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Abstract

We exhibit direct relations between the modular doublé/pfs((2,R)) and the quantum
Teichmiuller theory. Explicit representations for theifurs and braiding operations of the
quantum Teichmuller theory are immediate consequences. r€3ults include a simplified
derivation of the Clebsch-Gordan decomposition for thaqgipial series of representation of
the modular double df, (s((2, R)).
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1. Introduction

The modular double o#/,(sl(2,R)) is a non-compact quantum group closely related to the
quantum deformation of the universal enveloping algebral(@f R). It has some interesting
features that are responsible for its relevance to confofigld theory [PT1] TO1], integrable
models [BT2], and quantum Teichmuller theory. The gemesabf the modular double are
represented bpgositiveself-adjoint operators, which was shownlin [BT1] to be rexble for
the remarkable self-duality of the modular double: It is sitaneously the modular double
of Uy(sI(2,R)), with deformation parametef given asj = ™ if ¢™”. This self-duality
was pointed out independently in [F99] and in [PT1], and i paofound consequences in
the applications of this mathematical structure. One malyekample, use it to explain the
guantum-field theoretical self-dualities of the Liouvitleeory [TO1] and of the Sinh-Gordon
model [BT2].

There are various hints that there must be close connedbiemgeen the quantization of the
Teichmuller spaces constructed in [F97, CF1, Kal] on the lmend, and the modular double
of U,(sl(2,R)) on the other hand. First hints came from the observationsermaflf03] that
the fusion move in the quantum Teichmiller theory getseggnted in terms of the 6j-symbols
of the modular double [PT1, PT2]. One may also observe [FE{ the quantum Teichmuller
theory is essentially build from the basic data of the moddtauble of the quanturfux + b)-
group, the so-called multiplicative unitary. As tlier + b)-group is nothing but the Borel
half of SL(2,R), one may expect relations between the quantum Teichmtiiary and the
modular double ot{;(sl(2,R)) to follow by combining the quantum double construction of
Fun,(SL(2,R)) from the quantuniax + b)-group [Ip] with the duality between the modular
doubles off'un,(SL(2,R)) andi/,(s[(2,R)) described in[PT1], and proven in [Ip].

However, all these hints are somewhat indirect. We’'ll hedtdtgt a direct link by establishing
a relation between the Casimir operatorf{s((2,R)) and the geodesic length operators of
the quantum Teichmiller theory. The key observation i tha co-product of the modular
double oft/;(sl(2,R)) gets represented by an operator in the quantum Teichnibiery that
has a simple geometrical interpretation in terms of chawfé&sangulation of the underlying
Riemann surfaces. The combinatorial structure of the quarfieichmuller theory can be used
to find an explicit expression for the Clebsch-Gordan opetaiat describes the decomposition
of the tensor product of two irreducible representationthefmodular double into irreducible



representations.

An immediate consequence is the direct relation betweerkeheel representing the fusion
operation from quantum Teichmuller theory and the b-6jlsgls of the modular doublé [PT1,
PTZ]. We also find, not surprisingly, that the R-operatorha modular double [F99, BT1] is
directly related to the braiding operation of the quantuncfmuller theory.

The Clebsch-Gordan maps of the modular double have prdyibasn constructed in [PT2] as
an integral operator with an explicit kernel. However, espléy the proof of the completeness
for the Clebsch-Gordan decomposition giverlin [PT2] wasegeomplicated. The construction
of the Clebsch-Gordan operator given in this paper wilhalls to re-derive the main results of
[PT2] on the Clebsch-Gordan decomposition in a simpler,tapefully more transparent way.
The explicit construction of the Clebsch-Gordan operatesented below reduces the proof of
completeness to the results of [Ka3, Ka4] on the spectraimdposition of the geodesic length
operators in Teichmiller theory. The proof of this resiMeg in [Ka4] is much simpler than
the proof of the corresponding result on the Casimir opesaiti/, (sl(2,R)) given in [PT2].

Acknowledgements:J.T. would like to thank L. Faddeev for interesting discassiand cor-
respondence. I.N. gratefully acknowledges support by aLHP¥eellence Fellowship of the
Ecole Polytechnique Fédérale de Lausanne.

2. Some notations and conventions

The special function,(U) can be defined in the strigz| < [Scy|, ¢, = i(b+b71) /2 by means
of the integral representation
10400

—2izw
logep(2) = %'0 %Usinh(btf) sinh(b~1w)’ (2.1)
Closely related is the functiom,(z) defined via
er(w) = e BIDT wy(a) " (2:2)
Another useful combination is the functidn, (), defined as
Do) = % 2.3)

For tensor products we will be using the following leg-numig notation. Let us first define,
as usual,
X, =1®..0 X ®...01. (2.4)

r—th
We are using the slightly unusual convention to label tefeiors from the right to the left, as,
for example, i, @ H,;.



3. Modular double

3.1 Prinicpal series representations o#/,(sl(2,R))

We will be considering the Hopf-algebtg (sl(2, R)) which has generatois, F' and K" subject
to the relations,

KE = qEK, K?_ K2
! (B, F] = ————. (3.1)
KE = ¢qEK, q—q"
The algebrd/,(s((2,R)) has the central element
Q=(q—q ') FE—qK*—qK™. (3.2)

The co-product is given as

AEY=E®K+K'®F,
AK) =K®K, (E) (3.3)
AF)=FK+K'®F.

This implies

AQ) =K 'FREK+ K 'E®FK
+QK*+K?0Q+(¢+q¢HK?® K*. (3.4)

This algebra has a one-parameter family of representafns

E. =n,(F):= eTma Meﬂbq

sin b2 ’ ;o _nb
K, =m(K):=e ™, 3.5
_rbq COSh 7b(p + s) J— s (K) (3.5)

sin b2

F.=n,(F):=e :
wherep andq are operators acting on functiorigg) aspf(q) = (27ri)_1a%f(q) andqf(q) =

qf(q), respectively. In the definition§ (3.5) we are parametegiziasq = ¢™*’. There is a
maximal dense subspag® C L*(R) on which all polynomials formed out &, F, andK/, are
well-defined [BT2, Appendix B].

3.2 Modular duality

These representations are distinguished by a remarkalbléusdity property: It is automati-
cally a representation of the quantum gragyis((2, R)), whereg = ¢™/%" if ¢ = e™*°. This
representation is generated from operafeysF,, andK, which are defined by formulae ob-
tained from those i (315) by replacibg— b~—. The subspac®, is simultaneously a maximal
domain for the polynomial functions &, F,, andK,, [BT2], Appendix B].
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This phenomenon was observed independently in[[PT1] ariféD&][ It is closely related to the
fact thatE,, F, andK, arepositiveself-adjoint generators which allows one to constiitct
F. andK, via [BT1]

e=e» f=fr K=K/ (3.6)

using the notations
e := 2sin(7b?) E,

= 2sin(mb®) F,
] (3.7)
& :=2sin(rb %) E, 2

f:
f:=2sin(rb"?)F.

It was proposed in [PT1, BT1] to construct a noncompact quargroup which has asomplete
set of tempered representations the self-dual represamgd,,. 1t's gradually becoming clear
how to realize this suggestion precisely. Relevant stefflgsrdirection were taken in [BT1] by
defining co-product, R-operator and Haar-measure of suciaatgm group. Further important
progress in this direction was recently made in [Ip]. Foilogv[F9¢9], we will in the following
call this noncompact quantum group the modular doublé,6f((2, R)).

3.3 The Whittaker model for DU, (sl>)

A unitarily equivalent family of representations of the nuta double is

2sinwh? By, = e™2aP) K, = e ™ (3.8a)
2sin b F, = e™@7P/2) (2 cosh(27bs) + 2 cosh(2mbp))e™@P/2) | (3.8b)

A joint domain of definition is the spacP of entire functions which decay faster than any
polynomial when going to infinity along the real axis. It isgdo see that this representation is
unitarily equivalent to the one defined [n(B.X}, = U, - X - U7, with

U, := e_%inwb(p —35). (3.9)

In any representation in whidh. are invertible we may represent the action of the Casimir on
the tensor product of two representations, defined as,

Qu = (75, ® m,)(Q), (3.10)
by the formula

Qe =K' (gK: +¢7'K? + Q) ET'ELK, + KT'E, (gKE +¢7'KT? + Q) ET'K,
+ QK2 + K?Q, + (¢ + ¢ MK PKE. (3.11)

Our main task is to diagonalize this operator.



