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1 Introdu
tionIn a time when the dynami
s of the strong intera
tion in hadron-hadron 
ollisions is mov-ing towards the domain of pre
ision physi
s, there are still aspe
ts that are under poortheoreti
al and experimental 
ontrol. One of these aspe
ts is double parton s
attering,where two partons from ea
h proton have a hard intera
tion in a single proton-proton
ollision. Correlations between the two hard intera
tions have been the subje
t of severalre
ent studies [1{8℄. The relevan
e of spin 
orrelations in double parton s
attering waspointed out long ago [9, 10℄ and re
ently followed up in [11, 12℄. The studies in [13℄ and[14℄ have shown that spin 
orrelations in the produ
tion of two ve
tor bosons by doublehard s
attering have observable e�e
ts both on the intera
tion rate and on kinemati
 dis-tributions. Spin 
orrelations between the two partons are quanti�ed by polarized doubleparton distributions (DPDs), whi
h des
ribe for instan
e the di�eren
e of the probabilitydensities for �nding two quarks with equal or with opposite heli
ities. It was argued in [12℄that su
h 
orrelations need not be small, and a re
ent study in the MIT bag model [15℄indeed found large spin 
orrelations between quarks in the valen
e region. However, ourknowledge of polarized DPDs is still poor at best, and any information about them is ofvalue.
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In the present work, we derive model independent 
onstraints on DPDs that followfrom their interpretation as probability densities for �nding two partons in a spe
i�ed po-larization state. Similar positivity bounds have been derived for single-parton distributionsin the form of the So�er bound [16℄ and of inequalities for transverse-momentum dependentdistributions [17℄ and generalized parton distributions [18℄.The stru
ture of this paper is as follows. In the next se
tion we set the stage byintrodu
ing the DPDs for di�erent polarizations and parton spe
ies. In se
tion 3 we derivethe spin density matri
es for two partons inside an unpolarized proton, and in se
tion 4we use these matri
es to derive bounds on polarized DPDs. In se
tion 5 we show thatthe homogeneous leading-order evolution equations preserve these bounds when going tohigher s
ales. We 
on
lude in se
tion 6 and give some te
hni
al details in two appendi
es.2 Double parton distributionsDouble parton distributions for quarks and antiquarks have been extensively studied in[12℄, and we only review the properties important for our purpose. Sin
e we will need aprobability interpretation, we restri
t ourselves to distributions that are integrated overthe transverse parton momenta and that have a trivial 
olor stru
ture. In the parlan
e of[12℄ these are 
ollinear 
olor-singlet distributions.Collinear DPDs depend on the longitudinal momentum fra
tions x1 and x2 of the twopartons and on the transverse distan
e y between them. For two partons a1 and a2 in anunpolarized right-moving proton we writeFa1a2(x1; x2;y) = 2p+(x1p+)�n1 (x2p+)�n2 Z dz�12� dz�22� dy� ei(x1z�1 +x2z�2 )p+� hpj Oa2(0; z2)Oa1(y; z1) jpi ; (2.1)where ni = 1 if parton number i is a gluon and ni = 0 otherwise. We use light-
one
oordinates v� = (v0 � v3)=p2 and the transverse 
omponent v = (v1; v2) for any four-ve
tor v. The operators for quarks readOai(y; zi) = �qi�y � 12zi��ai qi�y + 12zi����z+i =y+=0; zi=0 (2.2)with proje
tions�q = 12
+ ; ��q = 12
+
5 ; �jÆq = 12 i�j+
5 (j = 1; 2) (2.3)onto unpolarized quarks (q), longitudinally polarized quarks (�q) and transversely polar-ized quarks (Æq). The �eld with argument y + 12zi in Oai(y; zi) is asso
iated with a quarkin the amplitude of a double s
attering pro
ess and the �eld with argument y � 12zi witha quark in the 
omplex 
onjugate amplitude. The operators for gluons areOai(y; zi) = �jj0ai G+j0�y � 12zi�G+j�y + 12zi����z+i =y+=0; zi=0 (2.4)
