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Recently a new method to set the scale in lattice gauge theories, based
on the gradient flow generated by the Wilson action, has been proposed,
and the systematic errors of the new scales t0 and w0 have been investigated
by various groups. The Wilson flow provides also an interesting alternative
smoothing procedure in particular useful for the measurement of the topo-
logical charge as a pure gluonic observable. We show the viability of this
method for N = 1 supersymmetric Yang-Mills theory by analysing the con-
figurations produced by the DESY-Muenster collaboration. For increasing
flow time the topological charge quickly approaches near-integer values. The
topological susceptibility has been measured for different fermion masses and
its value is observed to approach zero in the chiral limit. Finally, the relation
between the scale defined by the Wilson flow and the topological charge has
been investigated, demonstrating a correlation between these two quantities.
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1. Introduction
Lattice regularisation allows nonpertubative investigations of quantum field theories.
The continuum space-time is discretised to a hypercubic finite lattice with points separ-
ated by a distance a. The integral over all possible configurations then has a mathem-
atically well-defined meaning, and Monte Carlo methods can be applied to approximate
expectation values of observables. The lattice spacing a is an important dimensionful
parameter in the regularised theory; knowledge of its value is crucial to extrapolate phys-
ical quantities to the continuum limit a → 0, to test the agreement with experimental
data or simply to compare results between different lattice actions. The value of the
lattice spacing is implicitly defined once a dimensionful observable, for instance the mass
of a particle in physical units, is chosen as input parameter to set the scale and to match
simulations done with different bare parameters.
It is important to determine the scale as precise as possible since its error contributes

a significant part to both statistical and systematic errors of the lattice results, that
propagates to the final physical predictions of Monte Carlo simulations. Therefore, the
observable used to set the scale has to be chosen with special care. Various examples for
this purpose have been investigated during the last two decades. In particular, three of
them have been successfully tested for many different theories: the Sommer parameter
r0 and the Wilson flow scales t0 and w0.
The Sommer parameter r0 was first proposed in Ref. [1] as the distance r where the

strong force between a static quark-antiquark pair multiplied by the squared distance,
r2F (r), reaches some specified value, typically 1.0 or 1.65. The Sommer parameter is a
pure gluonic observable in the sense that it requires only the computation of expectation
values of Wilson loops. While this measurement is computationally inexpensive, noisy
signals affect the result for the interquark force at large distances where however lattice
artefacts are small. Systematic errors arise when different choices of smoothing proced-
ures are used to improve the signal of F (r) and when the fitting procedure is employed
to extract the value of the parameters, increasing the complexity of the measurement of
the Sommer parameter r0.
Recently a new method to set the scale by the parameter t0 has been proposed in

Ref. [2], based on the gradient flow generated by the Wilson or the Symanzik gauge
field action [3]. A closely related method based on the parameter w0 has been developed
in Ref. [4]. In this paper we compute the scale parameters t0 and w0 for the N = 1
SU(2) supersymmetric Yang-Mills (SYM) theory and discuss their systematic errors.
Our calculations employ the configurations generated by the DESY-Münster collabor-
ation [5, 6, 7]. We show that, for large flow times, correlations appear between the
topological charge and the scale setting quantities. As a consequence, unexpected finite
volume effects can arise in the computation of w0 and t0. We further show that a fine
tuning of the scales t0 and w0 can drastically reduce this effect without introducing any
further systematic errors. Similar analyses of the influence of topology on the scale set-
ting have been presented in Ref. [8, 9] for the Sommer parameter r0. Yang-Mills theories
at fixed topology have been intensively studied in the literature, see for example [10, 11].
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2. The Wilson flow
The Wilson flow can be considered as a continuous generalisation of stout smearing [12].
The starting point is to introduce an additional fictitious time t as fifth dimension,
in the course of which the gauge fields Uµ(x) generated by Monte Carlo simulations
are “continuously smoothed”. The continuous smoothing procedure is specified by the
partial differential equation

