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Abstract
The axial charge of the nucleon g4 and the pion decay constant f, are computed in two-flavor
lattice QCD. The simulations are carried out on lattices of various volumes and lattice spacings.
Results are reported for pion masses as low as m,; = 130 MeV. The volume dependence of g4 and
fr can be understood quantitatively in terms of lattice ChPT. At the physical pion mass we find
ga = 1.24(4) and f, =89+1.1£1.8 MeV, using ro = 0.50(1) fm to set the scale, in good agreement

with experiment. As a by-product we obtain the low-energy constant Iy = 4.2(1).

PACS numbers: 12.38.Gc¢



I. INTRODUCTION

The axial charge g4 of the nucleon is a fundamental measure of nucleon structure. While

ga has been known accurately for many years from neutron [ decays, a calculation OjjA

]7

except perhaps [4], underestimate the experimental value by a large amount. The resolution

from first principles still presents a significant challenge. Present lattice calculations

of this problem is of great importance to any further calculation of hadron structure.

Lattice calculations of g4 are in many ways connected to calculations of the pion decay
constant f;. Both quantities involve the axial vector current, which is not conserved and
thus needs to be renormalized. Though it is standard practice nowadays to compute the
renormalization constant nonperturbatively |6, H], some scope of uncertainty remains [§].
Another common feature is that g4 and f, seem to be affected by large finite size corrections,
in particular at small pion masses, which to leading order ChEFT and ChPT H] appear
to be the same in both cases. This led us to suggest to determine g4 from the ratio ga/f.
First results ] looked indeed encouraging.

In this paper we present our results on g4 and f, for two flavors of nonperturbatively
O(a) improved Wilson fermions and Wilson plaquette action ] This includes simulations
about the physical pion mass and on various lattice volumes and at various lattice spacings.
The main focus is on finite size corrections, and the extrapolation of g4 and f; to the

thermodynamic limit at the physical point.

II. LATTICE SIMULATION

Our lattice ensembles are listed in Table[[l The pion masses and the chirally extrapolated
values of 7¢/a are taken from our preceding paper [13] on the nucleon mass and sigma term.
The Sommer parameter was found to be ro = 0.50(1) fm, which we will use to set the scale
throughout this paper. The ensembles cover three § values, § = 5.25, 5.29 and 5.40, with
lattice spacings a = 0.076, 0.071 and 0.060 fm.

We employ the improved axial vector current

Au(x) = Q(x)'yu%q(x) + aCAauq(x)%Q(x) ) (1)

where c4 is taken from M] The improvement term does not contribute to forward matrix

elements, but it will contribute to f;. The calculation of g4 follows ﬂﬂ, H, m] with one
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B K Volume amy ga afr ro/a

5.25(0.13460|16 x 32(0.4932(10) |1.442 0.0886(8

5.25(0.13520|16 x 32]0.3821(13)|1.438(20) |0.0756(8

5.25(0.13575|243 x 48|0.2556(5 0.0635(5) |6.603(53)

)
5.25(0.13600 243 x 48|0.1840(7) 0.0550(4

5.25(0.13620|323 x 64|0.0997(11) |1.368(51) [0.0439(6

5.29(0.13400|163 x 32|0.5767(11) |1.437(12) [0.0936(9

5.29(0.13500|163 x 32|0.4206(9) |1.409(12) [0.0778(5

5.29/0.13550 (123 x 32(0.3605(32)|1.181(60) [0.0568(8

5.29(0.13550|163 x 32|0.3325(14) |1.371(20) [0.0675(6

5.29(0.13550|243 x 48|0.3270(6) |1.459(11) |0.0689(7

5.29(0.13590 123 x 32(0.3369(62)|0.967(105) [0.0345(9

5.29/0.13590|163 x 32|0.2518(15)|1.271(32) |0.0559(5
7.004(54)