3.4 The model space

It will be useful for us to introduce a space which containsred irreducible representations of
the modular double with multiplicity one.

Let us consider the spacdel := P ® L?(R,, du). We'll choose the measurk: = du(s) as
du(s) := ds 4sinh(27bs) sinh(27b™'s) . (3.12)

This space may be identified with the space of functions ofuartables, taken to be functions
of f(p,,s.). We will consider an operatd® = m,,(Q) which will represent the action of the
Casimir() on M. lIts action is

Q- f(p,, s1) := 2cosh(27bs,) f(p,, s1) - (3.13)

The spaceM becomes a representation of the modular double generatie lmperatorg =
Tu(E), F=m,,(F)andK = r,,(K) which are defined as

2sinmh? E = ™) K=e™, (3.14a)
2sinwh? F = e™97P/2(Q + 2 cosh(27bp))e™@=P/2) | (3.14b)

It is clear by definition thatM decomposes into irreducible representations of the modula
double as

M ~ /EB du(s) Ps , (3.15)

with action of the generators defined above.

3.5 The R-operator

Let us introduce the rescaled generatoasdf via
e := 2sin 7b*E , f .= 2sinb°F . (3.16)

Let us furthermore introduce an anti-self-adjoint elemestch thatk = ¢". We will then
define the following operator oM @ M:

R = ¢"*"Ey(e®f)¢"". (3.17)
R coincides with the R-operator proposed by L. Faddeev in[[Fe@tice that|g,(x)| = 1 for
x € RT. This implies thaR is manifestly unitary.
Theorem 1. The operatoR has the following properties:
i) RAX) = A'(X)R, (3.18)
(11) (ld ® A)R = R13R12, (A ® ld)R = R13R23 5 (319)
(iii) (¢ ®id)R = R, (id®o)R = R, (3.20)
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Lemma 1. LetU andV be positive self-adjoint operators such that = ¢2VU whereg = ¢™*,
The functionE,(z) satisfies the identities

Ey(U) Ey(V) = Ey(U+V), (3.21)
Ey(V) By(U) = Ey(U) Ey(q~ UV) Ey(V). (3.22)
Furthermore, [(3.21)% (3.22).

In the literature, eqs[(3.21) arld (3.22) are often refetoeab the quantum exponential and the
guantum pentagon relations.

To prove the first formula in[{3.19), we use the quantum exptakrelation [3.21l) from
Lemmal with identificatioty = e,K;'f; andV = e,f,K;,

(id® A)R &8I0 (id ® A) (™" go(esf.) ¢™")

@ thhz+hlh3 Eb(elfzK3 +elK2_1f3) thhz+hlh3
)

(BTEJ): ghhahshs Eb(elK§1f3) Eb(elfzK3
— thh3 Ey(e.fy) thm : thhz Ey(e.f,) thhz = RysR.,

g habs

The second formula i (3.119) is proved in the same way.

The R-operator allows us to introduce the braiding of tepsoducts of the representatioRs.
Specifically, let the operatd : P, ® P;, — Ps, ® Ps, be defined byB;, s, = PR, 5,, where
P is the operator that permutes the two tensor factors. Profigfrom Theorenill implies as
usual thaBy, ;, o A(X) = A(X) o By, 5,

4. The Clebsch-Gordan maps of the modular double

In this section we are going to re-derive the main resultddi]] on the Clebsch-Gordan de-
composition of tensor products of representation®tf,(s((2, R)) in a completely new way.
The most difficult part in[[PT2] was to prove the completeneSthe eigenfunctions of the
Casimir operatoQ,, acting on the tensor product of two representations. Thsslrevill
now be obtained by first constructing an explicit unitary rgper which maps,, to a sim-
ple standard forn®”, and then applying the result of Kashaev [Ka4] on the corepless of the
eigenfunctions of’. The resulting proof is much shorter than the one giveni2]PT

4.1 Definition of Clebsch-Gordan maps

The goal is to construct the Clebsch-Gordon projection maps

Cols, 1 P, ®Ps, = Py (4.1)

S§281



that satisfy
Coy, - (ms, @, )(X) = 7, (X) - C3, . (4.2)

§281

It will be convenient to consider the unitary operators

D
Cos, 1 Ps, ®Ps, = M / dlu(ss) Ps;» (4.3)
related toC33,, as
b

Cs,s, = / du(s;) C32,, (4.4)

We note that;, is characterized by the properties
(Coss) " E-Cops, = ELK +K'E,, (4.5a)
(Cszsl)_l ' K : Cszsl = K2K17 (4.5b)
(CSZsl)_l Q- Cszsl = Qzl . (45C)

The “missing” property
(Co,s,) ' -F-C,,, = FK, +K'F,,

is an easy consequence [of (4.5), since invertibilit} afilows us to expresk in terms ofE, K
andQ in our representations.

4.2 Factorization of Clebsch-Gordan maps

We will construct the Clebsch-Gordan maps in the followiagtbrized form:
Cops, = 122 S, Cy - (Thn) ™, (4.6)

where

e The operatoil,, satisfies

T B (To) ™ = EK + KR, (4.7a)
T, Ko (T) ™' = KK, (4.7b)
To Q- (Tw) ™ = Qu, (4.7c)
where
Q! := 2cosh27b(q, — p,) + e 29 Q, + e 2P, 4 e 2mb(Prtan) (4.8)

This means thal',, generates the representation of the co-product in the septation
of the Borel-subalgebra generated Byand K on P,, ® P, , and it simplifiesQ,, to an
operator that acts nontrivially only on one tensor factor.
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e The operatof; mapsL?(R?) to itself, commutes witlk, andE, and map<K’ to a simple
form,

(C1>_1 : Qi/ : Cl = Q/lu (49)
with QY being defined as

Q" = 2cosh 2mbp, + e~ (4.10)

e S, mapsL?(R?) to M in such a way tha®” is mapped to the multiplication operat@r

S;'“E-S, = E,, (4.11a)
S;t-K-S, = K,, (4.11Db)
S;1-Q-S, = Q. (4.11c)

e v32 is a normalization factor that may depend on the positiveajbint operators,,
defined byQ,, = 2 cosh(2bs,,). A convenient choice for>: will be defined later.

It follows easily that the operator defined In_(4.6) satisffes).

4.3 Construction of the Clebsch-Gordan maps

The operatord ,, andC; in (4.6) can be constructed explicitly as

T,, = eb(ql +p.— q2)6—2m‘plqz ) (4128.)
Cl_1 = ep(q, — s, )eXTiEP 761)(& _ pl)e2”slql ) 4.12b
b(q ) (5 F o) ( )

The operatolS, essentially coincides with the operator that mapdo diagonal form. This
operator can be represented by the integral kernel
eb(sl + D1 _'_ Cp — 7/0) —27T’i81(p1+0b)

1|91) — N . 4.13
(pa]s) €b(51—p1—0b—|—10)6 ( )

The functionsy,, (p,) := (p. | s, ) are nothing but the eigenfunctions of the operatoin the
representation wheng is diagonal. It was shown in [K&4] that the eigenfunctigngp, ) are
delta-function orthogonalized and completd#{R),

/]R dp, (s, |p)(p.]s)) = d(s, —s)). (4.14a)

/R du(ss) {pa] ) (s |9} = 6(p, — 1)) (4.14b)

This is equivalent to unitarity of the operaty.
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4.4 \ferification of intertwining property

We want to demonstrate that the operakor satisfies[(4.7). In order to see this, let us calculate

le . E2 . (le)_l = eb(ql + p. — qz) : €7Tb(2qz_(p2+pl)) : (€b<ql + p. — qz)>_1

2 —(ptpr) (0t P2~ Qs — ?5/2) o2 (202~ (pa+p1)
eb(ql +p.—q,+ 16/2)
— 5 (2= (p2+P1)) | (1 4 2m(atpaas)y. 3 (202~ (p2+p1))

=E.K, + (K,)"'Es.
Equation[(4.7c) us verified as follows: Let us writg, = t,,e~2"P192 and calculate
To Lo (To) ! = (4.15)
= t;, - (2cosh2mb(q) — p1 — ) + € 7HOTRIQ) 4 ¢TTPIQ, 4 A tPITa)) L

= 2cosh 27b(q; — p1 — q2)
—I—Q16_7rb(q1_q2)(1 +e27rb(q1+p2—CI2))e—ﬂb(cu—cw)

+ Q2€—7rbp1 (1 + 627rb(q1+p2—q2))e—7rbp1
+ 6—7Tb(ql+P1—Q2)(1 + 627Tb(Q1+P2—CI2+ib/2))(1 + 627rb(Q1+P2—CI2—ib/2))e—ﬂb(ch-i-m—cm)
Comparison of this expression with (3111) proves (4.7c).