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with proje
tions�jj0g = Æjj0 ; �jj0�g = i�jj0 ; [�kk0Æg ℄jj0 = � jj0;kk0 (2.5)onto unpolarized gluons (g), longitudinally polarized gluons (�g) and linearly polarizedgluons (Æg). The tensor � jj0;kk0 = 12 �ÆjkÆj0k0 + Æjk0Æj0k � Æjj0Ækk0� (2.6)satis�es � jj0;kk0�kk0; ll0 = � jj0; ll0 and is symmetri
 and tra
eless in ea
h of the index pairs(jj0) and (kk0). Note that for gluons Æg denotes linear polarization, i.e. the interferen
ebetween gluons whose heli
ities di�er by two units in the s
attering amplitude and its
onjugate, while for quarks Æq symbolizes transverse polarization, where the interferen
eis between quarks with a heli
ity di�eren
e of one unit. Sin
e we limit ourselves to 
olor-singlet distributions, a sum over the 
olor indi
es of the quark �elds in (2.2) and the gluon�elds in (2.4) is implied. We do not write out the Wilson lines that make the operatorsgauge invariant.The di�erent spin proje
tions lead to a large number of DPDs. For 
ollinear 
olor-singlet distributions, several polarization 
ombinations are zero due to time reversal andparity invarian
e. This 
on
erns the DPDs with one longitudinally polarized and oneunpolarized parton, as well as those with one longitudinally polarized parton and onetransversely polarized (anti)quark or linearly polarized gluon. A de
omposition of thenonzero distributions for two quarks in terms of real-valued s
alar fun
tions has alreadybeen given in [12℄:Fqq(x1; x2;y) = fqq(x1; x2; y) ;F�q�q(x1; x2;y) = f�q�q(x1; x2; y) ;F jqÆq(x1; x2;y) = ~yjMfqÆq(x1; x2; y) ;F jÆqq(x1; x2;y) = ~yjMfÆqq(x1; x2; y) ;F jj0ÆqÆq(x1; x2;y) = Æjj0fÆqÆq(x1; x2; y) + 2� jj0;yyM2f tÆqÆq(x1; x2; y) ; (2.7)whereM is the proton mass, ~yj = �jj0yj0 and y =py2. We use a shorthand notation whereve
tors y or ~y appearing as an index of � denote 
ontra
tion, i.e. � jj0;yy = � jj0;kk0 ykyk0et
. De
ompositions analogous to (2.7) hold for quark-antiquark distributions and for thedistributions of two antiquarks.Sin
e quarks and gluons mix under evolution, we also need to 
onsider DPDs involvinggluons. We de�neFqg(x1; x2;y) = fqg(x1; x2; y) ;F�q�g(x1; x2;y) = f�q�g(x1; x2; y) ;F jj0qÆg(x1; x2;y) = � jj0;yyM2fqÆg(x1; x2; y) ;F jÆqg(x1; x2;y) = ~yjMfÆqg(x1; x2; y) ;F j;kk0ÆqÆg (x1; x2;y) =� � ~yj;kk0MfÆqÆg(x1; x2; y)� �~yj�kk0;yy + yj�kk0;y~y�M3f tÆqÆg(x1; x2; y) (2.8)
{ 3 {



for quark-gluon distributions, with analogous expressions for gluon-quark distributions anddistributions where the quark is repla
ed by an antiquark. For two-gluon distributions wewrite Fgg(x1; x2;y) = fgg(x1; x2; y) ;F�g�g(x1; x2;y) = f�g�g(x1; x2; y) ;F jj0gÆg(x1; x2;y) = � jj0;yyM2fgÆg(x1; x2; y) ;F jj0Ægg(x1; x2;y) = � jj0;yyM2fÆgg(x1; x2; y) ;F jj0;kk0ÆgÆg (x1; x2;y) = 12 � jj0; kk0fÆgÆg(x1; x2; y) ;+ �� jj0;y~y�kk0;y~y � � jj0;yy�kk0;yy�M4f tÆgÆg(x1; x2; y) : (2.9)We remark that, although linear gluon polarization is des
ribed by a tensor with twoindi
es, the restri
tion that this tensor is symmetri
 and tra
eless gives rise to the samenumber of distributions as for transverse quark polarization, whi
h is des
ribed by a ve
tor.The prefa
tors in (2.8) and (2.9) have been 
hosen su
h that we will obtain a simple
orresponden
e between quark and gluon distributions in the spin density matri
es to bederived in the next se
tion.Note that DPDs involving gluons are not only relevant in the 
ontext of evolution butalso enter dire
tly in important double s
attering pro
esses su
h as the produ
tion of jets.Their properties are hen
e of 
onsiderable pra
ti
al interest.In 
omplete analogy to the 
ase of 
ollinear single-parton distributions, the DPDs wehave introdu
ed 
an be interpreted as probability densities for �nding two partons inside anunpolarized proton, with a relative transverse distan
e y and with longitudinal momentumfra
tions x1 and x2. This be
omes evident from their appearan
e in the 
ross se
tionformulae for double parton s
attering [12℄. It 
