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cDipartimento di Fisica, Università di Milano and INFN, Sezione di Milano,

Via Celoria 16, I-20133 Milano, Italy

dInstitute for Particle Physics Phenomenology, Durham University,

Durham DH1 3LE, England
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Abstract:

We construct an approximate expression for the cross section for Higgs production in gluon fusion
at next-to-next-to-next-to-leading order (N3LO) in αs with finite top mass. We argue that an accurate
approximation can be constructed by exploiting the analyticity of the Mellin space cross section, and
the information on its singularity structure coming from large N (soft gluon, Sudakov) and small N
(high energy, BFKL) all order resummation. We support our argument with an explicit comparison
of the approximate and the exact expressions up to the highest (NNLO) order at which the latter are
available. We find that the approximate N3LO result amounts to a correction of 17% to the NNLO
QCD cross section for production of a 125 GeV Higgs at the LHC (8 TeV), larger than previously
estimated, and it significantly reduces the scale dependence of the NNLO result.
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1 Introduction

The dominant Higgs production mechanism at the LHC is gluon fusion via a heavy fermion loop
(mainly a top quark) [1], and indeed the recent announcement of the discovery of a Higgs-like parti-
cle [2, 3] is largely based on events in this channel. In view of this, an accurate determination of the
cross section in this channel is of great interest. Next-to-leading order (NLO) corrections to the inclu-
sive cross section, originally computed in Refs. [4, 5] in the large top mass (mt → ∞) approximation,
and in Ref. [6] for general mt are known to be as large as the leading order, and the NNLO corrections
(first computed in Refs. [7–9] in the mt → ∞ limit and for finite top mass in Refs. [10–15]) about
half as large as the leading order. The significant scale dependence of the NNLO result suggests that
corrections at yet higher orders are not negligible: in fact they currently account for half or more of
the uncertainty on the theory prediction for the cross section [16] (the other half being due to parton
distributions and the strong coupling).

While computations of the full N3LO correction to the cross section are in progress [17–19], it
is interesting to derive approximate expressions for it. Several of us have argued (see e.g. [20–22])
that accurate approximations to partonic cross sections may be obtained from knowledge of their N
space singularity structure, both at finite perturbative order, and at the resummed level. Because the
N → ∞ singularity and the rightmost singularity at finite N are known to all orders in αs respectively
from threshold (Sudakov) and high energy (BFKL) resummation, if this is indeed the case it is possible
to construct reliable approximations even to very high orders in αs. The possibility of constructing
approximations based on the combination of results from large and small N resummation has also
been considered in [23,24].

In this paper, we will pursue this idea in the context of Higgs production in gluon fusion: we will
determine the dominant small N and large N singularities up to N3LO from resummation arguments,
and, after testing our methodology against known results up to NNLO, we will use them to construct
a N3LO approximation.

2 The partonic cross section and its singularities

The factorized Higgs production cross section is

σ(τ,m2
H) = τ

∑

ij

∫ 1

τ

dz

z
Lij

(τ

z
, µ2F

)1

z
σ̂ij

(

z,m2
H , αs(µ

2
R),

m2
H

µ2F
,
m2

H

µ2R

)

, τ =
m2

H

s
, (2.1)

where Lij(z, µ
2) are the parton luminosities

Lij(z, µ
2) =

∫ 1

z

dx

x
fi

( z

x
, µ2
)

fj(x, µ
2). (2.2)

We introduce coefficient functions Cij , defined as

σ̂ij

(
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2
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H

µ2F
,
m2

H

µ2R

)

= z σ0
(
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2
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)

Cij

(

z, αs(µ
2
R),

m2
H

µ2F
,
m2

H

µ2R

)

, (2.3)

where σ0 is the leading order (LO) partonic cross section, so that the coefficient function is normalized
to δ(1− z) at leading order:

Cij(z, αs) = δ(1− z)δigδjg + αsC
(1)
ij (z) + α2

sC
(2)
ij (z) + α3

sC
(3)
ij (z) +O(α4

s), (2.4)

and for simplicity, we have suppressed the dependence on renormalization and factorization scales
µF, µR. In the sequel, we will concentrate on the gluon fusion subprocess, while the contribution from
other subprocesses will be only briefly discussed in Section 4, so in most of the discussion below we



will drop the parton indices ij, and assume that both the coefficient function and luminosity refer to
the gluon channel.

