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Abstract
Recent highlights from the HERA experiments, Hermes, H1 and ZEUS, are reviewed and ideas for
future analyses to fully exploit this unique data set are proposed. This document is a summary of a
workshop on future physics with HERA data held at DESY, Hamburg at the end of 2014. All areas of
HERA physics are covered and contributions from both experimentalists and theorists are included. The
document outlines areas where HERA physics can still make a significant contribution, principally in a
deeper understanding of QCD, and its relevance to other facilities. Within the framework of the Data
Preservation in High Energy Physics, the HERA data have been preserved for analyses to take place over
a timescale of 10 years and more. Therefore, although an extensive list of possibilities is presented here,
safe storage of the data ensures that it can also be used in the far future should new ideas and analyses be
proposed.
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1 Introduction
These following proceedings are summaries from individual speakers and others who contributed to the
symposium and workshop on future physics with HERA data. In the symposium, some of the latest
experimental results from the HERA collaborations are reviewed and a theoretical perspective is given
(see Section 2). The workshop on future physics ideas was organised thematically into sessions which
are then organised into the following sections in this write-up:

– Overview of perspectives on physics with HERA data (see Section 3);
– Parton density functions and electroweak effects (see Section 4);
– Jets and hadronic final states (see Section 5);
– Physics topics common with other experiments (see Section 6);
– Diffraction and low-x physics (see Section 7);
– Spin physics (see Section 8);
– Monte Carlo programmes for HERA physics (see Section 9);

Additionally, a technical presentation was given [1] on the safe storage and maintenance of the
HERA data for future analyses for many years to come, as part of the global DPHEP effort [2]. Finally
a summary of the workshop was given (see Section 10).

2 Recent highlights from HERA
2.1 Recent HERA results on proton structure

A. Levy

The latest results on the proton structure by the two HERA collaborations, H1 and ZEUS, are presented.
They include new results since the last HERA Symposium and cover: the cross section data combi-
nations; the new HERAPDF2.0 parton distribution functions; measurements of the charm and bottom
structure functions, with the determination of the masses of these heavy quarks; energy dependence
of D∗-meson production; high-Q2 measurements from the ZEUS collaboration in the high-Bjorken-x
region up to values of x ∼= 1; and longitudinal structure function FL from both collaborations.

Though the HERA collider stopped running in 2007, the data analysis has been going on with
big efforts on finalising the inclusive cross section measurements. As both collaborations have done
so [3, 4], the way was paved for the ‘climax’ of an experiment; the data combination. This procedure,
which had produced precision measurements already for the HERA I period of running [5], has produced
text-book results of the HERA cross section measurements. In the new combination, there were 41 data
sets including 2927 data points which were combined to 1307 averaged measurements with 165 sources
of correlated systematic uncertainties. The data sets were consistent, producing a total χ2/ndf = 1.04.

The scaling violation plot, namely the combined neutral current (NC) e+p and e−p reduced cross
sections as a function ofQ2 for fixed values of Bjorken x, for all HERA data resulting from an integrated
luminosity of 1 fb−1 is shown in Fig. 1. They are the most precise data measurements in this kinematic
region, reaching Q2 values of 50 000 GeV2 and x values down to 0.00005 (in the present figure only
values down to 0.02 are shown). The scaling violations are well described by the HERAPDF2.0 NLO
predictions.

Figure 2 shows the combined HERA charged current (CC) e−p reduced cross sections as a function
of x for some fixed Q2 values as indicated in the figure. These data are also well described by the
HERAPDF2.0 NLO predictions. Figures 1 and 2 are part of the HERA legacy. They are the results of
many years of dedicated work to produce the best quality data by the two HERA collaborations H1 and
ZEUS.
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The combined data are used to obtain the parton distribu-
tion function (PDFs) in the proton, using the DGLAP [6]
equations. Since perturbative QCD (pQCD) is expected to
be valid only from a scale where partons can be resolved,
the pQCD analysis uses data above that scale. A lower value
for Q2

cut was chosen as 3.5 GeV2 and a study of the resulting
χ2/dof as a function of this cut was carried out and shown in
Fig. 3. A clear dependence of the χ2/dof on Q2 is observed;
its value decreases as Q2 increases to ∼ 10 GeV2 and starts
to increase again after 15 GeV2. Following this behaviour,
two sets of PDFs have been determined, one with Q2

min =
3.5 GeV2 and another with Q2

min = 10 GeV2.