∂

∂t
Vµ(x, t) = −g2Sgauge(Vµ(x, τ))Vµ(x, t) , (1)

similar to a diffusion equation, with boundary conditions

Vµ(x, t)|t=0 = Uµ(x) . (2)

Here Vµ(x, t) denotes the link variables at fictitious time t and Uµ(x) the original link
variables.
The Wilson flow removes ultraviolet divergences and therefore local gauge invariant

operators defined at positive flow time are automatically renormalised. Quantities con-
structed from the link variables Vµ(x, τ) have a well-defined continuum limit and can be
used to set the scale in lattice simulations.
The scale t0 has been introduced in Ref. [2] as the flow time t fulfilling

t2〈E(t)〉 = 0.3 . (3)

Here the gauge energy E(t) is defined as

E = 1
4G

a
µνG

a
µν , (4)

where Gµν is a lattice version of the field strength tensor Fµν which, as usual, is specified
by the antisymmetric clover plaquette. The scale t0 has the same dimension of the
inverse string tension, i.e. length squared.
The closely related scale w0 has been introduced in Ref. [4] as the square root of the

flow time t where the condition

t
d

dt
t2〈E(t)〉 = 0.3 (5)

is satisfied. w0 has the dimension of a length, i.e. the same dimension of the lattice
spacing. It has been demonstrated that w0 is less sensitive to lattice artefacts than√
t0. According to Ref. [4], the difference between the application of the Symanzik

and the Wilson gauge field action in the integration of the flow equation on the lattice
is not relevant. In this work we apply the Wilson action since it requires a smaller
computational effort. The Wilson flow has been numerically integrated using a Runge-
Kutta scheme with steps of length 0.01, as described in Appendix C of Ref. [2].
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3. Measuring the scale setting quantities w0 and t0
The gauge configurations have been generated by the Two-Step Polynomial Hybrid
Monte Carlo (TSPHMC) update algorithm [13, 14] for the study of the hadron spec-
trum in SYM with gauge group SU(2) [5, 6, 7]. This theory describes the interactions
between gluons and their supersymmetric partners, the gluinos. The gluino is a Major-
ana fermion in the adjoint representation of the gauge group. The Symanzik improved
action has been used for the gauge action, and the Wilson-Dirac operator with one-level
stout smeared links for the fermion action1. We have determined the Wilson flow scales
for three different values of β = 4/g2, where g is the bare gauge coupling, and many
different values of the fermionic hopping parameter κ = 1/(2m+8), where m is the bare
gluino mass.
The integration of the Wilson flow equation has been performed on every sixth therm-

alised configurations2, and the results are summarised in Tab. 1. The scales w0 and
√
t0

show only a small dependence on the gluino mass for a given β. Employing a mass
independent renormalisation scheme, the scales are extrapolated to the chiral limit at
zero renormalised gluino mass and the obtained value is used to set the scale at all gluino
masses. In our calculations the renormalised gluino mass is represented by the square of
the (adjoint) pion mass (mπ), which is defined in a partially quenched theory and can be
measured with a reasonable precision. As shown in [15], the gluino mass is proportional
to the square of mπ.

4. Matching the β-function
The Callan-Symanzik-β-function has been determined for the N = 1 SYM theory in
Ref. [16] by instanton calculations. The result

β(g) = µ
d

dµ
g(µ) = − g3

16π2
3Nc

1− Ncg2

8π2

(6)

is exact due to the non-renormalisation theorem [16]. The first two perturbative coef-
ficients are universal and scheme independent. The β-function can be used to compare
lattice results at different bare gauge couplings g. If finite volume corrections and lattice
discretisation errors can be neglected, the Wilson flow parameters t0 and w0 are expected
to scale according to

w0(g1)
w0(g2)

= exp (F (g1)− F (g2)), (7)

