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Abstract

We study stabilization of an unstable cosmic string associated with spontaneously broken

U(1)R symmetry, which otherwise causes a dangerous roll-over process. We demonstrate that

in a gauge mediation model, messengers can receive enough corrections from the thermal

plasma of the supersymmetric standard model particles to stabilize the unstable modes of the

string.
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1 Introduction

The string landscape is a fascinating idea to reveal the nature of the Universe and suggests us

that the vacuum structure of a field theory itself may be complicated. In phenomenological

model building, this idea gives us a good opportunity to revisit supersymmetry (SUSY)

breaking and its phenomenological applications [1–4] (See [5–7] for reviews and references

therein). In particular, the idea that we live in a metastable SUSY-breaking vacuum is now

one of the most promising scenarios from both phenomenological and theoretical viewpoints.

As is emphasized recently in [8], if such a landscape of vacua is realized in nature, the existence

of a certain type of solitonic objects can have an important meaning. Such a soliton can be

viewed as an energetic impurity which causes semiclassical vacuum decay via rolling-over the

potential hill toward a lower energy vacuum. This idea was proposed almost thirty years ago

by several authors [9–11]. Here we revisit it in light of the landscape of vacua and study how

to avoid the roll-over problem in realistic SUSY-breaking models.

In this paper, as an illustration, we consider a gauge mediation model with spontaneously

broken U(1)R symmetry and supersymmetry. So far, various attempts have been done to build

several types of models of spontaneously broken R-symmetry [12–25]. One of the lessons worth

emphasizing is a connection between metastability and large gaugino masses. To generate

large gaugino masses in gauge mediation models, as is nicely formulated in [26] (see [27]

for a review), one needs a tachyonic direction that leads to the SUSY vacuum in the pseudo-

moduli space if the low energy effective theory is approximated by a renormalizable generalized

O’Raifeartiagh model. In the models with spontaneously broken R-symmetry, the tachyonic

direction exists at the origin [14]. Since the U(1)R symmetry is spontaneously broken at the

SUSY-breaking vacuum, a global cosmic string can be formed by the Kibble-Zurek mechanism

[28, 29] at some time in the cosmic history1. In the core of usual strings, the energy is large

and the symmetry is restored. However, as mentioned above, at a symmetry restoring point

in this model, there exists a tachyonic direction along the messenger direction. Therefore, the

core of the string in this case slides down to a lower vacuum and the string transforms into the

metastable tube-like soliton which we call R-tube. In [8], we investigated the various aspects

of the R-tube and found that there can be light unstable modes. In these reasons, a gauge

mediation model with spontaneously broken R-symmetry is an ideal example to demonstrate

implications of such complicated vacua in a realistic situation (see [32] for relevant earlier

works).

In this paper, we claim that such unstable modes of cosmic R-string/R-tube can be sta-

1In [30] solitons in metastable SUSY breaking vacuum were investigated and later, such solitons were used
for cosmological constraints on gauge mediation models [31].
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bilized by the thermal potential generated by the thermal plasma of the supersymmetric

standard model particles even with sufficiently small reheating temperature. One may think

that as the universe expands, the temperature decreases and eventually the thermal potential

becomes too small to stabilize the unstable modes. However, since R-symmetry is explicitly

broken by the gravity effect, axionic domain walls connecting the R-strings are formed when

the Hubble parameter becomes comparable to the R-axion mass and finally all string network

disappears. Therefore, if the thermal protection of the unstable modes is valid until the time

of their decay, it is plausible to conclude that such models are free from the disastrous roll-over

problem.

The paper is organized as follows. In section 2, we set up a gauge mediation model with

spontaneously broken U(1)R symmetry. We show similarity between global string solution

in [8] and that of the present model. We review some aspects of the string solution and

add some new comments on the solution. In section 3, we demonstrate that the thermal

potential generated by the thermal plasma of standard model particles lifts the potential of

messengers and stabilized the unstable modes of R-string/R-tube. In section 4, we consider

the model in the inflaton oscillation dominated era of the expanding universe and study the

vacuum selection2 and stabilization of strings. In section 5, we comment on relevant issue

and discussions. In appendix A and B, we show some technical details on R-string solution

and tachyonic mass around it.

2 Model with spontaneously broken R-symmetry

2.1 Setup of Model

Let us promote the original model studied in [8] to more realistic gauge mediation model.

We introduce the superfields, X , φ and φ̃. A pair of φ and φ̃ correspond to the messenger

fields, which have the vector-like representation, R ⊕ R̄, under the standard gauge group,

SU(3) × SU(2)× U(1). For simple illustration, here we restrict ourselves to the U(1) gauge

part of SU(3)× SU(2) × U(1) as the visible sector. Then, we consider the messenger fields,

φ and φ̃, which are singlets and have the U(1) charges 1 and −1. Its extension to the full

SU(3)× SU(2)× U(1) gauge theory is straightforward as we will give a comment later.

We assign R-charges to these superfields as, R[X ] = 2 and R[φ] + R[φ̃] = 0, and the

superpotential is obtained by

W = κXφφ̃− µ2X. (2.1)

2See [33–37] for early attempts for vacuum selection by exploiting the thermal potential.
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Note that we introduced κ to control the vacuum selection. As is used in [38, 39] by taking

κ to be small, the tachyonic mass |mφ| along φ, φ̃ can be small, which is favorable for the

realistic vacuum selection. We consider the effective Kähler metric,

g−1
XX̄

= 1− 1

2m2
|X|2 + λ

4m4
|X|4, g−1

φφ̄
= g−1

φ̃ ¯̃φ
= 1, g−1

Xφ̄
= g−1

φX̄
= g−1

X ¯̃φ
= g−1

φ̃X̄
= 0, (2.2)

which are similar to those in [8]. We take all of parameters, κ, µ2, m2 and λ, to be real and

positive. This model possesses the SUSY vacuum with the moduli space,

X = 0, φφ̃ =
µ2

κ
, (2.3)

and the SUSY breaking vacuum,

X = X0 ≡
m√
λ
, φ = 0, (2.4)

where the U(1)R symmetry is also broken. The former is the true vacuum, while the latter is

the metastable vacuum whose vacuum energy is V = µ4
(

1− 1
4λ

)

.