Because the cross section Eq. (2.1) is a convolution, its Mellin transform

σ(N,m2
H) ≡

∫ 1

0
dτ τN−2σ(τ,m2

H) (2.5)

factorizes in terms of the Mellin space luminosity and coefficient function, respectively defined as

L (N) ≡
∫ 1

0
dz zN−1

L (z)

C(N,αs) ≡
∫ 1

0
dz zN−1C(z, αs), (2.6)

according to
σ(N,m2

H) = σ0
(

m2
H , αs

)

L (N)C(N,αs). (2.7)

While in momentum space the coefficient functions are distributions, if the Mellin transform in-
tegral has a finite convergence abscissa, the N space coefficient function is an analytic function of
the complex variable N , given by the integral representation Eq. (2.6) to the right of the convergence
abscissa, and by analytic continuation elsewhere. Therefore, it is fully determined by knowledge of its
singularities.

The singularity structure of the perturbative expansion of C(N,αs) is relatively simple. At any
perturbative order, the rightmost singularity is a multiple pole located at N = 1 [25], with further
multiple poles along the real axis at N = 0,−1,−2, . . ., with residues of order one (this is also what
is found in all known fixed order calculations); Re N = 1 is the convergence abscissa of the Mellin
transform, and as N → ∞, C(N,αs) grows as a power of lnN . While knowledge of the residues of all
poles is required in order to fully determine the function C(N,αs), its behavior in the physical region
1 ≤ ReN <∞ is mostly controlled by the residues of the leading (rightmost) pole at N = 1, together
with that of the singularity at infinity. Both are known from resummation: Sudakov (soft gluon)
resummation determines to all orders in the strong coupling the coefficients of the lnmN terms which
control the behavior as N → ∞, while BFKL (high energy) resummation determines the residues of
the leading 1

(N−1)n multiple poles.

This suggests that an approximation of the coefficient function Eq. (2.6) may be constructed by
simply combining the large N (soft) and small N (high energy) terms,

Capprox(N,αs) = Csoft(N,αs) + Ch.e.(N,αs), (2.8)

where Csoft contains terms predicted by Sudakov resummation and Ch.e. terms predicted by BFKL
resummation. It is clear, however, that this is only correct if the small N singularities, controlled
by Ch.e., are unaffected by Csoft, while the large N logarithms, controlled by Csoft, are unaffected
by Ch.e.. This is clearly nontrivial: for example, a term proportional to lnmN has a cut at N = 0,
while at each fixed order the expected behavior of the coefficient function is a pole, rather that a cut.
So the approximate expressions for Csoft and Ch.e. should reproduce this behavior, with no spurious
singularities.

We will show in the sequel that an approximate expression of the form of Eq. (2.8) is possible, but
both Csoft and Ch.e. will have to be carefully constructed. Indeed we will now show that constructing
Csoft in such a way that the small N singularity structure is preserved, the agreement at large N is
considerably improved. This result may seem surprising, but it is in fact a consequence of analyticity.

2.1 Large N

We first discuss the computation of the large N (soft) part of the coefficient function. All contributions
to C(N,αs) which do not vanish as N → ∞ may be computed from Sudakov resummation, using



techniques summarized long ago in Ref. [26]. The resummed coefficient function has the form

Cres(N,αs) = g0(αs) exp

[

1

αs
g1(αs lnN) + g2(αs lnN) + αsg3(αs lnN) + . . .