The two sets of PDFs are shown in Figs. 4 and 5. Although there is no visible difference between
the two in the higher-x region, one sees that the gluon uncertainty is much larger in the low-x region
for the Q2

min = 10 GeV2 case. This happens because leaving out data in the range Q2 = 3.5 – 10 GeV2

removes events which constrain the gluon density in the low-x region. Further details and final results
on the combined inclusive HERA data can be found in the recent publication [7].

H1 and ZEUS combined their charm structure function data and extracted the running charm
mass [8], resulting in mc(mc) = 1.26± 0.05(exp)± 0.03(mod)± 0.02(param)± 0.02(αS) GeV. The
ZEUS collaboration measured the bottom structure function [9] and extracted the MS value of the bottom
quark, mb(mb) = 4.07± 0.14(exp)+0.01

−0.07(mod)+0.05
−0.00(param)+0.08

−0.05(theo) GeV.

The ZEUS collaboration measured the energy dependence of the D∗ cross section [10] in the

6



Fig. 4: The parton distribution functions xuv, xdv,
xS = 2x(Ū + D̄) and xg of HERAPDF2.0 NLO
at µ2

f = 3.5 GeV2. The gluon and sea distributions
are scaled down by a factor of 20. The experimen-
tal, model and parameterisation uncertainties are
shown.

Fig. 5: The parton distribution functions xuv, xdv,
xS = 2x(Ū + D̄) and xg of HERAPDF2.0 NLO
at µ2

f = 10 GeV2. The gluon and sea distributions
are scaled down by a factor of 20. The experimen-
tal, model and parameterisation uncertainties are
shown.

range of
√
s = 225 - 320 GeV and found the dependence to be in agreement with NLO QCD predictions.

It also used an improved reconstruction method of Bjorken x in the high-Q2 and high-x region and
extracted [11] the inclusive NC cross section up to x → 1. The fine binning in x with the extension of
kinematic coverage up to x ∼= 1 make these data important input to fits constraining the PDFs in the
valence-quark domain.

The H1 collaboration measured [12] the FL
structure function in the region 1.5 < Q2 <
800 GeV2 while the ZEUS collaboration
measured it [13] in the kinematic range 9 <
Q2 < 110 GeV2. The results are shown
in Fig. 6. The uncertainties of the ZEUS
results are larger than those of H1. The
ZEUS results, though consistently lower than
those of H1, are consistent with them be-
cause of the correlated uncertainties. The
predictions shown by the shaded area are
in reasonable agreement with both data sets.
One would hope to have a combined mea-
surement which will produce the HERA FL.

Fig. 6: FL as a function of Q2 as measured by the H1
and ZEUS collaborations. The shaded area are predic-
tions based on different PDF parameterisations, as indi-
cated in the figure.
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Fig. 7: DIS and photoproduction integrated cross sections normalised to the NLO QCD theoretical cal-
culations are shown as a white line. The double ratio of data over NLO QCD calculations for photopro-
duction to data over NLO QCD calculations for DIS is presented as a white line in the last row.

2.2 Results on the hadronic final state and diffraction in ep scattering
A. Valkárová

2.2.1 QCD and hadronic final state
The ZEUS collaboration presented cross sections for events containing an isolated high-energy photon,
with and without a jet, produced in photoproduction using the full HERA II data set [14]. These mea-
surements were later on extended [15]. Events with isolated photons can provide a direct probe of the
underlying partonic process in high-energy collisions, since the emission of a high-energy photon is not
affected by hadronisation. Within the large theoretical uncertainties, the theoretical predictions agree
with the data.

Inclusive jet, dijet and trijet differential cross sections were measured in neutral current deep-
inelastic scattering (DIS) collisions using the H1 detector [16]. Theoretical QCD calculations at NLO,
corrected for hadronisation and electroweak effects, provide a good description of the measured single-
and double-differential jet cross sections as a function of all studied variables. This measurement was
confirmed also by a ZEUS analysis measuring trijet differential cross sections [17]. The H1 collaboration
derived the most precise value of the strong coupling constant from jet data at NLO as measured in one
experiment, αs(MZ) = 0.1165 (8)exp (38)pdf,theo.

A sophisticated analysis of H1 data aimed to find instantons in DIS ep interactions [18]. The
observed upper limit on the QCD instanton cross section of about 1.6 pb does not support the theoretical
prediction. This analysis is still continuing.

2.2.2 Diffraction
It has been established by the ZEUS collaboration that the measurement of the shape of the azimuthal
angular distributions of exclusive dijets in diffractive DIS prefers a 2-gluon exchange model of qq pro-
duction over resolved Pomeron model [19].