For later convenience, let us introduce dimensionless variables by

X =
m√
λ
A, , φ̃ =

µ√
κ
s̃, φ =

µ√
κ
s, xµ =

m√
λµ2

x̃µ, ǫ =

√
2
√
λµ√

κm
, (2.5)

then the Lagrangian is of the form

L = µ4

[

1

V(A)
∣

∣

∣
∂̃µA

∣

∣

∣

2

+
1

2
ǫ2
∣

∣

∣
∂̃µs
∣

∣

∣

2

+
1

2
ǫ2
∣

∣

∣
∂̃µs̃
∣

∣

∣

2

− V(A)|ss̃− 1|2 − 2

ǫ2
|A|2(|s|2 + |s̃|2)

− g2

8κ2
(|s|2 − |s̃|2)2

]

+ · · · , (2.6)

where the ellipsis denotes the fermionic partners and the supersymmetric standard model

particles including gauge fields and matter fields, and V(A) is given by

V(A) = 1− 1

4λ
+

1

4λ
(1− |A|2)2. (2.7)

Basic ideas we will show below can be simply demonstrated by this simplified model. Since

throughout this paper, we do not consider a soliton with the winding number of U(1), we can

take the vacuum expectation value (VEV) of gauge fields vanishing in constructing solitons.

Various quantities appeared in the first line of (2.6) are characterized by two dimensionless

parameters λ and ǫ. For instance, the existence of the SUSY breaking vacuum requires

1 >
1

4λ
> 0,

2

ǫ2
+

1

4λ
> 1. (2.8)
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Later, we consider the vacuum selection in the early stage of the Universe. Since in the

early Universe field values are assumed to be around the origin, if the tachyonic mass of X ,

|mX |, is larger than one of the messenger field, |mφ|, one may expect that the supersymmetry

breaking vacuum is preferable. In the dimensionful representation, these two tachyonic masses

are given by

m2
X = − µ4

2m2
, m2

φ = −κµ2. (2.9)

Thus, the following inequality

m2
X

m2
φ

> 1 ⇔ 2

ǫ2
<

1

2λ
, (2.10)

is required for selecting the SUSY breaking vacuum. Note that, according to the reparametriza-

tion (2.5), a small κ with fixing m,µ corresponds to a large ǫ. As discussed later in section 4,

the thermal effect turns out to loosen this condition.

For later convenience, we show the gravitino and axion masses,

m3/2 ≃
√

g−1(X0)
µ2

√
3Mpl

, ma = 33/4m3/2(g
−1(X0))

−1/4

√

2Mpl

X0
, (2.11)

where g−1(X0) = 1− 1
4λ

and Mpl denotes the reduced Planck mass. Using the gravitino mass

m3/2 with dimensionless parameters λ, ǫ, κ, many scales can be rewritten as, for instance,

(

m2
a

m2
X

)2

≃ 48λ3/2
√
12λ− 3

ǫ2κ
× m3/2

Mpl

≃ 2.1× 10−18 × 2

ǫ2
(4λ)3/2

√
4λ− 1

κ
× m3/2

GeV
. (2.12)

In terms of (2.8) and the scale of the gravitino mass in gauge mediation, we observe |mX | ≫
ma in wide range of parameter space (λ, κ). Therefore, we assume the condition in this paper.

2.2 R-string review

Here we quickly review the R-string studied in [8]. Since the R-string solution satisfies the

D-flatness condition, the equation of motion for R-string becomes exactly the same as the one

studied in [8]. Hence, we simply see some of aspects.

The R-string solution without a hole inside, s = s̃ = 0, is a solution of our model. The

R-string solution A(x̃µ) = Asol
n (ρ)einθ, (ρeinθ = x̃1 + ix̃2, A

sol
n ∈ R≥0) with a given winding

number n is defined by imposing the equation of motion derived from the following ‘reduced’

action,

S̃ = −2π

∫ ∞

0

dρρ

{

1

V(A)

(

(

dA

dρ

)2

+
n2

ρ2
A2

)

+ V(A)
}

, (2.13)
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with boundary conditions A(0) = 0 and A(∞) = 1. The R-string solution corresponds to the

solution of the system described by the above Lagrangian and we can find it numerically (see

appendix A for details of the solution.). However, as shown in [8] such an R-string is unstable

and transforms into an R-tube with non-zero s = s̃ inside. Since our main motivation is to

stabilize such unstable modes, let us quickly review the analysis to get “masses” of the modes.

To see that, let us consider a linearized equation for s around the R-string solution,

− 1

ρ

d

dρ

(

ρ
ds

dρ

)

+ Vpot(A
sol
n (ρ)) s = q2ns, Vpot(A) ≡ − 2

ǫ2
V(A) + 4

ǫ4
|A|2. (2.14)

Here, the eigenvalue q2n for the R-string solution with the winding number n depends on λ

and ǫ, i.e. q2n = q2n(λ, ǫ), and, an observation 0 ≤ Asol
n ≤ 1 tells us the lower bounds of Vpot

and q2n as

Vpot(A) ≥ Vpot(0) = − 2

ǫ2
, ⇒ q2n > − 2

ǫ2
. (2.15)

Taking the limits of λ → ∞ or ǫ → 0, we can show that

lim
n→∞

ǫ2q2n = −2, lim
λ→∞

ǫ2q2n = −2, lim
ǫ→0

ǫ2q2n>1 = −2. (2.16)

For the proof of these facts, see Appendix.B. Furthermore, we experientially find that, with

several typical sets of parameters λ and ǫ,

0 < −ǫ2q21 < −ǫ2q22 < · · · < 2, (2.17)

and interestingly

− ǫ2q21 < 2

(

1− 1

2
√
λ

)

< −ǫ2q22 , (2.18)

although we have no proof. We numerically solved this equation for several parameters as

shown in Figure 1 and 2. The left and right panels in both figures correspond to n = 1 and

2, respectively.