an also be seen from a representation interms of parton 
reation and annihilation operators or from a representation in terms ofthe light-
one wave fun
tions of the proton, whi
h are straightforward extensions of the
orresponding representations for single-parton distributions (given for instan
e in se
tions3.4 and 3.11 of [19℄).As in the 
ase of single-parton densities, this interpretation does however not stri
tlyhold in QCD, be
ause the distributions are de�ned with subtra
tions from the ultravioletregion of parton momenta. The subtra
tion terms 
an in prin
iple invalidate the positivityof the distributions. Nevertheless, it is useful to explore the 
onsequen
es of the probabilityinterpretation as a guide for developing physi
ally intuitive models of the distributions.This holds in parti
ular if one works in leading order of �s, where the 
onne
tion betweenparton distributions and physi
al 
ross se
tions (whi
h must of 
ourse be positive semi-de�nite) is most dire
t.3 Two-parton spin density matri
esThe polarization state of two partons in an unpolarized proton is des
ribed by a spindensity matrix that 
an be written in terms of the DPDs we introdu
ed in the previous{ 4 {



se
tion. We start by trading the proje
tion operators (2.3) and (2.5) for operators thatproje
t onto quarks or gluons of de�nite heli
ity. We 
an then easily write down the spindensity matrix for two partons in the heli
ity basis.The proje
tion operators ��0� for quarks, where � (�0) refers to the quark heli
ity inthe amplitude (
onjugate amplitude), are given by�++ = 
+4 (1 + 
5) = �q + ��q2 ; �+� = i�+14 (1� 
5) = �1Æq + i�2Æq2 ;��� = 
+4 (1� 
5) = �q � ��q2 ; ��+ = � i�+14 (1 + 
5) = �1Æq � i�2Æq2 : (3.1)Here we use the phase 
onventions for spin-half �elds spe
i�ed in [20℄. The proje
tionoperators �jj0�0� for gluons, where � and j (�0 and j0) refer to the amplitude (
onjugateamplitude), 
an be 
onstru
ted from the polarization ve
tors�+ = � 1p2 �1; i� ; �� = 1p2 �1;�i� (3.2)and read �jj0++ = ��j+�� �j0+ = 12 ��jj0g +�jj0�g� ;�jj0�� = ��j��� �j0� = 12 ��jj0g ��jj0�g� ;�jj0+� = ��j��� �j0+ = ���11Æg�jj0 � i��12Æg�jj0 ;�jj0�+ = ��j+�� �j0� = ���11Æg�jj0 + i��12Æg�jj0 : (3.3)We 
an now organize the distributions in matri
es where the 
olumns (rows) 
orrespond toheli
ity states ++;�+;+�;�� of the two partons in the amplitude (
onjugate amplitude).The spin density matrix for two quarks reads� = 14 0BBBBBB� fqq + f�q�q �iei'yyMfÆqq �iei'yyMfqÆq 2e2i'yy2M2f tÆqÆqie�i'yyMfÆqq fqq � f�q�q 2fÆqÆq �iei'yyMfqÆqie�i'yyMfqÆq 2fÆqÆq fqq � f�q�q �iei'yyMfÆqq2e�2i'yy2M2f tÆqÆq ie�i'yyMfqÆq ie�i'yyMfÆqq fqq + f�q�q
1CCCCCCA ; (3.4)where the angle 'y des
ribes the orientation of the ve
tor y = y (
os'y; sin'y) in thetransverse plane. With the 
aveat spelled out at the end of the previous se
tion, the diago-nal matrix elements 
an be interpreted as the probability densities for �nding two partonsin de�nite heli
ity states inside an unpolarized proton. Spe
i�
ally, fqq + f�q�q is theprobability density for �nding two quarks with positive heli
ities, whi
h in an unpolarizedproton is equal to the probability density for �nding two quarks with negative heli
ities.The probability density for �nding two quarks with opposite heli
ities is fqq � f�q�q. Theo�-diagonal elements of � des
ribe heli
ity interferen
e, with f tÆqÆq in the right upper 
orner
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orresponding for instan
e to the 
ase where both quarks have negative heli
ity in the am-plitude and positive heli
ity in the 
onjugate amplitude. This leads to a heli
ity di�eren
ebetween the amplitude and its 
onjugate, whi
h is balan
ed by two units of orbital angularmomentum indi
ated by an exponential e2i'y and an asso
iated fa
tor y2. By 
ontrast,fÆqÆq des
ribes the 
ase when the heli
ity di�eren
e is +1 for one quark and �1 for theother, so that the overall heli
ity is balan
