
ar
X

iv
:1

30
3.

14
43

v2
  [

he
p-

th
] 

 2
2 

M
ar

 2
01

3
DESY 13-041

HU-EP-13/11

Extended global symmetries for 4d N = 1 SQCD theories

Ilmar Gahramanov1 a,b,c
and Grigory Vartanov2 a

a DESY Hamburg, Theory Group,

Notkestrasse 85, D-22607 Hamburg, Germany

b Institut für Physik, Humboldt-Universität zu Berlin,

Newtonstrasse 15, 12489 Berlin, Germany

c Institute of Radiation Problems ANAS,

B.Vahabzade 9, AZ1143 Baku, Azerbaijan

Abstract

In arXiv:0811.1909 Spiridonov and Vartanov, using the superconformal index technique, found

that 4–dimensional N = 1 SQCD theory with SU(2) gauge group and four flavors has 72 dual

representations. Recently in arXiv:1209.1404 the authors showed that these dual theories, when

coupled to 5d hypermultiplets with specific boundary conditions have an extended E7 global

symmetry. In this work we find that for a reduced theory with 3 flavors the explicit SU(6)

global symmetry is enhanced to an E6 symmetry in the presence of 5d hypermultiplets. We also

show connections between indices of different theories in 3 and 4 dimensions.
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1 Introduction and conclusions

In recent years considerable progress has been made in the study of rigid supersymmetric field

theories in nontrivial spacetimes. In particular the superconformal index has been a primary goal

of the recent interest in these theories. The index is a powerful tool to test Seiberg–like dualities

in N = 1 [1, 2, 3, 4, 5], S–dualities in N = 2 [6, 7] and N = 4 [6, 8] supersymmetric theories

and has an elegant mathematical structure described by the theory of elliptic hypergeometric

integrals [9, 10].

The superconformal index was introduced [1, 11, 12] as a nontrivial generalization of the

Witten index [13], which counts BPS states in superconformal field theories in curved spacetime

[14]. We give a short outline of a superconformal index and refer the reader to [3, 4, 15] for more

details.

Let us consider the N = 1 superconformal theory in four dimensions. The symmetry group

of this theory is SU(2, 2|1), which has the following generators: Lorentz rotations Ji, J̄i, super-

translations Pµ, Qα, Q̄α̇ with {Qα, Q̄α̇} = 2Pαα̇, special superconformal transformations Kµ,

Sα, Sα̇ with {S̄α̇, Sα} = 2K α̇α, dilatations H and U(1)R–rotations R. To construct the super-

conformal index let us consider, for example, the supercharges Q̄1 and S̄1, which satisfy the

following relation

{Q̄1, S̄
1} = −2(H − 2J̄3 −

3

2
R) . (1)

Then one defines the superconformal index in the following way

ind(t, x, g, f) = Tr
(

(−1)Fx2J3tRe
∑rankG

a=1 gaGa

e
∑rank F

j=1 fjF j
)

. (2)

Here (−1)F is the fermion number operator, tR and x2J3 are additional regulators with |t| < 1

and |x| < 1, ga and fj are the chemical potentials for groups G and F respectively, where G is

a non-abelian gauge group with maximal torus generators Ga, a = 1, . . . , rank G, and F is a

flavor group with maximal torus generators Fj , j = 1, . . . , rank F .

According to the Romelsberger prescription [1] for N = 1 superconformal theories one can

write the full index via a “plethystic” exponential [16] and integrate over the gauge group3

I(p, q, y) =

∫

Gc

dµ(g) exp

( ∞
∑

n=1

1

n
ind

(

pn, qn, zn, yn
)

)

, (3)

3Because we are interested in gauge invariant physical observables.
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where dµ(g) is the Gc–invariant measure and the single particle states index is

ind(p, q, z, y) =
2pq − p− q

(1− p)(1− q)
χadj(z)

+
∑

j

(pq)Rj/2χRF ,j(y)χRG,j(z)− (pq)1−Rj/2χR̄F ,j(y)χR̄G,j(z)

(1 − p)(1 − q)
. (4)

Here we introduced the new parameters p = tx and q = tx−1. The first term in (4) represents

the contribution of the gauge superfields lying in the adjoint representation of the gauge group

Gc. The sum over j corresponds to the contribution of chiral matter superfields ϕj transforming

in the gauge group representations RG,j and flavor group representations RF,j where Rj are

the field R-charges. The functions χadj(z), χRF ,j(y) and χRG,j(z) are the characters of the

corresponding representations, where z and y are the set of complex eigenvalues of matrices

realizing G and F , respectively.

