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DESY-13-044The Sale of Ination in the LandsapeF. G. Pedro and A. WestphalDeutshes Elektronen-Synhrotron DESY, Theory Group, D-22603 Hamburg, GermanyWe determine the frequeny of regions of small-�eld ination in the Wigner landsape as anapproximation to random supergravities/type IIB ux ompati�ations. We show that small-�eld ination ours exponentially more often than large-�eld ination The power of primordialgravitational waves from ination is generially tied to the sale of ination. For small-�eld modelsthis is below observational reah. However, we �nd small-�eld ination to be dominated by thehighest inationary energy sales ompatible with a sub-Plankian �eld range. Hene, we expet atypial tensor-to-salar ratio r � O(10�3) urrently undetetable in upoming CMB measurements.I. INTRODUCTIONReent years have seen both the advent of preisionosmology giving strong indiations [1{9℄ for an earlyphase of osmologial ination [10{14℄, and theoretialevidene for an exponentially large landsape of meta-stable de Sitter vaua [15{20℄ ombined with the �rstmodels of ination in string theory [21{23℄. As the num-ber of inationary model realizations and �nal states pro-vided by dS vaua with small vauum energy is quite pos-sibly extremely large, a desription of inationary observ-ables is in need for a statistial desription if one wishesto move beyond the lamp posts given by existing modelonstrutions.Inationary models are generially sensitive to thepresene of higher-dimension operators (e.g. from ra-diative orretions or integrating out heavy �elds), andthis sensitivity naturally splits the model spae into twoparts [14℄. In small-�eldmodels of ination [11, 12℄ the ef-fetive anonially normalized inaton salar �eld evolvesparametrially less than a Plank distane in �eld spaeduring the 60 efolds of osmologially neessary ination-ary expansion. Control of dimension-six orretions tothe salar potential is suÆient for this lass. Large-�eldmodels [13℄ involve the inaton rossing a parametriallysuper-Plankian distane ��60 during the same 60 efolds.In suh models, suessful slow-roll ination neessitatesthe suppression of orretions at any dimension whihamounts to the presene of a proteting symmetry [14℄.The only extant symmetry apable of proteting large-�eld ination and whih has been embedded into stringtheory so far has been a shift symmetry of an axion-like pseudo-salar �eld. These axions arise generiallyin string ompati�ations [24{27℄ where they an yieldlarge-�eld ination using monodromy [28℄.Generially, these two lasses are aompanied byan observational disriminator. Ination produes pri-mordial urvature perturbations and gravitational waveswith nearly sale-invariant power spetra (�2R � H2=�,and �2T � H2, respetively) originating as quantum u-tuations strethed to super-horizon wavelengths. Thefrational power in gravity waves (tensor modes) r =�2T =�2R = 16� is ontrolled by the �rst slow-roll param-eter � = Lkin=2H2 � 1. Its smallness enfores a vauum-energy like equation of state during ination whih is ne-

essary to drive aelerated expansion. For a large lassof models the slow-roll of the inaton translates into amonotonially inreasing evolution of �. This leads to arelation between ��60 and the sale of ination H whihimplies that large-�eld ination is neessary to produea sizable tensor mode fration r & 0:01 in reah tehno-logially during the next few years [29℄.[52℄By being tied to the sale of ination, the tensor modefration r is an inationary observable whih will at mosthave a statistial desription on the landsape. Hene, weneed to determine the distribution of inationary vauumenergies for aessible regions of the landsape. A guid-ing motivation here is that an analysis of the distributionof extremely small vauum energies lose to zero on thelandsape has already been suessful in providing an an-thropi explanation of the smallness of the observed pos-itive late-time osmologial onstant (..) [15, 35℄. Thevauum energy distribution very roughly fators into aontribution oming from a number ount of inationarysolutions, and a osmologial fator whih involves va-uum transitions desribed by tunneling events [36℄ andthe subtleties of eternal ination.Reent work has analyzed the osmologial probabilitydistribution fator [37℄. This led to the surprising answerthat the physis of tunneling-mediated vauum transi-tions and eternal ination largely deouple from the dis-tribution of vauum energies parametrially smaller thanthe Plank density. Hene, the osmologial prior is atwhih leaves the inationary vauum energy distributionon the landsape to be determined to leading order bymodel realization and vauum ounting. We are thusleft with omparing the relative number frequenies ofsmall-�eld and large-�eld ination models on an aes-sible region of the landsape whih we here hoose tobe the landsape of type IIB ux ompati�ations onwarped Calabi-Yau manifolds (CYs).Hene, in this note we determine the number frequenyount of small-�eld ination models on the landsape ofsupersymmetri type IIB CY ux vaua. Using randommatrix theory, we �nd that there are exponentially manymore small-�eld ination models in the moduli potentialof the type IIB ux landsape than there are proper dSvaua. Comparing this with the restritions on large-�eldmodels ourring on this landsape disussed in [37℄, wetherefore statistially expet the absene of primordial
