary mass. For our purposes, q-�eld in-
ation happens in a saddle point in whi
h q �elds havemasses in the range [��; �℄ and Nf � q �elds in [�;1[,for suitably small � > 0.The probability for generating a Wigner matrix withall eigenvalues greater than �� 
an be found by integra-tion of the joint pdf:P (8� > ��) = NfYi=1 1Z�� d�idP (�1; :::; �Nf )= NfXn=0 Nf !n!(Nf � n)! nYi=1 �Z�� d�i NfYj>n 1Z� d�jdP: (7)In going from the �rst to the se
ond line of (7) wehave simply split the integration region into [��;1[=[��; �[[[�;1[ for ea
h �, taking 
are to in
lude the 
or-re
t 
ombinatorial fa
tors. Using Dean and Majumdar'sresult regarding the probability of large 
u
tuations ofextreme eigenvalues for the Wigner ensemble [46℄P (8� > �) = e�2�(�)N2f ; (8)where �(�) is given by�(�) = 1108 h36�2 � �4 + (15� + �3)p6 + �2++27�log 18� 2 log(�� +p6 + �2)�i ; (9)one may write Eq. (7) asP (inf)P (8� > �) = e2�
N2f � 1; (10)

with �
 � �(�)��(��). Hen
eforth P (inf) denotes thetotal probability for in
ation, de�ned as the sum over allpossible in
ationary dynami
s for a given Nf , i.e.P (inf) = NfXq=1 P (q � inf); (11)In a manifestation that it is statisti
ally more expen-sive to displa
e the lowest eigenvalue to � than to ��, wesee that �
 > 0 and so 
at saddle points, suited for in-
ation, are exponentially more frequent in the lands
apethan minima with all masses larger than �.The main aim of this work is to determine the ratioP (inf)=P (min), where we de�ne P (min) = P (8� > 0).On
e again the results of [46℄ allow us to push ahead.Noting thatP (min)P (8� > �) = e�2(�(0)��(�))N2f � e�2f�
N2f (12)one �ndsP (inf)P (min) = (e2�
N2f � 1)e2f�
N2f � e2��0(0)N2f +O(�2):(13)We therefore expe
t in
ationary saddle points to be ex-ponentially more abundant than lo
al minima in theWigner lands
ape.In order to 
on�rm and extend the above results weestimate the relevant probabilities by Monte
arlo inte-gration of Eq. (5), setting � = 0:1, in the windowNf 2 [2; 16℄. We then �t the relevant probabilities forea
h value of Nf to the exponential law of Eq. (8) as isexpe
ted from the theory of large eigenvalue 
u
tuationsdeveloped in [46℄. The results are presented in table I.We see that our method systemati
ally overestimates theAnalyti
al FitP (� > ��) 0:447 0:429 � 0:004P (min) 0:549 0:530 � 0:004P (� > �) 0:665 0:645 � 0:004P (inf) { 0:403 � 0:002Table I: Analyti
al estimates and �ts to numeri
al data.probabilities of o

urren
e of these rare events. This isre
e
ted on a shift of the �tted parameters on the level ofa few per
ent. We stress that even though the error bars
annot a

ount for this deviation, the fa
t that the nu-meri
al and analyti
al results show the same trend lends
redibility to our results.In Fig. 1 we plot the probability for �nding an in
a-tionary saddle point in the lands
ape, presenting boththe data points, the analyti
al estimate [47℄P (inf) = e�2�(��)N2f � e�2�(�)N2f : (14)and the best �t of Table I.
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Figure 1: Probability for in
ation as a fun
tion of Nf . Inblue (lower line) the analyti
al estimate of Eq. (14) and inred (upper line) the best �t of Table I.As anti
ipated 
at saddle points, like minima, are ex-tremely unlikely in the Wigner lands
ape as they 
or-respond to large 
u
tuations of the smallest eigenvalue.However sin
e it is statisti
ally 
ostlier to displa
e thesmallest eigenvalue to 0 than to �� = �0:1, 
at sad-dle points are exponentially more abundant than lo
alminima as is illustrated in Fig. 2. The ratio given byP (inf)P (min) � ( e0:127N2f �ttede0:109N2f analyti
al : (15)
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Figure 2: P (inf)=P (min): In
ationary saddle points are ex-ponentially more likely than lo
al minima in the Wigner land-s
ape. In blue (lower line) the analyti
al estimate and in red(upper line) the best �t.We will now relate this behaviour in terms of the 
uto�� on the mass of the �elds to the 2nd slow-roll 
ondition�V = �=V < 1. For this purpose, we note that our re-sults above were obtained by 
hoosing the varian
e ofthe Wigner ensemble to be � = 1=p2Nf . This approxi-mates a random supergravity where the mass eigenvaluesdistribute a