1The value of the stout smearing parameter was ρ = 0.15, see [6] for further details.
2The individual configurations are separated by 1 unit in HMC time, TMC = 1, the measured con-
figurations are separated by 6 units in HMC time. In the plots of the Monte Carlo history we will
use therefore “TMC × 6” in the x-axis labels. The integrated autocorrelation time of the unsmeared
plaquette is always below 1.5 in these units.
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Figure 1: Scaling of w0 compared to the expected behaviour from the β-function (red
line). The orange band represents the statistical error determined by Eq. 7.

where the function F (g) is the integral of the inverse of the β-function:

F (g) =
∫ g dg′

β(g′) = 8π2

3Ncg2 + 2
3 ln g , (8)

up to an unessential integration constant.
For our case, Nc = 2, the scaling according to Eq. 7 has been checked by taking the

value of w0 at β = 4/g2 = 1.9 as reference point, see Fig. 1 . The agreement with Eq. 7
is rather good.
The relative deviation from the scaling,

K = w0(1.9)
w0(β)

(
1.9
β

)1/3

exp
{
π2(β − 1.9)

3

}
, (9)

isK = 1.03(6) for β = 1.75 andK = 1.20(8) for β = 1.6. The larger deviation at β = 1.6
is presumably due to lattice artefacts and/or higher order terms in the lattice-β-function.

5. Measuring the topological charge with the Wilson
flow

The topological charge is defined for a given field configuration in the continuum by the
integral

Qtop = 1
32π2

∫
d4x εµνρσF

µν
a F ρσ

a . (10)
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Figure 2: (a) Topological charge for four different configuration as a function of the flow
time t on a 323 × 64 lattice, β = 1.9 and κ = 0.14435. (b) Distribution of the
topological charge at t = 50 for the same run.

On the lattice we define the topological charge with the same antisymmetric discretisa-
tion of the field strength tensor as used for the flow equation:

Qlat = 1
32π2

∑
x

εµνρσG
µν
a G

ρσ
a . (11)

This lattice topological charge is affected by ultraviolet fluctuations, and its value is in
general not an integer. A possible solution to this problem is a smoothing procedure to
suppress the short distance fluctuations and to recover a well-defined topological charge
in the continuum limit [17]. We have applied the Wilson flow as smoothing procedure,
as done in Ref. [18].
As shown in Fig. 2(a), for large enough flow time t the topological charge reaches a

near integer value. Following Ref. [18], we convert the raw lattice topological charge to
an integer using

Qtop = round(αQlat(t)), (12)
where the flow time t is chosen to be

t = 1
8

(
L

3

)2
(13)

where L is the spatial extent of the lattice. This value of t is chosen sufficiently large to
remove the cut-off effects; but not too large to change the number of instantons and the
final value of the topological charge [19] . The real constant α is chosen to minimise the
expectation value

R(α) = 〈(αQlat − round(αQlat))2〉. (14)
Near the continuum limit it is expected that α ≈ 1, i.e. the distribution of Qlat is
already centred near integer values without requiring an additional multiplicative renor-
malisation, see Fig. 2(b) (and Fig. 10 in the Appendix). In addition, the topological
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Figure 3: Extrapolation of the topological susceptibility χtop to the chiral limit on a
323 × 64 lattice at (a) β = 1.60 and (b) β = 1.75.

susceptibility χtop, defined by

χtop =
〈Q2

top〉 − 〈Qtop〉2

V
=
〈Q2

top〉 − 〈Qtop〉2

a4N3
sNt

, (15)

where V is the volume of the system, has been measured. The results are shown in
Tab. 2 and in Fig. 3. The value of χtop extrapolated to the chiral limit confirms the
topological suppression for SYM mentioned in Ref. [20].