For later convenience, we introduce the “physical” mass for the unstable mode. The

eigenvalue q2n for the R-string with winding number n is translated in terms of the mass for

the canonically normalized messenger field as

m2
n = q2n

(√
λµ2

m

)2

=
ǫ2q2n
2

× κµ2. (2.19)

We will use it later for the physical considerations. Here an non-trivial fact m2
∞ = m2

φ = −κµ2

is observed.
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Figure 1: Tachyonic masses for unstable modes of n = 1 and n = 2 R-strings with λ = 0.27.
Solid lines represent ǫ2q2 = −2(1 − 1/

√
4λ) and a dashed line in the left panel is ǫ2q2 =

−2 × 6× 10−7 and dashed lines in the right panel are ǫ2q2 = −2,−2
(

1− 0.47ǫ2/3
)

.
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Figure 2: Tachyonic masses for unstable modes of n = 1 and n = 2 R-strings with λ = 1/2.
Dashed lines in the left panel are ǫ2q2 = −2,−2 × 0.065 and dashed lines in the right panel
are ǫ2q2 = −2,−2

(

1− 0.39ǫ2/3
)

.
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3 R-string in thermal plasma

Now we turn to the stabilization of the R-strings. As shown in the previous section, R-strings

in the (Minkowski background) vacuum are unstable and unavoidably deform to R-tubes. As

discussed in [8], R-tubes are basically unstable objects and cause, in turn, the roll-over process

to push the whole Universe into the unwanted SUSY vacuum with a finite time. Therefore,

one may consider that the SUSY-breaking models with the spontaneous R-symmetry breaking

are disfavored if the R-symmetry has once been restored in the cosmic history and R-strings

have been formed.

However, the realistic Universe is neither described by the Minkowski space time nor in

the vacuum. It contains several ingredients that can deform the potential for the R-string

sector. It may be possible to stabilize the R-strings. The most effective contribution would

be the thermal potential in the existence of the thermal plasma and hence we focus on the

thermal effect in the following3.

Here we should note that we do not have to stabilize R-strings up to the present time. As

explained in [40], R-string networks, if they are stabilized, vanish when the Hubble parameter

of the Universe becomes sufficiently small, H ≃ Ha ≡ ma [41]. This is because the constant

term is added in the supergravity superpotential to compensate the vanishing cosmological

constant, and such a constant term explicitly breaks the R-symmetry and makes the R-string

healthily unstable. From the explicit R-symmetry breaking effect, the R-axion, which is the

phase direction of the SUSY-breaking field acquires a mass. Thus, when the Hubble parameter

decreases sufficiently, the R-string network turns to the R-string-domain wall system, which

collapses to R-axion particles immediately [41]. Therefore, we only have to stabilize R-strings

up to the Hubble time corresponding to H = Ha.

We also note that high reheating temperature is not necessarily required in our discussion.

In the gauge mediated SUSY-breaking, there is a severe constraint on the reheating tempera-

ture from the gravitino problem4. Therefore, thermal plasma seems to be difficult to modify

the potential for the R-string sector. However, even before reheating during the inflaton oscil-

lation dominated era, thermal plasma of supersymmetric standard model particles does exist

from the partial decay of inflaton quanta, of which temperature is larger than the reheating

temperature. Thus, it is plausible to consider the thermal potential for the R-string sector

that is generated by the thermal plasma. In this section, we demonstrate that the unstable

3The Hubble induced masses generated from the Planck suppressed interaction between the R-string sector
and inflaton also exist during the inflaton oscillation dominated era before reheating. However, we can show
easily that it cannot stabilize R-strings sufficiently in the wide range of parameter space.

4For the cosmological constraint from R-axions, see [40].
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modes shown in the previous section can be stabilized by the thermal effect assuming the

existence of thermal plasma with sufficiently high temperature. We will revisit the cosmic

history with R-strings in the next section.

3.1 Thermal potential for messenger

In this subsection, we study the thermal potential in the hidden sector generated by the

supersymmetric standard model thermal plasma through the gauge interaction. Here we

assume that the temperature of thermal plasma is relatively low, T < κX0 and the moduli

field and messenger field are not thermalized5 since we are interested in the last stage when

the stabilization mechanism is effective.

Since nonvanishing messenger field values generate the Standard model gauge boson (and

gaugino) mass, their one-loop effective thermal potential generates thermal correction to the

scalar potential for the messenger fields (see [42] for a review and references therein),

Vthermal(φ, φ̃) ≃ 3
T 4

2π2
JB(m

2
B/T

2), m2
B =

g2

2

(

|φ|2 + |φ̃|2
)

, (3.1)

where factor 3 comes from the degree of freedom of the massive U(1) vector bosons6 and

JB(y) =

∫ ∞

0

dx x2 log
[

1− e−
√

x2+y
]

. (3.2)

For smaller messenger field values, we can use the high temperature expansion,

JB(m
2
B/T

2) = −π4

45
+

π2

12

m2
B

T 2
− π

6

(

m2
B

T 2

)3/2

− 1

32

m4
B

T 4
log

m2
B

aBT 2

− 2π7/2

∞
∑

l=1

(−1)l
ζ(2l + 1)

(l + 1)!
Γ

(

l +
1

2

)(

m2
B

4π2T 2

)l+2

, (3.3)

with log aB = 5.4076. Then, the messenger fields acquire the effective mass, mT
φ , as

Vthermal(φ, φ̃) ≃
g2

16
T 2(|φ|2 + |φ̃|2), ⇒ mT

φ =
g

4
T. (3.4)

We can expect that the R-string is stabilized if the thermal mass is larger than the physical

mass of the tachyonic mode discussed in the previous section. The ratio of the messenger

5For smaller temperature, the number density of heavy fields is Boltzmann suppressed, if ever, and hence
they cannot be in thermal equilibrium in the expanding Universe. The mass of messenger fields around the
R-string core is typically small enough to be thermalized. However, the width of R-string is too small for the
messenger fields to be thermalized and we do not consider the effect of messenger thermalization.