Dolan and Osborn realized [2] that the exponential sum in (3) can be evaluated using elliptic

Gamma function

Γ(z; p, q) =

∞
∏

i,j=0

1− z−1pi+1qj+1

1− zpiqj
, |p|, |q| < 1 , (5)

and as a result the superconformal index can be expressed in terms of Spiridonov’s elliptic

hypergeometric integrals. For a detailed discussion, see [4] and also [17] for mathematical aspects

of these integrals. Note that in the rest of the paper we will use the following standard shorthands

Γ(z, w; p, q) ≡ Γ(z; p, q)Γ(w; p, q), (6)

Γ(z±k; p, q) ≡ Γ(zk; p, q)Γ(z−k; p, q). (7)

In [3] authors established multiple dualities based on the so–called V –function

I(t1, . . . , t8; p, q) =
(p; p)∞(q; q)∞

2

∫

T

∏8
j=1 Γ(tjz

±1; p, q)

Γ(z±2; p, q)

dz

2πiz
, (8)

where tj , j = 1, . . . , 8 are complex parameters with the balancing condition
∏8

j=1 tj = (pq)2

and the q-Pochhammer symbol (z; q)∞ =
∏∞

i=0(1 − zqi). They speculated on existence of E7

global symmetry of the V –function from the fact that it has W (E7) Weyl symmetry group for

integral transformation. In fact this symmetry was realized explicitly, based on 4d/5d system,

by Dimofte and Gaiotto in [18].

In [3] the authors reduced 4d N = 1 SYM with SU(2) gauge group with 8 quarks to 6 quarks

and found that the index of the reduced theory has W (E6) symmetry. After this reduction in

the dual theories they realized additional SU(2) global symmetries, the appearance of which

was unclear to the authors. In this work we give the explanation of this extended symmetry

by coupling of original Nf = 3 theory to free 5d hypermultiplets4. This coupling bring us to

E6 global symmetry. At the same time this E6 symmetry can be obtained by restricting two

parameters in combined 4d/5d index considered by Dimofte and Gaiotto [18].

4Note that we use the subscript F for the flavor and the subscript f for the number of quarks.
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We have E6 global symmetry group and in different phases it produces us additional SU(2)

or U(1) groups in dualities found in [3].

Our aim is to show connections between indices of different theories. The following “com-

mutative diagram” demonstrates the plan of the paper pictorially. In section 2 we describe the

reduction procedure from 4d NF = 4 theory to 3d Nf = 4, in the diagram it follows to the

anticlockwise direction. In section 3 we do further reduction from 3d Nf = 6 theory, which is

right down arrow in the diagram.

4d NF = 3
(6 quarks)

4d NF = 4
(8 quarks)

3d Nf = 4
(4 quarks)

3d Nf = 6
(6 quarks)

✲
S → ∞

[18]

v → 0

✲

❄

s7s8 =
√
pq

❄

f5f6 =
√
q

In this diagram si and fi are the chemical potentials. The limit v → 0 corresponds to dimensional

reduction on the S1 and S → ∞ corresponds to the sending mass of quark supermultiplet to

infinity.

2 Reduction of 4d SCI to 3d partition function

In this section we will discuss 4d SU(2) N = 1 SQCD theories with NF = 4. Let us consider

first the electric theory with the flavor symmetry group SU(8). The superconformal index for

this theory is5

I4d, NF=4 =
(p; p)∞(q; q)∞

2

∮

dz

2πiz

∏8
i=1 Γ(

4
√
pqsiz

±; p, q)

Γ(z±2; p, q)
, (9)

where the path of the contour is taken to be the unit circle with positive orientation. The

chemical potentials of SU(8) group si obey the balancing condition
∏8

i=1 si = 1. In this theory

we have a chiral scalar multiplet in the fundamental representations of SU(2) and SU(8).

In the paper [3], Spiridonov and the second author established that there exist 71 dual

magnetic theories in addition to the above electric theory. They classified these 71 theories in

three groups.