6. Autocorrelation time of flow observables
The autocorrelation time of the topological charge increases drastically near the con-
tinuum limit and may even result in topological freezing. This effect depends, however,
on the chosen boundary conditions [21, 22]. The scales w0 and t0 exhibit a very long
autocorrelation time, especially near the continuum limit, similarly to the topological
charge. Our configurations have been produced with the usual periodic boundary con-
ditions and we observe the expected increase of the autocorrelations.
The autocorrelation time should scale with the lattice spacing a asymptotically as

a−z, where z = 1 for Hybrid Monte Carlo (HMC) algorithms. In our runs the lattice
spacing is decreased roughly by a factor 2.5 between β = 1.6 and β = 1.9. The integrated
autocorrelation time τ(t0) of t0 at β = 1.9 is, however, approximately twelve times larger
than at β = 1.6, see Tab. 1.
Although the interval between β = 1.6 and β = 1.9 is presumably not yet in the

asymptotic regime, the variation of τ(t0) seems to indicate a value z & 2 and a possible
connection of the topological charge with the flow observables used to set the scale.
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Figure 4: Monte Carlo history of w0 on a 323 × 64 lattice, β = 1.9 and κ = 0.14435.
TMC is the Monte Carlo time. w0 is measured every sixth configurations.

7. Correlations between topological charge and the
scale w0

In order to investigate the nature of the long autocorrelation of w0, we have considered
its Monte Carlo history. The scale w0 can be defined for a single configuration without
the need of an ensemble average by determining the flow time when the integrated flow
matches the condition specified by Eq. 5 . In Fig. 4 the Monte Carlo history of w0 is
shown for a lattice 323 × 64 at β = 1.9 and κ = 0.14435. One can see that the value of
w0 has large fluctuations with a long period. In particular, very strong upward spikes
emerge.
Wilson flow scales depend implicitly on the reference value chosen in Eq. 5. Small

reference values will potentially produce large lattice artefacts on the final results, while
w0 and t0 will be affected by non-negligible finite volume effects for larger reference
values. Let us define the scale wu0 to be the square root of the flow time when the
condition

t
d

dt
t2〈E(t)〉 = u (16)

is satisfied. By varying u one can study how the autocorrelations are affected by different
choices of the reference value. Here and in the following we set w0 ≡ w0.3

0 . In Fig. 5 the
Monte Carlo histories of w0.1

0 , w0.3
0 and w0.4

0 are compared. When the value of u is small
the fluctuations and spikes are significantly reduced. On the other hand, when the value
of u is increased the spikes become even more pronounced.
Increasing the value of u leads to a larger flow time needed to match the condition

(16), which means that a stronger smoothing induced by the flow equation is applied to
the configurations. Large flow times will stronger remove ultraviolet fluctuations, and
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Figure 5: Comparison of the Monte Carlo history (a) of w0.1
0 (blue) with w0.3

0 (red) and
(b) of w0.1

0 (blue) with w0.4
0 (red), on a 323×64 lattice, β = 1.9 and κ = 0.14435.

The magnitude of the peaks increases drastically when the reference value to
set the w0 scale is larger.

the system will be brought towards a classical configuration, as observed in section 5.
Therefore one might argue that spikes and large fluctuations are related to topological
effects. Using the results presented in section 5 we have been able to compute the value
of wu0 restricted only to configurations with a fixed definite topological charge.
The distributions of w0.4

0 and w0.3
0 are shown for the same run in Fig. 6 for two selected

topological sectors, |Qtop| = 1 and |Qtop| = 4. The distribution of w0.3
0 restricted to the

topological sector |Qtop| = 1 is rather broad and the average value is larger than for the
distribution in the topological sector |Qtop| = 4. The same behaviour appears for the
restricted distributions of w0.4

0 , but with a slightly larger difference between the two mean
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PDF

(a) Topological distribution of w0.3
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(b) Topological distribution of w0.4
0

