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1 IntrodutionIn a time when the dynamis of the strong interation in hadron-hadron ollisions is mov-ing towards the domain of preision physis, there are still aspets that are under poortheoretial and experimental ontrol. One of these aspets is double parton sattering,where two partons from eah proton have a hard interation in a single proton-protonollision. Correlations between the two hard interations have been the subjet of severalreent studies [1{8℄. The relevane of spin orrelations in double parton sattering waspointed out long ago [9, 10℄ and reently followed up in [11, 12℄. The studies in [13℄ and[14℄ have shown that spin orrelations in the prodution of two vetor bosons by doublehard sattering have observable e�ets both on the interation rate and on kinemati dis-tributions. Spin orrelations between the two partons are quanti�ed by polarized doubleparton distributions (DPDs), whih desribe for instane the di�erene of the probabilitydensities for �nding two quarks with equal or with opposite heliities. It was argued in [12℄that suh orrelations need not be small, and a reent study in the MIT bag model [15℄indeed found large spin orrelations between quarks in the valene region. However, ourknowledge of polarized DPDs is still poor at best, and any information about them is ofvalue.
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In the present work, we derive model independent onstraints on DPDs that followfrom their interpretation as probability densities for �nding two partons in a spei�ed po-larization state. Similar positivity bounds have been derived for single-parton distributionsin the form of the So�er bound [16℄ and of inequalities for transverse-momentum dependentdistributions [17℄ and generalized parton distributions [18℄.The struture of this paper is as follows. In the next setion we set the stage byintroduing the DPDs for di�erent polarizations and parton speies. In setion 3 we derivethe spin density matries for two partons inside an unpolarized proton, and in setion 4we use these matries to derive bounds on polarized DPDs. In setion 5 we show thatthe homogeneous leading-order evolution equations preserve these bounds when going tohigher sales. We onlude in setion 6 and give some tehnial details in two appendies.2 Double parton distributionsDouble parton distributions for quarks and antiquarks have been extensively studied in[12℄, and we only review the properties important for our purpose. Sine we will need aprobability interpretation, we restrit ourselves to distributions that are integrated overthe transverse parton momenta and that have a trivial olor struture. In the parlane of[12℄ these are ollinear olor-singlet distributions.Collinear DPDs depend on the longitudinal momentum frations x1 and x2 of the twopartons and on the transverse distane y between them. For two partons a1 and a2 in anunpolarized right-moving proton we writeFa1a2(x1; x2;y) = 2p+(x1p+)�n1 (x2p+)�n2 Z dz�12� dz�22� dy� ei(x1z�1 +x2z�2 )p+� hpj Oa2(0; z2)Oa1(y; z1) jpi ; (2.1)where ni = 1 if parton number i is a gluon and ni = 0 otherwise. We use light-oneoordinates v� = (v0 � v3)=p2 and the transverse omponent v = (v1; v2) for any four-vetor v. The operators for quarks readOai(y; zi) = �qi�y � 12zi��ai qi�y + 12zi����z+i =y+=0; zi=0 (2.2)with projetions�q = 12+ ; ��q = 12+5 ; �jÆq = 12 i�j+5 (j = 1; 2) (2.3)onto unpolarized quarks (q), longitudinally polarized quarks (�q) and transversely polar-ized quarks (Æq). The �eld with argument y + 12zi in Oai(y; zi) is assoiated with a quarkin the amplitude of a double sattering proess and the �eld with argument y � 12zi witha quark in the omplex onjugate amplitude. The operators for gluons areOai(y; zi) = �jj0ai G+j0�y � 12zi�G+j�y + 12zi����z+i =y+=0; zi=0 (2.4)