The first type of dual magnetic theory is the theory which was found by Csaki et al. in

[19]. There are 35 dual theories of this type and all of them are 4d SU(2) N = 1 theories with

SU(4)l×SU(4)r×U(1)B flavor group, two scalar multiplets in the fundamental representation, a

5This is the so–called V –function.
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gauge field in the adjoint representation of the gauge group, and two singlets in the antisymmetric

tensor representations of SU(4) group. The index for this type of theory is

I
(1)
M =

(p; p)∞(q; q)∞
2

∏

1≤i<j≤4

Γ((pq)1/2sisj ; p, q)
∏

5≤i<j≤8

Γ((pq)1/2sisj; p, q)

×
∮

∏4
i=1 Γ((pq)

1/4v−2siz
±1; p, q)

∏8
i=5 Γ((pq)

1/4v2siz
±1; p, q)

Γ(z±2; p, q)

dz

2πiz
, (10)

where v is a chemical potential of U(1)B

v = 4
√
s1s2s3s4, v−1 = 4

√
s5s6s7s8 . (11)

The second type is the original Seiberg dual theory [20] with SU(2) gauge group and SU(4)×
SU(4) × U(1)B × U(1)R flavor group, one singlet in the fundamental representation of SU(4)

and all other matter content is the same as the theory above. The superconformal index for this

theory is

I
(2)
M =

(p; p)∞(q; q)∞
2

4
∏

i=1

8
∏

j=5

Γ((pq)1/2sisj; p, q)

×
∮

∏4
i=1 Γ((pq)

1/4v2s−1
i z±1; p, q)

∏8
i=5 Γ((pq)

1/4v−2s−1
i z±1; p, q)

Γ(z±2; p, q)

dz

2πiz
. (12)

The theory considered by Intriligator and Pouliot in [21] corresponds to the third type. There

is only a single model of this type and it has SU(8) flavor group and SU(2) gauge group, one

chiral scalar multiplet in the fundamental representation of the gauge group and antisymmetric

representation of the flavor group, a gauge field in the adjoint representation of the gauge group

and one singlet in the antisymmetric tensor representation of flavor group. The superconformal

index is

I
(3)
M =

(p; p)∞(q; q)∞
2

∏

1≤i<j≤8

Γ((pq)1/2sisj; p, q)

∮
∏8

i=1 Γ((pq)
1/4s−1

i z±1; p, q)

Γ(z±2; p, q)

dz

2πiz
. (13)

More detailed explanations about these dual theories can be found in the original paper [3]

and also in [22]. The equality of all four indices follows from the following identity [10]

I(t1, . . . , t8; p, q) =
∏

1≤j<k≤4

Γ(tjtk; p, q)Γ(tj+4tk+4; p, q) I(s1, . . . , s8; p, q), (14)

where the complex variables sj, |sj | < 1, are given in terms of tj (j = 1, . . . , 8),

sj = ρ−1tj, j = 1, 2, 3, 4, sj = ρtj, j = 5, 6, 7, 8, (15)

ρ =

√

t1t2t3t4
pq

=

√

pq

t5t6t7t8
.

All 72 dual theories are associated with the orbit of the W (E7) Weyl group. Using this fact

Spiridonov and the second author speculated in [3], that the index may have global symmetry
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group E7. In fact, Dimofte and Gaiotto explicitly showed in [18] that the theories in question,

when coupled to 5d hypermultiplet, have an enhanced symmetry group E7. In order to show

this, they added the 5d hypermultiplet contributions with a specific boundary condition to the

index

I4d/5d, NF=4 =
∏

1≤i<j≤8

1
(√

pq(sisj)−1; p, q
)

∞

(p; p)∞(q; q)∞
2

∮

dz

2πiz

∏8
i=1 Γ(

4
√
pqsiz

±; p, q)

Γ(z±2; p, q)
. (16)

where the term
∏

1≤i<j≤8

1
(√

pq(sisj)−1; p, q
)

∞

(17)

corresponds to a 5d hypermultiplet [23]. By setting all chemical potentials to 1 and redefining

p = t3y, q = t3y−1 one can easily read off the E7 symmetry of the index by expanding the last

expression in powers of t and y

I4d/5d, NF=4 = 1 + 56t3 + 1463t6 + 3002t9y + . . . , (18)

where the coefficients 56 and 1463 are the dimensions of the irreducible representations of E7 with

highest weight [0, 0, 0, 0, 0, 0, 1] and [0, 0, 0, 0, 0, 0, 2], respectively and 3002 = 1539[0,0,0,0,0,1,0] +

1463[0,0,0,0,0,0,2]
6.