5.29(0.13590|243 x 48|0.2395(5) |1.426(7) |0.0588(3

5.29(0.13632|243 x 48(0.1112(9 0.0398(4

5.29(0.13632|323 x 64|0.1070(5 0.0440(3

5.29(0.13632|40% x 64|0.1050(3

)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
0.0445(3)
)

5.29|0.13640 (483 x 64(0.0570(7) |1.572(52) [0.0408(11)

5.40(0.13500 (243 x 48(0.4030(4) |1.474(7) [0.0691(5

5.40(0.13560|243 x 48(0.3123(7 0.0620(5

5.40/0.13610|243 x 48|0.2208(7

)
)
)
)
)
5.29|0.13640|40% x 64(0.0660(8) |1.363(105) |0.0375(5
)
)
)
) 0.0513(4
)

5.40(0.13625|243 x 48(0.1902(6 0.0470(3

5.40/0.13640|323 x 64(0.1505(5) |1.402(17) |0.0442(4

5.40(0.13660 323 x 64|0.0845(6) |1.206(79

(
(
(
(
(
(
(
(
(
(
(
(
(
5.29(0.13620|243 x 48|0.1552(6

(
(
(
(
(
(
(
(
(
(
(
( 0.0342(4
(

(
(
(
(
(
(
(
(
(
(
(
(
(
0.0478(3
(
(
(
(
(
(
(
(
(
(
(
(
(

)
) )
) )
) )
8.285(74)
5.40(0.13640|243 x 48|0.1538(10)|1.261(34) |0.0419(4)
) )
) )
) )

5.40(0.13660 (483 x 64(0.0797(3) |1.403 0.0362(3

TABLE I: Parameters of our lattice data sets, together with the pion mass, the bare axial charge

and the pion decay constant. Also listed are the chirally extrapolated values of ry/a.
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FIG. 1: The ratio R as a function of the source-sink time separation ¢ on the 24® x 48 lattice at

B =5.29, k = 0.13590.

exception, namely that on the 48% x 64 lattice at § = 5.29, x = 0.13640 we have employed
Wuppertal smearing instead of Jacobi smearing. It involves computing the ratio of two- and

three-point functions ~
(NVa (1) A (1) Np(0)) 2)
(N@®N(0))

N and N being the nucleon creation and annihilation operators at zero momentum. Any

Raﬁ(t, 7') =

smearing of the source (at time 0) and sink operators (at time t) is cancelled in this ratio.
For f = 5.4 we use t = 17, while the lightest two ensembles at § = 5.29, k = 0.13640 and
k = 0.13632, use t = 15. All other ensembles use ¢ = 13.

In [4] it has been argued that contributions from excited states might be the reason for
g4 falling short of the experimental value. To investigate this scenario, we have performed
additional simulations on the 243 x 48 lattice at 3 = 5.29, k = 0.13590 with a large range of
different source-sink separations, ¢t = 11,---, 19, albeit with somewhat lower statistics than
our reference point at ¢ = 13. In Fig. [[l we show the ratio R for various time separations
t between source and sink. If true, we should find a larger value at separations ¢ > 13.
However, we do not see any systematic deviation of R from our result at ¢t = 13 within the
error bars, not even for ¢t = 11. This provides us with confidence that our choices of ¢ are
sufficient with our choice of source and sink smearing. Similar conclusions were found in |3].

Our smearing parameters are tuned to give a rms radius of ~ 0.5 fm, which is about half

the radius of the nucleon. For this level of smearing no further improvement of the extracted



result for g4 was found by employing variational techniques B], which systematically sep-
arate excited states out from the ground state at source and sink.