The calculations needed to verify (4.9) are very similar.

4.5 The b-Clebsch-Gordan coefficients

The b-Clebsch-Gordan coefficients are defined as the maénmemts of the Clebsch-Gordan
operator,

(53 1525), = (55,05 | Core, [ P2y ) - (4.16)

We have

Proposition 1.
There exists a choice of coefficients, such that the following statements are true:

(&) The b-Clebsch-Gordan coefficients are explicitly gikigrthe formula

1
o s s wy(S1 + 82 — S3)wp(s1 + 85 — S,)wp(s, + 55 — 51) ) 2
3 2 S1 :5 _ —

(G 52 50)y =0(pax = P2 — 1) < (s T 5 5

% 5 (P3—pi-—p?) wy(Py — 81 )wp(pa — 82)ewi(pz(sl+0b)—p1(82+0b))
wb(pu - 321)

% /]R; dp e7r2p(81+82—8u+0b)D%(sz_sl_su_cb) (p -+ pZ)D%(SL_SZ_SZL_Cb) (p — pl)

X D,

2

(sntortsan—ey) (P) (4.17)
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(b) The following Weyl-symmetries hold:

Galzo)s = ol o)y = (1500, = (15250, (4.18)
(c) The b-Clebsch-Gordan coefficients are real,
[Ga 52 0)a) = GR350, (4.19)

The proof can be found in AppendixA.1.

The unitarity of of the Clebsch-Gordan maps;, is equivalent to the following orthogonality
and completeness relations for the Clebsch-Gordan casft;i

/R dpadpy (G155 NG 1525) = 0(pa — Po)d(520 — sh) (4.20)

/R dp(s:,) /R dpay [(52 1520 (G 1350 ) = 0(py — 1,)8(p. — 1)) - (4.21)
N

We finally want to compare our results with thoselof [PT2]. Histreference the authors con-
structed Clebsch-Gordan ma@s? ; : P, @ P, — P;, as integral operators of the form

(i) = [ dodr, (3122),000). @.22)
R2
where
(35 15230), = Niss, 52, $1)D 1 (s, 45t sster) (2, =z, — =) (4.23)
s1tc S2+¢C
x D_%(81_53_81+Cb) (ZEZ - xS - Tb)D—%(Sl—S;;—SZJ,-cb) (‘r3 - xl - Tb) .

The normalization factor will be chosen as

_ 3
N(s;,5,,8,) = (wb(sl R G ‘93)> . (4.24)
wp(Sy + 83 — 82)wp(s, + 55 — 1)
Proposition 2. We have
Cla = Uy - G - (U @ UL (4.25)

The proof is given in Appendix Al2.

4.6 The fusion operation

Let us now consider tensor products of three representatidbhere are two natural ways to
construct unitary operators

&)
C333231 : Ps; & 7Dsz & Psl — M ®/ d,u<5> €s , (426)
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that satisfy
C535251 ' (ﬂ-sg ® ﬂ-sz ® Wsl)(X) = (WM(X) ® 1) : C535251 N (427)

In (4.26) we used the notatian for the one-dimensional module of the algebra of functions
f S — Cwith action given a¥ - e, = f(s)e,;. The variables represents the multiplicity with
which the representatiaM appears in the triple tensor produef, ® P,, ® P,,. Two such
operators can be constructed as

@

Css(szsl) = / dﬂ(su) C353u : (1 ® Czi;l), (428)
@

C(5352)51 = / d/’L(SSZ) C33231 ' (Ciz;z ® 1) . (4'29)

The fusion operatok, .., : [© du(s;,) [© du(s,) Ps, = [© du(sn) [ du(s,) Ps, is defined
as

A333231 = Cs3(szsl) : |:C(S382)81:|T . (430)

This operator commutes with,, and is therefore of the form

®
Asysuss = / dpulsy) Alls,s, s (4.31)

whereA3:,,, is a unitary operatohs’ss, : [© du(s;,) es,, — [©du(sn) es,, ~ LX(S,dpu).

4.7 The b-j symbols

The b-6j symbols are defined as the matrix elements of theatpe;’,, ., ,

{sl sz sﬂ}b — <SZl ‘ Ai:sz& ‘ 532> . (432)

83 84 S32

Propositior 2 allows us to use the results from [PT2] TV] foe talculation of these matrix
elements. The result is

{ae2e), = Alas, ag, an) Aas, as, az) Alag, as, az) Aag, as, o) (4.33)
X /du Sb(u - 04321)Sb(u - 04543)519(” - a642)5b(u - 04651)
X Sb(a4321 - U)Sb(a6431 - U)Sb(a6532 - U)Sb(QQ - U) .

The expression involves the following ingredients:

e We have used the notations = % +is;, as well asa;j, = a; + o + ag, i =
a; + o+ ap+ o fori,j, k.l € {1,2,3,4,5,6}.
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o A(as, an, ) is defined as

Sp(ar + ag + o, — Q) )2
Sb(Oél + Qg — OzS)Sb(Oél + a5 — OéQ)Sb(OéQ + a5 — Oél) .

A(O(g, g, al) - (

e The integral is defined in the cases thate ()/2 + iR by a contoulC which approaches
2@ + iR near infinity, and passes the real axis in the intefél/2, 2Q)). For other values
of the variablesy, it is defined by analytic continuation.

5. Quantum Teichmiller theory

This section presents the definitions and results from tla@igem Teichmuller theory that will
be needed in this paper. We will use the formulation intreduicy R. Kashaev [Kal], see also
[TO5] for a more detailed exposition and a discussion ofetation to the framework of Fock
[F97] and Chekhov and Fock [CF1]. The formulation from [Kafigrts from the quantization of
a somewhat enlarged spaféC). The usual Teichmiiller spadgC) can then be characterized
as subspace of (C) using certain linear constraints. This is motivated by theeovation
that the space§ (C) have natural polarizations, which is not obvious in the folation of
[F97,[CF1].

5.1 Algebra of operators and its representations

For a given surfac€’ with constant negative curvature metric and at least on&tpus one
considers ideal triangulations Such ideal triangulations are defined by maximal collectio
of non-intersecting open geodesics which start and endegidhctures of”. We will assume
that the triangulations are decorated, which means thatimguished corner is chosen in each
triangle.

We will find it convenient to parameterize triangulationstbgir dual graphs which are called
fat graphsp,. The vertices ofp, are in one-to-one correspondence with the triangles ahd
the edges o, are in one-to-one correspondence with the edges die relation between a
trianglet in 7 and the fat grapkp.. is depicted in Figurélly, inherits a natural decoration of
its vertices fromr, as is also indicated in Figuré 1.

The quantum theory associated to the Teichmuller spaee) is defined on the kinematical
level by associating to each vertexc g, o = {vertices of ¢}, of ¢ a pair of generators
Pv, ¢» Which are supposed to satisfy the relations

51}1}’

omi

[Po: 4] = (5.1)
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Figure 1: Graphical representation of the vertexdual to a trianglet. The marked corner
defines a corresponding numbering of the edges that emahate a

There is a natural representation of this algebra on the &zhspace (C) of rapidly decaying
smooth functions)(q), ¢ : po > v — q,, generated from,(g,) := q,, T,(p,) := po, Where

1 0

Wi(e) = adle),  Povle) = goa-

w(q). (5.2)

For each surfacé’ we have thereby defined an algebi(aC) together with a family of repre-
sentationsr,, of A(C) on the Schwarz spac%((]) which are dense subspaces of the Hilbert
spacel(p) ~ L*(R*9~*2"). The next step is to show that the choice of fat graph inessen-
tial by constructing unitary operators,,, : K(¢1) = K(g2) intertwining the representations

T, andm,, .