6Remember that for simplicity we consider only the singlet messenger fields φ and φ̃ with the U(1) charges
±1. It is straightforward to proceed the argument to the full SU(3)× SU(2)× U(1) theory.
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mass to the tachyonic mode mass is given by

κX0

|mn|
=

2

ǫ2|qn|
, (3.5)

which is larger than one in a wide range of parameter space. Thus, even in a low temperature,

T < κX0, the thermal mass can be comparable to the physical tachyonic mode mass for the

R-string, and hence it is enough to use the above thermal potential to study stability of

tachyonic modes.

To complete the argument on thermal effects, we comment on the higher temperature situ-

ation, T > κX0. In this case, the messenger fields are also thermalized and extra contribution

to thermal effective potential to messenger direction is generated,

V ≃ 4
T 4

2π2
(JB(m

2
B/T

2)− JF (m
2
B/T

2)), m2
B =

g2

2

(

|φ|2 + |φ̃|2
)

(3.6)

where

JF (y) =

∫ ∞

0

dx x2 log
[

1 + e−
√

x2+y
]

. (3.7)

Here, the fermion contribution comes from the diagram with gaugino and messengino, whereas

the additional scalar contribution comes from the messenger scalar loop, which acquires mass

from the D-term. We should note that the thermal potential for X is also generated by

messenger fields, V ∼ κ2T 2|X|2 + · · · . However, if κ is small, the thermal potential can

be much smaller than the zero-temperature mass of X at T & κX0. Thus, we can neglect

thermal corrections to the potential for the X field here.

Finally, we comment on the extension of the gauge theory. So far, we have considered

the singlet messenger fields, φ and φ̃, with the U(1) charges ±1 for simplicity. It is straight-

forward to extend our discussions for generic messenger fields, φ and φ̃ with the vector-like

representations, R⊕ R̄, under the SU(3)× SU(2)×U(1) gauge symmetry. In such a generic

case, all of the gauge bosons contribute to induce the thermal potential of the messenger

fields. Such a thermal potential is obtained by replacing g2 in (3.1) and (3.4) by

g2eff = g23C
(3)
2 (R) + g22C

(2)
2 (R) + g2q2φ, (3.8)

where C
(3)
2 (R) and C

(2)
2 (R) denote the quadratic Casimir indices of the R representations of

SU(3) and SU(2), respectively, and qφ denotes the hypercharge of φ. Thus, our discussions

in the following sections can be extended into the full visible SU(3) × SU(2) × U(1) gauge

theory by replacing g2 → g2eff .
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3.2 Tachyonic mode around R-string

Now we are ready to study thermal effects on R-string. Firstly, let us see how the tachyonic

mass of the R-string can be modified by the thermal effect in (3.1). To study this, we have

only to pay attention to an infinitesimal fluctuation |φ|2 = |φ̃|2 = µ2|s|2/κ ≪ µ2/κ, which

indicates that we can use the high temperature approximation,

Vthermal = µ4

(

−π2

30

T 4

µ4
+

g2

8κ

T 2

µ2
|s|2 + · · ·

)

. (3.9)

The second term in the above gives a constant shift of the potential in (2.14) as

Vpot(A) → Vpot(A, T ) = Vpot(A) +
g2

8κǫ2
T 2

µ2
, (3.10)

and resultantly a mass eigenvalue q2n(T ) also accepts the constant shift,

q2n(T ) = q2n +
g2

8κǫ2
T 2

µ2
. (3.11)

It is straightforward to define the n-th critical temperature, Tn, where q2n(Tn) ≡ 0, that is,

Tn =
4

g
×
√

−ǫ2q2n
2

× κµ2 =
4

g
|mn|, (3.12)

and then we find the following properties

0 < T1 < T2 < · · · < 4
√
κ

g
µ ≡ T∞, lim

λ→∞
Tn =

4
√
κ

g
µ, lim

ǫ→0
Tn>1 =

4
√
κ

g
µ. (3.13)

At a temperature T larger than Tn, the tachyonic mass changes to massive one q2n(T ) > 0 and

therefore the R-string with a winding number n is stable.

As an illustration, we show the low energy effective potential for the light mode. As in [8],

to uncover the existence of light unstable mode, which is almost frozen in the relaxation

method, we vary the initial profile function. To be concrete, the following initial conditions

with various values of ρ0 are used for A = f(ρ)einθ, s = h(ρ)

f(ρ) =
1 + tanh(2(ρ− ρ0))

2
tanh(ρ), (3.14)

h(ρ) =
1− tanh(2(ρ− ρ0))

2

1 + tanh(2(ρ+ ρ0))

2
.

Also, to represent the size of the tube, we define the following parameter,

Rs ≡
∫∞

0
dρρ2s′(ρ)2

∫∞

0
dρρs′(ρ)2

. (3.15)
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We also introduce the dimensionless temperature as

k ≡
√

2

ǫ2
gT

4
√
κµ

=

√

2

ǫ2
T

T∞

, (3.16)

where as is shown in (3.3), the parameter for the thermal potential is written as

1

4π2

m2
B

T 2
=

g4

32π2ǫ2κ2k2
s2 <

g4

32π2ǫ2κ2k2
. (3.17)

To see how the stabilization mechanism works, we define the dimensionless energy as

E(τ) ≡ λ

m2

E − Evev

2π∆z
=

λ

m2

E

2π∆z
− 1

2
V(1)Λ2, (3.18)

at the relaxation time τ (for quick introduction to the relaxation method, see appendix A

in [8]). Here we removed a contribution of the vacuum energy density Evev. Λ denotes the

cut-off of the energy and we set Λ = 50. Since we cannot follow the evolution of the system

in the relaxation method to τ → ∞, we evaluate it at τ = 50. In Figure 3, we plot Rs

and E(τ = 50) for various initial conditions for k = 0.001 and k = 0.01. Here we take the

parameters as λ = 0.27, ǫ = 1, and n = 1. For these parameters, we can expect the R-string

is stabilized for k >
√
2T1/T∞ ≈ 0.00155. As one can see from the Figure, Rs = 0 is the

local energy minimum of the field configuration, which implies the R-string is stabilized for

k = 0.01, whereas it does not seem to be local minimum for k = 0.001, as expected. Thus,

we conclude that the R-strings are stabilized for T > Tn. It is interesting that the R-strings

are stabilized even if the thermal mass for the messenger field ∼ gT is smaller than its zero

temperature mass at the origin, |mφ| =
√
κµ. Finally, it is worth emphasizing that in the

Figure 3, we draw the effective potential until relatively larger value of Rs just for reference

where high temperature expansion is no longer valid. Thus, only the behavior in small Rs

region is reliable, which is enough to guarantee the stability of the R-string.