The calculation of f, follows E] We use the notation employed in ChPT, with the
experimental value fr+ = 92.2MeV. Our final results for the bare quantities, g4 and af;,

on all of our ensembles are given in Table Il

III. FINITE SIZE CORRECTIONS

Let us first consider the finite size corrections to g4. Utilizing the (nonrelativistic) small
scale expansion (SSE) of the ChEFT, including pion, nucleon (N) and A(1232) degrees of

freedom, we obtain to O(€®) [10]

gA(Lg)Az Oif)‘(oo) = _4:’;72}3 %0 Lﬂ"f') +A(L) (3)
with
In|#0
s [Tary 3 [l — 24 R )
In|#0
-t [T X[m0 - 24w ) "
In|#0
camin 0 S (V) [oowm - SEER]
In|#0

where A = m,L and A(y) = f(my,y)L with f(m,,y) = \/m2 + y2 + 2yAy, Ay being the
A — N mass difference. Ky and K; denote the modified Bessel functions, and ¢4 and g; are
the leading axial AN and AA couplings. The parameter ¢4 should not be confused with
the improvement coefficient c4 in eq. ().

The second term in eq. [B]), A(L), receives contributions from chiral loops, which renor-
malize the axial charge and act on intermediate A baryons [10]. It turns out that the various

contributions to A(L) effectively cancel each other over a wide range of A values. This has
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been noticed by the authors of B] as well. To state an example, let us consider the 48 x 64
lattice at f = 5.29, k = 0.13640. This lattice has the lowest pion mass and is especially
important for our final conclusions. Taking c4 = 1.5 from [20] and g; = 2.16 from SU(6),

we find —0.044 for the total contribution, but only 4+0.001 for A(L). We thus may assume

0a(D)—ga(o0) _ ml = Ki(An))
galo0) 47r2f3|§0 | ©)

The finite size corrections to f, have been computed in H] within the context of ChPT.
To NLO (o< m?2) the outcome is
fx(L) = falo0) _  m3 3 Ki(Aln])

filoo) amf? An| (6)
|n|#0

The NNLO corrections are found to be very small and, thus, can safely be neglected.

This finally shows that the leading finite size corrections to g4 and f, are basically the
same and will cancel in the ratio g4/ f,. Once fo, the pion decay constant in the chiral limit,
has been fixed, expressions (Bl and (@) have only one free parameter, ga(oco) and fr(oc0),
respectively.

The NLO correction to the pion mass reads ]

ma(L) — mo(00)  m2 = Ka(Aln))
o) T T6mR 2 Am] )
Inl0

At smaller values of m,L, m,L < 3, this expression alone cannot describe the observed
finite size effects [13]. That is not surprising, since in a finite spatial box chiral symmetry
does not break down spontaneously. This is because giving the system enough time it will

rotate through all vacua. This results in a mass gap at vanishing quark masses ],

3
TreS T 5 227374 1 AN 8
" 2f2L3(1 + A) )
with
2
A = -7 02257849591
0
(9)
0.8375369106 /1 - 272
i {0.088431628 B — (Z In (AJL?) + In (A3L )) )

where A; are the intrinsic scale parameters of the low—eneEJr constants [; =
]

In (A7 /m2 ) [24], With m, phys being the physical pion mass. In we found that the

7



0.08 T
0.115 -
0.07 -
0.11
3 I 3 -
E o006 =
© I © L
0.105 -
0.05 - —
©=0.13640 ] 0.1 = ©£=0.13632
0.04 1 1 | 1 1 1 | 1 1 1 | 1 1 1 L 1 | 1 1 1 | 1 1 1 | 1 1 T
4 6 8 10 4 6 8 10
L/r, L/r,

FIG. 2: The pion mass am, as a function of lattice size for two ensembles at S = 5.29. The solid
line shows a fit of eq. (I0) to the data. The dashed line shows the NLO result, eq. (), fitted to

the smallest mass point.

pion mass extrapolates indeed to a finite value in the chiral limit, in good agreement with the

expected result (§]). This also has an effect on m, in the region of small, but nonvanishing,
quark masses [25]. We thus expect the finite size correction to be effectively given by
m3 Ki(A|n]) 3c(my)
(L) =m, + = + 10
ma(L) = ma(00) + 572 zn: Nn| | 2f2I3(1+ A) (10)
[n|#0

with the parameter ¢(m,) rapidly dropping to zero at larger pion masses.