ed.Turning now to gluons, we have a spin density matrix14 0BBBBBB� fqg + f�q�g �iei'yyMfÆqg �e2i'yy2M2fqÆg �2ie3i'yy3M3f tÆqÆgie�i'yyMfÆqg fqg � f�q�g �2iei'yyMfÆqÆg �e2i'yy2M2fqÆg�e�2i'yy2M2fqÆg 2ie�i'yyMfÆqÆg fqg � f�q�g �iei'yyMfÆqg2ie�3i'yy3M3f tÆqÆg �e�2i'yy2M2fqÆg ie�i'yyMfÆqg fqg + f�q�g
1CCCCCCA (3.5)for quark-gluon distributions and an analogous matrix for gluon-quark distributions. Fortwo-gluon distributions we �nd14 0BBBBBB� fgg + f�g�g �e2i'yy2M2fÆgg �e2i'yy2M2fgÆg �2e4i'yy4M4f tÆgÆg�e�2i'yy2M2fÆgg fgg � f�g�g 2fÆgÆg �e2i'yy2M2fgÆg�e�2i'yy2M2fgÆg 2fÆgÆg fgg � f�g�g �e2i'yy2M2fÆgg�2e�4i'yy4M4f tÆgÆg �e�2i'yy2M2fgÆg �e�2i'yy2M2fÆgg fgg + f�g�g
1CCCCCCA : (3.6)The matri
es for distributions where quarks are repla
ed by antiquarks are analogous to(3.4) and (3.5). We see that the parameterization of DPDs in the previous se
tion givessimple expressions for the spin density matri
es and similar stru
tures for all types ofpartons.The di�eren
e in spin between quarks and gluons 
auses the di�erent dependen
e onthe azimuthal angle 'y in (3.4), (3.5) and (3.6). A mismat
h of n units between the sum ofparton heli
ities in the amplitude and its 
onjugate goes along with an exponential e�ni'yand an asso
iated fa
tor yn.4 Positivity boundsWe now show how the probability interpretation of DPDs 
onstrains the size of the polarizeddistributions. Sin
e the probability density for �nding two partons in a general polarizationstate is positive semi-de�nite, we haveX�01�02�1�2 v��01�02 �(�01�02)(�1�2) v�1�2 � 0 (4.1)with arbitrary 
omplex 
oeÆ
ients v�1�2 normalized as P�1�2 jv�1�2 j2 = 1. The heli
itymatri
es are therefore positive semi-de�nite. The same property has been derived for thespin density matri
es asso
iated with transverse-momentum dependent distributions [17℄or generalized parton distributions [18℄. { 6 {



To simplify the algebra, we �rst 
ast all heli
ity matri
es into a 
ommon form that isindependent of the angle 'y. This is a
hieved by unitary transformations, multiplying bya matrix U from the right and by U y from the left. The transformation matri
es for theparton 
ombinations in (3.4) to (3.6) areUqq = diag��e2i'y ;�iei'y ;�iei'y ; 1 � ;Uqg = diag� ie3i'y ;�e2i'y ;�iei'y ; 1 � ;Ugg = diag� e4i'y ;�e2i'y ;�e2i'y ; 1 � : (4.2)After these transformations and their analog for gluon-quark distributions, the spin densitymatri
es 
an be written as� = 14 0BBB�fab + f�a�b hÆab haÆb �2htÆaÆbhÆab fab � f�a�b 2hÆaÆb haÆbhaÆb 2hÆaÆb fab � f�a�b hÆab�2htÆaÆb haÆb hÆab fab + f�a�b1CCCA (4.3)with the following identi�
ation of distributions for di�erent parton 
ombinations:fab = fqq ; fqg ; fgq ; fgg ;f�a�b = f�q�q ; f�q�g ; f�g�q ; f�g�g ;hÆab = yMfÆqq ; yMfÆqg ; y2M2fÆgq ; y2M2fÆgg ;haÆb = yMfqÆq ; y2M2fqÆg ; yMfgÆq ; y2M2fgÆg ;hÆaÆb = fÆqÆq ; yMfÆqÆg ; yMfÆgÆq ; fÆgÆg ;htÆaÆb = y2M2f tÆqÆq ; y3M3f tÆqÆg ; y3M3f tÆgÆq ; y4M4f tÆgÆg : (4.4)Analogous expressions hold if quarks are repla
ed by antiquarks. Positivity1 of the diagonalelements of � yields the trivial boundsfab � ��f�a�b�� : (4.5)The prin
ipal minors of the two-dimensional sub-spa
es must be positive semi-de�nite aswell, whi
h gives upper bounds on the distributions for one or two transversely or linearlypolarized partons: fab + f�a�b � 2��htÆaÆb�� ;fab � f�a�b � 2��hÆaÆb�� ;f2ab � (fab + f�a�b)(fab � f�a�b) � h2Æab ;f2ab � (fab + f�a�b)(fab � f�a�b) � h2aÆb : (4.6)The prin
ipal minors of dimension three, as well as det(�) provide further bounds, whi
hare rather 
umbersome and will not be given here. The strongest bounds 
an be obtained1For ease of language we use \positivity" in the sense of \positive semi-de�nite" here and in the following.{ 7 {



from the positivity of the eigenvalues of �, whi
h is a suÆ
ient and ne
essary 
ondition forthe positivity of �. Cal
ulating the eigenvalues we obtainfab + hÆaÆb � htÆaÆb �q(hÆab + haÆb)2 + (f�a�b � hÆaÆb � htÆaÆb)2 � 0 ;fab � hÆaÆb + htÆaÆb �q(hÆab � haÆb)2 + (f�a�b + hÆaÆb + htÆaÆb)2 � 0 : (4.7)These inequalities set upper limits on the size of spin 