Remarkably, the new index is invariant under the transformation of the chemical potentials

to their duals and the expression (14) becomes [18]

I(t1, . . . , t8; p, q) = I(s1, . . . , s8; p, q). (19)

If we set s7s8 =
√
pq in (9) one gets the reduction7 of the index from NF = 4 to NF = 3.

When we apply this reduction for the integrals I
(1)
M and I

(2)
M , setting s4s5 =

√
pq and s7s8 =

√
pq,

respectively, we end up with the flavor group SU(3)l × SU(3)r × U(1)B × U(1)add for I
(1)
M and

the flavor group SU(4) × SU(2) × SU(2)add × U(1)B for I
(2)
M . The observation that one gets

additional symmetries such as SU(2)add and U(1)add in the reduced theories, suggests that the

reduced theories may also have larger symmetry than SU(6), in fact E6 flavor symmetry. Indeed

it is possible to show this by adding the 5d hypermultiplet contribution to the index and apply

reduction procedure. The new reduced index is

I4d/5d, NF=3 =
∏

1≤i<j≤6

1
(

(pq)
2
3 s−1

i s−1
j ; p, q

)

∞

6
∏

i=1

1
(

(pq)
1
3 s−1

i w±1; p, q
)

∞

× (p, p)∞(q, q)∞
2

∮

dz

2πiz

∏6
i=1 Γ(

6
√
pqsiz

±; p, q)

Γ(z±2; p, q)
. (20)

Note that we have redefined the chemical potentials si → (pq)−1/12si. The balancing condition

is
∏6

i=1 si = 1. Now by setting all chemical potentials to 1 and redefining p = t3y and q = t3y−1

one can read off the E6 symmetry of the index

I4d/5d, NF=3 = 1 + 27t2 + 378t4 + 3653t6 + 27t5(y−1 + y) + . . . (21)

6To find dimensions of irreducible representations of Lie algebras one can use

http://www-math.univ-poitiers.fr/~maavl/LiE/form.html
7We have used the reflection identity for an elliptic Gamma function Γ(z; p, q)Γ(pqz−1; p, q) = 1.
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The coefficient 27 is the dimension of the irreducible representation of E6 with highest weight

[1, 0, 0, 0, 0, 0] and

378 = 351[0,0,1,0,0,0] + 27[1,0,0,0,0,0], (22)

3653 = 3003[3,0,0,0,0,0] + 650[1,0,0,0,0,1]. (23)

There is a reduction scheme [24] (also see [25, 26]) of the superconformal index for a 4d

supersymmetric theory to the partition function for a 3d theory. Actually from the mathematical

point of view this reduction nothing but a special limit that brings elliptic gamma functions to

the hyperbolic level. Let us do this procedure for the index (20), following [24]. First we

reparameterize

p = e2πivω1 , q = e2πivω2 , z = e2πivu, si = e2πivαi , w = e2πivα7 , (24)

and use the asymptotic formula for the elliptic Γ-functions. Recall that in the limit v → 0 the

elliptic Γ-function reduce to hyperbolic γ(2)(z)-function

Γ(e2πivz; e2πivω1 , e2πivω2) =
v→0

e−πi(2z−(ω1+ω2))/24vω1ω2γ(2)(z;ω1, ω2) , (25)

where

γ(2)(u;ω1, ω2) = e−πiB2,2(u;ω)/2 (e
2πiu/ω1 q̃; q̃)

(e2πiu/ω1 ; q)
with q = e2πiω1/ω2 , q̃ = e−2πiω2/ω1 , (26)

and B2,2(u;ω) is the second order Bernoulli polynomial,

B2,2(u;ω) =
u2

ω1ω2
− u

ω1
− u

ω2
+

ω1

6ω2
+

ω2

6ω1
+

1

2
. (27)

In the limit v → 0 we also have

(z; p, q)∞ →
v→0

1

Γ2(u;ω1, ω2)
, (28)

where Γ2(u;ω1, ω2) is the Barnes double Gamma function (see Appendix A).

