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bDipartimento di Fisica, Università di Milano and INFN, Sezione di Milano, Via Celoria 16, I-20133 Milano, Italy
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Abstract

We summarize and extend previous results on the comparison of threshold resummation, performed, using soft-

collinear effective theory (SCET), in the Becher-Neubert approach, to the standard perturbative QCD formalism based

on factorization and resummation of Mellin moments of partonic cross sections. We show that the logarithmic accu-

racy of this SCET result can be extended by half a logarithmic order, thereby bringing it in full agreement with the

standard QCD result if a suitable choice is made for the soft scale µs which characterizes the SCET result. We provide

a master formula relating the two approaches for other scale choices. We then show that with the Becher-Neubert scale

choice the Landau pole, which in the perturbative QCD approach is usually removed through power- or exponentially

suppressed terms, in the SCET approach is removed by logarithmically subleading terms which break factorization.

Such terms may become leading for generic choices of parton distributions, and are always leading when resummation

is used far enough from the hadronic threshold.

Keywords: QCD, soft-gluon, threshold, resummation, soft-collinear effective theory

1. Soft resummation and scale choices

Threshold resummation [1, 2] plays an important role

in extending and stabilizing the accuracy of perturba-

tive results, and it may be of some relevance even for

hadronic processes which are quite far from thresh-

old [3, 4], due to the fact that the underlying par-

tonic process can be rather closer to threshold than

the hadronic one [5]. All-order resummed results are

known to lead to a divergent series when expanded out

in powers of the strong coupling: this is physically due

to the fact that resummation is obtained by choosing as

a scale of the parton-level process the maximum energy

of the radiated partons [6, 7], which tends to zero in

the threshold limit. The divergence can be tamed by in-

troducing suitable subleading contributions, such as ex-

ponentially suppressed terms outside the physical kine-

matic region [8], or power-suppressed terms [9, 10].

∗Speaker.

In Ref. [11] it was suggested, within the context of a

SCET approach to threshold resummation, that the di-

vergence can be tamed by making a hadronic choice of

scale. In SCET this is possible because resummed re-

sults are characterized by a “soft scale” µs: the Becher-

Neubert (BN) scale choice consists of expressing µs in

terms of kinematic variables of the hadronic scattering

process. The meaning of this choice is not obvious in

the conventional QCD approach, where, because of per-

turbative factorization, the partonic cross section, which

is being resummed, is independent of the hadronic kine-

matic variables.

In Ref. [13] we have clarified this issue by explic-

itly exhibiting a relation between the µs dependent re-

summed SCET result, and the standard (µs independent)

QCD expression. Specializing to the BN scale choice

(while taking the Drell-Yan process [12] as an exam-

ple) we were able to show that in the SCET result, with

the BN scale choice, the divergence is removed through
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QCD: A(αs) D(αs) ḡ0(αs) accuracy: αn
s lnk N

SCET: Γcusp(αs) γW (αs) H, s̃DY accuracy: αn
s lnk(µs/M)

LL 1-loop — tree-level k = 2n

NLL* 2-loop 1-loop tree-level 2n − 1 ≤ k ≤ 2n

NLL 2-loop 1-loop 1-loop 2n − 2 ≤ k ≤ 2n

NNLL* 3-loop 2-loop 1-loop 2n − 3 ≤ k ≤ 2n

NNLL 3-loop 2-loop 2-loop 2n − 4 ≤ k ≤ 2n

Table 1: Orders of logarithmic approximations and accuracy of the predicted logarithms in perturbative QCD (first header) and SCET (second

header). The last columns refers to the content of the coefficient function. In Ref. [12], only the NkLL* counting is considered for the SCET

resummation.

terms which are logarithmically subleading in compar-

ison to the logarithmic accuracy of the SCET result of

Ref. [12], which is by half a logarithmic order lower

than that of the standard QCD result.

Here we show that the accuracy of the SCET result

of Ref. [12] can actually be increased to the same level

as that of the QCD result, and we rederive, within this

higher accuracy, our master formula, which thus be-

comes particularly transparent. We then use this im-

proved master formula to discuss various problems re-

lated to the BN scale choice.