orrelations between two partons inan unpolarized proton. They 
an be used either to 
onstru
t double parton distributionsor to put limits on polarization e�e
ts in double hard s
attering pro
esses.We note that positive semide�nite 
ombinations of DPDs were dis
ussed already inthe pioneering studies [9, 10℄. Distributions that involve a heli
ity mismat
h between theamplitude and its 
onjugate (see se
tion 3) were however not 
onsidered in that work.The derivation in [9, 10℄ thus 
orresponds to our results (4.5) and (4.6) if all distributionsmultiplied with a power of y in (4.4) are set to zero.5 Stability under evolutionThe ultraviolet subtra
tions mentioned at the end of se
tion 2 indu
e a s
ale dependen
e,whi
h for 
ollinear single-parton distributions is des
ribed by the DGLAP evolution equa-tions. While the subtra
tions themselves may invalidate positivity of the distributions andthus their density interpretation, the evolution equations 
an be interpreted in a proba-bilisti
 manner provided that one takes the leading-order approximation of the evolutionkernels [23, 24℄. Spe
i�
ally, one �nds that if parton distributions are positive semi-de�niteat a 
ertain s
ale, this property is preserved by leading-order evolution to higher s
ales.This also holds for the So�er inequality, whi
h expresses positivity in the se
tor of trans-verse quark polarization [25, 26℄. For evolution at next-to-leading order in �s the situationis less 
lear-
ut and a dis
ussion of positivity depends in parti
ular on the s
heme in whi
hthe distributions are de�ned. We refer to [27℄ and [28, 29℄ for a dis
ussion of the situationfor longitudinal and transverse parton polarization, respe
tively.Returning to double parton distributions, we now show that the bounds derived in theprevious se
tion are stable under leading-order evolution to higher s
ales. The strategyfor the derivation is as follows: we �rst introdu
e linear 
ombinations of double partondistributions whose positivity is ne
essary and suÆ
ient for the positivity of the spin densitymatri
es and then show that these linear 
ombinations remain positive semi-de�nite underevolution. The positivity of the spin density matri
es then guarantees the stability of thepositivity bounds.5.1 Evolution of double parton distributionsTo begin with, let us spe
ify the evolution of 
ollinear DPDs in the 
olor-singlet se
tor.We use the homogeneous evolution equations in the transverse position representation,see e.g. equation (5.93) in [12℄. These equations apply at nonzero y if Fa1a2(x1; x2;y) isde�ned via (2.1) with the operators Oa1(y; z1) and Oa2(0; z2) renormalized by standardMS subtra
tion. The inhomogeneous term for the splitting of one parton into two that{ 8 {



has been previously 
onsidered in the literature [30{34℄ does not appear in this 
ase. Asdis
ussed in [11, 12℄, a 
onsistent formulation of fa
torization for double parton s
atteringdoes not yet exist, so that it remains un
lear how DPDs should best be de�ned (and howthey evolve). For simpli
ity we will limit our present investigation to the homogeneousevolution equations.It is useful for our purpose to take di�erent renormalization s
ales �1 and �2 for thetwo partons, 
orresponding to separate ultraviolet renormalization of Oa1 and Oa2 in (2.1).The evolution equation for the unpolarized double quark distributions in the �rst s
alethen reads �fqq(x1; x2; y;�1; �2)��1 = Pqq 
1 fqq + Pqg 
1 fgq ; (5.1)where Pab( : ) 
1 fb
( : ; x2; y;�1; �2) = Z 1�x2x1 du1u1 Pab�x1u1� fb
(u1; x2; y;�1; �2) (5.2)is a 
onvolution in the �rst argument of the DPDs with the leading-order splitting fun
tionsPab known from DGLAP evolution of single-parton distributions. We note that the leading-order splitting fun
tions are the same for quarks and antiquarks, i.e. one has Pqq = P�q�q,Pqg = P�qg, Pgq = Pg�q and analogous relations for polarized partons. In appendix A wegive the expli