ording to the Wigner semi-
ir
le law on arange [�p2;p2℄ in units of MP . The 
ru
ial point toobserve is that a typi
al supergravity lands
ape has both

its typi
al potential energy and mass eigenvalue s
ale
hara
terised by the gravitino mass m3=2 = eK=2W asthis 
ontrols the typi
al size of the individual 
ontribu-tions in (1): jhV ij � m23=2 � ph(�i�jV )2i. Therefore,the 
hoi
e � = 1=p2Nf with its typi
al mass eigen-value size of O(1) des
ribes random supergravities withm3=2 � O(1). Sin
e for su
h supergravities we thenalso have jhV ij � m23=2 � O(1), we have � � �V anda 
uto� � < 1 in the integrations of (7) dire
tly im-plies slow-roll. The study of a
tual string theory de-rived example lands
apes [16, 48{50℄ points to s
enar-ios where jhV ij � m23=2 . M2GUT � 10�5. We 
annow use the Wigner semi-
ir
le law (4) together withthe joint pdf (5) to res
ale � ! �m23=2 whi
h will ap-proximate the mass eigenvalue distribution of a randomsupergravity with jhV ij � ph(�i�jV )2i � m23=2 andeigenvalue range [�p2m3=2;p2m3=2℄. This for
es us tores
ale the integration limits in (7) to ��m23=2. As wenow have ph(�i�jV )2i � m23=2, we now get that the 2ndslow-roll parameter �V = �m23=2=ph(�i�jV )2i � � isagain spe
i�ed by the original 
uto� � < 1. Therefore,the exponential enhan
ement whi
h we found above form3=2 � O(1) generalises to the known string lands
aperegions whi
h 
an be approximated by random super-gravities with m3=2 .MGUT 
ontrolling both the typi
alsize of the s
alar potential and the mass matrix eigen-value size.Note that this exponential enhan
ement is estimated
onservatively, as the random matrix des
ription of the
riti
al points of a random supergravity by de�nitionsele
ts for either minima or saddle points. Yet, small-�eld in
ationary regions do exist on almost 
at in
e
tionpoints of the s
alar potential as well, with a tuning 
ost
omparable to that of 
at saddle point. Therefore, ourmethod is 
onservative in that it underestimates the to-tal rate of small-�eld in
ationary regions o