2. Resummation of the Drell-Yan process in SCET

and QCD

We consider for definiteness inclusive Drell-Yan pro-

duction, but the same discussion applies to other pro-

cesses, such as Higgs production in gluon-gluon fusion,

with minimal modifications. The dimensionless invari-

ant mass distribution σ(τ,M2) = 1
τσ0

dσDY

dM2 , with M the

invariant mass of the pair and σ0 the leading order par-

tonic cross section, can be written schematically (omit-

ting a sum over partons) in factorized form as

σ(τ,M2) =

∫ 1

τ

dz

z
L

(

τ

z

)

C(z,M2), (1)

where L is the parton luminosity, s the hadronic center-

of-mass energy squared, and τ = M2

s
, so that the

hadronic threshold limit is τ → 1. The perturbatively

computable coefficient function C(z,M2) is normalized

so that C(z,M2) = δ(1− z) at leading order in the strong

coupling αs. In the sequel, without significant loss of

generality, we shall always choose the renormalization

and factorization scales µ2
F
= µ2

R
= M2.

Standard QCD resummation follows from a Mellin-

space renormalization-group argument [6, 7]: indeed,

at the resummed level, both the convolution Eq. (1) and

the gluon radiation phase space factorize, so at the re-

summed level one may write

σ(N,M2) =

∫ 1

0

dτ τN−1σ(τ,M2) = L(N) C(N,M2)

(2)

where the N-space resummed coefficient function has

the form [1, 2]

CQCD(N,M2) = ḡ0

(

αs(M2)
)

exp S̄

(

M2,
M2

N2

)

(3)

where

S̄

(

M2,
M2

N2

)

=

∫ 1

0

dz
zN−1 − 1

1 − z
(4)

×

[ ∫ M2(1−z)2

M2

dµ2

µ2
2A

(

αs(µ
2)
)

+ D
(

αs([1 − z]2M2)
)

]

.

The functions ḡ0(αs), A(αs) and D(αs) are power series

in αs, with ḡ0(0) = 1 and A(0) = D(0) = 0.

Because resummation is obtained through exponen-

tiation, it might seem natural to also exponentiate the

function ḡ0. However, unlike S̄(M2,M2/N2), ḡ0 is inde-

pendent of N and only depends on αs(M2). As a conse-

quence, it turns out that simply including an extra term

in ḡ0 at each order increases the logarithmic accuracy of

the coefficient function by half a logarithmic order. This

is summarized in Table 1, where the logarithmic accu-

racy obtained by including a given number of terms in

ḡ0, A, and D is summarized. A given accuracy means

that all and only the logarithmically enhanced contribu-

tions to the coefficient function listed in the last column

are correctly predicted. At leading logarithmic (LL) ac-

curacy only the largest power of ln N at each order in αs

is predicted; adding one order in each of the functions

A, D, and ḡ0 one then obtains the next-to-leading log-

arithmic (NLL) accuracy, which correctly predicts two

powers more, and so on to NkLL accuracy. However, if
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ḡ0 is exponentiated and a power counting is performed

at the level of exponents, it may seem more natural to

include one less order in ḡ0. This results in the NkLL*

accuracy, also shown in table, which is lower by one

power of ln N at each order in αs than the NkLL accu-

racy.

The resummed SCET expression for Drell-Yan pair

production is given by [12]1

CSCET(z,M2, µ2
s) = H(M2)U(M2, µ2

s)S (z,M2, µ2
s) (5)

where H(M2) (hard function) is a power series in

αs(M2),

S (z,M2, µ2
s) = s̃DY

(

ln
M2

µ2
s

+
∂

∂η
, µs

)

(1 − z)2η

1 − z

e−2γη

Γ(2η)
(6)

(soft function) depends on

η =

∫ µ2
s

M2

dµ2

µ2
Γcusp

(

αs(µ
2)
)

, Γcusp(αs) = A(αs),

(7)

s̃DY(L, µs) is a series in αs(µ
2
s) with L-dependent coeffi-

cients, and

ln U(M2, µ2
s) = −

∫ µ2
s

M2

dµ2

µ2

×

[

Γcusp

(

αs(µ
2)
)

ln
µ2

M2
− γW

(

αs(µ
2)
)

]

, (8)

where γW (αs) is also a series in αs, with γW (0) = 0. The

scale µs is a soft matching scale of the effective theory,

and CSCET formally does not depend on it, up to sublead-

ing terms. However, the SCET result resums powers of

ln
µs

M
, so this choice of scale determines what is being

resummed.