]

, (2.9)

with

g0(αs) = 1 + αsg0,1 + α2
sg0,2 +O(α3

s), (2.10)

gi(λ) =

∞
∑

k=k0,i

gi,kλ
k, for i ≥ 1, k0,1 = 2, k0,i≥2 = 1. (2.11)

Inclusion of all gi with 1 ≤ i ≤ k + 1 and of g0 up to order αk−1
s gives the nextk-to-leading log

approximation to lnCres(N,αs); it determines the coefficient of all contributions to the coefficient
function of the form αn

s ln
mN with 2(n−k)+1 ≤ m ≤ 2n. This can be extended to 2(n−k) ≤ m ≤ 2n

by also including the order αk
s contribution to g0 . The functions g1, g2 and g3 are known exactly, while

g0 is known up to O(α2
s). The function g4 is only known in part [27,28], but the missing information

(the 4-loop cusp anomalous dimension) only enters at O(α4
s). We can thus determine all large N

non-vanishing contributions to C(N,αs) up to O(α2
s), and all logarithmically enhanced contributions

(but not the constant) to O(α3
s).

The accuracy of an approximation to the Higgs production cross section at the LHC based on
the dominance of threshold terms can be studied [29] by using the saddle point method to determine
which is the region in N space that gives the bulk of the contribution to the cross section. It turns out
that, despite the fact that Higgs production at the LHC is far from the kinematic threshold, partly
because of the underlying partonic kinematics and partly because of the shape of the cross section, at
the LHC with 8 TeV center-of-mass energy, logarithmically enhanced terms are still providing most
of the cross section, though the situation gradually changes as the center-of-mass energy increases.

However, our goal here is to construct an approximation to the coefficient function which holds
for all N in the physical region. Now, it has been observed long ago [30] that the the quality of the
soft approximation to the full coefficient function significantly depends on the choice of subleading
terms which are included in the resummed result: indeed, while resummation uniquely determines
the coefficients of logarithmically enhanced terms, there is a certain latitude in defining how the soft
approximation is constructed, by making choices which differ by terms which vanish as N → ∞.
A similar situation has been observed recently in Drell-Yan production at the LHC [21], for which
the threshold approximation is generally expected to be less good than for Higgs production. By
comparing results which differ by terms which vanish as N → ∞, we will now show that several
preferred choices for such subleading terms are favored by the requirement that some aspects of the
known small N singularity structure of the exact result be reproduced.

In order to outline our strategy, let us work with the simplest example. Let us first suppose that
we know the N space resummed coefficient function and that we want to extract from Eq. (2.9) an
approximate expression for the O(αs) coefficient C(1)(z), which is given by [6, 31]

C(1)(z) = 4Ag(z)D1(z) + d δ(1− z)− 2Ag(z)
ln z

1− z
+Rgg(z), (2.12)

Dk(z) ≡
(

lnk(1− z)

1− z

)

+

, (2.13)

Ag(z) ≡
CA

π

1− 2z + 3z2 − 2z3 + z4

z
. (2.14)

The constant d and the function Rgg(z) are known functions of mH/mt; in particular Rgg(z) is an
ordinary function, regular in z = 1, so its Mellin transform vanishes as N → ∞ and therefore its
specific form is of no relevance for the large N behavior.



Expanding Eq. (2.9) to O(αs), and keeping NLL terms, we find

Cres(N,αs) = 1 + αsC
(1)
res (N) +O(α2

s), (2.15)

C(1)
res (N) = g1,2 ln

2N + g2,1 lnN + g0,1, (2.16)

with

g1,2 =
2CA

π
, g2,1 =

4CA

π
γE, (2.17)

where γE is the Euler-Mascheroni constant. The asymptotic behavior of the O(αs) coefficient as
N → ∞ is correctly reproduced by this expression, in that

lim
N→∞

[

C(1)
res (N)− C(1)(N)

]

= 0, (2.18)

where C(1)(N) is the Mellin transform of Eq. (2.12); the constant g0,1 is fixed by this condition.

On the other hand, the behavior of Eq. (2.16) at small values of N is incompatible with the known
singularity structure. In particular, there is a logarithmic branch cut starting at N = 0 which is
definitely unphysical, as the exact coefficient function has poles and not cuts at small N . This cut is a
subleading singularity, given that the leading singularity is located at N = 1, but close enough to the
leading one that the behavior of the coefficient function can be significantly affected. Even if we plan
to eventually improve this expression by introducing the correct singularity at N = 1 according to
Eq. (2.8), the logarithmic singularity will interfere with it and spoil the accuracy of the approximation.