Figure 6: Probability distribution function of (a) w0.3
0 and of (b) w0.4

0 restricted to the
topological sector |Qtop| = 1 (green) and |Qtop| = 4 (red) on a 323× 64 lattice,
β = 1.9 and κ = 0.14435.
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Figure 7: Linear fit of the dependence of wu0 on the topological charge for u equal to 0.1
(green), 0.2 (yellow), 0.3 (purple) and 0.4 (blue) for a lattice 323× 64, β = 1.9
and κ = 0.14435.

values of the distributions. This result clearly shows that there is a correlation between
the value of w0 and the topological charge, not only in terms of its mean value but also
in terms of its distribution. The largest fluctuations observed in Fig. 4 are produced
by the configurations at low values of the topological charge, where the distribution of
w0 is broad. The long periodicity is induced by the transitions during the Monte Carlo
update time between topological sectors around zero, characterised by large expectation
value of w0, and topological sectors far from the origin with a small mean value of w0.
The Monte Carlo history restricted to a given topological sector is presented in Fig. 11
in the Appendix.
In Fig. 7 we present the expectation value of wu0 restricted to the various topological

sectors for four different values of u, in the same run on a 323 × 64 lattice, with β = 1.9
and κ = 0.14435. The behaviour of wu0 (|Qtop|) is approximately linear for all u but it
has a steeper slope when the reference scale u is larger. We have used a linear fit of the
form

〈wu0 〉(|Qtop|) = s|Qtop|+ q. (17)
The resulting slope coefficients s are presented as a function of u in Fig. 8(a). The
modulus of the slope s increases increasing u. This means that the dependence of wu0 on
the topology is stronger when u is larger. This behaviour confirms our previous claim
about the topological origin of the spikes in Fig. 5: when u is large the smoothing effects
of the Wilson flow are large and the configuration is driven towards a classical one where
the influence of the topology is stronger. As a result, the integrated autocorrelation time
of w0.4

0 is around 800 TMC , approximately three times larger than the autocorrelation
time of w0.1

0 , which is around 300 TMC . We have also investigated the dependence of
s on the adjoint pion mass squared, observing that it increases as one approaches the
chiral limit, see Fig. 8(b).
The dependence of the flow scale on the topological charge can be interpreted as a finite

volume effect [10, 11]. To address this point we repeated the same systematic analysis

10



0.1 0.2 0.3 0.4
u

-0.5

-0.4

-0.3

-0.2

-0.1

sHuL

(a) s versus u

0.0 0.5 1.0 1.5
Hw0mΠ L2

-0.8

-0.6

-0.4

-0.2

s

(b) s versus (w0mπ)2

Figure 8: (a) Slope coefficient s as a function of the reference value u for the lattice
323 × 64, β = 1.9 and κ = 0.14435. (b) Slope coefficient s as a function of
(w0mπ)2 at β = 1.9 for w0.3

0 . The value of s linearly extrapolated to the chiral
limit is s((w0mπ)2 = 0) = −0.69(14).
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(a) wu0 (|Qtop|), lattice 323 × 64
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(b) wu0 (|Qtop|), lattice 163 × 36

Figure 9: The same as Fig. 7, but for (a) the lattice 323 × 64, β = 1.75 and κ = 0.1494;
(b) the lattice 163 × 36, β = 1.75 and κ = 0.1490.

on the lattice 323 × 64 at β = 1.75, where the physical volume is approximately seven
times larger than at β = 1.9. The dependence of the various wu0 on |Qtop| is presented
in Fig. 9(a). As the figure shows, in this large physical volume the dependence of the
flow scales on the topology completely disappears. If instead, the physical volume is
shrunk again by simulating on a 163 × 36 lattice at the same β = 1.75, the observables
wu0 appear to depend on the topological charge |Qtop| as before, see Fig. 9(b). Note that
the value of κ used in the smaller volume is smaller than the first case, but according to
Fig. 8(b) this should even reduce the slope. This demonstrates that finite volume effects
are the origin of the dependence of w0 on the topological charge in the runs on the finer
lattices at β = 1.9.
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8. Conclusions
We have presented a detailed analysis of the Wilson flow observables w0, used to set
the scale alternatively to the Sommer parameter r0. The same analysis has been done
also for t0 reaching similar conclusions. In finite volumes we observed a substantial
dependence of w0 on the topological charge, in agreement with the previous discussion
on this topic for the Sommer parameter r0 of Ref. [8, 9].
Scales based on the Wilson flow require a delicate fine-tuning to correctly handle finite