Again, a given logarithmic accuracy is obtained by

including a finite number of terms in the perturbative ex-

pansion of the functions which determine the resummed

result, namely Γcusp, γW , H and s̃DY, according to Ta-

ble 1. In Ref. [12], only the NkLL* accuracy was con-

sidered: in fact, the order called NkLL* in Tab. 1 is

actually referred to NkLL Ref. [12], which might be

the source of some confusion. Computations using ei-

ther of these two definitions of the logarithmic accuracy

have been presented in the past, either in the contex of

QCD (see e.g. Ref [14], where NkLL* is referred to as

NkLLln R) or SCET (see e.g. Ref. [15], where NkLL is

referred to as NkLL′).

1The resummed expression as given in Ref. [12] actually depends

on several hard energy scales, which here for simplicity are all taken

to be equal to the hard scale M2.

Here we show that in fact the NkLL* of Ref. [12] can

be promoted to higher NkLL accuracy, by inclusion of

the terms listed in the table. This result is obtained in

the next Section, by explicitly computing the relation

between this improved version of the SCET result, and

the QCD result.

3. Comparison at NNLL

An analytic comparison between the QCD and SCET

resummation formalisms can be performed [13] in N

space, where the QCD result is naturally constructed,

and where it admits a convergent perturbative expan-

sion in powers of αs. Namely, we determine the ratio

Cr(N,M
2, µ2

s) between the QCD and SCET expressions,

Eqs. (3) and (5):

CQCD(N,M2) = Cr(N,M
2, µ2

s) CSCET(N,M2, µ2
s). (9)

In Ref. [13] we computed Cr(N,M
2, µ2

s) to NNLL, us-

ing the definition of NNLL of Ref. [12], which in Tab. 1

we call NNLL*. Here we show that the accuracy of the

SCET expression can be upgraded, and the comparison

can be carried out at full NNLL according to the defini-

tion of Table 1.

We first rewrite the QCD result in the more conve-

nient form [13]

CQCD(N,M2) = ĝ0

(

αs(M2)
)

exp ŜQCD

(

M2,
M2

N̄2

)

(10)

with N̄ = Neγ and

ĝ0(αs) = ḡ0(αs) exp

[

2ζ2A(αs) +
8

3
ζ3β0

CF

π
α2

s

]

, (11)

ŜQCD

(

M2,
M2

N̄2

)

=

∫ M2/N̄2

M2

dµ2

µ2

[

A
(

αs(µ
2)
)

ln
M2

µ2N̄2

+ D̂
(

αs(µ
2)
)

]

, (12)

A(αs) =
A1

4
αs +

A2

16
α2

s +
A3

64
α3

s + O(α4
s), (13)

D̂(αs) =
1

2
D(αs) − 2ζ2

CF

π
β0α

2
s = D̂2α

2
s + O(α3

s), (14)

and β0 = (11CA − 2n f )/(12π).

The functions A, D and ḡ0 are computed at NNLL

order according to Table 1; the relevant coefficients can

be found in Ref. [13], except the two-loop contribution

to ḡ0, which can be determined by matching the expan-

sion of Eq. (3) to the NNLO Drell-Yan cross section in

Ref. [16],

ḡ0(αs) = 1 +
αs

π
CF (2ζ2 − 4)
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+
α2

s

π2

CF

16

[

CA

(

−
12

5
ζ2

2 +
592

9
ζ2 + 28ζ3 −

1535

12

)

+CF

(

72

5
ζ2

2 − 70ζ2 − 60ζ3 +
511

4

)

+ n f

(

8ζ3 −
112

9
ζ2 +

127

6

) ]

, (15)

and the coefficient A2, which we give here for complete-

ness

A2 =
4CF

π2

[(

67

9
− 2ζ2

)

CA −
10

9
n f

]

. (16)

The explicit expression of A3 is not needed here.

