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ABSTRACT: For the final running period of HERA, a recoil detector was installed at the HERMES

experiment to improve measurements of hard exclusive processes in charged-lepton nucleon scat-

tering. Here, deeply virtual Compton scattering is of particular interest as this process provides

constraints on generalised parton distributions that give access to the total angular momenta of

quarks within the nucleon.

The HERMES recoil detector was designed to improve the selection of exclusive events by a direct

measurement of the four-momentum of the recoiling particle. It consisted of three components: two

layers of double-sided silicon strip sensors inside the HERA beam vacuum, a two-barrel scintillating

fibre tracker, and a photon detector. All sub-detectors were located inside a solenoidal magnetic

field with a field strength of 1T.

The recoil detector was installed in late 2005. After the commissioning of all components was

finished in September 2006, it operated stably until the end of data taking at HERA end of June

2007. The present paper gives a brief overview of the physics processes of interest and the general

detector design. The recoil detector components, their calibration, the momentum reconstruction of

charged particles, and the event selection are described in detail. The paper closes with a summary

of the performance of the detection system.

KEYWORDS: dE/dx detectors; Gamma detectors (scintillators, CZT, HPG, HgI etc); Particle

tracking detectors; Particle tracking detectors (Solid-state detectors); Detector alignment and

calibration methods; Particle identification methods; Data acquisition concepts; Front-end

electronics for detector readout.
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1. Introduction

In the winter shutdown of 2005/2006 the HERMES spectrometer [1] was upgraded in the target re-

gion with a Recoil Detector (RD). The detector surrounded the HERMES target cell and comprised,

in a coaxial structure, a set of Silicon Strip Detectors (SSD) situated inside the HERA lepton beam

vacuum, a Scintillating-Fibre Tracker (SFT) and a Photon Detector (PD), all surrounded by a super-

conducting magnet with a field strength of 1T in the center of the bore. The RD was commissioned

during the 2006 data taking and operated in conjunction with the HERMES forward spectrometer

until the end of HERA data taking in the middle of 2007.

The purpose of the RD was to improve access to hard exclusive electroproduction of real

photons (γ) or mesons (m) off nucleons (N), e+N → e+N + γ/m, at HERMES. Hard exclusive

processes have come to the forefront of nucleon structure physics because they provide information

on Generalised Parton Distributions (GPDs) [2, 3, 4]. GPDs can be considered the natural comple-

ment to transverse-momentum-dependent parton distributions, as both are derived from the same

parent Wigner distributions [5, 6]. In particular, GPDs have quickly risen in importance in hadron

physics since it was shown that they may provide access to the total angular momentum carried by

quarks (and gluons) in the nucleon [7] and they provide a multi-dimensional picture of the nucleon

structure [8].

Deeply Virtual Compton Scattering (DVCS), i.e., the hard exclusive electroproduction of a real

photon, presently provides the cleanest access to GPDs. GPDs depend on four kinematic variables:

t, x, ξ , and Q2. The Mandelstam variable t = (p− p′)2 is the squared four-momentum transfer to

the target nucleon, with p (p′) its initial (final) four-momentum. In the ‘infinite’-target-momentum

frame, x and ξ are related to the longitudinal momentum of the struck parton, as a fraction of the

target momentum. The variable x is the average of the initial and final momentum fractions carried

by the parton, and the variable ξ , known as the skewness, is half of their difference. The evolu-

tion of GPDs with Q2 ≡−q2, where q = k− k′ is the difference between the four-momenta of the

incident (k) and scattered (k′) lepton, can be calculated in the context of perturbative quantum chro-

modynamics as in the case of parton distribution functions. There exist several GPDs to describe

the various possible helicity transitions of the struck quark and of the nucleon as a whole. The

DVCS process on an unpolarised proton is very well suited to access the GPD H, which describes

the dominant transition that conserves the helicities of both the struck quark and the nucleon.

The DVCS process contributes to the reaction channel eN→ eNγ , which is dominated at HER-

MES kinematics by the Bethe-Heitler (BH) process, i.e., elastic eN scattering with a bremsstrahlung

photon in the initial or final state. The two processes are experimentally indistinguishable and

therefore interfere. The differential cross section is given by

dσ

dQ2 dxB d|t| dφ
=

xBe6

32(2π)4Q4
√

1+ ε2
|τTotal|2, (1.1)

where

|τTotal|2 = |τBH|2 + |τDVCS|2 + τBHτ∗DVCS + τDVCSτ∗BH
︸ ︷︷ ︸

I

. (1.2)
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In equation 1.1, e is the elementary charge of the electron, xB is the Bjorken scaling variable

xB = Q2/(2pq) and ε = 2xB
M
Q

with M the proton mass. The angle φ denotes the azimuthal orienta-

tion of the photon production plane with respect to the lepton scattering plane. In equation 1.2, the

square of the scattering amplitude consists of three parts: one due to the BH contribution, one due

to the DVCS contribution and one due to the interference between the two, denoted I. Although

the DVCS contribution to the cross section is small at the kinematic conditions of HERMES, it is

‘amplified’ in the interference term I by the (much) larger BH contribution. Experimentally, the

preferred way to study DVCS is the measurement of cross-section asymmetries. For an unpolarised

hydrogen target, the beam-helicity asymmetry ALU, where L denotes the longitudinally polarised

beam and U the unpolarised target, and the beam-charge asymmetry AC can be accessed. These

are constructed as

ALU(φ) =
dσ→(φ)−dσ←(φ)
dσ→(φ)+dσ←(φ)

, (1.3)

AC(φ) =
dσ+(φ)−dσ−(φ)
dσ+(φ)+dσ−(φ)

, (1.4)

where dσ→(φ), dσ←(φ), dσ+(φ) and dσ−(φ) represent cross-sections from positive and negative

beam helicity and positive and negative beam charges, respectively. Various experimental results

on these asymmetries have been published so far by the HERMES collaboration [9, 10, 11, 12].

In these measurements an enriched sample of exclusive events was selected using a missing-mass

technique. An event-by-event selection was not possible as the recoiling proton was outside the

acceptance and the existing spectrometer did not have sufficient resolution. Monte Carlo (MC)

calculations showed that the contribution of events from "associated" production (ep→ eNπγ ,

including the resonant production ep→ e∆
+γ) was expected to be in average 13%, while 3% were

expected from semi-inclusive processes. The contribution from the decay products of neutral pions

from exclusive reactions that are misidentified as single-photon events was found to be negligible.

The analysis related to the study of DVCS and HERMES employing the RD involves two major

motivations. The first is the selection of a DVCS (in the following DVCS corresponds to DVCS

and BH) event sample with a background contamination below 1%, and the extraction of a beam-

helicity asymmetry from it. This allows a cleaner comparison to predictions from the ongoing

theoretical efforts to fit GPD models to HERMES data. The second motivation is the potential to

extract an asymmetry in associated production in the ∆-resonance region.

The present paper is structured as follows. Chapters two and three give an overview of the

general detector design and the individual detector components. The data acquisition system and

the data taking performance are described in chapter four. The energy calibration and the energy

measurement in general are outlined in chapter five, and chapter six explains the momentum recon-

struction. The performance of the RD is summarized in chapter seven. The event selection with

the RD is described in chapter eight. The paper is summarized in chapter nine.
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