urring in agiven random supergravity.The same method that lead us to the above 
on
lusionsalso allows us to dis
ern what is the preferred in
ation-ary dynami
s for a given Nf . Dyson's interpretation ofEq. (5) in terms of a gas of 
harged parti
les gives usa hint of what behaviour to expe
t. For any parti
ularvalue of Nf there are Nf possible types of in
ationarydynami
s: from single �eld to Nf �eld in
ation. Single�eld in
ation 
orresponds to having only one eigenvaluein the range [��; �℄ and the remaining Nf � 1 in [�;1[.For large values of Nf this is highly unlikely sin
e eigen-value repulsion in the interval [�;1[ would tend to pushone or more eigenvalues into the in
ationary region. Onthe other hand Nf �eld in
ation is also very rare, sin
eit 
orresponds to squeezing all eigenvalues in the narrowrange [��; �℄, leading to a 
on�guration where the re-pulsive for
e would tend to push some eigenvalues outof this interval. Somewhere between these two limiting
ases one 
an �nd the most likely behaviour. In Fig. 3we plot the ratio P (q� inf)=P (inf) as a fun
tion of Nf
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Figure 3: Relative likelihood of q-�eld in
ation as a fun
tionof the total dimensionality of the �eld spa
e Nf .We observe that the transition from single to two �eldin
ation happens at Nf = 5 with the next transitionsfrom 2 to 3 and 3 to 4 �eld in
ation happening around8 and 12 respe
tively. We note that the values for whi
hthe various transitions happen depend strongly on �: thelarger the � the sooner the transitions will happen. Aquantitative understanding may be developed by study-ing the distribution of spa
ings between adja
ent eigen-values.Next, we re
all that the minimum total number of e-folds of slow-roll in
ation at a 
riti
al point s
ales with� as Ntot � 1=j�j [47, 51℄. The question of whether weshould sele
t for the maximum amount of slow-roll in-
ation (due to the maximised 3-volume growth) or notamounts to a 
hoi
e of the measure of eternal in
ation.Therefore the answer to the question whether we expe
tsingle-small-�eld or multi-small-�eld in
ation to domi-nate the small-�eld regime likely depends on the 
hoi
eof the measure.The presen
e of several �elds 
ontributing to in
ation
lose to a saddle point or in
e
tion point has the poten-tial of generating lo
al non-Gaussianity whi
h is absentin the single-�eld 
ase. As this is tied to the relativeimportan
e of single-�eld versus multi-�eld, statementsabout possible non-Gaussianity emanating from a multi-small-�eld regime again likely depend on the 
hoi
e ofthe measure. We leave this for future work.IV. CONCLUSIONSIn this note we have determine the number frequen
y
ount of small-�eld in
ation models on the lands
ape ofsupersymmetri
 type IIB CY 
ux va
ua. As the e�e
tive

4D theory of both dS va
ua and small-�eldmodular in
a-tion models in this region of the lands
ape is des
ribedby 4D N = 1 supergravity, we have used random ma-trix theory to des
ribe the region's va
uum stru
ture interms of a random supergravity [19, 38℄. Meta-stable dSva
ua require a fully positive-de�nite mass matrix (Hes-sian). Su
h Hessians 
onstitute an exponentially sup-pressed 
u
tuation of all eigenvalues to positivity in the
ontext of the theory of the random Hessians from 4DN = 1 supergravity. Consequently, we expe
ted small-�eld in
ation models whi
h relax the positivity for atleast one of the eigenvalues to be favoured 
ompared tofull meta-stability. Our analysis of the Wigner ensem-ble giving the leading order des
ription of this e�e
t inrandom supergravity mat
hed this expe
tation. We �ndthat there are exponentially many more small-�eld in
a-tion models in the moduli potential of the type IIB 
uxlands
ape than there are proper dS va
ua. The analysisof the frequen
y of large-�eld models and the 
osmolog-i
al probability fa
tor in [37℄ led to an estimate for therelative likelihood of large-�eld in
ationP��60>MPP��60<MP � hh1;1� i �h1;1� �1�flat saddle : (16)We may now plug in that [37℄ �h1;1� �1 < 1 (not allCYs will support the topologi
al requirements for ax-ion monodromy) and hh1;1� i < h1;1 . O(100), as wellas our results here �flat saddle � exp(+Æ
N2f ) � 1. Fi-nally, we note that the small-�eld model enhan
ement�flat saddle is the largest for the least tuned saddle pointswith j�j � O(0:1). Upon imposing COBE normalisa-tion on the generation of in
ationary 
urvature pertur-bations, these saddle points also have the largest energys
ales of all small-�eld models, and in turn only mod-erately sub-Plan
kian �eld ranges. Hen
e, we predi
tsmall-�eld in
ation to dominate abundantly, and to be
on
entrated at the largest energy s
ales 
ompatible witha sub-Plan
kian �eld range. Consequently, we expe
t atypi
al tensor-to-s
alar ratio r � O(10�3) whi
h may bewithin rea
h of future CMB B-mode polarisation mea-surements. A
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