This problem, however, is an artifact of the large N approximation, since powers of lnN are the
large N approximation of powers of the digamma function ψ0(N) appearing in fixed order computa-
tions. Indeed, the inverse Mellin transform of Eq. (2.16) (using Eq. (A.6b) of Appendix A.1) is seen
to be

C(1)
res (z, αs) = g0,1δ(1− z) + 2g1,2Dlog

1 (z) + (2γEg1,2 − g2,1)Dlog
0 (z),

= g0,1δ(1− z) +
4CA

π
Dlog

1 (z), (2.19)

where

Dlog
k (z) ≡

(

lnk ln 1
z

ln 1
z

)

+

, (2.20)

which is seen to differ from the soft contribution Eq. (2.13) to the exact result Eq. (2.12).

This can be understood noting that singular terms as z → 1 arise from integration of the real
emission diagrams over the transverse momentum of the gluon, which has the form

pgg(z)

∫
M(1−z)

√

z

Λ

dkT
kT

=
Ag(z)

1− z

(

ln
1− z√
z

+ ln
M

Λ

)

, (2.21)

where Λ is a collinear cut-off and pgg(z) is the LO gluon-gluon Altarelli-Parisi splitting function for
z < 1,

pgg(z) =
Ag(z)

1− z
, (2.22)

with Ag(z) given by Eq. (2.14).

Indeed, Eq. (2.21) shows that logarithmically enhanced soft terms, rather than being proportional

to
ln ln 1

z

ln 1
z

, are of the form

1

1− z
ln

1− z√
z

=
1

1− z

[

ln(1− z) +O(1− z)
]

, (2.23)



and they appear with a coefficient proportional to the Altarelli-Parisi splitting function. Explicitly,
the latter in the z → 1 limit may be expanded as

Ag(z) =
CA

π

[

1− (1− z) + 2(1− z)2 +O
[

(1− z)3
]

]

. (2.24)

Logarithmically enhanced contributions to the coefficient function are generated by the first terms in
both expansions Eqs. (2.23) and (2.24), namely ln(1 − z) and Ag(1) respectively.

We will now argue that an optimal choice of the soft approximation, differing from Eq. (2.19) by
subleading terms, is obtained by writing the large soft logs as powers of ln 1−z√

z
, so in particular retaining

the
√
z in the denominator despite the fact that it is subleading, and furthermore, by retaining at

least the first correction on the right-hand side of Eq. (2.24), also subleading. Therefore in this case
our suggestion consists in the simple replacement

Ag(1)Dlog
1 (z) → Ag,m(z) D̂1(z) (2.25)

in Eq. (2.19), where Ag,m(z) is a finite m-th order expansion of Ag(z) about z = 1, Eq. (2.24), and

D̂1(z) ≡
(

ln(1− z)

1− z

)

+

− ln
√
z

1− z
. (2.26)

Note that we have chosen to apply the plus prescription only to the first term, singular in z = 1, which
is the natural choice in fixed order calculations. In this way, D̂1(N) differs from D1(N) only by terms

vanishing at large N . Since Dlog
1 (N) and D̂1(N) differ at large N by a constant, the coefficient g0,1

must be modified accordingly, in order that the requirement Eq. (2.18) be satisfied. These technical
details are discussed in Appendix A.1.

Our conclusion Eq. (2.25) relies on the following arguments:

• The replacement of Dlog
1 (z), whose Mellin transform is

Dlog
1 (N) =

1

2

[

ln2N + 2γE lnN
]

, (2.27)

with D̂1(z), whose Mellin transform is

D̂1(N) =
1

2

[

ψ2
0(N) + 2γEψ0(N) + ζ2 + γ2

E

]

(2.28)

removes the logarithmic branch cut of Dlog
1 (N), which is incompatible with the known analytic

structure of the coefficient function. The only singularities are now isolated poles, as in the exact
expression.