5.2 The projective representation of the Ptolemy groupoid o ()

The groupoid generated by the changes from one fat graphaihv@nis called the Ptolemy
groupoid. It can be described in terms of generators antdoef see e.gl [T05, Section 3] for
a summary of the relevant results and further references.

Following [Ka3] closely we shall define a projective unitaspresentation of the Ptolemy
groupoid in terms of the following set of unitary operators

i

AU = 6§6—7ri(Pu+qu)26—37riq%
where v, w € ¢, . (5.3)

va = eb<qv + Pw — qw>€—27ripvqw’

The special function,(U) can be defined in the strigsz| < [Scy|, o = i(b+b71) /2 by means
of the integral representation

10+o00 .
1 (Z) _ 1 d_’LU 6—2|zw
el =74 w sinh(bw) sinh(b~1w)

10—o00

(5.4)
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These operators are unitary fdr— |b|)Sb = 0. They satisfy the following relations [Ka3]

1) TewTwTw = TwTw, (5.5a)
(i)  ATwAL = ATuA,, (5.5b)
(i)  TouAuTuw = CALAPL, (5.5¢)
(iv) A} = id, (5.5d)

where¢ = e™4/3, ¢, = L(b+b~1). The relations((5.5a) t6 (5.5d) allow us to define a projectiv
representation of the Ptolemy groupoid as follows.

e Assume that,, € [¢/, ¢|. TOw,, let us associate the operator

U(wyy) = Tuw = K(p) 20 — Tyuv € K(¢).

e For each fat graply and vertices:, v € ¢, let us define the following operators

A7 - K(p)so — Ao e K(p,op).
P K(p)d0 — P,0€K((uv)op).

It follows immediately from [(5.5a)-(5.5d) that the opemstd ,,, A, andP,, can be used to
generate a unitary projective representation of the Piplgmoupoid.

The corrsponding automorphisms of the alged(&a’) are

35,0, (0) := ad[Uy,,](0) :== U O-U (5.6)

Y201 ’ Y201 "

The automorphism,,,.,, generate the canonical quantization of the changes of twdes for

A

7 (C) from one fat graph to another [Ka1].

5.3 The reduction to the Teichmiiller spaces

Recall that the quantum theory defined in this way is not giiéeone we are interested in. It
is the quantum theory of an enlarged spﬁ'c(é?) which is the product of the Teichmller space
with the first homology of”, both considered as real vector spaces [Kal| TO5]. The edirgpd

of the Teichmiiller spac& (C) into 7(C) can be described classically in terms of a certain set
of constraints;, = 0 which characterize the locus @f(C') within 7(C).

To define the quantum representatives of the constraintsslattroduce an embedding of the
first homologyH, (2, R) into 7(C) as follows. Each graph geodesic which represents an
elementy € H,(X, R) may be described by an ordered sequence of vertjcesy,,, and edges
e € ¢, 1 =0,...,n, wherevy = v, eg = e,, and we assume that_;, v; are connected
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by the single edge;. We will definew; = 1 if the arcs connecting; ande;; turn around
the vertexv; in the counterclockwise sense, = —1 otherwise. The edges emanating from
will be numbered:!, j = 1,2, 3 according to the convention introduced in Figlfe 1. To each
c € Hi(X,R) we will assign

n —Qu; if {62‘, ei+1} = {63763}'
Ze = Zuiv U; 0= W D, if {e;, i1} = {€§>€§}a (5.7)
=1 Gv; — Pu; if {6iv 6i+1} = {6?17 622}

Let C, be the subspace iA(C) that is spanned by the, ¢ € H, (2, R).

Lemma 2. — [Kal] The mappingH;(X,R) > ¢ — z. € C, is an isomorphism of Poisson
vector spaces.

Replacingg, by q, andp, by p, in the definition above gives the definition of the operators
z. = z,, . Which represent the constraints in the quantum theory. $ eotie that the constraints
transform under a change of fat grapheas,, (z,, ) = z,, .

5.4 Length operators

A particularly important class of coordinate functions dre tTeichmiuller spaces are the
geodesic length functions. The quantization of these obbérs was studied in [CFL1, CF2,
TO5].

Such length operators can be constructed in general asvi|lB05]. We will first define the
length operators for a case in which the choice of fat gragmplifies the representation of
the curvec. We then explain how to generalize the definition to all otteses.

Let A. be an annulus embedded in the surfateontaining the curve, and lety be a fat graph
which looks inside of4, as depicted in Figule 5.8.

AnnulusA.: Region bounded

by the two dashed circles, (5.8)

and part ofp, contained inA..

Let
L, := 2cosh27mbp. + e~ 2mbac (5.9)

wherep. := 1(ps — da — Pv), de := 2(da + Pa + Po — 2qp).
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In all remaining cases we will define the length operator as follows: There always exists a
fat graphy, for which the definition above can be used to defipg.. Let then

Loe = a, 0 (Lpge) - (5.10)
It can be shown that the length operatbgs. are unambigously defined in this way [TO5].

The length operators satisfy the following properties:

(a) Spectrum: L, . is self-adjoint. The spectrum &f, . is simple and equal t, co). This is
necessary and sufficient for the existence of an opelatorthegeodesic length operator
-such that, . = 2 cosh %IC.

(b) Commutativity:
[Loe, Ly ] =0 if end =0.

(c) Mapping class group invariance:

au(Loe) = Luge, au=apuey, forall e MC(X).

It can furthermore be shown that this definition reprodubesclassical geodesic length func-
tions on7 (C') in the classical limit.

As an example for the use &f (5]10) that will be important for following let us assume that
the curver is the boundary component of a triniéh embedded i’ within which the fat graph
¢’ looks as follows:

(5.11)

Letc., e = 1,2 be the curves which represent the other boundary compookftss indicated
in Figure[5.11.

Proposition 3. L. is given by
Ly = 2cosh(y? +y2) + e YL, +e*L, +ee¥, (5.12)

wherey¢, e = 1,2 are defined ag2 = 27b(q. + z.,), y: = —27b(pe — z, )-

The proof of [5.1R) can be found in Appendik B.
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5.5 The annulus

As a basic building block let us develop the quantum Teidhentheory of an annulus in some
detail. To the simple closed curveghat can be embedded intbwe associate

e the constraint

1
VAR §(pa —qq + pb) > (513)

e the length operatdr is defined as il (519).

The operatot is positive-self-adjoint, and its spectral decomposifiéad] was recalled in the
above.

For later use let us construct the change of representatiom the representation in whigf
andp, are diagonal to a representation wheendL are diagonal. To this aim let us introduce
d:= %(qa + pa — Py + 295). We have

z,d] = (2m)~",  [zp]=0, [z4] =0,

p,q] = (27)™",  [d,p]=0, [d,q =0.
Let (p, z | be an eigenvector aof andz with eigenvalue® andz, respectively, andlp,, p, ) an
eigenvector op,, andp, with eigenvalueg, andp,, respectively. It follows easily that

(D, 2| paspy) = 8(py — 2 + p)e™ PH=P)” (5.14)

The transformation

wy(s =P+ —10) itrispa)
— | dpdp, mil+2 (2 — p) 5.15
¥(s, z) /R2 L e — (Pas 2 — D) (5.15)

will then map a wave functiod (p,, py) in the representation which diagonalizes p; to the
corresponding wave function(s, z) in the representation which diagonalizeandz.

5.6 Teichmiller theory for surfaces with holes

The formulation of quantum Teichmuller theory introducdzbve has only punctures (holes
with vanishing geodesic circumference) as boundary compisn In order to generalize to
holes of non-vanishing geodesic circumference one maesept each hole as the result of
cutting along a geodesic surrounding a pair of punctures.

Example for a
_ The same fat graph
fat graph in the _
o after cutting
vicinity of two
out the hole
punctures (crosses)
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On a surfac&€’ with n holes one may chooseto have the following simple standard form near
at mostn — 1 of the holes:

(5.16)

The price to pay is a fairly complicated reprééentation efdlosed curves which surround the
remaining holes.