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with projetions�jj0g = Æjj0 ; �jj0�g = i�jj0 ; [�kk0Æg ℄jj0 = � jj0;kk0 (2.5)onto unpolarized gluons (g), longitudinally polarized gluons (�g) and linearly polarizedgluons (Æg). The tensor � jj0;kk0 = 12 �ÆjkÆj0k0 + Æjk0Æj0k � Æjj0Ækk0� (2.6)satis�es � jj0;kk0�kk0; ll0 = � jj0; ll0 and is symmetri and traeless in eah of the index pairs(jj0) and (kk0). Note that for gluons Æg denotes linear polarization, i.e. the interferenebetween gluons whose heliities di�er by two units in the sattering amplitude and itsonjugate, while for quarks Æq symbolizes transverse polarization, where the interfereneis between quarks with a heliity di�erene of one unit. Sine we limit ourselves to olor-singlet distributions, a sum over the olor indies of the quark �elds in (2.2) and the gluon�elds in (2.4) is implied. We do not write out the Wilson lines that make the operatorsgauge invariant.The di�erent spin projetions lead to a large number of DPDs. For ollinear olor-singlet distributions, several polarization ombinations are zero due to time reversal andparity invariane. This onerns the DPDs with one longitudinally polarized and oneunpolarized parton, as well as those with one longitudinally polarized parton and onetransversely polarized (anti)quark or linearly polarized gluon. A deomposition of thenonzero distributions for two quarks in terms of real-valued salar funtions has alreadybeen given in [12℄:Fqq(x1; x2;y) = fqq(x1; x2; y) ;F�q�q(x1; x2;y) = f�q�q(x1; x2; y) ;F jqÆq(x1; x2;y) = ~yjMfqÆq(x1; x2; y) ;F jÆqq(x1; x2;y) = ~yjMfÆqq(x1; x2; y) ;F jj0ÆqÆq(x1; x2;y) = Æjj0fÆqÆq(x1; x2; y) + 2� jj0;yyM2f tÆqÆq(x1; x2; y) ; (2.7)whereM is the proton mass, ~yj = �jj0yj0 and y =py2. We use a shorthand notation wherevetors y or ~y appearing as an index of � denote ontration, i.e. � jj0;yy = � jj0;kk0 ykyk0et. Deompositions analogous to (2.7) hold for quark-antiquark distributions and for thedistributions of two antiquarks.Sine quarks and gluons mix under evolution, we also need to onsider DPDs involvinggluons. We de�neFqg(x1; x2;y) = fqg(x1; x2; y) ;F�q�g(x1; x2;y) = f�q�g(x1; x2; y) ;F jj0qÆg(x1; x2;y) = � jj0;yyM2fqÆg(x1; x2; y) ;F jÆqg(x1; x2;y) = ~yjMfÆqg(x1; x2; y) ;F j;kk0ÆqÆg (x1; x2;y) =� � ~yj;kk0MfÆqÆg(x1; x2; y)� �~yj�kk0;yy + yj�kk0;y~y�M3f tÆqÆg(x1; x2; y) (2.8)
{ 3 {



for quark-gluon distributions, with analogous expressions for gluon-quark distributions anddistributions where the quark is replaed by an antiquark. For two-gluon distributions wewrite Fgg(x1; x2;y) = fgg(x1; x2; y) ;F�g�g(x1; x2;y) = f�g�g(x1; x2; y) ;F jj0gÆg(x1; x2;y) = � jj0;yyM2fgÆg(x1; x2; y) ;F jj0Ægg(x1; x2;y) = � jj0;yyM2fÆgg(x1; x2; y) ;F jj0;kk0ÆgÆg (x1; x2;y) = 12 � jj0; kk0fÆgÆg(x1; x2; y) ;+ �� jj0;y~y�kk0;y~y � � jj0;yy�kk0;yy�M4f tÆgÆg(x1; x2; y) : (2.9)We remark that, although linear gluon polarization is desribed by a tensor with twoindies, the restrition that this tensor is symmetri and traeless gives rise to the samenumber of distributions as for transverse quark polarization, whih is desribed by a vetor.The prefators in (2.8) and (2.9) have been hosen suh that we will obtain a simpleorrespondene between quark and gluon distributions in the spin density matries to bederived in the next setion.Note that DPDs involving gluons are not only relevant in the ontext of evolution butalso enter diretly in important double sattering proesses suh as the prodution of jets.Their properties are hene of onsiderable pratial interest.In omplete analogy to the ase of ollinear single-parton distributions, the DPDs wehave introdued an be interpreted as probability densities for �nding two partons inside anunpolarized proton, with a relative transverse distane y and with longitudinal momentumfrations x1 and x2. This beomes evident from their appearane