volume effects and errors due to lattice artefacts. A result free of topological finite volume
effects can be ensured if there is no coupling between the scale and the topological charge,
up to the statistical precision. The final result has fairly small statistical and systematic
errors, therefore w0 can be used to set the scale in extrapolations to the chiral and to
the continuum limit. Our observations support the use of small flow times to set the
scale, at least for our model and within our present precision: the ratio of wu0 and w0.3

0
is flat for u & 0.1 (see Tab. 3 and Fig. 12 in the Appendix).
The results that have been presented may be different for other theories, in particular

they may depend on the number of colours Nc, on the number of fermions Nf and on the
fermion representation. We believe, however, that a dependence of the scale on topology
emerges for sufficient large reference scales independently of the theory. We therefore
encourage systematic studies in this direction, in particular considering that there are
proposals, like in [23], to increase the value of the reference flow time.
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A. Tables and additional figures

Volume β κ amπ

√
t0/a w0/a τ(t0)

243 × 48 1.60 0.15500 0.5788(16) 1.5672(13) 1.5102(14) 21
243 × 48 1.60 0.15700 0.3264(23) 1.7904(11) 1.7292(37) 10
243 × 48 1.60 0.15750 0.2015(93) 1.8986(53) 1.8410(63) 42
323 × 64 1.75 0.14900 0.2385(4) 3.1438(67) 2.9838(59) 50
323 × 64 1.75 0.14920 0.2035(5) 3.270(17) 3.097(25) 45
323 × 64 1.75 0.14940 0.1604(15) 3.362(15) 3.205(20) 35
323 × 64 1.75 0.14950 0.1294(24) 3.551(36) 3.413(40) 65
323 × 64 1.90 0.14387 0.2123(4) 5.73(13) 5.57(19) 440
323 × 64 1.90 0.14415 0.1742(4) 5.71(12) 5.49(11) 296
323 × 64 1.90 0.14435 0.1413(6) 5.96(12) 5.76(14) 502

Table 1: Results for the adjoint pion mass mπ, the scales t0, w0 and the autocorrelation
time τ(t0) of t0.

Run Volume β κ (a4χtop)× 10−6

A1 243 × 48 1.60 0.15500 160(19)
A2 243 × 48 1.60 0.15700 102(9)
A3 243 × 48 1.60 0.15750 85(7)
B1 323 × 64 1.75 0.14900 17(2)
B2 323 × 64 1.75 0.14920 12(1)
B3 323 × 64 1.75 0.14940 11(1)
B4 323 × 64 1.75 0.14950 10(3)
C1 323 × 64 1.90 0.14387 1.01(14)
C2 323 × 64 1.90 0.14415 1.59(18)
C3 323 × 64 1.90 0.14435 1.02(8)

Table 2: Results for the topological susceptibility.
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Figure 10: Plot of R(α) for the lattice 323 × 64 at β = 1.75 and κ = 0.1494. The
minimum of R(α) is located at α = 1.055.
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Figure 11: Monte Carlo history of the w0 on a 323×64 lattice, β = 1.9 and κ = 0.14435.
The purple points highlight the value of w0 only for configurations charac-
terised by a given topological sector; the blue lines mark its maximal and
minimal value.
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Figure 12: Scaling of the various wu0 with respect to w0.3
0 as a function of the lattice

spacing. The scaling is flat within the errors for u & 0.15.
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