To go further let us apply the limit v → 0 to the index (20) and use the asymptotic formulae

above. Finally we arrive at8

I4d/5d =
v→0

eπi(ω1+ω2)/12vω1ω2Ir4d/5d , (29)

where

Ir4d/5d =
∏

1≤i<j≤6

Γ2

(ω1 + ω2

2
− (αi + αj)

)

6
∏

i=1

Γ2

(

− ω1 + ω2

2
− (αi ± α7)

)

× 1

2

∫

du

i
√
ω1ω2

∏6
i=1 γ

(2)(αi ± u+ ω1+ω2
4 ;ω1, ω2)

γ(2)(±2u;ω1, ω2)
. (30)

8We have also used the reflection identity and some asymptotic formulas for γ(2)(z) function (see Appendix

B). Here and below we will use the shorthand notations γ(2)(a, b;ω1, ω2) ≡ γ(2)(a;ω1, ω2)γ
(2)(b;ω1, ω2), and

γ(2)(a± u;ω1, ω2) ≡ γ(2)(a+ u;ω1, ω2)γ
(2)(a− u;ω1, ω2).
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If one considers

α5 = ξ1 + aS, α6 = ξ2 − aS, (31)

and applies the additional limit S → ∞, then the final answer gives an expression for the

partition function of 3d N = 2 SYM theory9 [27, 28, 29]

Z3d/4d ≈
S→∞

FZr
3d/4d , (32)

where

Zr
3d/4d = Γ2(

ω1 + ω2

2
− ξ1 − ξ2)

∏

1≤i<j≤4

Γ2

(ω1 + ω2

2
− (αi + αj)

)

4
∏

i=1

Γ2

(

− ω1 + ω2

2
− (αi ± α7)

)

× 1

2

∫

du

i
√
ω1ω2

∏4
i=1 γ

(2)(αi ± u+ ω1+ω2
4 ;ω1, ω2)

γ(2)(±2u;ω1, ω2)
. (33)

From the physical point of view this reduction corresponds to adding mass terms to two quark

supermultiplets and then integrating them out by sending their masses to infinity. As one can

see, this theory has 4 quarks, one chiral field in the antisymmetric representation of the gauge

group, and contributions from a 5d hypermultiplet.

3 Reduction to Nf = 4

In [18] it was shown that 3d N = 2 theory with Nf = 6 has SO(12) symmetry. The authors

obtained the index of the 3d theory by reduction from 4d N = 1 theory with NF = 4 inspired

by [30]. We will now demonstrate that the index for the 3d N = 2 SYM theory with 4 quarks

has SO(10) symmetry group.

The expression for the index of the electric 3d N = 2 supersymmetric theory [31, 32] with

an arbitrary number of flavors Nf and chemical potentials si, ti, (i = 1, ..., Nf ) is [33]

I3d,Nf
=

Nf
∏

a,b=1

1
(

q
1
2 t−1

a s−1
b ; q

)

∞

∑

k∈Z

aNf |k|/2

×
∮

dz

2πiz

Nf
∏

i=1

(a1/2q1/2+|k|/2t−1
i z; q)∞

(a−1/2q1/2+|k|/2tiz−1; q)∞

(a1/2q1/2+|k|/2s−1
i z−1; q)∞

(a−1/2q1/2+|k|/2siz; q)∞
, (34)

where
∏Nf

a=1 ta = 1 and
∏Nf

a=1 sa = 1. It is clear that by taking a = q
1
2 for Nf = 4 (8 quarks),

9For ω1 = 1
ω2

we obtained that

F =

(

−ξ1 −
5iπξ1
6

− ξ2 −
iπξ2

6

)

(ω +
1

ω
) + (

iπ

3
−

4

3
)(

1

ω
+ ω)2 − iπ

−
5

2
iπξ

2
1 +

15ξ22
2

+

(

3

2
−

iπ

2

)

(

α
2
1 + α

2
2 + α

2
3 + α

2
4 + 5ξ21 − 2ξ1ξ2 + 8α2

7

)

.