in the ross setionformulae for double parton sattering [12℄. It an also be seen from a representation interms of parton reation and annihilation operators or from a representation in terms ofthe light-one wave funtions of the proton, whih are straightforward extensions of theorresponding representations for single-parton distributions (given for instane in setions3.4 and 3.11 of [19℄).As in the ase of single-parton densities, this interpretation does however not stritlyhold in QCD, beause the distributions are de�ned with subtrations from the ultravioletregion of parton momenta. The subtration terms an in priniple invalidate the positivityof the distributions. Nevertheless, it is useful to explore the onsequenes of the probabilityinterpretation as a guide for developing physially intuitive models of the distributions.This holds in partiular if one works in leading order of �s, where the onnetion betweenparton distributions and physial ross setions (whih must of ourse be positive semi-de�nite) is most diret.3 Two-parton spin density matriesThe polarization state of two partons in an unpolarized proton is desribed by a spindensity matrix that an be written in terms of the DPDs we introdued in the previous{ 4 {



setion. We start by trading the projetion operators (2.3) and (2.5) for operators thatprojet onto quarks or gluons of de�nite heliity. We an then easily write down the spindensity matrix for two partons in the heliity basis.The projetion operators ��0� for quarks, where � (�0) refers to the quark heliity inthe amplitude (onjugate amplitude), are given by�++ = +4 (1 + 5) = �q + ��q2 ; �+� = i�+14 (1� 5) = �1Æq + i�2Æq2 ;��� = +4 (1� 5) = �q � ��q2 ; ��+ = � i�+14 (1 + 5) = �1Æq � i�2Æq2 : (3.1)Here we use the phase onventions for spin-half �elds spei�ed in [20℄. The projetionoperators �jj0�0� for gluons, where � and j (�0 and j0) refer to the amplitude (onjugateamplitude), an be onstruted from the polarization vetors�+ = � 1p2 �1; i� ; �� = 1p2 �1;�i� (3.2)and read �jj0++ = ��j+�� �j0+ = 12 ��jj0g +�jj0�g� ;�jj0�� = ��j��� �j0� = 12 ��jj0g ��jj0�g� ;�jj0+� = ��j��� �j0+ = ���11Æg�jj0 � i��12Æg�jj0 ;�jj0�+ = ��j+�� �j0� = ���11Æg�jj0 + i��12Æg�jj0 : (3.3)We an now organize the distributions in matries where the olumns (rows) orrespond toheliity states ++;�+;+�;�� of the two partons in the amplitude (onjugate amplitude).The spin density matrix for two quarks reads� = 14 0BBBBBB� fqq + f�q�q �iei'yyMfÆqq �iei'yyMfqÆq 2e2i'yy2M2f tÆqÆqie�i'yyMfÆqq fqq � f�q�q 2fÆqÆq �iei'yyMfqÆqie�i'yyMfqÆq 2fÆqÆq fqq � f�q�q �iei'yyMfÆqq2e�2i'yy2M2f tÆqÆq ie�i'yyMfqÆq ie�i'yyMfÆqq fqq + f�q�q
1CCCCCCA ; (3.4)where the angle 'y desribes the orientation of the vetor y = y (os'y; sin'y) in thetransverse plane. With the aveat spelled out at the end of the previous setion, the diago-nal matrix elements an be interpreted as the probability densities for �nding two partonsin de�nite heliity states inside an unpolarized proton. Spei�ally, fqq + f�q�q is theprobability density for �nding two quarks with positive heliities, whih in an unpolarizedproton is equal to the probability density for �nding two quarks with negative heliities.The probability density for �nding two quarks with opposite heliities is fqq � f�q�q. Theo�-diagonal elements of � desribe heliity interferene, with f tÆqÆq in the right upper orner
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orresponding for instane to the ase where both quarks have negative heliity in the am-plitude and positive heliity in the onjugate amplitude. This leads to a heliity di�erenebetween the amplitude and its onjugate, whih is balaned by two units of orbital angularmomentum indiated by an exponential e2i'y and an assoiated fator y2. By ontrast,fÆqÆq desribes the ase when the heliity di�erene is +1 for one quark and �1 for theother, so that the overall heliity is balaned.Turning now to gluons, we have a spin density matrix14 0BBBBBB� fqg + f�q�g �iei'yyMfÆqg �e2i'yy2M2fqÆg �2ie3i'yy3M3f tÆqÆgie�i'yyMfÆqg fqg � f�q�g �2iei'yyMfÆqÆg �e2i'yy2M2fqÆg�e�2i'yy2M2fqÆg 2ie�i'yyMfÆqÆg fqg � f�q�g �iei'yyMfÆqg2ie�3i'yy3M3f tÆqÆg �e�2i'yy2M2fqÆg ie�i'yyMfÆqg fqg + f�q�g