The simple form of the fat graph near the incoming boundammanents allows us to use the
transformation[(5.15) to pass to a representation wherkettygh operators and constraints as-
sociated to these holes are diagonal. In order to descrébeetulting hybrid representation let
us denote by, andz, the assignments of values andz, to each incoming holé, while p
assigns real numbeys to all verticesv of » which do not coincide with any vertexor i’ as-
sociated to an incoming hole The states will then be described by wave-functiofys s, z)

on which the operatork;, andz, act as operators of multiplication Bycosh 27bs;, and z,
respectively.

For a given holeh one may define a projectioH (Cjs,.)) of H(C') to the eigenspace with
fixed eigenvalue8 cosh 27bs andc of L, andz,. States irH (s .)) are represented by wave-
functions«, (p,), wherep,, assigns real values to all vertices¢n \ {k, #'}. The mapping
class action ort (C') commutes wittL;, andz,,. It follows that the operators! () representing
the mapping class group action &1(C') project to operator$/, ,(x) generating an action of
MCG(C) onH(Chs,z))-

5.7 The cutting operation

Cutting C' along the curve: embedded in an annulus as considered above will produce two
surfaceg” andC” with boundary containing copies of the cukvéNe may regard” andC”’ as
subsurfaces af’. The mapping class groupsCG(C”) andMCG(C”) thereby get embedded as
subgroups intdICG(C'). The images oMCG(C”) andMCG(C") are generated by the Dehn
twist alongc together with diffeomorphisms @f” andC’ which act trivially onA, respectively.

The spectral decomposition bf andz. defines a natural counterpart of the operation to(¢ut
into C” andC” within the quantum Teichmdiller theory. It produces an isgphism

@D @
Se : H(C) ds / de H(Chings.zy) @ H(Chrsrny) - (5.17)
R4 R

The explicit form of the operatds. is easily found with the help of the integral transformation
(5.15). To this aim it is sufficient to split the sgg of vertices ofy asyy = ¢fj U {a, b} U ¢},
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wherea andb are the vertices lying insidg, and the sep;, contains the vertices ip \ {a, b}
located inC". Writing accordinglyW (p) = V(p", pa, po, P'), Withp” : ¢ — Randp’ : ¢ — R,
we may use the integral transformation (5.15) to migp) = W(p”, pa, oy, p’) to a function
w(p”, s, z,p') which represents an element of the Hilbert space on the oig3&17).

6. Relation between the modular double and quantum Teichriiller theory

We are now ready to address our main aim. Recall that the rapdouble is characterized
by the following main objects: The operatdts, s, which generate the co-product, and the R-
operatoR. We are going to show that these operators have very natieapretations in within
the quantum Teichmdller theory.

6.1 The hole algebra

Recall that the representation, of the modular doubleDl{,(sl,) has positive self-adjoint
generatorg, K, F. It will again be convenient to replace the gener&tdiy the CasimiQ

F=(¢—q ") 2(Q+¢K*+ ¢ 'K?E. (6.1)

We will identify the representation, of the algebraD{,(sl,) with the hole algebra which is
associated to the following subgraph of a fat graph

The identification is such that

E — ™0(2di—pi)
o Qe L. 6.2)
— e TP

We furthermore note that local changes of the fat graph areallyy mapped to unitary equiva-
lence transformations of the representatiqi. A particularly important one is the equivalence
transformation corresponding to the automorphisnwe have
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Proposition 4. The automorphismw coincides with the automorphism associated to the follow-
ing movelv,

(6.3)

after setting the constraint, to zero.

The proof is given in AppendixIB.

6.2 Tensor products of representations

It is clearly natural to identify the tensor product of twgresentations with the following
subgraph

(6.4)

Let L,, be the operator which represents the geodesic length @iderwn the representation
corresponding to the fat graph above.

The key observation to be made is formulated in the followaraposition:

Proposition 5. The projection of the length operatar, onto the subspace of vanishing con-
straints becomes equal to the Casifir,,

L, — Q.. (6.5)

Proof. In order to calculate the explicit form of the length operamathe representation associ-
ated to the fat grapih (8.4), we may take Proposiiion 3 as @rgjguoint. It remains to calculate
the change of representation induced by the mqyevhich is diagrammatically represented as

(6.6)

N<
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This move is represented by the operai@y. This calculation is obtained from the one de-
scribed above il (4.15) by simple substitutions, resulitintipe expression

L, = pt2mbz e2nb(ql—qz+pz—pl)(2 cosh 27b(p, — z,) + L,)
472z o™ =92)(9 cosh 27b(p, — z,) + Ly)

+e2mbPemz) | g 2P| 4 9 cog rhReTP TPtz (6.7)

Setting the constraints to zero and comparing with (3.14ldgithe claimed result. O

6.3 The Clebsch-Gordan maps

Note that the operat®’, defined in[(4.8) essentially coincides with the particubgaresentation
of a length operator given if(5.112) after setting the caists to zero. It follows immediately
from this observation that one may without loss of gengragsume that the projection of the
operatorC! defined in [7.R) taz/, = 0, i = 1,2 coincides with the operator; - S, - C,
which appears as a building block in the construction of tleb&ch-Gordan mags;,;, given

in equation[(4.6). More precisely:

e The operatoc, corresponds to the following move:

L

21

It remains to notice that the operatdr,,)~* which appears in the factorized representation of
the full Clebsch-Gordan maps,

Cszsl = Sl : Cl : (le)_l ) (68)
corresponds to the moveg; depicted in[(6.5).

These observations may be summarized by saying that thec@gbordan maps of the modular
double represent the quantum cutting operation assodiateed curve:,, surrounding holes,
andh, within the hybrid representation assigned to the graph.i) (6
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6.4 The R-operator

Let us consider the following mowe,

T21

When this move is composed with the operation of exchandingdices 1 and 2 one gets
the braid move representing the clockwise rotation of holasd1 around each other until the
positions have been exchanged. The operatevhich represents this move within the quantum
Teichmiller theory is easily found to be

=W, AT AW, (6.9)

This is easily seen by noting that the operate(T;;)~'A; " represents the following move:

Proposition 6. The operator,, gets mapped to the R-operater
Proof. We have
AT AT = e™PiPrey(q; — Lps +q; — 4ps) e 7PP2
This is identified as the operator
g " Ey(e®e) g ",

Usingad[W,](e) = f yieldsR, as claimed. O
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7. A representation of the Moore-Seiberg groupoid in genu$

We will now present an important application of the resulie\ee. It was shown ir [T05] that
the quantum Teichmiller theory defines a representatitimedfloore-Seiberg groupoid, which
is important for understanding relations to conformal figldory. The results of this paper
will allow us to calculate the operators which generate gpgasentation of the Moore-Seiberg
groupoid explicitly.

7.1 Pants decompositions

Let us consider hyperbolic surfacésof genus) with n holes. We will assume that the holes
are represented by geodesics in the hyperbolic metric. Aspecomposition of a hyperbolic
surfaceC' is defined by a cut system which in this context may be repteddvy a collection
C ={m,...,v—3} of non-intersecting simple closed geodesicsorirhe complement’ \ C

is a disjoint union| |, C§ ; of three-holed spheres (trinions). One may reconsttufiom the
resulting collection of trinions by pairwise gluing of balary components.

For given lengths of the three boundary geodesics there msgau@ hyperbolic metric on each
trinion g 5. Introducing a numbering of the boundary geodesi¢s), i = 1,2, 3, one gets
three distinguished geodesic args(v), 7, j = 1, 2, 3 which connect the boundary components
pairwise. Up to homotopy there are exactly two tri-valemgrsl™,. onCy ; that do not intersect
any v;;(v). We may assume that these graphs glue to two connected grapbs C. The
pair of datas = (C,,I',), wherel', is one of the MS graphE. associated to a hyperbolic
pants decomposition, can be used to distinguish differantgpdecompositions in hyperbolic
geometry. The role of the gragh, is to distinguish pants decompositions obtained from each
other by means of Dehn twists, rotations of one boundary corapt by27 before gluing.

7.2 The Moore-Seiberg groupoid

Let us note/[M$| BK] that any two different pants decompaosisic,, o; can be connected by
a sequence of elementary moves localized in subsurfaa€g,06f type Cy 5, Cy 4. These will
be called theB, S and F', respectively. Graphical representations for the eleargmhovesB,
Z, andF are given in Figurels| 2] 3 and 4, respectively.