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2tensor modes r & 0:01 in upoming CMB observations.II. THE WIGNER ENSEMBLE AND RANDOMSUPERGRAVITIESThe F-term potential of N = 1 supergravityV = eK �FA �FA � 3jW j2� (1)is the starting point of the analysis of ritial points inthe landsape. As usual FA = �AW +W�AK and Wand K are the superpotential and the K�ahler potentialrespetively. Critial points are de�ned by the ondition�AV jp = 0 (2)and an be maxima, minima or saddles. To determinethe nature of a given ritial point one must analyse theeigenvalues of the Hessian matrix, de�ned in terms ofthe F-term potential as Hmn = �mnV where m;n anbe holomorphi or anti-holomorphi indies. Taking intoaount the struture of the F-term potential of Eq. (1),the Hessian deomposes into a sum of the formH = HSUSY +HK(3)| {z }Wishart+Wishart +Hpure +HK(4)| {z }Wigner +Hshift: (3)Eah of these matries is de�ned in terms of the K�ahlerpotential, the superpotential and their derivatives [19,38℄. For our purposes it suÆes to review the de�nitionsand some properties of the Wishart and Wigner matries(for a review see [41{43℄).A Wishart matrix [40℄ is a omplex matrix de�ned asM = AAy where A is a random Nf �Nf omplex matrixdrawn from some distribution with mean � and variane�: 
(�; �). Its eigenvalue spetrum has support on theinterval [0; 4Nf�2[, is peaked towards the origin and isgiven by the Marenko-Pastur law [44℄.AWigner matrix is a Hermitian matrix de�ned asM =A + Ay, where A is drawn from a distribution 
(�; �).The eigenvalue spetrum of the Wigner ensemble is givenby the Wigner semi-irle law�(�) = 12�Nf�2q4Nf�2 � �2 (4)whih an be obtained by unonstrained integration ofthe joint probability density funtion (pdf)dP (�1; :::; �Nf ) = exp0�� 1�2 NfXi=1 �2i1AYi<j(�i � �j)2 (5)over all but one variable. Equation (5) gives the probabil-ity of generating a matrix with eigenvalues in [�i; �i+Æ�℄and it will be ruial for the analysis of the probabilityof ination in the landsape of random supergravities wewill present later. A rather useful physial interpretationof Eq. (5) was put forward by Dyson in [45℄ in terms of

a one dimensional gas of harged partiles moving underthe inuene of an attrative quadrati potential and arepulsive mutual interation. This piture proves veryuseful in qualitatively estimating behaviour of the sys-tem.A ruial property of the eigenvalue spetrum of theWigner ensemble is that for the ases of interest, inwhih the random matries are drawn form a distri-bution 
(0; 1=p2Nf ), it has support on the interval[�p2;p2℄ M2P . So unlike the Wishart ensemble, whihhas all eigenvalues positive, a typial Nf �Nf matrix inthe Wigner ensemble will haveNf=2 tahyoni diretions.The typial eigenvalue spetrum of random supergrav-ities, as de�ned by H, was found analytially in [38℄through the free onvolution of the onstituent spe-tra. The spetrum has support in � [�0:7; 7:5℄ M2P(for Minkowski vaua) and so it typially features sev-eral tahyoni diretions, meaning that the most likelyritial points in random supergravity are steep saddlesrather than a loal minima.While the eigenvalue spetrum of the full random su-pergravity is distint from that of a Wigner matrix, it isertainly true that its tahyoni part has its origin in theWigner matrix sine the spetrum of the sum of Wishartmatries is positive de�nite.The presene of the positive semi-de�nite ontributionfrom the Wishart matries in the full random supergrav-ity leads to a substantially enhaned frequeny of loalminima ompared to a Wigner matrix based estimated.However, as the frequeny of inationary regions relativeto loal minima is dominated by the tahyoni part ofthe spetrum originating in the Wigner matrix spetrumalone, this relative likelihood of ination is still deter-mined to leading order by the Wigner matrix estimate inthe full random supergravity as well. Conversely, the ab-solute frequeny of inationary regions will be enhanedin the full random supergravity proportional to the in-reased ourrene of loal minima.Studies of the string landsape often involve ompu-tation of the probability of ourrene of