IV. EXTRAPOLATION TO INFINITE VOLUME

In the following fits we take fo = 86 MeV @] There is some freedom in the value of
the pion mass m, to take in eqs. (Bl), (6) and (I0). We choose m, = m,(c0) in A, A(y) and
c(my), and m, = m, (L) otherwise.

Let us first consider the pion mass. In Fig. 2l we show the fits of eq. (I0) to m, for two
of our lattice ensembles. The corrections to m, are well described by this equation. Apart
from m,(c0), we have one free parameter, ¢(m,), only. Equally good fits are obtained for
p = 5.40, k = 0.13660 and 0.13640. The parameter c¢(m,) is found to vanish with a large

inverse power of the pion mass.The finite size corrections predicted by the NLO expression
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FIG. 3: The bare axial charge g4 and the bare pion decay constant af, as a function of the spatial

extent of the lattice, together with the leading order finite size corrections of egs. (Bl and (@).



(@), on the other hand, are nowhere near as big as the effect shown by the data. In Table [l
we list our final pion masses. Our lowest mass turns out to be m, = 130(5) MeV.

Let us now turn to the axial charge and the pion decay constant. In Fig. [3] we show the
fits of egs. (Bl) and (@) to g4 and af, respectively, for our three lowest pion masses. It shows
that the finite size effects are well described by the leading order formulae. The corrections
are large, in particular at the physical pion mass, displayed by the top two figures. On the
L = 3fm lattice the corrections are of the order of 10% still.

To obtain continuum numbers, we need to renormalize the axial vector current. That

reads

Al = Z4 (1+ baamg) A, . (11)

The coefficient by is required to maintain O(a) improvement for nonvanishing quark masses
m, as well. The renormalization constant Z4 has been computed nonperturbatively in [7],

employing the Rome-Southampton method ﬂa], with the result

B ‘ 5.25 5.29 5.40

(12)
Z,0.760(1) 0.764(1) 0.777(1)
The coeflicient by is only known perturbatively ], ie.
by =1+0.1522¢%. (13)

We denote the renormalized axial charge and pion decay constant by ¢ and f£, respectively.
In Table[Ilwe give our extrapolated numbers. For pion masses m, < 300 MeV we demand
that we have at least two lattice volumes to ensure a controlled extrapolation. This excludes

the point at = 5.25, kK = 0.13620 with pion mass m, ~ 250 MeV.

V. FINAL RESULTS AND DISCUSSION

Our results for g% are plotted in Fig.[d Since after finite volume corrections our lightest
pion mass is 130 MeV, no extrapolation is required. Instead, we quote our result at our
lightest pion mass, namely

gi=1244004, (14)

in good agreement with the experimental value. It turns out that g% hovers around ~ 1.1

for m, = 250 MeV, a feature it shares with most other lattice calculations [5]. Only on the
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B | Kk |maz[MeV]l g¢f |fF[MeV]
5.25(0.13600| 479(2) |1.07(1){108.9(0.8)
5.29(0.13620| 426(2) |1.05(2)|103.6(0.6)
5.29(0.13632| 284(2) |1.10(2)|94.7(0.6)
5.29(0.13640| 130(5) |1.24(4)|89.7(1.5)
5.40(0.13640| 492(2) |1.09(1)|112.3(0.9)
5.40(0.13660| 253(2) |1.09(2)(93.0(0.7)

TABLE II: The pion mass and the renormalized axial coupling and pion decay constant extrapo-

lated to the infinite volume for m, < 500 MeV and rg = 0.50 fm.

very last 100 MeV from the physical point does g% rise to its final value. This phenomenon
@, @] Near

is not totally unexpected, from general arguments @] and from ChEFT B,
the chiral limit ChEFT predicts, following the notation of [10],

03
g . .
gﬁ(mﬂ) = 921 - 167;42]”2 m?r +4 [Bg(mfrphyS) - 2921 Bzo(mTrphyS)} mi
0
03 0 (15)
94 — ga/2

=y mfr In(my /My phys) + O (mf’r) )