3.3 Uplifted SUSY vacuum and stable R-tube

We here point out that there is a phenomenologically safe situation even when the R-strings

are unstable and they deform to R-tubes. One of the interesting features of thermal effects

is lifting the lower energy vacuum. Since SUSY is broken by the thermal effect, the SUSY

vacuum can be lifted and the SUSY-breaking vacuum becomes thermodynamically favored

compared to the lower energy vacuum. To see that, let us focus on the messenger direction

at X = 0 and |φ| = |φ̃|.

Vmgr =

(

κ

g2
φ̂2 − µ2

)2

+ T 4J
(

φ̂2

T 2

)

, (3.19)

11
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Figure 3: The low energy effective theory for λ = 0.27, ǫ = 1 and n = 1. Left panel is for
almost zero temperature k = 0.001. Right panel is for k = 0.01.

where φ̂ ≡ g|φ| = g|φ̃| and

J (x) =
3

2π2
(JB(x)− JB(0)). (3.20)

Here, we subtracted JB(0) because the SUSY breaking vacuum also gets lifted by thermal

effect. It is given by constant term at φ = φ̃ = 0. Thus, it is useful to subtract it and define

the potential as above. Here we can show the following inequalities

0 < xJ ′(x) < J (x). (3.21)

The would-be SUSY vacuum is determined by

∂Vmgr

∂φ̂2
= −2

κ

g2

(

µ2 − κ

g2
φ̂2

)

+ T 2J ′ = 0, ⇒ φ̂ = φ̂vac

(

κ

g2
,
T

µ

)

<
gµ√
κ
. (3.22)

The critical temperature, Tcr, at which the would-be SUSY vacuum and SUSY breaking

vacuum become the same energy density, is determined by the following equation7,

Vmgr

∣

∣

∣

φ̂=φ̂vac

= µ4

(

1− 1

4λ

)

, ⇒ T = Tcr

(

κ

g2
, λ

)

. (3.23)

By taking derivatives with respect to κ and λ of the above equation, we find that Tcr(κ/g
2, λ)

is a monotonically increasing function of κ and λ as

∂Tcr

∂λ
=

µ4

4λ2

(

∂Vmgr

∂T

)−1 ∣
∣

∣

T=Tcr ,φ̂=φ̂vac

> 0,

g2
∂Tcr

∂κ
= 2φ̂2

(

µ2 − κ

g2
φ̂2

)(

∂Vmgr

∂T

)−1 ∣
∣

∣

T=Tcr,φ̂=φ̂vac

> 0, (3.24)

7Note that the field configuration in the realistic expanding Universe does not follow perfectly the R-tube
solution. However, at least the R-tube solution is stable, the dangerous roll-over process will not cause and
hence this consideration gives a good condition to avoid the roll-over problem.
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where we used the inequalities (3.21).

For λ ≫ 1 or κ ≫ 1, that is φ̂2
vac ≪ 4π2T 2

cr, the potential reduces to

Vmgr ≈
(

κ

g2
φ̂2 − µ2

)2

+
1

8
T 2φ̂2, (3.25)

and thus, the functions φ̂vac and Tcr are explicitly given as

φ̂2
vac =

g2

κ

(

µ2 − g2T 2
cr

16κ

)

=
g2µ2

2κ
√
λ
, Tcr =

4
√
κ

g
µ×

√

1− 1

2
√
λ
. (3.26)

Then, the inequality (2.18) means that, for sufficiently large κ,

T1 < Tcr < T2. (3.27)

In the opposite limit, λ ∼ 1/4 or κ ≪ 1, we also find the explicit form8

Vmgr =

(

µ2 − κ

g2
φ̂2

)2

+
π2

30
T 4 ⇒ Tcr = µ

(

30

π2

(

1− 1

4λ

))
1

4

. (3.28)

For
√
κ/g ≪ 1, therefore, we find the inequality Tn < Tcr with an arbitrary n.

Here, we show that the critical temperature of the R-string with the minimal winding

number is always lower than Tcr. By using (3.22), (3.24) and (3.26), we fine the following

relation

∂Tcr

∂κ
<

Tcr

2κ
⇒ Tcr >

4
√
κ

g
µ×

√

1− 1

2
√
λ

(> T1). (3.29)

From the properties noted in the above we can draw a phase diagram as Figure 4. Note that

an R-tube with the minimal winding number n = 1 is always unstable.

As an illustration, we show a stable R-tube solution with the winding number n = 2.

We take parameters κ = ǫ = 1 and k = 0.5, which allow us to use κ ≫ 1 limit as (3.26)

though it is not good enough. From the Figure 1, we see that the tachyonic mass is |m2| ≃
(1.03/

√
2) × √

κµ for λ = 0.27 and ǫ = 1. Since k = 0.5 < 1.03, the R-string with n = 2 is

unstable and turns out to become the R-tube in that case. On the other hand, k = 0.5 is

enough to uplift the SUSY vacuum to stabilize the R-tube as k = 0.5 >
√

2− 1/
√
λ = 0.275.

In the Figure 5 we show the low energy effective potential for the R-tube solution with k = 0.5,

λ = 0.27, ǫ = 1. Clearly there exists the minimum around Rs ∼ 7.2.