1CCCCCCA (3.5)for quark-gluon distributions and an analogous matrix for gluon-quark distributions. Fortwo-gluon distributions we �nd14 0BBBBBB� fgg + f�g�g �e2i'yy2M2fÆgg �e2i'yy2M2fgÆg �2e4i'yy4M4f tÆgÆg�e�2i'yy2M2fÆgg fgg � f�g�g 2fÆgÆg �e2i'yy2M2fgÆg�e�2i'yy2M2fgÆg 2fÆgÆg fgg � f�g�g �e2i'yy2M2fÆgg�2e�4i'yy4M4f tÆgÆg �e�2i'yy2M2fgÆg �e�2i'yy2M2fÆgg fgg + f�g�g
1CCCCCCA : (3.6)The matries for distributions where quarks are replaed by antiquarks are analogous to(3.4) and (3.5). We see that the parameterization of DPDs in the previous setion givessimple expressions for the spin density matries and similar strutures for all types ofpartons.The di�erene in spin between quarks and gluons auses the di�erent dependene onthe azimuthal angle 'y in (3.4), (3.5) and (3.6). A mismath of n units between the sum ofparton heliities in the amplitude and its onjugate goes along with an exponential e�ni'yand an assoiated fator yn.4 Positivity boundsWe now show how the probability interpretation of DPDs onstrains the size of the polarizeddistributions. Sine the probability density for �nding two partons in a general polarizationstate is positive semi-de�nite, we haveX�01�02�1�2 v��01�02 �(�01�02)(�1�2) v�1�2 � 0 (4.1)with arbitrary omplex oeÆients v�1�2 normalized as P�1�2 jv�1�2 j2 = 1. The heliitymatries are therefore positive semi-de�nite. The same property has been derived for thespin density matries assoiated with transverse-momentum dependent distributions [17℄or generalized parton distributions [18℄. { 6 {



To simplify the algebra, we �rst ast all heliity matries into a ommon form that isindependent of the angle 'y. This is ahieved by unitary transformations, multiplying bya matrix U from the right and by U y from the left. The transformation matries for theparton ombinations in (3.4) to (3.6) areUqq = diag��e2i'y ;�iei'y ;�iei'y ; 1 � ;Uqg = diag� ie3i'y ;�e2i'y ;�iei'y ; 1 � ;Ugg = diag� e4i'y ;�e2i'y ;�e2i'y ; 1 � : (4.2)After these transformations and their analog for gluon-quark distributions, the spin densitymatries an be written as� = 14 0BBB�fab + f�a�b hÆab haÆb �2htÆaÆbhÆab fab � f�a�b 2hÆaÆb haÆbhaÆb 2hÆaÆb fab � f�a�b hÆab�2htÆaÆb haÆb hÆab fab + f�a�b1CCCA (4.3)with the following identi�ation of distributions for di�erent parton ombinations:fab = fqq ; fqg ; fgq ; fgg ;f�a�b = f�q�q ; f�q�g ; f�g�q ; f�g�g ;hÆab = yMfÆqq ; yMfÆqg ; y2M2fÆgq ; y2M2fÆgg ;haÆb = yMfqÆq ; y2M2fqÆg ; yMfgÆq ; y2M2fgÆg ;hÆaÆb = fÆqÆq ; yMfÆqÆg ; yMfÆgÆq ; fÆgÆg ;htÆaÆb = y2M2f tÆqÆq ; y3M3f tÆqÆg ; y3M3f tÆgÆq ; y4M4f tÆgÆg : (4.4)Analogous expressions hold if quarks are replaed by antiquarks. Positivity1 of the diagonalelements of � yields the trivial boundsfab � ��f�a�b�� : (4.5)The prinipal minors of the two-dimensional sub-spaes must be positive semi-de�nite aswell, whih gives upper bounds on the distributions for one or two transversely or linearlypolarized partons: fab + f�a�b � 2��htÆaÆb�� ;fab � f�a�b � 2��hÆaÆb�� ;f2ab � (fab + f�a�b)(fab � f�a�b) � h2Æab ;f2ab � (fab + f�a�b)(fab � f�a�b) � h2aÆb : (4.6)The prinipal minors of dimension three, as well as det(�) provide further bounds, whihare rather umbersome and will not be given here. The strongest bounds an be obtained1For ease of language we use \positivity" in the sense of \positive semi-de�nite" here and in the following.{ 7 {