• The same features are shared by the Mellin transform of D1(z), that is

D1(N) =
1

2

[

ψ2
0(N)− ψ1(N) + 2γEψ0(N) + ζ2 + γ2

E

]

. (2.29)

However, the presence of ψ1(N) exactly cancels the double poles of ψ2
0(N) in N = 0,−1,−2, . . .,

which are there in the exact result. Therefore, the choice of D̂1(N) is preferred over D1(N).

• In the replacement Eq. (2.25) the factor Ag(z) is expanded up to a finite order m > 0 about
z = 1. This is because the inclusion of the full Ag(z) would introduce a spurious singularity in
N = 1. Indeed, the Mellin transform of Ag(z) D̂1(z) is given by

∫ 1

0
dz zN−1Ag(z) D̂1(z)

=
CA

π

[

D̂1(N − 1)− 2D̂1(N) + 3D̂1(N + 1)− 2D̂1(N + 2) + D̂1(N + 3)
]

. (2.30)



The first term, due to 1/z in Ag(z), has a double and a simple pole in N = 1, while the
exact singularity is a simple pole, with a (mH/mt)-dependent coefficient controlled by small z
resummation. The expansion of Ag(z) in powers of 1 − z to any finite order is not singular in
z = 0, and therefore does not affect the singularity structure around N = 1.

We turn now to the general case. Each of the above arguments can be generalized to all orders,
where N space resummed results contain powers of lnkN , whose inverse Mellin transform is a linear
combination of distributions Dlog

j (z) Eq. (2.20) with j ≤ k − 1. The fact that the NLO result in z

space depends on powers of ln 1−z√
z

rather than ln ln 1
z
is of kinematical origin and ultimately comes

from the upper bound for the transverse momentum of emitted gluons, Eq. (2.21), and therefore it
persists to all orders. It follows that the exact result to all orders is expressed in terms of distributions
D̂k(z), defined in Eq. (A.2c) of Appendix A.1 in analogy with Eq. (2.26). The Mellin transform of such
distributions, D̂k(N), first, has poles rather than cuts as small N singularities, and also, in comparison
to the distributions Dk(N), lacks contributions proportional to powers of ψk(N) with k odd, which
would change the pole structure (see Appendix A.1).

It has been shown in Refs. [30, 32] that the factor Ag(z), Eq. (2.14), is present to all orders,
because the full leading order anomalous dimension exponentiates. However, terms beyond the first
in its expansion Eq. (2.24) generate contributions αn

s (1−z)j ln2n−1(1−z) with j ≥ 0 to the coefficient
functions, which are generally of the same order as other terms which we do not control. However,
it can be shown [33] that the inclusion of the O

[

(1− z)1
]

term in the expansion Eq. (2.24) correctly
predicts, after exponentiation, the subdominant contributions of the form αn

s ln
2n−1(1− z) (i.e., in N

space, terms behaving as αn
sN

−1 ln2n−1N at large N) to all orders, so the inclusion of this term rests
on firm ground.

Including the O
[

(1− z)1
]

from Eq. (2.24) we get

Ag,1(z) =
CA

π
[1− (1− z)] = z Ag(1), (2.31)

which is easily implemented to all orders by the replacement

Dlog
k (z) → z D̂k(z); Dlog

k (N) → D̂k(N + 1). (2.32)

Including also the next order gives

Ag,2(z) =
CA

π

[

1− (1− z) + 2(1− z)2
]

=
[

2− 3z + 2z2
]

Ag(1), (2.33)

which amounts to replacing

Dlog
k (N) → 2D̂k(N)− 3D̂k(N + 1) + 2D̂k(N + 2), (2.34)

in the N space expressions. The third order term of the expansion of Ag(z) is accidentally zero, so
Ag,2(z) = Ag,3(z). We have checked that the inclusion of terms of order (1 − z)4 and higher in the
expansion of Ag(z) does not affect our results significantly. We will consider both the expansions
to first and second order, and use their difference as a means to estimate the uncertainty on the
result. Specifically, we will take the mid-point between them as our best prediction, with the first-
and second-order expansion result giving the edges of the uncertainty band.