The H1 collaboration presented the single- and double-differential dijet cross sections in diffractive
DIS ep scattering using the large rapidity gap method to select diffractive events. Both shapes and
normalisation of the single-differential cross sections are reproduced satisfactorily by the NLO QCD
predictions within the experimental and theory uncertainties [20].
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A new measurement of the diffractive dijet cross section with a leading final state proton detected
in the Very Forward Proton Spectrometer was performed by the H1 collaboration in photoproduction and
DIS [21]. With the exception of the momentum transfer Q2, identical kinematic regions were used for
DIS and photoproduction dijets. In both photoproduction and DIS the shapes of differential distributions
are well described by a NLO QCD calculations. However, for photoproduction the theoretical predictions
lie systematically above the data, corresponding to a data suppression factor of about 0.6. For DIS, the
NLO QCD calculations agree within theoretical uncertainties with data.

Integrated over the measured kinematic range, the double ratio of data over NLO QCD calculations
for photoproduction to data over NLO calculations for DIS is:

(DATA/NLO)γp
(DATA/NLO)DIS

= 0.55± 0.10 (data)± 0.02 (theo.) (1)

and is shown in Fig. 7. This observation is in agreement with previous H1 measurements, where com-
plementary experimental methods have been used. Within the theoretical framework applied, this could
hint at the breaking of QCD factorisation in diffractive dijet photoproduction.

3 Overview of perspectives on physics with HERA data
3.1 Transverse momentum dependent parton distributions

H. Jung, F. Hautmann

The calculation of a cross section in ep and pp collisions proceeds via the convolution of a partonic cross
section with parton density functions (PDFs), which describe the probability density to find a parton in
a hadron with a given momentum fraction x at a resolution scale µ. For inclusive single scale cross
sections, like the inclusive DIS cross section, the parton densities are functions of x and the resolution
scale µ only (collinear factorisation), while for more exclusive and differential multi-scale cross sections,
the transverse momenta of the interacting partons become important, and so-called transverse momentum
dependent (TMD) parton density functions are needed.

DIS is the process where TMD factorisation is proven. The precision determination of TMDs
(for quarks and gluons) is extremely important especially in light of potential factorisation breaking
effects in hadron–hadron collisions [22,23]. The present status of TMDs is summarised in [24]; a library
of available TMD fits and parameterisations can be found in [25]; an application of TMDs to W+jet
production in pp is given in [26].

The TMDs, similarly to collinear PDFs, can be determined from fits to inclusive cross sec-
tions [27], but the transverse momentum dependence is, at present, not well constrained. Dedicated
measurements are needed to constrain the small and large kT region of quark and gluon TMDs:

– the inclusive jet cross section from lowest pT ∼ O(0.5 GeV) to large pT to constrain the quark
and gluon TMDs

– inclusive particle- and identified particle-production as a function of x, Q2, η and pT of the tracks
to constrain the flavour dependence of the TMDs

In jet production in γp, but also in DIS, the region transverse in azimuth to the jet direction is
usually not well described by standard simulations including parton showers (underlying event measure-
ments), and especially for γp, multiple parton interactions (MPIs) must be included, processes which are
also needed in pp. However, the separation of multiple interactions and higher order contributions from
a single interaction depends in general on the factorisation used and on the factorisation scheme. Espe-
cially measurements in DIS are crucial, since there MPIs are not expected to contribute because of the
point-like nature of the virtual photon. Such measurements would be important to constrain the contri-
bution from higher order QCD radiation in a single partonic interaction. With this, a comparison with γp
or pp would allow a systematic estimate of the MPI contribution, in a factorisation scheme independent
way.
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3.2 Possible future HERA analyses
A. Geiser

The purpose of this contribution is to give a (subjective) overview of a large variety of analyses which
might be possible in the future using the HERA data. It is based on

– a comparison of early goals with what has actually been achieved,
– an extrapolation of how already existing results can be improved further, and
– a collection of thoughts about analysis topics which might never have been attempted before.

Because there is obviously large overlap, many of the ideas presented by other participants of the work-
shop are integrated as much as possible and need to be appropriately quoted and referenced. Doing
this adequately is not possible within the limited space available for a single contribution to this docu-
ment. Therefore the bulk of the information, with the corresponding references, is presented in a separate
document [28], which is only briefly summarised here.

A variety of possible future analyses of HERA data in the context of the DPHEP data preservation
programme [2, 29] is collected, motivated, and commented. The focus is placed on possible future
analyses of the existing ep collider data and their physics scope. Comparisons to the original scope of
the HERA programme are made, and cross references to topics also covered by other participants of the
workshop are given. This includes topics on

– QCD,
– proton structure,
– diffraction,
– jets,
– hadronic final states,
– heavy flavours,
– electroweak physics,

and the application of related theory and phenomenology topics like

– NNLO QCD calculations,
– low-x related models,
– nonperturbative QCD aspects, and
– electroweak radiative corrections.