On the other hand, at NNLL the Mellin transform of

the SCET result, Eq. (5), can be written as [13]

CSCET(N,M2, µ2
s) = Ĥ(M2) E

(

M2

N̄2
, µ2

s

)

× exp ŜSCET(N,M2, µ2
s), (17)

with

Ĥ(M2) = H(M2) exp

[

ζ2

2

CF

π
αs(M2)

]

, (18)

E

(

M2

N̄2
, µ2

s

)

= s̃DY

(

ln
M2

µ2
s N̄2
, µ2

s

)

exp

[

−
ζ2

2

CF

π
αs(µ

2
s)

]

,

(19)

ŜSCET(N,M2, µ2
s) =

∫ µ2
s

M2

dµ2

µ2

[

Γcusp

(

αs(µ
2)
)

ln
M2

µ2N̄2

+ γ̂W

(

αs(µ
2)
)

]

, (20)

γ̂W (αs) = γW (αs) −
ζ2

2

CF

π
β0α

2
s , (21)

and γ̂W (αs) = D̂(αs) at this order.

In comparison to Ref. [13], we now also include

the two-loop contributions to the functions H and s̃DY,

which were given explicitly in Ref. [12]. Note that, in

order to be accurate to order α2
s , the definition of the

function E slightly differs from Ref. [13].

Putting everything together we find

Cr(N,M
2, µ2

s) =
ĝ0

(

αs(M2)
)

Ĥ(M2)E
(

M2

N̄2 , µ
2
s

) exp Ŝ

(

µ2
s ,

M2

N̄2

)

(22)

with

Ŝ

(

µ2
s ,

M2

N̄2

)

=

∫ M2/N̄2

µ2
s

dµ2

µ2

[

A
(

αs(µ
2)
)

ln
M2

µ2N̄2

+ D̂
(

αs(µ
2)
)

]

. (23)

It is easy to see that

ĝ0

(

αs(M2)
)

Ĥ(M2)E(M2,M2)
= 1 + O

(

α3
s(M2)

)

, (24)

so to NNLL accuracy Eq. (22) can be written

Cr(N,M
2, µ2

s) =
E(M2,M2)

E
(

M2

N̄2 , µ
2
s

) exp Ŝ

(

µ2
s ,

M2

N̄2

)

. (25)

Using the 2-loop expression of s̃DY from Ref. [12] in

Eq. (19), we find

E

(

M2

N̄2
, µ2

s

)

= 1 + E1(L)αs(µ
2
s) + E2(L)α2

s(µ2
s) + O(α3

s)

(26)

where

E1(L) =
A1

8
L2, (27)

E2(L) =
A2

1

128
L4
−

L3

3

A1

8
β0 +

L2

2

A2

16
+ LD̂2

+
CACF

π2

[

607

324
+

67

144
ζ2 −

3

4
ζ2

2 −
11

72
ζ3

]

+
CFn f

π2

[

−
41

162
−

5

72
ζ2 +

ζ3

36

]

, (28)

and

L ≡ ln
M2

µ2
s N̄2
. (29)

Note that L = 0 when the two arguments of E are equal

to each other.

Eq. (25) establishes our first new result. Indeed, it

is immediate to check that Cr(N,M
2, µ2

s) = 1 for µs =

M/N̄, up to subleading (NNNLL*) terms. This means

that with this scale choice the SCET result now repro-

duces the QCD result to full NNLL accuracy, rather than

to the lower NNLL* accuracy of Ref. [12].

We are however interested in studying Cr for generic

scale choices, and in particular with the BN scale

choice. The result becomes especially transparent by

casting the ratio E(M2,M2)/E
(

M2

N̄2 , µ
2
s

)

Eq. (25) in the

form of an exponential of an integral, of the same kind

as the form adopted in Eq. (23). This can be done at

the price of including terms of order α3
s or higher in the

ratio, which is allowed at NNLL. The ensuing expres-

sion of Cr is particularly simple and suitable for analytic

comparisons. It should however be kept in mind that a

numerical comparison of the SCET and QCD expres-

sions should rather be performed using the exact expres-

sion Eq. (25), and possibly also retaining the subleading

terms in Eq. (24).
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We get

ln
E(M2,M2)

E
(

M2

N̄2 , µ
2
s

) = −αs(µ
2
s)

A1

4

L2

2

+ α2
s(µ2

s)

[

β0

A1

8

L3

3
−

A2

16

L2

2
− D̂2L

]

+ O(α3
s).