7



we obtain the following expression

I3d,Nf=6 =

4
∏

a,b=1

1
(

q
1
2 t−1

a s−1
b ; q

)

∞

∑

k∈Z

q|k|

×
∮

dz

2πiz

4
∏

i=1

(q1/4q1/2+|k|/2t−1
i z; q)∞

(q−1/4q1/2+|k|/2tiz−1; q)∞

(q1/4q1/2+|k|/2s−1
i z−1; q)∞

(q−1/4q1/2+|k|/2siz; q)∞
. (35)

One can rewrite this index in the following form [18]

I3d,Nf=6 =
1

(

q
1
2 f1f2f3f4f5f6; q

)

∞

∏

1≤i<j≤6

1
(

q
1
2 f−1

i f−1
j ; q

)

∞

× 1

2

∑

k∈Z

∮

dz

2πiz
(1− q|k|z±2)

6
∏

i=1

f
−|k|
i

1− qr+
1
2
|k|+1(q

1
4 fiz

±1)−1

1− qr+
1
2
|k|q

1
4 fiz±1

, (36)

where fi = ti/
√
t1t2t3s4 and fi+3 = si

√
t1t2t3s4 (i = 1, 2, 3). The reduction of superconformal

indices in 3d is similar to the 4d case. For the result of this paper, we set f5f6 = q
1
2 which

reduces the index of the theory with 6 quarks to the index of the theory with 4 quarks

I3d,Nf=4 =
(q1/3; q)∞

(

qf1f2f3f4; q
)

∞

∏

1≤i<j≤4

1
(

q
1
2 f−1

i f−1
j ; q

)

∞

4
∏

i=1

1
(

q
1
2 f−1

i q−
1
4 v±1; q

)

∞

× 1

2

∑

k∈Z

∮

dz

2πiz
(1− q|k|z±2)

4
∏

i=1

f
−|k|
i

1− qr+
1
2
|k|+ 3

4 f−1
i z±1

1− qr+
1
2
|k|+ 1

4 fiz±1
, (37)

where the term (q
1
3 ; q)∞ is a monopole contribution. Note that we have chosen the representation

(36) of the index because it is closely related to the 3d N = 2 partition function (33). This

procedure can be repeated for the initial expression of the index (36) in a similar way. Now

one can read off the SO(10)–invariant operator content of the theory by expanding the last

expression in powers of q and setting all chemical potentials to 1

I = 1 + 16q1/3 + 136q2/3 + 816q + 3892q4/3 + . . . (38)

The coefficients are related to the dimensions of irreducible representations of SO(10)

16 is the dimension of the spinor representation of SO(10) (39)

136 = 54[2,0,0,0,0] + 45[0,1,0,0,0] + 16[0,0,0,1,0] + 10[1,0,0,0,0] + 1[0,0,0,0,0], (40)

816 = 320[1,1,0,0,0] + 210[0,0,0,1,1] + 144[1,0,0,1,0] + 126[0,0,0,2,0] + 16[0,0,0,1,0], (41)

3892 = 2772[0,0,0,4,0] + 945[1,0,1,0,0] + 120[0,0,1,0,0] + 54[2,0,0,0,0] + 1[0,0,0,0,0]. (42)
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Appendices

A Barnes double Gamma function

The Barnes double Gamma function Γ2(u;ω1, ω2) is defined as

log Γ2(x; a, b) = ζ ′2(0; a, b, x) + log ρ2(a, b), (43)

where

ζ2(s; a, b, x) =
∑

m,n=0

(am+ bn+ x)−s (44)

log ρ2(a, b) = − lim
x→0

(

ζ ′2(0; a, b, x) + log x
)

(45)

There is also the integral representation of this function

Γ2(x; a, b) = exp

(

1

2πi

∫

CH

e−xt(log(−t) + γ)

t(1− e−at)(1− e−bt)
dt

)

, (46)

where γ is the Euler constant and the Hankel contour CH starts and finishes near the point +∞,

turning around the half–axis [0,∞) anticlockwise.

Useful references for specific details are [17, 34].

B Hyperbolic gamma-function

The reflection identity for a hyperbolic gamma-function is as follows

γ(2)(z, ω1 + ω2 − z;ω1, ω2) = 1, (47)

and the asymptotic formulas are

lim
u→∞

e
πi
2
B2,2(u;ω1,ω2)γ(2)(u;ω1, ω2) = 1, for arg ω1 < arg u < arg ω2 + π, (48)

lim
u→∞

e−
πi
2
B2,2(u;ω1,ω2)γ(2)(u;ω1, ω2) = 1, for arg ω1 − π < arg u < arg ω2. (49)
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