from the positivity of the eigenvalues of �, whih is a suÆient and neessary ondition forthe positivity of �. Calulating the eigenvalues we obtainfab + hÆaÆb � htÆaÆb �q(hÆab + haÆb)2 + (f�a�b � hÆaÆb � htÆaÆb)2 � 0 ;fab � hÆaÆb + htÆaÆb �q(hÆab � haÆb)2 + (f�a�b + hÆaÆb + htÆaÆb)2 � 0 : (4.7)These inequalities set upper limits on the size of spin orrelations between two partons inan unpolarized proton. They an be used either to onstrut double parton distributionsor to put limits on polarization e�ets in double hard sattering proesses.We note that positive semide�nite ombinations of DPDs were disussed already inthe pioneering studies [9, 10℄. Distributions that involve a heliity mismath between theamplitude and its onjugate (see setion 3) were however not onsidered in that work.The derivation in [9, 10℄ thus orresponds to our results (4.5) and (4.6) if all distributionsmultiplied with a power of y in (4.4) are set to zero.5 Stability under evolutionThe ultraviolet subtrations mentioned at the end of setion 2 indue a sale dependene,whih for ollinear single-parton distributions is desribed by the DGLAP evolution equa-tions. While the subtrations themselves may invalidate positivity of the distributions andthus their density interpretation, the evolution equations an be interpreted in a proba-bilisti manner provided that one takes the leading-order approximation of the evolutionkernels [23, 24℄. Spei�ally, one �nds that if parton distributions are positive semi-de�niteat a ertain sale, this property is preserved by leading-order evolution to higher sales.This also holds for the So�er inequality, whih expresses positivity in the setor of trans-verse quark polarization [25, 26℄. For evolution at next-to-leading order in �s the situationis less lear-ut and a disussion of positivity depends in partiular on the sheme in whihthe distributions are de�ned. We refer to [27℄ and [28, 29℄ for a disussion of the situationfor longitudinal and transverse parton polarization, respetively.Returning to double parton distributions, we now show that the bounds derived in theprevious setion are stable under leading-order evolution to higher sales. The strategyfor the derivation is as follows: we �rst introdue linear ombinations of double partondistributions whose positivity is neessary and suÆient for the positivity of the spin densitymatries and then show that these linear ombinations remain positive semi-de�nite underevolution. The positivity of the spin density matries then guarantees the stability of thepositivity bounds.5.1 Evolution of double parton distributionsTo begin with, let us speify the evolution of ollinear DPDs in the olor-singlet setor.We use the homogeneous evolution equations in the transverse position representation,see e.g. equation (5.93) in [12℄. These equations apply at nonzero y if Fa1a2(x1; x2;y) isde�ned via (2.1) with the operators Oa1(y; z1) and Oa2(0; z2) renormalized by standardMS subtration. The inhomogeneous term for the splitting of one parton into two that{ 8 {



has been previously onsidered in the literature [30{34℄ does not appear in this ase. Asdisussed in [11, 12℄, a onsistent formulation of fatorization for double parton satteringdoes not yet exist, so that it remains unlear how DPDs should best be de�ned (and howthey evolve). For simpliity we will limit our present investigation to the homogeneousevolution equations.It is useful for our purpose to take di�erent renormalization sales �1 and �2 for thetwo partons, orresponding to separate ultraviolet renormalization of Oa1 and Oa2 in (2.1).The evolution equation for the unpolarized double quark distributions in the �rst salethen reads �fqq(x1; x2; y;�1; �2)��1 = Pqq 
1 fqq + Pqg 
1 fgq ; (5.1)where Pab( : ) 