Synergies with other collider programmes like LHC and EIC are also addressed.

In summary, the range of physics topics which can still be uniquely covered using the existing data
is very broad and of considerable physics interest, often matching the interest of results from colliders
currently in operation. Due to well-established data and MC sets, calibrations, and analysis procedures
the manpower and expertise needed for a particular analysis is often very much smaller than that needed
for an ongoing experiment. Since centrally funded manpower to carry out such analyses is not available
any longer, this contribution, and in particular its extended version [28], not only addresses experienced
self-funded experimentalists, but also theorists and master-level students who might wish to carry out
such an analysis.

4 Parton density functions and electroweak physics
4.1 Three-loop heavy flavour corrections to deep-inelastic scattering

J. Blümlein

The present precision of the deep-inelastic world data requires QCD analyses and fits to the heavy quark
masses mc and mb at 3-loop order [30–32]. While the massless corrections to 3-loop order are available
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[33–35], the heavy flavour corrections are being calculated. Here, emphasis is placed on an analytic
calculation in the region Q2 � m2

Q, which holds in the case of the structure function F2(x,Q2) at the
1% level, if Q2/m2 >∼ 10 and is a very good approximation in the case of charm in the kinematic regime
at HERA [36].

In 2009, the programme could be accomplished completely on the level of a series Mellin moments
[37] in calculating projected tadpoles using MATAD [38]. In the meanwhile also moments for a new
class of 3-loop diagrams, containing both charm and bottom corrections have been computed for the
moments N = 2, 4, 6 [39]. Very recently all logarithmic corrections were computed for the Wilson
coefficients contributing to F2(x,Q2) and all transition matrix elements in the variable flavor number
scheme (VFNS) to 3-loop order [40]. Here also the first two Wilson coefficients contributing with 3-loop
order, LSg (x,Q2) and LPSq (x,Q2), were calculated. The asymptotic 3-loop corrections in the case of the
longitudinal structure function FL(x,Q2) are also known [40, 41].
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Fig. 8: The charm contribution by the Wilson coefficient HPS
Qq to the structure function F2(x,Q2) as

a function of x and Q2 choosing Q2 = µ2 and mc = 1.59 GeV (on shell scheme) using the parton
distributions [42]; from [43].

In the case of charged current interactions, including also single heavy quark excitation, the 1-loop
calculation had to be repeated because of conflicting results in the literature. In Ref. [44] we confirm the
result obtained in [45]. At next-to-leading order (NLO) we correct an earlier result given in [46] in
Ref. [47].

We have by now obtained also complete results for a series of operator matrix elements and mas-
sive Wilson coefficients at 3-loop order, respectively those of complete contributions to individual colour
factors. The contributions of O(NFT

2
FCF,A) to all OMEs were calculated in Refs. [48, 49] and those of

O(T 2
FCF,A) to Agg,Q in [50]. The solution of special higher topologies for ladder-, Benz- and V -graphs

has been presented in Refs. [51, 52]. So far complete 3-loop results have been obtained for the massive
OMEs Agq,Q [53], ANSqq,Q [54] and APSQq [55]. In Figure 8 we illustrate the size of the 2- and 3-loop flavor
pure singlet contributions, which are significant.

In the course of these calculations, various mathematical and computer-algebraic technologies
had to be developed, including new mathematical function spaces and analytic algebraic integration
techniques. Recent reviews on those are given in Refs. [56].

The present heavy flavour corrections will improve also the precision determination of the parton
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densities in the future, cf. e.g. [42]. In particular, the planned high luminosity measurements at the
EIC [57–59] or LHeC [60] can also test these corrections.

4.2 Precise parton distributions
S. Moch

The need for precise PDFs can best be illustrated with the current theoretical accuracy for predictions of
the cross section for Higgs boson production in gluon–gluon fusion at the LHC. The QCD radiative cor-
rections are sizeable and require the computation of higher orders to achieve apparent convergence of the
perturbative expansion and stability under scale variation. Currently, approximate N3LO (next-to-next-
to-next-to-leading order) results are available [61, 62] which display a residual theoretical uncertainty of
less than 5%. In the effective theory (limit of infinite top-quark mass) one obtains for a Higgs boson
mass mH = 125.4 GeV and a LHC centre-of-mass energy

√
S = 8 TeV at the scale µR = µF = mH/2

close to the point of minimal sensitivity at approximate N3LO

σH
∣∣
N3LO

= 21.12 pb ± 0.56 pb (th. unc.) + 0.29
− 0.42 pb (scale unc.) , (2)

where the theoretical uncertainty comes from estimating the exact N3LO corrections and the scale un-
certainty is obtained from a simultaneous variation of µR and µF by a factor of two around the central
scale [61]. These two uncertainties are largely independent.