it evolution equations for all polarized DPDs and list the asso
iated splittingfun
tions.The evolution variable in (5.1) is taken as�1 = Z �21 d�2�2 �s(�)2� ; (5.3)where the lower limit of integration is irrelevant in the derivative �f=��1. The use of �1is just a matter of 
onvenien
e as it removes the running 
oupling from the leading-ordersplitting fun
tions.The analog of (5.1) for the s
ale asso
iated with the se
ond parton is�fqq(x1; x2; y;�1; �2)��2 = Pqq 
2 fqq + Pqg 
2 fqg : (5.4)The evolution equation for equal s
ales, i.e. for fqq(x1; x2; y;�; �), is readily obtained byadding the right-hand sides of (5.1) and (5.4). We will show that positivity is preservedfor separate evolution in �1. The same then obviously holds for evolution in �2 and hen
efor the evolution in a single 
ommon s
ale �1 = �2.5.2 Linear 
ombinations of DPDsA key ingredient in our argument is to form suitable linear 
ombinations of double partondistributions, whi
h we now introdu
e. Positivity of the spin density matrix � means thatvy� v � 0 for any 
omplex ve
tor v, as we spelled out in (4.1). Parameterizing the ve
toras vT = (a1 + ib1; a2 + ib2; a3 + ib3; a4 + ib4) (5.5)
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with real numbers ai, bi and performing the multipli
ation with the matrix in (4.3) givesQ+ab = 
1fab + 
2haÆb + 
3f�a�b + 
4hÆab + 
5hÆaÆb + 
6htÆaÆb � 0 ; (5.6)where Q+ab = 4vy� v and the 
oeÆ
ients 
i are given by
1 = a21 + b21 + a22 + b22 + a23 + b23 + a24 + b24 ; 
2 = 2(a1a3 + b1b3 + a2a4 + b2b4) ;
3 = a21 + b21 � a22 � b22 � a23 � b23 + a24 + b24 ; 
4 = 2(a1a2 + b1b2 + a3a4 + b3b4) ;
5 = 4(a2a3 + b2b3) ; 
6 = �4(a1a4 + b1b4) : (5.7)We will prove the stability of the positivity bounds by showing that for arbitrary values ofai and bi the inequality (5.6) is stable under evolution to higher s
ales. It will be 
onvenientto 
onsider further linear 
ombinations of double parton distributions. Changing signs ofthe parameters a1 ! �a1, b1 ! �b1, a3 ! �a3, b3 ! �b3 we getQ�ab = 
1fab + 
2haÆb + 
3f�a�b � 
4hÆab � 
5hÆaÆb � 
6htÆaÆb � 0 : (5.8)Adding (5.6) and (5.8) gives the simpler inequalityB+ab = 
1fab + 
2haÆb + 
3f�a�b � 0 ; (5.9)and inter
hanging indi
es (1$ 2 and 3$ 4) in the elements of v givesB�ab = 
1fab + 
2haÆb � 
3f�a�b � 0 : (5.10)If (5.6) holds at a given s
ale for arbitrary values of ai and bi, then (5.8) to (5.10) hold atthat s
ale as well.We will see that the evolution equations in the s
ale �1 
an be formulated in terms ofQ+ab, Q�ab and B�ab alone.2 This be
omes plausible if we note that these three fun
tions arelinear 
ombinations of (
1fab+ 
2haÆb), f�a�b and (
4hÆab+ 
5hÆaÆb+ 
6htÆaÆb) and that forevolution in �1 only the polarization of the �rst parton is relevant but not the polarizationof the se
ond parton. The linear 
ombinations Q�ab may be regarded as generalizations ofthe distributions Q� = 12 (q+ �q)� Æq introdu
ed in [26℄, where it was shown that the So�erbound for the quark transversity distribution Æq is stable under leading-order evolution tohigher s
ales.5.3 Evolution of the linear 
ombinationsWe now show that the distributions Q�ab and B�ab remain positive semi-de�nite underleading-order evolution to higher s
ales. This implies the positivity of the spin densitymatri
es and thereby the validity of the bounds derived in se
tion 4.The evolution equations for the distributions Q�ab are���1  Q+qbQ�qb! =  ÆP+qq ÆP�qqÆP�qq ÆP+qq!
1  Q+qbQ�qb!+ P+qg P�qgP+qg P�qg!
1  B+gbB�gb!+ P�qq P�qqP�qq P�qq!
1  B+qbB�qb! (5.11)2The 
ombination B+ab = (Q+ab +Q�ab)=2 is not independent and just used as an abbreviation.{ 10 {



for a quark as �rst parton and���1  Q+gbQ�gb! =  ÆP+gg ÆP�ggÆP�gg ÆP+gg!
1  Q+gbQ�gb!+ Xa=q;�q P+ga P�gaP+ga P�ga!
1  B+abB�ab!+ P�gg P�ggP�gg P�gg!
1  B+gbB�gb! (5.12)when the �rst parton is a gluon. The evolution equations for B�ab read���1  B+qbB�qb! =  P+qq P�qqP�qq P+qq!