One may formalize the resulting structure by introducingva-timensional CW complex
M(C) with set of verticesM,(C) given by the pants decompositions and a set of edges
M, (C) associated to the elementary moves.

The Moore-Seiberg groupoid is defined to be the path grougioitt (C). It can be described
in terms of generators and relations, the generators besarated with the edges int, (C),
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Figure 3: The moveZ, : 0 — Z,0

and the relations associated with the faces6fC'). The classification of the relations was first
presented in_[MS], and rigorous mathematical proofs haws lpgesented in [FG, BK]. The
relations are all represented by sequences of moves ledalizsubsurface§', ,, with genus

g = 0 andn = 3,4,5 punctures. Graphical representations of the relationsheafound in
IMS, [FG,[BK].

7.3 Representation of the Moore-Seiberg groupoid

A representation of the Moore-Seiberg groupoid can be nétairom the quantum Teichmuller
theory as follows[[T05].

7.3.1

The starting point is a construction which produces a faplgra, associated to pants decom-
positionso. This construction depends on a choice of decoration foméspdecompositionr
which is the choice of a distinguished boundary componergdah trinion. The distinguished
boundary component will be called outgoing, the other bamp@omponent incoming. The
decoration is indicated by an asterisk in the Figltdg 2, 3andfe identify the Z-move as the
elementary change of decorations. In the following we wsi he notatiomr for decorated
pants decompositions.

The construction described in [TI05] can be applied for a subkdecorated pants decomposi-
tions which is defined by the condition that outgoing bougdamponents are never glued to
another. Such pants decompositions will be called adniessib
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—>

Figure 4: The mové, : 0, — 0; = F.o,
There is a natural fat graph, associated te which is defined by gluing the following pieces:

e For each curve separating two incoming boundary component let us inseahanilusA..,
with fat graph locally of the form depicted in Figuie (5.8).

e Trinions: See Figuré (5.11).

e Holes: See Figuré (5.16).

Gluing these pieces in the obvious way will produce the cotetegraphy, associated to the
Moore-Seiberg graph we started from.

7.3.2

Following [TO5], we will now describe how to map a maximal cmting family of length
operators to diagonal form. We will start from the hybrid negentation described above in
which the length operators and constraints associate@ fotioming holes are diagonal. Recall
that states are represented by wave-functiogs s, z,) in such a representation, wheye:

oo — R, andg, is the subset op, that does not contaih nor i’ for any incoming holé..

A maximal commuting family of length operators is assoddtethe cut systerd, of a pants
decompostion.

To each vertex of I', assign the length operatdf and L} to the incoming and., to the
outgoing boundary components of the pair of paRtscontainingv. The main tool is the
operatorC’ which mapd., to a simple standard form,

CT L, (CT)™" = 2cosh 27bp, + e~ 2™ (7.1)
Such an operator can be constructed explicitly as

_ ; €b(Sl _|‘ p’l)) _ il _ _ i(z2 1
CZ— Sf;usi; = e 2718, Qv v e 2mis py ep(do — 512) 1 e 27rz(zvpv+z,uqv)7 (72)
(55:5%) oo T (alan =)
wheres!, » = 1, 2 are the positive self-adjoint operators defined.by= 2 cosh 2xbs!, andz?,
z} are the constraints associated to the incoming boundarpaeoents of,. The operatoC,
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is clearly related to the operat€y, that appeared as a key ingredient of the Clebsch-Gordan
maps for the modular double in the previous part.

The map to the length representation is then constructdeeasrtiered product over the opera-
torsC,, v € ¢, 0. The resulting operator may be represented as the folloaxptjcit integral
transformation: Let be the assignment: o, — R,. Define

D(s, ) = / (HU€¢0dpv Kﬁgﬁf(sv,pv)) V(p; s6, ) - (7.3)

Rn—3

The kernelK?:7 (s, p) has the explicit form

K=2(s,p) = (s|C"|p) (7.4)

— 2718, Ep\S + P —271S1 — —2mi(z2p+21
= (s SRR e q ) e )
1

wy(s, —p' = s,) —2mi -1, —2mi
_ do’ (sl /] e 2mis2a (o — s e mi(z2p+219)
[l (sl SR e g = 5.) »)

_ Co/ dp/ 6—27Ti(32—2b)(32+p’_p+21)eb(p — 2 — s, _p/ + Zb)
R

wb(sl - p, - Sz) wb(s + p/ - Zb) e—27rizz(2p—zl)
wy(s, + P+ 5.) wy(s — P+ 2) .

X

In the last step we have used the complex conjugate of equii@l) in AppendixA below.

7.3.3

The construction above canonically defines operdtgrs, intertwining between the represen-
tationsr,, andr,, as
Uso, =C,. - W C!

(ep3 Po,Por oy )

(7.5)

whereW,, . isany operator representing the myg, , ., | between the fat graph associated
to o, ando,, respectively. In this way one defines operatérsA,, andZ, associated to the
elementary move®,, F. and Z, between different MS-graphs, respectively. These operato
satisfy operatorial versions of the Moore-Seiberg coaaist conditions/ [T05], which follow
immediately from the relations of the Ptolemy groupoid g4nh.5).

One should note that the definition (I7.5) can be applied dnligeé decorated pants decom-
positionso, ando, are both admissible. However, this restriction will quicklirn out to be
inessential. To begin with, let us note that the definitiord€an indeed be applied to all
operators that appear in the relations of the Moore-Seigergpoid. A quick inspection of
the relations listed in [BK, TO5] shows that all the decodapants decompositions appearing
therein are admissible.
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The wave-functions(s) := @(s, 2,)|,,—0 represents the projection of the wave-functibrio
the subspace defined by vanishing constraints The operatord),,,, commute with the

constraints,, ., in the sense that

Uo.or * Zpore = Zgo, e * Uoso, - (7.6)

The projections of the operatoBs, A., andZ, define operator8,, A., andZ, which satisfy
the relations of the Moore-Seiberg groupoid up to possilbdgeptive phases.

7.3.4

The representation of the Moore-Seiberg groupoid definedAb) has nice locality properties
in the sense that the operator representing a move locatizzdubsurfac€” of C' will only

act on the variables, associated to the edgesof I', that have nontrivial intersection with
C'. In order to make this precise and easily visible in the notat let us introduce the one-
dimensional Hilbert spacH;:, associated to a three-holed sph€pg with parameters;, i =

1,2, 3 associated to the boundary components according the numghm=mvention indicated
on the left of Figuré 2. Note that edgesof the MS graph determine curves in the cut
system. The eigenvaluds of the operators... will be parameterized, as before, in terms of
real numbers, such thatl, = 2 cosh 27bs.. To a pants decomposition we may then associate
the direct integral of Hilbert spaces

S5}
o= [ TLdnts) @M 7.7)

+ ecoy vEOo)
We denoted the set of internal edges of the MS graply o1, and the set of vertices hyy.

As a useful notation let us introduce “basis vectofs'| for ., more precisely distributions
on dense subspaces &f, such that the wave-function(s) of a state| ¢ ) is represented as
¥(s) = (s]|v). Representin@{, as in [Z.Y) one may identify

(s] = ®U§j((5))81(v)7 (7.8)

veEoQ

wherev3?_ is understood as an element of the d@igg,sl)t of the Hilbert spacé{:*

S981 "
The operator8,,, Z, andA, will be represented in the following form: Given functiof%’;,
andZ:’,, of three variables one may define multiplication operaBendZ as

B-vs = B3 0% (7.9a)

§281 8281 782817

Z-vB, =75 v . (7.9b)

S281 8281 8183
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For each vertex of I', the representatio (4.7) suggests an obvious way t®|dind Z to
operator, andZ, mappingH, to Hp,, andH z, ., respectively.