(30)

Using

Lk+1

k + 1
=

∫ M2/N̄2

µ2
s

dµ2

µ2
lnk M2

µ2N̄2
(31)

and taking the running of αs into account, we finally

obtain

Cr(N,M
2, µ2

s) = exp

∫ M2/N̄2

µ2
s

dµ2

µ2
ln

M2

µ2N̄2

×

[

A
(

αs(µ
2)
)

−
A1αs(µ

2)

4
−

A2α
2
s(µ2)

16

]

, (32)

which is our NNLL master QCD-SCET comparison for-

mula. It generalizes to full NNLL the result of Ref. [13].

Its most notable feature, which determines the relative

accuracy of the comparison, is that (recall the expansion

Eq. (13)) the exponent in Eq. (32) is of order α3
s . Note

that this is however due to the exponentiation Eq. (30).

If one does not exponentiate (as in the original SCET

expression), when expanding Cr in powers of αs, terms

proportional to A1 and A2 only cancel up to O(α2
s).

4. The Becher-Neubert scale choice

As briefly discussed in Sect. 1, the BN approach

is based on the idea of choosing for µs a scale de-

termined by hadronic, rather than partonic kinematics,

namely µs = M(1 − τ). In Ref. [11, 12] a more gen-

eral choice µs = M(1 − τ)g(τ) was considered, with

g(τ) = const.+O(1− τ): the distinction may be relevant

for phenomenology, but it is immaterial for our present

goal, which is to determine the logarithmic accuracy of

the SCET result with this scale choice.

Since the variable τ refers to hadron kinematics, the

comparison can only be performed at the level of the

physical cross section, Eq. (1). We therefore define

σQCD(τ,M2) =

∫ 1

τ

dz

z
L

(

τ

z

)

CQCD(z,M2), (33)

σSCET(τ,M2) =

∫ 1

τ

dz

z
L

(

τ

z

)

CSCET(z,M2,M2(1 − τ)2),

(34)

where CQCD(z,M2) and CSCET(z,M2, µ2
s) are the inverse

Mellin transforms of Eqs. (10) and (17), respectively,

and in the SCET case after performing the inverse

Mellin transform at fixed µs we have set µs = M(1 − τ).

Of course, CQCD(z,M2) is given by a divergent series in

powers of αs(M2), so it should be understood as the

order-by-order Mellin inversion up to arbitrarily high

but finite order. Using Eq. (9) we find

σQCD(τ,M2) =

∫ 1

τ

dz

z
σSCET

(

τ

z
,M2

)

Cr(z,M
2,M2(1−τ)2)

(35)

where Cr(z,M
2,M2(1 − τ)2) is the inverse Mellin trans-

form of Eq. (25), performed at fixed µs and evaluated at

µs = M(1 − τ).

In order to compute Cr(z,M
2,M2(1− τ)2) it is conve-

nient to rewrite Eq. (25) as

Cr(N,M
2, µ2

s) =
E(M2,M2)

E(µ2
s , µ

2
s)

E(µ2
s , µ

2
s)

E
(

M2

N̄2 , µ
2
s

) exp Ŝ

(

µ2
s ,

M2

N̄2

)

.

(36)

The first ratio is just a function of αs(M2) and αs(µ
2
s),

independent of N, while

E(µ2
s , µ

2
s)

E
(

M2

N̄2 , µ
2
s

) exp Ŝ

(

µ2
s ,

M2

N̄2

)

= 1 + Fr

(

αs(µ
2
s), L

)

, (37)

where Fr(αs, L) is of order α3
s .