1  B+qbB�qb!+ P+qg P�qgP�qg P+qg!
1  B+gbB�gb! (5.13)for a quark and���1  B+gbB�gb! =  P+gg P�ggP�gg P+gg!
1  B+gbB�gb!+ Xa=q;�q P+ga P�gaP�ga P+ga!
1  B+abB�ab! (5.14)for a gluon. The evolution equations have the same form for antiquarks, i.e. (5.11) and(5.13) remain valid if we repla
e q ! �q everywhere (ex
ept in the label b for the se
ondparton, whi
h always remains �xed when we 
onsider evolution in �1).The splitting fun
tions appearing in the above equations are de�ned asP�ab = 12 �Pab � P�a�b� ; ÆP�ab = 12 �P�a�b � PÆaÆb� (5.15)for all parton indi
es a and b. We remark that the kernels P+ab (P�ab) 
orrespond to the 
asewhere the parton heli
ity is 
onserved (
ipped). The only splitting fun
tions that re
eive
ontributions from virtual graphs and hen
e 
ontain a plus-pres
ription or an expli
it Æfun
tion are P+qq = CF2 � 2(1 + z2)(1� z)+ + 3Æ(1 � z)� ;ÆP+qq = CF2 � (1 + z)2(1� z)+ + 3Æ(1 � z)� ;P+gg = 2N
 � z(1� z)+ + (1� z)(1 + z)22z �+ �02 Æ(1 � z) ;ÆP+gg = 2N
 � z(1� z)+ + 1� z �+ �02 Æ(1 � z) (5.16)with N
 = 3, CF = 4=3 and �0 = 113 N
 � 23 nf ; (5.17)where nf is the number of a
tive quark 
avors. They are all positive for 0 < z < 1 buthave negative 
ontributions at z = 1 that arise from the plus-pres
ription, whose formis re
alled in (B.3). In appendix B we show expli
itly that the virtual 
ontribution to{ 11 {



evolution 
annot 
hange the sign of the distributions, whi
h has previously been arguedto be the 
ase based on the probabilisti
 interpretation of leading-order evolution and itsrelation to the Boltzmann equation [23, 24, 26℄. The reason for this property is that thevirtual 
ontribution to the evolution of a fun
tion is proportional to the fun
tion itself.We 
an then 
on
lude that the diagonal terms in the evolution equations (5.11) to (5.14)preserve positivity. The o�-diagonal kernelsP�qq = 0 ; P�gg = N
 (1� z)3Æz ;ÆP�qq = CF (1� z)Æ2 ; ÆP�gg = 2N
 (1� z) (5.18)and P+qg = z2Æ2 ; P+gq = CFÆz ;P�qg = (1� z)2Æ2 ; P�gq = CF (1� z)2Æz : (5.19)are all positive or zero for 0 < z < 1 and regular at z = 1. Therefore they only reinfor
epositivity. In summary, if we have positive semi-de�nite initial 
onditions for all fun
tionsQ�ab and B�ab at some s
ale, then evolution to higher s
ales preserves this property. A moreexpli
it derivation is given in appendix B.6 Con
lusionsWe have derived spin density matri
es for double parton distributions of quarks, anti-quarks and gluons. These matri
es reveal the full polarization stru
ture of two partons inan unpolarized proton and show the 
orresponden
e between the di�erent polarized doubleparton distributions and parton heli
ities. The probabilisti
 interpretation of the doubleparton distribution for an arbitrary polarization state of the two partons gives upper limitson the size of spin 
orrelations. These positivity bounds 
an be useful for modeling theotherwise poorly 
onstrained double parton distributions and for deriving upper limits onspin e�e
ts in double hard s
attering pro
esses. We have shown that the homogeneousleading-order evolution equations preserve the bounds when going from lower to highers
ales.A Evolution equations and splitting fun
tionsFor 
ompleteness we give here the leading-order evolution equations for the �rst parton inthe double parton distributions. When the �rst parton is a quark, we have�fqb��1 = Pqq 
1 fqb + Pqg 
1 fgb ;�fqÆb��1 = Pqq 
1 fqÆb + Pqg 
1 fgÆb ;�f�q�b��1 = P�q�q 
1 f�q�b + P�q�g 
1 f�g�b ;�fÆqb��1 = PÆqÆq 
1 fÆqb ; �fÆqÆb��1 = PÆqÆq 
1 fÆqÆb ; �f tÆqÆb��1 = PÆqÆq 
1 f tÆqÆb (A.1)
{ 12 {



for b = q; �q; g. The arguments of the distributions are as in (5.1) and (5.2). Analogousequations hold if the �rst parton is an antiquark. For gluons we have�fgb��1 = Pgg 
1 fgb + Xa=q;�qPga 
1 fab ;�fgÆb��1 = Pgg 
1 fgÆb + Xa=q;�qPga 
1 faÆb ;�f�g�b��1 = P�g�g 
1 f�g�b + Xa=q;�qP�g�a 