1 fb( : ; x2; y;�1; �2) = Z 1�x2x1 du1u1 Pab�x1u1� fb(u1; x2; y;�1; �2) (5.2)is a onvolution in the �rst argument of the DPDs with the leading-order splitting funtionsPab known from DGLAP evolution of single-parton distributions. We note that the leading-order splitting funtions are the same for quarks and antiquarks, i.e. one has Pqq = P�q�q,Pqg = P�qg, Pgq = Pg�q and analogous relations for polarized partons. In appendix A wegive the expliit evolution equations for all polarized DPDs and list the assoiated splittingfuntions.The evolution variable in (5.1) is taken as�1 = Z �21 d�2�2 �s(�)2� ; (5.3)where the lower limit of integration is irrelevant in the derivative �f=��1. The use of �1is just a matter of onveniene as it removes the running oupling from the leading-ordersplitting funtions.The analog of (5.1) for the sale assoiated with the seond parton is�fqq(x1; x2; y;�1; �2)��2 = Pqq 
2 fqq + Pqg 
2 fqg : (5.4)The evolution equation for equal sales, i.e. for fqq(x1; x2; y;�; �), is readily obtained byadding the right-hand sides of (5.1) and (5.4). We will show that positivity is preservedfor separate evolution in �1. The same then obviously holds for evolution in �2 and henefor the evolution in a single ommon sale �1 = �2.5.2 Linear ombinations of DPDsA key ingredient in our argument is to form suitable linear ombinations of double partondistributions, whih we now introdue. Positivity of the spin density matrix � means thatvy� v � 0 for any omplex vetor v, as we spelled out in (4.1). Parameterizing the vetoras vT = (a1 + ib1; a2 + ib2; a3 + ib3; a4 + ib4) (5.5)
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with real numbers ai, bi and performing the multipliation with the matrix in (4.3) givesQ+ab = 1fab + 2haÆb + 3f�a�b + 4hÆab + 5hÆaÆb + 6htÆaÆb � 0 ; (5.6)where Q+ab = 4vy� v and the oeÆients i are given by1 = a21 + b21 + a22 + b22 + a23 + b23 + a24 + b24 ; 2 = 2(a1a3 + b1b3 + a2a4 + b2b4) ;3 = a21 + b21 � a22 � b22 � a23 � b23 + a24 + b24 ; 4 = 2(a1a2 + b1b2 + a3a4 + b3b4) ;5 = 4(a2a3 + b2b3) ; 6 = �4(a1a4 + b1b4) : (5.7)We will prove the stability of the positivity bounds by showing that for arbitrary values ofai and bi the inequality (5.6) is stable under evolution to higher sales. It will be onvenientto onsider further linear ombinations of double parton distributions. Changing signs ofthe parameters a1 ! �a1, b1 ! �b1, a3 ! �a3, b3 ! �b3 we getQ�ab = 1fab + 2haÆb + 3f�a�b � 4hÆab � 5hÆaÆb � 6htÆaÆb � 0 : (5.8)Adding (5.6) and (5.8) gives the simpler inequalityB+ab = 1fab + 2haÆb + 3f�a�b � 0 ; (5.9)and interhanging indies (1$ 2 and 3$ 4) in the elements of v givesB�ab = 1fab + 2haÆb � 3f�a�b � 0 : (5.10)If (5.6) holds at a given sale for arbitrary values of ai and bi, then (5.8) to (5.10) hold atthat sale as well.We will see that the evolution equations in the sale �1 an be formulated in terms ofQ+ab, Q�ab and B�ab alone.2 This beomes plausible if we note that these three funtions arelinear ombinations of (1fab+ 2haÆb), f�a�b and (4hÆab+ 5hÆaÆb+ 6htÆaÆb) and that forevolution in �1 only the polarization of the �rst parton is relevant but not the polarizationof the seond parton. The linear ombinations Q�ab may be regarded as generalizations ofthe distributions Q� = 12 (q+ �q)� Æq introdued in [26℄, where it was shown that the So�erbound for the quark transversity distribution Æq is stable under leading-order evolution tohigher sales.5.3 Evolution of the linear ombinationsWe now show that the distributions Q�ab and B�ab remain positive semi-de�nite underleading-order evolution to higher sales. This implies the positivity of the spin densitymatries and thereby the validity of the bounds derived in setion 4.The evolution equations for the distributions Q�ab are���1  Q+qbQ�qb! =  ÆP+qq ÆP�qqÆP�qq ÆP+qq!
1  Q+qbQ�qb!+ P+qg P�qgP+qg P�qg!
1  B+gbB�gb!+ P�qq P�qqP�qq P�qq!
1  B+qbB�qb! (5.11)2The ombination B+ab = (Q+ab +Q�ab)=2 is not independent and just used as an abbreviation.{ 10 {



for a quark as �rst parton and���1  Q+gbQ�gb! =  ÆP+gg ÆP�ggÆP�gg ÆP+gg!