Let furthermores, ando; be the pants decompositions@f , depicted on the left and right of
Figurel4 respectively. The operatdss H,, — H,, can be represented as

52

A ) Uzgszl ® ,U::igl = /Sv d'u(s32) F51153z [zi ::i:| ,U::_jlsl ® ,U::;;z : (79C)
For each pants decompositierand each edgeof I', one may then usA to define operators
Ac :He = Hio-

7.3.5

Indeed, it is easy to see that the operat®ysA., andZ, defined vial[(7.b) are of the form
described in Subsectidn 7.8.4. The fact tBatandZ, act as multiplication operators &,
follows from the observation that these operators, as csitydse checked, commute with the
length operators associated to the boundary componentdrofien. The form claimed for
A. follows from the fact that this operator commutes with léngperators associated to the
boundary components of the four-holed sph€ge containinge.

It is now clear how the representation of the Moore-Seibeoygoid is extended from pairs
(0,,0,) of admissible pants decompositions to all pairs o,) of pants decompositions.

7.4 Explicit form of the generators

We now come to one of the main applications of the connecteiwéen the modular double
and the quantum Teichmller theory: It will allow us to agkte the explicit representation of
the operator8,, A., andZ,. As explained above, it suffices to find the correspondingaipes
B, Z andA which take the form specified in equatiohs {7.9) above. Theltravill be

B3, = eritimsizsita) (7.10a)
F821832 [zz ii ] = { z; zi z?i }b Y (7.10b)
Z3, = 1. (7.10c)

§281

This result will be a rather easy consequence of the theaoatabetween the modular double
and quantum Teichmuller theory observed above.
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Figure 5: Graphical representation for Equafion7.11.
7.4.1 The operatoA

It follows from the relation between Clebsch-Gordan maps eperatorsC, observed above
that the operator& can be expressed in terms of the operafdrés,, s, s,) defined as

AT (s5,8,,5:) = Cy(55,5,1)Ci(5,,8,) T [Cl(ssz, $1)C, (53, sz)]_1 ) (7.11)

12

We have given a diagrammatic representation for the theabmeX™ in Figure[5.

By projectingA™ (s, s, s,) to vanishing constraints one gets an operaly , : H,, — H,,.
It is not hard to see that we ha\A{SISl = A5, WhereA, . ,, is the operator defined in
(4.30). Indeed, we may expreAs,,,, in the following form

As;szsl = Cz(33a 521)C1(527 Sl) ’ Tz_31 Tl_zl T23 T13 ’ [Cl(sﬁa Sl)C2(837 82)}

By using [5.5R) one easily simplifies this expression to trenfgiven in [Z.1l). This result
allows us to conclude that the matrix elements of the fusioeratorA are given by the b-6j
symbols{ s 52 52 } .

83 84 S32

7.4.2 The operatoB

It follows from our main result in Subsectién 6.4 that the igper B, is represented bR, r,,,
whereP,, is the permutation operator. It was shownlin [BT1] that thebSth-Gordan maps
diagonalize this operator, with eigenvalue beifity 251+,

7.4.3 The operator

Let us, on the one hand, consider the relation in the Mooree8ggroupoid drawn in Figufe 6.
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3 2
3 2
*
u
* e
* E—
v u
Fe V %
4 1
4 1
z,zt ZyZy'
3 2
*Tu
R N
4 1

Figure 6: A relation in the Moore-Seiberg groupoid.

This relation implies the symmetry relation

3 sz] — <2321 )—1284

821532 [34 S1 S281

w28, 2 (7.12)

53521 7 S21532 [sz S3 53283 5451

Note, on the other hand, that the coefficie{1 3 02 o }b satisfy the tetrahedral symmetries

0y O
o1 o 045} — oz 045} — Jazas Oc1} — Jazay Ocs} (7 13)
a3z aqg at Jp a4 a3z at Jp Qg at a3z Jp al az at Jp? '

as follows easily from the integral representation (4.F3hm the comparison it is easy to see
that we must have’s’s, = 1, as claimed.
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A. Calculation of the Clebsch-Gordan coefficients

A.1 Proof of Proposition[d

As the most tedious step let us calculate the matrix elenadrite operatoi,, C;*, which is
defined as

Cls|5:5) == (paypa | Toa 61 [ Dars 80 ) - (A.1)

Proposition 7. The matrix elements df,, C;* are explicitly given by the formula

C(;i ‘;i ;;i ) = 5(]921 — P2 — pl) e%(Asl—’_ASZ_ASu)wb(Sl + S, — 511)wb(321 + S, — 31)
‘(pg—pf—pg) wb(pl - Sl)wb(pz - SZ) ewi(pz(sl+cb)—pl(sz+cb))

x ¥
wb(pzl - 521)

X \/’]R dp eﬂ'lp(sl"rSz—Szl‘i‘Cb)D%(SZ_SL_SZL_Cb) (p + pZ)D%(Sl_Sz_SZL_Cl)) (p — pl)

x D%(sl+sz+su—cb)(p) ' (A-2)
Proof. By using
ey(Qu 4 pa — qp)e TP = ¢TIy (q, +p, — py), (A.3)
it is easy to see that
C(5]525) = 0(pa — P2 — 1) C52, (D1, Dan) (A.4)
where
C32 (P par) = (Prlen(dy — pr 4+ p2) G 52 ) (A.5)
As a preparation it will be convenient to rewrif&! using [2.2) in the form
Gl i= ey, — sp)ermioos Dl a5 (A6)

wb(31 — P~ 32) .

The matrix element(Al4) may then be calculated by insettiv@resolutions of the identity as
follows,

C;jgl (pl7p2l> = /2 dp/dp” <p1 ‘ eb(ql — Ps +p21) |p/ > X (A7)
R
wb(sl + p” + Sz)

wyp(s, —p" — s,)

27iS2q1 ‘ p// >

X <p/ ‘ eb(ql - 82)6 <p” ‘ 511> .

The ingredients of the kernel are the following:

1. The matrix elemer{p, |e,(q, — ps + p2)|P'):
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We may use the integral identity
o) = G [ dye Ty 4 g, (A®)
R—i0
where(, = e1:(1-4¢}) in order to represent the functiepin this matrix element. We get

<p1|€b(q1 —p, +p21>|p/> — Co/ dy e—m’y2€b(y+cb) <pl‘e—27ri(q1—P1+pu)y|p/>
R—i0

= Co/ dy e_my26b(y + o) TPV I 5 () oy — )
R—i0

— Co 627Ti(p/_p1)(p1_p21)eb(p/ — pl + Cb) . (Ag)

2. The matrix elemenp’|e,(q, — s,)e*™ 29 |p"):

We now use a variant of the integral identity (A.8) which tskiee form

( ) C_l / p —omizy 627ricby (A 10)
ep(x) = [t .
' * Jr-io ’ eb(—y — &)
A calculation similar to the one leading fo (A.9) gives now
(o — s | ) = 0 [ dy ey — )
' : ° R—i0 eb(—y - Cb) ’
. 627ri(52+0b)(52+17”—1”,) A1l
= Co €b(p/—82—p”—cb) . ( . )
3. The integral ovep':
Let us focus on the integral ovgfrappearing in[(Al7):
T = / dp’ (py]en(qr — pu + par) [P YD | en(ar — s,)e™ 2% | p") . (A.12)
R
Inserting [A.9) and[(A.11) yields
I/ — 627T’i(81+cb)(81+p”)627Tip1 (pu—m) X
X / dp/ 6_27ripl(pu+51+cb_p1) eb(p, — D + Cb) ) (A13)
R+i0 eb(p/ —s,—p' - Cb)
By using
/dz 6—2wiz(u+cb)m = ¢! eo(u — ) (A.14)
R er(z —x — ) ° ep(—x —cp)ep(u)’
we may calculate
7 ST epa — 1) (A.15)
5 )

6b(p1 — S5, — p” - Cb)eb(pzl + S, — pl) ‘
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It is now convenient to rewrite the resulting expressioremrts of the functionu,(z) related to
ep(x) via (2.2). We find using,, = p, + p,

T — erilsater)(sa=pa) g=mipasa % (P3—pi—13) wy(p2 + 52) Wy (0" — p2a) emiP"(s2mpate) (A 16)
wy(p" + 5, — Py + cp)
Taking into account that
wy(82, — P — )
wy(820 + P + )
we may use[(A.TI5) to get a single integral representatiot'far (p,, p.. ), which takes the form

(p"|s,) = , (A.17)