In summary, our soft approximation (to be combined with small N terms determined in the next
Section) is constructed in the following way. The resummed expression Eq. (2.9) can be rewritten

Cres(N,αs) = g0(αs) exp
∞
∑

n=1

αn
s

n
∑

k=0

bn,k Dlog
k (N), (2.35)

where the coefficients bn,k are obtained from the functions gi, Eq. (2.11), and have been determined
up to n = 3 [28]. The function g0(αs) is known only up to O(α2

s); the uncertainty associated to g0,3
will be discussed in Sect. 3.



The replacements Eq. (2.32) or (2.34) are then applied to Eq. (2.35). We obtain, respectively,

Csoft1(N,αs) = ḡ0(αs) exp

∞
∑

n=1

αn
s

n
∑

k=0

bn,k D̂k(N + 1), (2.36a)

Csoft2(N,αs) = ḡ0(αs) exp

∞
∑

n=1

αn
s

n
∑

k=0

bn,k

[

2D̂k(N)− 3D̂k(N + 1) + 2D̂k(N + 2)
]

, (2.36b)

where we have defined

ḡ0(αs) = g0(αs) exp

[

−
∞
∑

n=1

αn
s

n
∑

k=0

bn,kdk

]

(2.37)

dk = lim
N→∞

[

D̂k(N)−Dlog
k (N)

]

(2.38)

so that the condition Eq. (2.18) is satisfied to all orders after the replacement. Explicit expressions
for the coefficients bn,k and dk are given in Appendix A.1.

Equations (2.36) can be cast in the form

Csoft(N,αs) = ḡ0(αs) exp
∞
∑

n=1

αn
s Sn(N), (2.39)

which is now expanded in powers of αs:

Csoft(N,αs) = 1 + αsC
(1)
soft(N) + α2

sC
(2)
soft(N) + α3

sC
(3)
soft(N) +O(α4

s). (2.40)

We obtain

C
(1)
soft(N) = S1(N) + ḡ0,1 (2.41a)

C
(2)
soft(N) =

1

2
S2
1(N) + S2(N) + ḡ0,1S1(N) + ḡ0,2 (2.41b)

C
(3)
soft(N) =

1

6
S3
1(N) + S1(N)S2(N) + S3(N) + ḡ0,1

(

1

2
S2
1(N) + S2(N)

)

+ ḡ0,2S1(N) + ḡ0,3. (2.41c)

As a test of our procedure we now compare the first two orders of our soft approximations Eq. (2.36)
to the full result. Note that in the sequel when comparing to known results, and also when constructing
our O(α3

s) approximation, we will always be retaining the exact mt dependence.

As terms of comparison, at NLO we use the finite-mt result of Ref. [6] (using the numerical
implementation of Ref. [31]), while at NNLO we use the approximate finite-mt result obtained by
matching the double expansion in powers of 1 − z and mH/mt of Refs. [11, 12] to the known small z
terms computed in Ref. [10] according to Ref. [13] (see Refs. [14,15] for further approximate finite-mt

results). Note that the soft limit only depends on mt through the function g0(αs) of Eq. (2.9).

Results are shown, as functions of N along the real N axis, in Fig. 1. We find the comparison
in N space to be most instructive, because the coefficient function is then an ordinary function,
rather than a distribution as in z space. Furthermore, the saddle point which dominates the Mellin
inversion is on the real axis [29]. All this said, it should be kept in mind that the physical cross section
is obtained by Mellin inversion of the product of the N space coefficient function and luminosity:
therefore, agreement on the real axis is certainly necessary, but in general not sufficient for agreement
of the physical results. In particular, spurious singularities (and in particular spurious cuts) may
substantially modify the behavior of the coefficient function in the complex plane.

In order to understand the role of various subleading terms, we also show in Fig. 1 the results
obtained expanding the resummed expression, Eq. (2.35), which is built up from the distributions