8In our model, the gauge group is completely broken in the SUSY-vacuum and hence thermal logarithmic
potential [43] for low temperature regime would not arise. However, even if it appears, it also has an effect to
lift up the SUSY-vacuum, and hence the basic feature does not change if it is positive. In the case of negative
thermal logarithmic potential, the stabilization mechanism for R-tube does not work with λ ∼ 1/4 or κ ≪ 1.
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T=TcHΚL
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Κ

g
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T>Tn,Tc

Tc>T>Tn

Tn,Tc>T

R-string
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Veff

Figure 4: The left panel shows phases of R-string/R-tube. With a winding number n, an
R-string is stable even including quantum effect at high temperature T > Tn, Tcr, and is
unstable in any sense at T < Tcr, Tn. For Tcr > T > Tn, an R-string is classically stable and
for Tn > T > Tcr an R-tube is stable.

Finally, let us comment on the validity to use the thermal potential. In deriving the

thermal potential, we assumed homogeneity at least of order O(T−1). On the other hand,

when we study the stability of solution we put the R-string/R-tube solution which generates

inhomogenioety in the space. A condition of the validity to the thermal potential can be

roughly estimated as
∂φ

φ
≤ T ⇐⇒

√
λµ2

m
∂̃s ≤ T. (3.30)

In the stabilized R-string solution, there is no space dependence of s. Thus this condition is

satisfied. However, as for the R-tube solution shown above, there is space dependence. Using

the dimensionless temperature in (3.16), we can estimate the validity condition,

∂̃s ≤ 4

g
k. (3.31)

The numerical analysis on the R-tube solution for k = 0.5 leads to ∂̃s ≃ 1/4. Thus, our

numerical results are still under control for a proper value of g.

4 Application to the expanding Universe

Now we study how the discussion in the previous section is applied to the constraints on the

realistic cosmology with expanding Universe. Here we focus on the vacuum selection and the

way to avoid the roll-over problem. There are also constraints from the cosmological gravitino

or moduli problem, and R-axion particle abundances, but these are beyond the scope of the

present paper. For the discussion on such problems, see [39] and [40].
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Figure 5: R-tube solution with n = 2, k = 0.5, λ = 0.27, ǫ = 1. A minimum exists around
Rs ∼ 7.2.

Let us follow cosmic histories in our scenario schematically. The thermal mass for the

messengers is given by mT
φ = cφgT , with cφ being the numerical factor of the order of unity

that counts the number of fields contributing the thermal mass. If messengers enter thermal

plasma, it generates thermal mass to the X field, as mT
X = cXκT , where cX is the numerical

factor of the order of unity. Note that during the inflaton oscillation dominated era, the

temperature and the Hubble parameter are related by

T =

(

2

5

)1/4(
90

π2g∗

)1/8

(T 2
RMplH)1/4, (4.1)

where g∗ is the effective relativistic degrees of freedom and TR denotes the reheating tempera-

ture. There are also the so-called Hubble induced mass forX and messengers, mH
φ ≃ mH

X ≃ H ,

which is generated from the Planck suppressed interaction between inflaton and these fields

in supergravity. For small enough κ,

κ <

(

5

2

)1/4(
π2g∗
90

)1/8( |mX |3
T 2
RMpl

)1/4

, (4.2)

the Hubble induced mass overwhelms the thermal mass for X fields when H & |mX |, and in

the following, we consider such a situation. Here, we assume the inflaton oscillation dominated

era since the gravitino problem requires relatively small reheating temperature.

At a high temperature in the inflaton oscillation dominated era, the thermal masses or

the Hubble induced mass for X and messenger fields restore the symmetry and these fields

are set at the origin. As the temperature and the Hubble parameter decreases, the Hubble

induced mass or the thermal mass can no longer fix the fields at the origin and symmetries

are spontaneously broken. If the Hubble induced mass for the X becomes inefficient earlier
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than the thermal mass for messenger fields, the SUSY-breaking vacuum is naturally selected

associated with the R-string formation. This condition can be written as

|mφ| =
√
κµ < mT

φ (H = mX) = cφg

(

2

5

)1/4(
90

π2g∗

)1/8

(T 2
RMplmX)

1/4, (4.3)

which is rewritten in terms of the constraint on the reheating temperature,

TR > TA ≡
(

5π2g∗
72

)1/4(
κ2µ4

(cφg)4MplmX

)
1

2

. (4.4)

In the other case, if |mX | > |mφ|, the Hubble induced mass for X always becomes inefficient

before that for φ, φ̃ become inefficient as discussed in section 2.1. Therefore, one of the

inequality (2.10) and the inequality (4.4) is needed to be satisfied for selecting the SUSY-

breaking vacuum as showed in the Figure 6.

0.0 0.2 0.4 0.6 0.8 1.0

1

4 Λ

-2

0

2

4

Log10B
2

Î
2
F

Figure 6: The region satisfying one of the two inequality T gr
R > TA (defined in (4.12)) and

|mX | > |mφ| with (m3/2/GeV)κ−1/3 = 10−6, 10−3, 100 which are colored by red, blue, and
green respectively. The black region is excluded by the condition of the existence of the
SUSY breaking vacuum.

After X acquires the nonvanishing field value, the R-strings are formed and our discussion

in the previous section can be applied. We have shown that any R-strings with arbitrary

winding numbers are stabilized for sufficiently high temperature,

T > T∞. (4.5)

However, practically, it may be sufficient to protect only the mode with n = 1. In this case,

the condition for the stabilization can be written as

T > min(T1, Tcr) = T1. (4.6)
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As shown in (3.29), Tcr is always higher than T1. Since the R-string networks turn to the

R-string-domain wall networks and immediately decay to R-axion particles at H = ma [41],

we can avoid the roll-over problem if the stabilization mechanism discussed above works at

that time. As shown in the previous section, for
√
κ/g ≪ 1, Tn < Tcr is satisfied. Thus, the

above constraints can be rewritten as follows,

T (H = ma) > T∞ ⇔
√
κµ < mT

φ (H = ma) = cφg

(

2

5

)1/4(
90

π2g∗

)1/8

(T 2
RMplma)