To this order, both sets of chiral expansions, B, @] and @], are equivalent with By = dy4
and By = dyg. In (I5)) we have chosen A = mypnys (A being the scale parameter of the
dimensional regularization). The coupling Bj, cannot be observed independently of Bj.
Taking Bl (M phys) = 0, the preferred value of Bj is [31] By (my pnys) = (—1.4+1.2) GeV ™2
A fit of the leading order chiral formula (&) to the data points in Fig. @ is shown by the
shaded area. The fit gives ¢4 = 1.26(7) and B (M phys) = (—2.1 + 1.0) GeV 2. We do not
see any scaling violations in the region where we have results at multiple lattice spacings,
i.e. m; 2 250 MeV. However, below that region we cannot draw any further conclusions.
Our results for fF are plotted in Fig. Bl Again, no extrapolation to the physical point is

needed, where we obtain from our lightest simulation point
fF=89.7+15+1.8MeV, (16)

using 7o = 0.50(1) fm. The second error in eq. ([I6]) is due to the error on ry. In the case of

fE we do not see any scaling violations either.
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FIG. 4: The renormalized axial charge g% in the infinite volume plotted against m2(c0), together

with the experimental value g4 = 1.27 (x). The shaded area shows the fit of eq. (IE]) to the data.
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FIG. 5: The renormalized pion decay constant fZ in the infinite volume plotted against m2(co),
together with the experimental value fr = 92.2MeV (x). The curve shows a fit of eq. (IT7) to the

data.
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Instead of taking f® from the entry at the lowest pion mass, eq. (6], it might be a better
idea to include the adjacent data points in the analysis as well and fit the data by a chiral

ansatz ],

2 -1
mﬂ'

The result of the fit is shown in Fig.[Bl At the physical point we obtain the result

fE=8964+1.1+1.8 MeV, (18)

which is fully consistent with the number in eq. (I6). The main effect is that the statistical
error has reduced by 30%. In the chiral limit we obtain fy = 86(1) MeV, which agrees with
the number used in the finite size correction formulae. A fit of the chiral ansatz (7)) to the

lowest four data points with A = 0 gives the low-energy constant

ly =In (A3/m2 pys) =4.2£0.1. (19)

7 phys

Though eqgs. (Bl) and (6] describe the finite size corrections very well, it should be noted
that other choices of the pion decay constant (for example f, instead of fy) are possible.
There is also some ambiguity in the determination of the renormalization constant Z, [§].
Finite size corrections and uncertainties of Z4 can be evaded by considering the ratio g4/ f.
In Fig. 6 we plot the ratio g4/ fr for our (raw) data points listed in Table [ restricting
ourselves to pion masses m, < 750 MeV and again taking 7o = 0.50(1) fm to set the scale. If
we have more than one volume at a given k value, we show the result of the largest volume.
The data points for all three § values lie nicely on a universal curve. The lowest pion mass
in Fig.[6lis 157MeV (as opposed to 130 MeV in the infinite volume).

The leading order chiral expansion of g4/f; (in the infinite volume) can be cast in the

form M, , ]

g—A:A+Bmfr+Cmfrlnmfr+Dmi. (20)

Ja
We have fitted eq. (20) to the data points in Fig. B The result is shown by the solid curve.

At the physical point this gives

“]7[—“‘ — 13.954 0.71 + 0.30 GeV ! | (21)

™

Again, the second error is due to the error on ry. Multiplying the ratio (ZII) by the physical
value of f., fr =92.2MeV, we then obtain

g% =1.29+0.05+0.03. (22)
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FIG. 6: The ratio ga/fr, together with the experimental value (x). The curve shows a fit of

eq. (20) to the data.

This result is in agreement with the direct calculation of g¥ given in eq. ([4)), which involved
extrapolation of g4 to the infinite volume and nonperturbative renormalization.

In Fig. [6l we have set the scale by 7o = 0.50(1) fm. Alternatively, we could have set the
scale by the physical value of f,. That would give the value

gh=1.2740.05. (23)
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