ritial points,with partiular emphasis on minima, suited for desrip-tion of the present day Universe. These spetra orre-spond a large the shift of the smallest eigenvalue to theright of its typial position and are exponentially unlikely[38, 39, 46℄:Pmin � e�Npf+O(N) p � O(1): (6)In this letter we analyse small �eld ination in thesame light and try to determine how likely it is to �ndsuÆiently at saddle points in the landsape using theWigner ensemble as our main tool. The reasons to ap-proximate the full Hessian by a single Wigner matrix aretwofold: �rstly it is the Wigner matrix that gives rise tothe tahyoni diretions and so by fousing on these onehopes to unover the inationary struture behind thefull Hessian; seondly for the Wigner ensemble we arein possession of the joint pdf, Eq. (5), whose numerial



3integration allows us to estimate probabilities without re-urring to diret ounting. The joint pdf that lies behindthe full Hessian of random supergravities, Eq. (3), isunknown and so diret ounting, the generation of largesamples of matries and the ounting of the ones thathave the spetra we are looking for, is the only probeavailable. Sine we are looking for minima and at saddlepoints, whih are extremely rare events, diret ountingis omputationally expensive.We therefore fous our analysis on the Wigner ensem-ble, presenting the results in the next setion.III. INFLATION IN THE LANDSCAPEWe start by deriving an identity regarding the proba-bility for ination in the Wigner landsape. As explainedabove, the distribution of saddle points in a random su-pergravity will be given by the Wigner ensemble as theleading approximation to the full supergravity Hessian.By simple manipulation of the integration limits it is pos-sible to prove that inationary saddle points are exponen-tially more abundant than minima with masses greaterthan the inationary mass. For our purposes, q-�eld in-ation happens in a saddle point in whih q �elds havemasses in the range [��; �℄ and Nf � q �elds in [�;1[,for suitably small � > 0.The probability for generating a Wigner matrix withall eigenvalues greater than �� an be found by integra-tion of the joint pdf:P (8� > ��) = NfYi=1 1Z�� d�idP (�1; :::; �Nf )= NfXn=0 Nf !n!(Nf � n)! nYi=1 �Z�� d�i NfYj>n 1Z� d�jdP: (7)In going from the �rst to the seond line of (7) wehave simply split the integration region into [��;1[=[��; �[[[�;1[ for eah �, taking are to inlude the or-ret ombinatorial fators. Using Dean and Majumdar'sresult regarding the probability of large utuations ofextreme eigenvalues for the Wigner ensemble [46℄P (8� > �) = e�2�(�)N2f ; (8)where �(�) is given by�(�) = 1108 h36�2 � �4 + (15� + �3)p6 + �2++27�log 18� 2 log(�� +p6 + �2)�i ; (9)one may write Eq. (7) asP (inf)P (8� > �) = e2�N2f � 1; (10)

with � � �(�)��(��). Heneforth P (inf) denotes thetotal probability for ination, de�ned as the sum over allpossible inationary dynamis for a given Nf , i.e.P (inf) = NfXq=1 P (q � inf); (11)In a manifestation that it is statistially more expen-sive to displae the lowest eigenvalue to � than to ��, wesee that � > 0 and so at saddle points, suited for in-ation, are exponentially more frequent in the landsapethan minima with all masses larger than �.The main aim of this work is to determine the ratioP (inf)=P (min), where we de�ne P (min) = P (8� > 0).One again the results of [46℄ allow us to push ahead.Noting thatP (min)P (8� > �) = e�2(�(0)��(�))N2f � e�2f�N2f (12)one �ndsP (inf)P (min) = (e2�N2f � 1)e2f�N2f � e2��0(0)N2f +O(�2):(13)We therefore expet inationary saddle points to be ex-ponentially more abundant than loal minima in theWigner landsape.In order to on�rm and extend the above results weestimate the relevant probabilities by Montearlo inte-gration of Eq. (5), setting � = 0:1, in the windowNf 2 [2; 16℄. We then �t the relevant probabilities foreah value of Nf to the exponential law of Eq. (8) as isexpeted from the theory of large eigenvalue utuationsdeveloped in [46℄. The results are presented in table I.We see that our method systematially overestimates theAnalytial FitP (� > ��) 0:447 0:429 � 0:004P (min) 0:549 0:530 � 0:004P (� > �) 0:665 0:645 � 0:004P (inf) { 0:403 � 0:002Table I: Analytial estimates and �ts to numerial data.probabilities of ourrene of these rare events. This isreeted on a shift of the �tted parameters on the level ofa few perent. We stress that even though the error barsannot aount for this deviation, the fat that the nu-merial and analytial results show the same trend lendsredibility to our results.In Fig. 1 we plot the probability for �nding an ina-tionary saddle point in the landsape, presenting boththe data points, the analytial estimate [47℄P (inf) = e�2�(��)N2f � e�2�(�)N2f : (14)and the best �t of Table I.