1/4, (4.7)

which is rewritten in terms of the constraint on the reheating temperature,

TR > TB ≡
(

5π2g∗
72

)1/4(
κ2µ4

(cφg)4Mplma

)
1

2

=

√

|mX |
ma

TA, (4.8)

and

T (H = ma) > T1 ⇔
ǫ|q1|√

2

√
κµ < mT

φ (H = ma)) = cφg

(

2

5

)1/4(
90

π2g∗

)1/8

(T 2
RMplma)

1/4,

(4.9)

which, in turn, is expressed as the constraint on the reheating temperature,

TR > TC ≡
(

5π2g∗
1152

)1/4(
ǫ4q41κ

2µ4

(cφg)4Mplma

)1/2

=

∣

∣

∣

∣

ǫ2q21
2

∣

∣

∣

∣

TB. (4.10)

Note that a quantity |ǫ2q21/2|4(< 1), which is compared with a value in Eq.(2.12), can take a

value 1 in the limit of λ → ∞ and also 10−22 in a case of λ = 0.27, ǫ = 1, and thus there are

both cases of TA > TC and TA < TC whereas inequalities TB > TA, TC are always satisfied.

In Figure 7, we illustrate thermal histories by showing Hubble parameter dependences of

various mass terms. In this figure we assumed TA > TC , |mX | > |mφ| just to draw this figure

concretely. The blue line is the Hubble induced mass linear in H . The red lines represent

the thermal masses mT
φ for the messengers with three different reheating temperatures. The

horizontal green lines are the sizes of the tachyonic masses |mX | and |mφ| at the origin with

the following relation,
|mX |
|mφ|

=
ǫ

2
√
λ
. (4.11)

Note that depending on the two parameters, the order of the two masses is changed. Below

we will show that the cases 1 and 2 in Figure 7 realize the successful vacuum selection. At

the point A, the Hubble parameter becomes comparable to the size of tachyonic mass of X

at the origin, so the vacuum starts to slide down to the SUSY breaking vacuum. Sine the
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condition (4.3) is satisfied in these two cases, the SUSY breaking vacuum is successfully chosen.

The points B and C represent the points where T (H = ma) = T∞ and T (H = ma) = T1

are satisfied, respectively. In summary, the case 1 passes both the vacuum selection and

stabilization of all R-strings with arbitrary winding number, whereas the case 2 passes the

vacuum selection but stabilizes only the R-string with n = 1. The case 3 is ruled out by the

vacuum selection if |mφ| > |mX |. With typical values of λ, ǫ, the condition (4.8) is too strong

to be satisfied, and the case 2 or the case 3 are preferred where a value of ǫ2q21/2 plays a quite

important role.

-log H

log Mass

Hinf

ma

H~mx H~ma

|m |X

|m |ϕ

case 2

case 3

m T
ϕ

|m |1
C

Figure 7: In the case 1, the reheating temperature is in TR > TB and the SUSY breaking
vacuum is preferable. R-strings with all winding number are stable until their decay. In
the case 2, the reheating temperature satisfies TB > TR > TA > TC . The vacuum selection
is successful but some of higher winding R-strings are unstable. In the case 3, reheating
temperature is lower TA > TR > TC . The vacuum selection is unsuccessful when the tachyonic
masses at the origin are |mφ| > |mX |.

As a reference, we compare these results to the constraint on the reheating temperature

from the gravitino problem [44],

TR < T gr
R ≡ 6.4× 108 m3/2

( mλ

100GeV

)−2

, (4.12)

where mλ denotes the gaugino mass. This condition comes from the constraint for the ther-

mally produced gravitinos at the time of reheating not to overclose the Universe. Note that

there may be late time entropy production from the moduli decay, which would relax the

constraint on the reheating temperature, but this upper bound on the reheating temperature

is a good reference value.
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Figure 8 shows the window satisfying T gr
R > TA in the parameter space. We can see that

there is a definite parameter space. For relatively large κ, a small gravitino mass is favored

by the vacuum selection. Let us show the existence of non-zero window for T gr
R > TB. In

Figure 9, we show regions satisfying T gr
R > TB. Here the coefficient cφg is roughly estimated

order one, cφg = O(1). We adopt the gaugino mass in the gauge mediation as

mλ = O(0.1)× 1

16π2

g−1(X0)
√
λµ2

κm
, (4.13)

where we assume a small hierarchy between gaugino mass and squark mass by introducing

the small parameter O(0.1) coefficient which can be interpreted as the R-breaking effect for

Majorana gaugino mass. Finally we show examples for the case T gr
R > TC in Figure 10.
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Figure 8: The regions satisfying the condition TB > T gr
R > TA(> TC) that correspond to to

the case 2 in the Figure 7. We take g∗ = 220 by assuming the messengers are not thermalized.

Here we have used the numerical results for the tachyonic masses shown in Figure 1.

In conclusion, we surely have the scenarios that are free from the roll-over problem, avoid-

ing the thermally produced gravitino problem. For this mechanism the value of a tachyonic

mass of a fluctuation around the R-string configuration, q21, often plays a quite important

role. This value is very sensitive with details of the model and can take a value with a quite

wide range as we discussed, and thus, one has to always check this when building a more

realistic model. Of course, there are also constraints from the moduli problem, the moduli

induced gravitino problem, and R-axion problems, which are beyond the scope of the present
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Figure 9: The regions corresponding to the case 1 in Figure 7, T gr
R > TB. We assume g∗ = 220.

All winding strings are stable until the times of their decays. In the left panel the regions col-
ored by purple, red, blue, and green correspond to (m3/2/GeV)κ−1/5 = 10−9, 10−6, 10−3, 100,
respectively. A region with |mX | > |mφ| is almost excluded by this strong condition.
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Figure 10: Three colored regions satisfy TA > T gr
R > TC corresponding to the case 3

in Figure 7. We took λ = 0.27 and g∗ = 220. Tachyonic masses we used (q21, ǫ) =
(10−5.4, 1.4), (10−4.8, 2), (10−4.3, 2.4).
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study. We emphasize that our study is helpful for the future model building and studying the

constraint on such models.