5 (pl,pu) = e%i(pg_pf—Pg)em(sz-i-cz,)(Sz—pl)e—m’pzs; wb(p2 4 Sz) IH, (A18)

where the integrdl” is defined as

T / i wy(p — Par) wy(p + 81+ 8,) wy(p + 8, — 51) eminspta) (A 10)
wy(p+ 8, — pr 4+ ) W(Pp + 521 + ) Wo(P — S21 + )

R—30
We’'ll need to rewrite this integral further. Let us first inttuce the combination

wy(z + )

D,(z) = o —a)

(A.20)
In terms of this function we may writé” as
I /R dp sl p (P (s b= P+ ) (A.21)
X D1 (g tssmssmep) (P + 5 (81 F 82+ 52+ @)
XDy oo (D (52— 50— 5+ ).
By using the identities [BT2, Equation (A.34)]

/d:c Do(z 4 ) Da(z 4 v) D, (7 + w)e 2™ = (A.22)

= AuprsDatpte, (U — v)e‘2m(a+6+c”)w /dx e~ D (x +v)Dg«(x 4+ u)Ds« (x + w) ,
and

Da(x)D(y) = Dy gy (5la=b+2+9)) Dy, GO —ata+y), (A23)

2

we find thatC'(3::5:51) is indeed represented by the formula{A.2), a claimed. O

S2
11P2P1

With the help of the integral identity (A.22) it is straigbtfvard to check that the expression
given in (4.17) has the Weyl-symmetriés (4.18). The red#itg9) follows immediately since

[Galpiol = (1550, (A.24)
Keeping in mind that
[< 83,03 | Cous, [ P2y 1 ”* = (P20 | T, Cl_l | $5:05) (A.25)

one may complete the proof of Propositidn 1 by comparing dpeessions(4.17) and@ (A.2).
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A.2 Proof of Proposition[Z

As the main technical step let us calculate the Fourierstaamation of the b-Clebsch-Gordan
coefficients( 3 | & Sl)b defined in[(4.23). We need to calculate the following intégra

(Zi Zi Zi)ZT _ / dl’g e—2m‘k3m3/ dl’zdl’l ezﬂi(kzwz‘i‘klml)(ii :svzz gsﬂll)b (A.26)
R R2
Proposition 8. We have
(1), =0(ks =k — ky) erillonterhlota) (A27)

X N(s3,8,,8;) Wp(—8, — 8, — 83)wp(S1 + S3 — S,)wp(S, + 53 — 5,)

% /Rdy e—m’(83—s;—sl—cz,)yD%(81+82+83_Cb)(y)

X D%(sz—33—sl—cb) (y + kl)D (s1—83—82—¢p) (y - kl) :

1
2
Proof. After using the integral transformation

Du(x) = wy(2a + o) / dy e ™D, (y) (A.28)
R

in order to express the functioP, (z) which appears in the first line of (4123), we get the
integral

s3 |82 80\FPT _
(k‘g k, kl)b = N(Ssv 82, 51) Wp(—51 — 8, — 83) (A.29)
X/ dy e7r2(53+cb)yDl(Sl+sz+83_0b) (y) / dﬂ?g e—27rzk3m3/ dl’zdl’l e27rz(kzx2+klml) 6—27rz(x2—xl)y
R 2 R R2
PT _ _ Sit¢ _ _ 521t
X D—%(sz—sg—sl-l-cb) (CL’Z L3 2 )D—%(sl—sg—sﬁ—cb) (I‘g L1 2 ) :

Substituting the variables of integrationas= y, + x3+ (s, +¢) /2, &, =y, + 23— (S, + ) /2
yields

(13 52), " = N(s5 80 80) wh(—sy — 50 — 53) Tt ot (A.30)

% /dy 6M(S3_82_81_Cb)yD§(sl+sz+53—cb)(y)/de e—27ri(k3—kz—kl):c3
R R

% /]RdyZ 6_2my2(y_k2) D‘%(sz—s:;—sl-i-cb)(yZ) /]Rdyl €2m‘y1(y+k1) D_%(Sl_SB_SzJFCb)(yl)’

The integrals ovey, andy, may be carried out using (A.P8), while the integral oveyields a
delta-distributiord (ks — k, — k,). We arrive at the formula

(2 15m), =0(ks — by — ki) N(sy, 5, 5,) €7 Rt halota)) (A.31)

X wy(—8, — 8, — S$3)wp(s;, + 53 — $,)wp(s, + 53 — 1)

X /]R; dy eﬂ—i(SS_SZ_SI_Cb)yD%(Sl+82+83—cb) (y)

x D (y - kZ)D (s1—83—52—¢p) <y - kl) ’

$(s2—s3—81—Cp) 3
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Substitutingy — —y and using thaD,(z) = D,(—x) completes the proof. O

It remains to compare the resulting expression (A.27) th{). We find that

s = )P = 52) st
wy(p; — 53)

We observe that the terms in the first line of (A.32) represeetunitary transformation be-

tween the representatidn (B.5) and the Whittaker made).(318e prefactor in the second line

depends only on the triple of Casimir eigenvalues and reptesa change of normalization of

the Clebsch-Gordan maps.

(53 S2 51) = N(Ss,szasl)

Pp3 P2 pa

(o), . (A32)

P3 'P2p1/b

B. Proofs of some technical results

B.1 Proof of Proposition[4

The movell; defined in[(6.8) may be factorized into the following thremsie moves:

First move: The movep; o w.,, diagrammatically represented as follows

i1

PiOWs;

Second moveThe movew_,., diagrammatically represented as follows

1’1

Third move: The movep; o w;,,, diagrammatically represented as follows

i1/

We have

, (B.1)
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1

wherez, := 1(py — qo + p;). This is equivalent tad[W,](K,) = K.

Furthermore
ad[Wl](ewb@qi—Pi)) — 6—%’(2%—[31)(2 cosh 27Tb(pi _ 21) + Ll)e—%b@qi—m) (B.2)

This is equivalent tad[W,](E,) = F,.

B.2 Proof of Proposition[3
We need to calculatad[U,, (L), where
L := 2coshmb(py + qu — pa) + €™ Po=(qatpa)) (B.3)

andU,, is the operator representing the madvg which is diagrammatically represented as:

The calculation may be performed in three steps.

First step: The movep; ' o w., diagrammatically represented as follows

-1
Pe OWeh
A

Calculation ofad[A_ ! T, (L):

L' = ad[A; ' T.](L) =2coshwb(py — qe 4 o — pa) + ™ PoH(2Pe—de) = (da+pa))
+ eﬂb(2qb+qe_Pb_(qa+Pa)) . (84)

Second step:The movell/;, diagrammatically represented as follows
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Calculation ofad[W,](L"):
L” :=ad[W,](L") (B.5)
—_— 2 COSh Wb(_pb + 221 — qe _|_ qa — pa> + eWb(_Pb+Zl+(2Pe—Qe)_(Qa+Pa))
+ : ¢~ ™0(2a+de—Py+(datPa)) (2 cosh 27b(py — z,) + |_l) :
wherez, := (p. + pa — qc).

Third step: The movew,,, diagrammatically represented as follows

Calculation ofad[T,,](L”): We factorizeT,, = T},e ™9 and collect the terms with equal
weight with respect to the adjoint action of the argument q, + p, of T}, = €,(dp — qa + Pa):
L" = ad[T} | < : 2mb(Pr=21) (b2 —Gutpe) g =mb(dape))
+ Ptz (2pe—de)=(datpa)) 4 =72 F+detPa—da))
1 €2 (T2t ae P —a) | TG —pa)) | )

— . o2mb(py—21) (e_Wb(qu+qe_qa+Pa) + e—ﬂb(qa—Pa)) (1 + e2ﬂb(qb—qa+pa))_1 .

+ 67Tb(_pb+zl+(2pe_Qe)_(Qa"FPa)) + e—ﬂb(2qz)+qe+pa—qa)|_l

4 e~ 2mb(py—21) (e—ﬂb(2qb+qe+pa—qa) + eﬂb(qa—pa)) (1 + 627rb(Qb_Qa+Pa)> )

wherez, = %(pa — gq + 9.). Collecting the terms yields
L :e—2wb(pb—zl+qb+zz) + e—27rb(pb—zl)|_Z + e—27rb(qb+z7_)|_l

+ 2cosh 2wb(py — qp — 2, — 2,) - (B.6)
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