1  Q+gbQ�gb!+ Xa=q;�q P+ga P�gaP+ga P�ga!
1  B+abB�ab!+ P�gg P�ggP�gg P�gg!
1  B+gbB�gb! (5.12)when the �rst parton is a gluon. The evolution equations for B�ab read���1  B+qbB�qb! =  P+qq P�qqP�qq P+qq!
1  B+qbB�qb!+ P+qg P�qgP�qg P+qg!
1  B+gbB�gb! (5.13)for a quark and���1  B+gbB�gb! =  P+gg P�ggP�gg P+gg!
1  B+gbB�gb!+ Xa=q;�q P+ga P�gaP�ga P+ga!
1  B+abB�ab! (5.14)for a gluon. The evolution equations have the same form for antiquarks, i.e. (5.11) and(5.13) remain valid if we replae q ! �q everywhere (exept in the label b for the seondparton, whih always remains �xed when we onsider evolution in �1).The splitting funtions appearing in the above equations are de�ned asP�ab = 12 �Pab � P�a�b� ; ÆP�ab = 12 �P�a�b � PÆaÆb� (5.15)for all parton indies a and b. We remark that the kernels P+ab (P�ab) orrespond to the asewhere the parton heliity is onserved (ipped). The only splitting funtions that reeiveontributions from virtual graphs and hene ontain a plus-presription or an expliit Æfuntion are P+qq = CF2 � 2(1 + z2)(1� z)+ + 3Æ(1 � z)� ;ÆP+qq = CF2 � (1 + z)2(1� z)+ + 3Æ(1 � z)� ;P+gg = 2N � z(1� z)+ + (1� z)(1 + z)22z �+ �02 Æ(1 � z) ;ÆP+gg = 2N � z(1� z)+ + 1� z �+ �02 Æ(1 � z) (5.16)with N = 3, CF = 4=3 and �0 = 113 N � 23 nf ; (5.17)where nf is the number of ative quark avors. They are all positive for 0 < z < 1 buthave negative ontributions at z = 1 that arise from the plus-presription, whose formis realled in (B.3). In appendix B we show expliitly that the virtual ontribution to{ 11 {



evolution annot hange the sign of the distributions, whih has previously been arguedto be the ase based on the probabilisti interpretation of leading-order evolution and itsrelation to the Boltzmann equation [23, 24, 26℄. The reason for this property is that thevirtual ontribution to the evolution of a funtion is proportional to the funtion itself.We an then onlude that the diagonal terms in the evolution equations (5.11) to (5.14)preserve positivity. The o�-diagonal kernelsP�qq = 0 ; P�gg = N (1� z)3Æz ;ÆP�qq = CF (1� z)Æ2 ; ÆP�gg = 2N (1� z) (5.18)and P+qg = z2Æ2 ; P+gq = CFÆz ;P�qg = (1� z)2Æ2 ; P�gq = CF (1� z)2Æz : (5.19)are all positive or zero for 0 < z < 1 and regular at z = 1. Therefore they only reinforepositivity. In summary, if we have positive semi-de�nite initial onditions for all funtionsQ�ab and B�ab at some sale, then evolution to higher sales preserves this property. A moreexpliit derivation is given in appendix B.6 ConlusionsWe have derived spin density matries for double parton distributions of quarks, anti-quarks and gluons. These matries reveal the full polarization struture of two partons inan unpolarized proton and show the orrespondene between the di�erent polarized doubleparton distributions and parton heliities. The probabilisti interpretation of the doubleparton distribution for an arbitrary polarization state of the two partons gives upper limitson the size of spin orrelations. These positivity bounds an be useful for modeling theotherwise poorly onstrained double parton distributions and for deriving upper limits onspin e�ets in double hard sattering proesses. We have shown that the homogeneousleading-order evolution equations preserve the bounds when going from lower to highersales.A Evolution equations and splitting funtionsFor ompleteness we give here the leading-order evolution equations for the �rst parton inthe double parton distributions. When the �rst parton is a quark, we have�fqb��1 = Pqq 