1 f�a�b ;�fÆgb��1 = PÆgÆg 
1 fÆgb ; �fÆgÆb��1 = PÆgÆg 
1 fÆgÆb ; �f tÆgÆb��1 = PÆgÆg 
1 f tÆgÆb : (A.2)The leading-order splitting fun
tions have been derived in [21, 22℄. They are given byPqq(z) = CF � 1 + z2(1� z)+ + 32 Æ(1 � z)� ;P�q�q(z) = Pqq(z) ;PÆqÆq(z) = Pqq(z) �CF (1� z) (A.3)for quark-quark transitions and byPgg(z) = 2N
 � z(1� z)+ + (1� z)(1 + z2)z �+ �02 Æ(1 � z) ;P�g�g(z) = Pgg(z)� 2N
 (1� z)3z ;PÆgÆg(z) = Pgg(z)� 2N
 (1� z)(1 + z2)z (A.4)for gluons. The splitting fun
tions that mix quarks and gluons readPqg = z2 + (1� z)22 ; Pgq = CF 1 + (1� z)2z ;P�q�g = z2 � (1� z)22 ; P�g�q = CF 1� (1� z)2z : (A.5)As already mentioned below (5.2), the splitting fun
tions are identi
al for quarks andantiquarks, i.e. (A.3) and (A.5) remain valid if we repla
e q ! �q. At leading order in �sthere are no dire
t transitions between quarks and antiquarks.B Elements of a stability proofIn this appendix we show in more detail that the evolution equations in se
tion 5.3 preservepositivity, taking parti
ular 
are of the negative terms in the splitting fun
tions that arisefrom virtual graphs and are impli
it in the plus-pres
ription. We �rst 
onsider the evolutionof a single distribution and then extend the argument to the full 
oupled system of evolutionequations. { 13 {



We examine a fun
tion evolving as��� f(x; �) = Z vx duu P �xu� f(u; �) (B.1)with 0 < x < v � 1 and separate the splitting fun
tion asP (z) = Ps(z)(1� z)+ + Pr(z) + PÆ Æ(1 � z) ; (B.2)where Ps(z) and Pr(z) are positive semi-de�nite for 0 < z < 1 and regular at z = 1. The
onstant PÆ may be positive, negative or zero. The plus-pres
ription is de�ned as usual by[s(z)℄+ = s(z)� Æ(1 � z)Z 10 dz0 s(z0) ; (B.3)where it is understood that the non-integrable singularity in the last term 
an
els when(B.3) is integrated over with a smooth test fun
tion. The plus-pres
ription part of the
onvolution in (B.1) 
an be written asZ vx duu Ps(x=u)(1� x=u)+ f(u; �)= Z vx+�du Ps(x=u)u� x f(u; �) + Z x��0 du Ps(1)u� x f(x; �) +O(�) ; (B.4)where for the error estimate we have assumed that f(u; �) is di�erentiable at u = x.De�ning g�(x; � ; f) = Z vx+�du �Ps(x=u)u� x + Pr(x=u)u � f(u; �) ;h�(x) = � PÆ + Ps(1)Z x��0 dux� u (B.5)we 
an approximate the evolution of f by��� f(x; �) = g�(x; � ; f)� h�(x) f(x; �) (B.6)with an error that be
omes arbitrarily small for �! 0. In a more formal proof, one wouldrepla
e f with f� in (B.6) and show that lim�!0 f� is a solution of (B.1) . We now rewrite(B.6) as ��� he�h�(x)f(x; �)i = e�h�(x) g�(x; � ; f) : (B.7)Sin
e g� is the 
onvolution of f(x; �) with a positive semi-de�nite integral kernel, the r.h.s.of this equation is positive semi-de�nite as long as f(x; �) is. With initial 
onditionsf(x; �0) � 0 for all x at a starting s
ale �0, the fun
tion e�h�(x)f(x; �) 
an therefore notde
rease as � in
reases, so that f(x; �) stays positive semi-de�nite for all � > �0. We notethat the sign of h�(x) and thus of the 
onstant PÆ is irrelevant for this argument.{ 14 {



We now 
onsider the 
oupled system of evolution equations given by (5.11) to (5.14).Using a ve
tor notation f i(x; �) for the 8nf +4 fun
tions Q+ab; Q�ab; B+ab; B�ab with a = q; �q; g(and b �xed), we 
an 
ast their evolution into the form��� f i(x; �) = gi�(x; � ; f i)� hi�(x) f i(x; �) +Xi 6=j Z vx duu P ij �xu� f j(u; �) (B.8)with i = 1; : : : ; 8nf + 4. Here gi� and hi� are de�ned as in (B.5) with regular and positivesemi-de�nite fun
tions P is(z) and P ir(z). The mixing kernels P ij(z) in (B.8) are regularand positive semi-de�nite as well. Rewriting the evolution as��� he�h�(x)f i(x; �)i = e�h�(x)"gi�(x; � ; f i) +Xi 6=j Z vx duu P ij �xu� f j(u; �)# (B.9)we see that if one has initial 
onditions f j(x; �0) � 0 for all j then all fun
tions f j(x; �)remain positive semi-de�nite for � > �0.Referen
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