5 Discussion

In this paper, we focused on gauge mediation models and studied the thermal potential to

the messenger generated by the thermal plasma of the standard model particles. However,

in the gravity mediations, interactions to the standard model particles are suppressed by the

Plank mass. It is not obvious to get large enough thermal potential to stabilize the unstable

modes. However, in this case, there is one interesting possibility to stabilize unstable modes.

Supergravity corrections also provide a positive mass term to the fields φ and φ̃,

VSUGRA =
|φ|2
M2

pl

(

g−1
XX̄

(0)− g−1
XX̄

(X0)
)

|f |2 + |φ|2|c|2 + · · · (5.1)

= m2
3/2|φ|2

(

3(g−1
XX̄

(0)− g−1
XX̄

(X0))

g−1
XX̄

(X0)
+ 1

)

+ · · · (5.2)

=
1 + 1/2λ

1− 1/4λ
m2

3/2|φ|2 + · · · , (5.3)

where f = µ2 is the F-term of X and c denote the constant term in the superpotential, we

have not explicitly written similar terms for φ̃ and we used the condition for the cancellation of

the cosmological constant. From the last equality, we see that the mass is positive. In gravity

mediation models, the SUSY breaking scale is relatively large. Therefore, if the gravitino

mass satisfies the following inequality,

|mn| < m3/2. (5.4)

then it may be possible to stabilize R-strings with low winding number. As long as κ is very

small, this condition is satisfied. Also, it is worth mentioning that in such a large SUSY

breaking, the axion mass can be larger than the symmetry breaking scale, ma > |mX |. In

this case, explicit breaking effects are significant, so the R-string is immediately broken after

its formation.

From our study, it may be plausible to assume that in a realistic gauge mediation model

with spontaneous R-breaking, rolling over the potential hill by the unstable solitons does

not occur. In this case, we have to impose further cosmological conditions, such as the

moduli problem or the moduli induced gravitino problem studied in Ref. [39]. Moreover, as

intensively studied in [40], when the R-string decay by axionic domain wall, it produces a

large amount of R-axions. As for the long-lived R-axion, cosmological constraints such as Big

Bang Nucleosynthesis and CMB observation severely constrain the parameter space [40].
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A Property of an

Near the core of R-string, the solution behaves as

Asol
n (ρ) = (anρ)

n for anρ ≪ 1. (A.1)

For large λ a property of a coefficient an can be discussed as follows. Let us consider the

following limit of the action after extracting the vacuum energy

lim
λ→∞

S̃ = −2π

∫ ∞

0

dρ̃ρ̃

{(

(

dA∞

dρ̃

)2

+
n2

ρ̃2
A2

∞

)

+
1

4
(1−A2

∞)2

}

+ constant, (A.2)

with a redefinition of the function and the coordinate

A∞(ρ̃) = lim
λ→∞

A
(

ρ =
√
λρ̃
)

. (A.3)

In this limit, we also have a string solution A∞(ρ̃) = fn(ρ̃) with winding number n and this

solution behaves as

A∞(ρ̃) = fn(ρ̃) ∼ (ãnρ̃)
n for ãnρ̃ ≪ 1. (A.4)

Note that ãn is a constant and depends on only the number n. We know that the radius of

R-string is estimated as ρ̃ ∼ 2n, and this fact implies that

fn(2n) = O(1) ⇒ ãn =
1

n
×O(1). (A.5)

Figure 11 shows the numerical result in the limit of λ → ∞ (A.2), where ãn is well approxi-

mated by ãn = 1/
√
4.5n+ 1.1n2. Therefore, we conclude that λ dependence of an for large λ

(and sufficiently large n) is given by

an =
ãn√
λ
=

1

n
√
λ
×O(1) for λ ≫ 1. (A.6)
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Figure 11: Dots are numerical data of a = ãn and a solid line gives a = 1/
√
4.5n+ 1.1n2.

B Properties of the tachyonic mass

The first excited mode around the R-string has the point ρ = ρc so that

d

dρ

(

ρ
ds

dρ

)

∣

∣

∣

ρ=ρc
= 0, ⇔ Vpot(A

sol
n (ρc)) = q2n. (B.1)

This value of ρc must represent a scale of this excitation mode and thus the following quantity

should be of order one,

γn ≡
√

q2n − Vpot(0)× ρc = O(1). (B.2)

The above two equations give rough estimations of q2n, ρc as follows. Let us assume that the

following inequality

1 +
ǫ2q2n
2

≪ 2

ǫ2
+

1

2λ
. (B.3)

Under this assumption (B.1) can be solved as

(

Asol
n (ρc)

)2 ≈
(

2

ǫ2
+

1

2λ

)−1(

1 +
ǫ2q2n
2

)

≪ 1. (B.4)

Therefore we can use Asol
n (ρ) ≈ (anρ)

n under the assumption and combining (B.2) we find

Asol
n (ρc) ≈ (anρc)

n =
ǫ2γn
2

(

ρc

√

1 +
ǫ2

4λ

)−1

. (B.5)

This result reads

anρc =





ǫ2anγn

2
√

1 + ǫ2

4λ





1

n+1

,
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ǫ2q2n
2

= −1 +
ǫ2γ2

n

2ρ2c
= −1 +

(

ǫ2

2

)
n−1

n+1
(

1 +
ǫ2

4λ

)
1

n+1

(anγn)
2n

n+1 . (B.6)

The assumption (B.3) is satisfied if

√

1 +
ǫ2

4λ
≫ ǫ2anγn

2
. (B.7)

Let us remember that a value of a−1
n is proportional to 2n for large n and

√
λ for large λ and

γn can be expected to be γn ≈ 1 although γn depends on λ, ǫ and n slightly. Sufficiently large

n, large λ and small ǫ satisfy the above and therefore in several limits we find

lim
n→∞

ǫ2q2n
2

= −1, lim
λ→∞

ǫ2q2n
2

= −1, lim
ǫ→0

ǫ2q2n>1

2
= −1, (B.8)

whereas the case with n = 1 gives an important exception as

lim
ǫ→0

ǫ2q21
2

= −1 + a1 × γ1|ǫ→0. (B.9)
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