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Figure 1: Probability for ination as a funtion of Nf . Inblue (lower line) the analytial estimate of Eq. (14) and inred (upper line) the best �t of Table I.As antiipated at saddle points, like minima, are ex-tremely unlikely in the Wigner landsape as they or-respond to large utuations of the smallest eigenvalue.However sine it is statistially ostlier to displae thesmallest eigenvalue to 0 than to �� = �0:1, at sad-dle points are exponentially more abundant than loalminima as is illustrated in Fig. 2. The ratio given byP (inf)P (min) � ( e0:127N2f �ttede0:109N2f analytial : (15)
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Figure 2: P (inf)=P (min): Inationary saddle points are ex-ponentially more likely than loal minima in the Wigner land-sape. In blue (lower line) the analytial estimate and in red(upper line) the best �t.We will now relate this behaviour in terms of the uto�� on the mass of the �elds to the 2nd slow-roll ondition�V = �=V < 1. For this purpose, we note that our re-sults above were obtained by hoosing the variane ofthe Wigner ensemble to be � = 1=p2Nf . This approxi-mates a random supergravity where the mass eigenvaluesdistribute aording to the Wigner semi-irle law on arange [�p2;p2℄ in units of MP . The ruial point toobserve is that a typial supergravity landsape has both

its typial potential energy and mass eigenvalue saleharaterised by the gravitino mass m3=2 = eK=2W asthis ontrols the typial size of the individual ontribu-tions in (1): jhV ij � m23=2 � ph(�i�jV )2i. Therefore,the hoie � = 1=p2Nf with its typial mass eigen-value size of O(1) desribes random supergravities withm3=2 � O(1). Sine for suh supergravities we thenalso have jhV ij � m23=2 � O(1), we have � � �V anda uto� � < 1 in the integrations of (7) diretly im-plies slow-roll. The study of atual string theory de-rived example landsapes [16, 48{50℄ points to senar-ios where jhV ij � m23=2 . M2GUT � 10�5. We annow use the Wigner semi-irle law (4) together withthe joint pdf (5) to resale � ! �m23=2 whih will ap-proximate the mass eigenvalue distribution of a randomsupergravity with jhV ij � ph(�i�jV )2i � m23=2 andeigenvalue range [�p2m3=2;p2m3=2℄. This fores us toresale the integration limits in (7) to ��m23=2. As wenow have ph(�i�jV )2i � m23=2, we now get that the 2ndslow-roll parameter �V = �m23=2=ph(�i�jV )2i � � isagain spei�ed by the original uto� � < 1. Therefore,the exponential enhanement whih we found above form3=2 � O(1) generalises to the known string landsaperegions whih an be approximated by random super-gravities with m3=2 .MGUT ontrolling both the typialsize of the salar potential and the mass matrix eigen-value size.Note that this exponential enhanement is estimatedonservatively, as the random matrix desription of theritial points of a random supergravity by de�nitionselets for either minima or saddle points. Yet, small-�eld inationary regions do exist on almost at inetionpoints of the salar potential as well, with a tuning ostomparable to that of at saddle point. Therefore, ourmethod is onservative in that it underestimates the to-tal rate of small-�eld inationary regions ourring in agiven random supergravity.The same method that lead us to the above onlusionsalso allows us to disern what is the preferred ination-ary dynamis for a given Nf . Dyson's interpretation ofEq. (5) in terms of a gas of harged partiles gives usa hint of what behaviour to expet. For any partiularvalue of Nf there are Nf possible types of inationarydynamis: from single �eld to Nf �eld ination. Single�eld ination orresponds to having only one eigenvaluein the range [��; �℄ and the remaining Nf � 1 in [�;1[.For large values of Nf this is highly unlikely sine eigen-value repulsion in the interval [�;1[ would tend to pushone or more eigenvalues into the inationary region. Onthe other hand Nf �eld ination is also very rare, sineit orresponds to squeezing all eigenvalues in the narrowrange [��; �℄, leading to a on�guration where the re-pulsive fore would tend to push some eigenvalues outof this interval. Somewhere between these two limitingases one an �nd the most likely behaviour. In Fig. 3we plot the ratio P (q� inf)=P (inf) as a funtion of Nf