The inverse Mellin transform can be now computed

using the results of Ref. [13]. We find

σQCD(τ,M2) =
E(M2,M2)

E(µ2
s , µ

2
s)

[

σSCET(τ,M2)

+ Fr

(

αs(µ
2
s), 2
∂

∂ξ

)

Σ(τ,M2, ξ)

∣

∣

∣

∣

∣

∣

ξ=0

]

, (38)

where

Σ(τ,M2, ξ) =
(1 − τ)−ξ

eγξΓ(ξ)

∫ 1

τ

dz

z
σSCET

(

τ

z
,M2

)

lnξ−1 1

z
(39)

for µs = M(1−τ). We have shown in App. B of Ref. [13]

that Σ(τ,M2, ξ) can be expressed in terms of derivatives

of σSCET(τ,M2) with respect to ln(1 − τ), up to terms

suppressed by positive powers of (1 − τ):

Σ(τ,M2, ξ) =

∞
∑

k=0

ck(ξ)
dkσSCET(τ,M2)

d lnk(1 − τ)
[1 + O(1 − τ)] ,

(40)

with coefficients ck which do not depend on τ. It follows

that the term proportional to Fr in Eq. (38) does not con-

tain any extra logarithmic enhancement with respect to
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σSCET(τ,M2). On the other hand

E(M2,M2)

E(µ2
s , µ

2
s)
= 1 + E2(0)

[

α2
s(M2) − α2

s(µ2
s)
]

+ . . . (41)

= 1 + 4E2(0)β0α
3
s(M2) ln(1 − τ) + O(α4

s).

We conclude that the leading difference between the

QCD and SCET expressions is

σQCD(τ,M2) − σSCET(τ,M2) =

= σSCET(τ,M2)
[

α3
s4β0E2(0) ln(1 − τ) + . . .

]

, (42)

where the ellipse denotes terms which are either of rel-

ative order O(α3
s), but without any logarithmic enhance-

ment, or O(α4
s).

Because the log counting is now done at the level of

hadronic cross sections, it is based on counting powers

of ln(1−τ). Also, because the SCET result violates stan-

dard QCD factorization (i.e., it does not factorize upon

Mellin transformation), the difference between σQCD and

σSCET depends on the parton luminosity (it is not univer-

sal) through σSCET itself. A generic leading-log term in

σSCET has the form

σSCET ∼ α
k
s ln2k+p(1 − τ), (43)

where αk
s ln2k(1−τ) is due to the leading log behavior of

the coefficient function, and lnp(1 − τ) generally comes

from the parton luminosity.

If we assume that the parton luminosity does not lead

to any logarithmic enhancement, then

σQCD−σSCET ∼ α
k+3
s ln2k+1(1−τ) = αh

s ln2h−5(1−τ), (44)

where we have set h = k + 3. This corresponds to a

NNNLL* correction. It is interesting to observe that,

had we used the exponentiated version Eq. (32) of Cr, a

NNNLL, rather than NNNLL* correction, would have

been obtained. The argument can be generalized to the

case in which Cr is computed to all orders in αs rather

than just to order α2
s . Indeed, no leading logarithmic en-

hancement arises from the factor 1 + Fr(αs(µ
2
s), L); the

only possible source of powers of ln(1 − τ) in Cr is the

ratio E(M2,M2)/E(µ2
s , µ

2
s). It is easy to see, however,

that all terms in the expansion Eq. (41) are at most of

order αk
s(M2) lnk−2(1− τ), with k ≥ 3. Thus, the conclu-

sion Eq. (44) holds to all orders in αs.

In conclusion, we restate three observations which

were already made in Ref. [13]. First, we note that

the BN scale choice removes the divergence of the

perturbative expansion at the cost of introducing loga-

rithmically suppressed non-universal terms. This is to

be contrasted with the commonly used Minimal pre-

scription [8], which also introduces non-universal terms

(with support outside the physically accessible kine-

matic region) but are more suppressed than any power,

or with the Borel prescription [9, 10], which introduces

power-suppressed but universal terms.

Second, we observe that quite in general we do ex-

pect PDFs to contain logarithmically enhanced terms.

In this case the terms introduced by the BN scale choice

to tame the perturbative divergence can become lead-

ing or even super-leading (i.e., more logarithmically en-

hanced than the leading log).

Finally, we remark that threshold resummation is of-

ten useful in situations where τ is far from threshold, but

nevertheless the partonic subprocess is close to thresh-

old [5, 3, 4]. In this case M(1 − τ) ∼ M, and conse-

quently Cr Eq. (25) is actually leading log.

The phenomenological implications of our results re-

main to be investigated. They are potentially of con-

siderable interest, given the increasingly important role

that threshold resummation, in its various implementa-

tions, is playing for LHC phenomenology.
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