1 fqb + Pqg 
1 fgb ;�fqÆb��1 = Pqq 
1 fqÆb + Pqg 
1 fgÆb ;�f�q�b��1 = P�q�q 
1 f�q�b + P�q�g 
1 f�g�b ;�fÆqb��1 = PÆqÆq 
1 fÆqb ; �fÆqÆb��1 = PÆqÆq 
1 fÆqÆb ; �f tÆqÆb��1 = PÆqÆq 
1 f tÆqÆb (A.1)
{ 12 {



for b = q; �q; g. The arguments of the distributions are as in (5.1) and (5.2). Analogousequations hold if the �rst parton is an antiquark. For gluons we have�fgb��1 = Pgg 
1 fgb + Xa=q;�qPga 
1 fab ;�fgÆb��1 = Pgg 
1 fgÆb + Xa=q;�qPga 
1 faÆb ;�f�g�b��1 = P�g�g 
1 f�g�b + Xa=q;�qP�g�a 
1 f�a�b ;�fÆgb��1 = PÆgÆg 
1 fÆgb ; �fÆgÆb��1 = PÆgÆg 
1 fÆgÆb ; �f tÆgÆb��1 = PÆgÆg 
1 f tÆgÆb : (A.2)The leading-order splitting funtions have been derived in [21, 22℄. They are given byPqq(z) = CF � 1 + z2(1� z)+ + 32 Æ(1 � z)� ;P�q�q(z) = Pqq(z) ;PÆqÆq(z) = Pqq(z) �CF (1� z) (A.3)for quark-quark transitions and byPgg(z) = 2N � z(1� z)+ + (1� z)(1 + z2)z �+ �02 Æ(1 � z) ;P�g�g(z) = Pgg(z)� 2N (1� z)3z ;PÆgÆg(z) = Pgg(z)� 2N (1� z)(1 + z2)z (A.4)for gluons. The splitting funtions that mix quarks and gluons readPqg = z2 + (1� z)22 ; Pgq = CF 1 + (1� z)2z ;P�q�g = z2 � (1� z)22 ; P�g�q = CF 1� (1� z)2z : (A.5)As already mentioned below (5.2), the splitting funtions are idential for quarks andantiquarks, i.e. (A.3) and (A.5) remain valid if we replae q ! �q. At leading order in �sthere are no diret transitions between quarks and antiquarks.B Elements of a stability proofIn this appendix we show in more detail that the evolution equations in setion 5.3 preservepositivity, taking partiular are of the negative terms in the splitting funtions that arisefrom virtual graphs and are impliit in the plus-presription. We �rst onsider the evolutionof a single distribution and then extend the argument to the full oupled system of evolutionequations. { 13 {



We examine a funtion evolving as��� f(x; �) = Z vx duu P �xu� f(u; �) (B.1)with 0 < x < v � 1 and separate the splitting funtion asP (z) = Ps(z)(1� z)+ + Pr(z) + PÆ Æ(1 � z) ; (B.2)where Ps(z) and Pr(z) are positive semi-de�nite for 0 < z < 1 and regular at z = 1. Theonstant PÆ may be positive, negative or zero. The plus-presription is de�ned as usual by[s(z)℄+ = s(z)� Æ(1 � z)Z 10 dz0 s(z0) ; (B.3)where it is understood that the non-integrable singularity in the last term anels when(B.3) is integrated over with a smooth test funtion. The plus-presription part of theonvolution in (B.1) an be written asZ vx duu Ps(x=u)(1� x=u)+ f(u; �)= Z vx+�du Ps(x=u)u� x f(u; �) + Z x��0 du Ps(1)u� x f(x; �) +O(�) ; (B.4)where for the error estimate we have assumed that f(u; �) is di�erentiable at u = x.De�ning g�(x; � ; f) = Z vx+�du �Ps(x=u)u� x + Pr(x=u)u � f(u; �) ;h�(x) = � PÆ + Ps(1)Z x��0 dux� u (B.5)we an approximate the evolution of f by��� f(x; �) = g�(x; � ; f)� h�(x) f(x; �) (B.6)with an error that beomes arbitrarily small for �! 0. In a more formal proof, one wouldreplae f with f� in (B.6) and show that lim�!0 f� is a solution of (B.1) . We now rewrite(B.6) as ��� he�h�(x)f(x; �)i = e�h�(x) g�(x; � ; f) : (B.7)Sine g� is the onvolution of f(x; �) with a positive semi-de�nite integral kernel, the r.h.s.of this equation is positive semi-de�nite as long as f(x; �) is. With initial onditionsf(x; �0) � 0 for all x at a starting sale �0, the funtion e�h�(x)f(x; �) an therefore notderease as � inreases, so that f(x; �) stays positive semi-de�nite for all � > �0. We notethat the sign of h�(x) and thus of the onstant PÆ is irrelevant for this argument.{ 14 {
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