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Figure 3: Relative likelihood of q-�eld ination as a funtionof the total dimensionality of the �eld spae Nf .We observe that the transition from single to two �eldination happens at Nf = 5 with the next transitionsfrom 2 to 3 and 3 to 4 �eld ination happening around8 and 12 respetively. We note that the values for whihthe various transitions happen depend strongly on �: thelarger the � the sooner the transitions will happen. Aquantitative understanding may be developed by study-ing the distribution of spaings between adjaent eigen-values.Next, we reall that the minimum total number of e-folds of slow-roll ination at a ritial point sales with� as Ntot � 1=j�j [47, 51℄. The question of whether weshould selet for the maximum amount of slow-roll in-ation (due to the maximised 3-volume growth) or notamounts to a hoie of the measure of eternal ination.Therefore the answer to the question whether we expetsingle-small-�eld or multi-small-�eld ination to domi-nate the small-�eld regime likely depends on the hoieof the measure.The presene of several �elds ontributing to inationlose to a saddle point or inetion point has the poten-tial of generating loal non-Gaussianity whih is absentin the single-�eld ase. As this is tied to the relativeimportane of single-�eld versus multi-�eld, statementsabout possible non-Gaussianity emanating from a multi-small-�eld regime again likely depend on the hoie ofthe measure. We leave this for future work.IV. CONCLUSIONSIn this note we have determine the number frequenyount of small-�eld ination models on the landsape ofsupersymmetri type IIB CY ux vaua. As the e�etive

4D theory of both dS vaua and small-�eldmodular ina-tion models in this region of the landsape is desribedby 4D N = 1 supergravity, we have used random ma-trix theory to desribe the region's vauum struture interms of a random supergravity [19, 38℄. Meta-stable dSvaua require a fully positive-de�nite mass matrix (Hes-sian). Suh Hessians onstitute an exponentially sup-pressed utuation of all eigenvalues to positivity in theontext of the theory of the random Hessians from 4DN = 1 supergravity. Consequently, we expeted small-�eld ination models whih relax the positivity for atleast one of the eigenvalues to be favoured ompared tofull meta-stability. Our analysis of the Wigner ensem-ble giving the leading order desription of this e�et inrandom supergravity mathed this expetation. We �ndthat there are exponentially many more small-�eld ina-tion models in the moduli potential of the type IIB uxlandsape than there are proper dS vaua. The analysisof the frequeny of large-�eld models and the osmolog-ial probability fator in [37℄ led to an estimate for therelative likelihood of large-�eld inationP��60>MPP��60<MP � hh1;1� i �h1;1� �1�flat saddle : (16)We may now plug in that [37℄ �h1;1� �1 < 1 (not allCYs will support the topologial requirements for ax-ion monodromy) and hh1;1� i < h1;1 . O(100), as wellas our results here �flat saddle � exp(+ÆN2f ) � 1. Fi-nally, we note that the small-�eld model enhanement�flat saddle is the largest for the least tuned saddle pointswith j�j � O(0:1). Upon imposing COBE normalisa-tion on the generation of inationary urvature pertur-bations, these saddle points also have the largest energysales of all small-�eld models, and in turn only mod-erately sub-Plankian �eld ranges. Hene, we preditsmall-�eld ination to dominate abundantly, and to beonentrated at the largest energy sales ompatible witha sub-Plankian �eld range. Consequently, we expet atypial tensor-to-salar ratio r � O(10�3) whih may bewithin reah of future CMB B-mode polarisation mea-surements. AknowledgmentsWe would like to thank D. Marsh, L. MAllister, E. Pa-jer and T. Wrase for useful omments on a earlier versionof this work. This work was supported by the Impuls undVernetzungsfond of the Helmholtz Assoiation of GermanResearh Centres under grant HZ-NG-603.[1℄ K. T. Story, C. L. Reihardt, Z. Hou, R. Keisler,K. A. Aird, B. A. Benson, L. E. Bleem and J. E. Carl- strom et al., arXiv:1210.7231 [astro-ph.CO℄.
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