The dominant uncertainty in the prediction of eq. (2) stems from the PDF set and the value of the
strong coupling constant αs(MZ) used, since the cross section is directly correlated with the gluon PDF
and the value for αs(MZ). In the case of eq. (2), the PDF set of MSTW08 [63] has been used together
with their nominal αs(MZ) = 0.1171 at NNLO. However, such high αs(MZ) values have recently been
challenged by high precision determinations yielding much lower values, see e.g. [31]. To illustrate the
dependence on the choice of a PDF set, it suffices to consider cross section predictions at NNLO in QCD.
For the MSTW08 PDF set one obtains

σH
∣∣
NNLO

= 20.16 pb + 0.22
− 0.32 pb (PDF) , (3)

which is in contrast to the cross section calculated with the ABM12 PDF set [42] with a nominal
αs(MZ) = 0.1132(11) at NNLO,

σH
∣∣
NNLO

= 18.67 pb ± 0.46 pb (PDF) . (4)

The deviation between eqs. (3) and (4) is about 8% and much larger than the residual theoretical un-
certainty of less than 5% given in eq. (2) with the approximate N3LO corrections. It is at the level of
3 − 4σ standard deviations with respect to the uncertainty determined from the correlated experimental
uncertainties in the fitted data. Also the use of other global PDF fits, such as CT10 [64], HERAPDF
(v1.5) [5, 65], JR09 [66] and the recent updates MMHT 2014 [67] and NNPDF (v3.0) [68], leads to a
significant spread in the predicted Higgs cross sections, see, e.g. [69].

The reasons for the differences are, of course, known and well documented in the literature. They
originate from a number of sources which encompass specific choices in the theoretical description of
the data, the selection of data sets and the analysis procedures. Examples for theory choices are the
treatment of heavy quarks in deep-inelastic scattering (DIS) as well as the renormalisation scheme for
the heavy-quark masses [70] (running masses for charm and bottom in ABM11 [71] and ABM12 [42]).
Keeping a fixed number of flavors [72] together with the use of the approximate NNLO corrections for
the Wilson coefficients of heavy-quark electro-production [37, 73] ensures the exact description of all
terms up to α3

s lnk(Q2/m2) with k = 1, . . . , 3. Other examples are the use of target mass corrections in
fits of lepton–proton scattering data [71] or the consistent extraction of power corrections (higher-twist
contributions in DIS data at low scales) [74]. All these issues affect the gluon distribution and the fitted
value of αs(MZ). Regarding the selection of data sets a prominent example is the use of Tevatron jet data
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in a global fit at NNLO accuracy in order to constrain the gluon PDF. The QCD description of hadro-
production jet data is currently accurate only to NLO so that missing large higher order corrections at
NNLO [75] estimated to be of the order of 30% lead to a bias in the extracted gluon PDF [71]. Finally,
details of the analysis procedure such as the proper account of error correlations among data sets does
affect the statistical interpretation [76].

In summary, the need for precision PDFs is driven by the experimental accuracy of cross section
measurements. Checks of the specific theory assumptions made in PDF and αs fits as well as checks of
correlations between experimental data for different scattering processes at the LHC and their sensitivity
to PDFs are urgently needed to consolidate our knowledge of the proton structure.

4.3 Electroweak physics with HERA data
H. Spiesberger

With the LHC experiments, the focus of present research in particle physics has shifted towards the
measurement of the Higgs boson properties and the search for new physics. A conclusive interpretation
of future data will still rely on a precise knowledge of the Standard Model parameters. In particular,
the weak mixing angle will be important, should new phenomena be observed. At present its value is
dominated by two high-precision measurements, which disagree, however, by almost 3σ. Any additional
information is important to narrow down possible new physics scenarios.

There have been various analyses, both by H1 and ZEUS, of inclusive data from e− and e+ scat-
tering, also including polarised beams, to determine electroweak coupling parameters, but none has used
the full data set in a combined fit. For example, H1 has performed a fit to the Standard Model prediction
based on 120 pb−1 of unpolarized e± data and obtained a 1.8 % determination of the weak mixing angle,
sin2 θW = 0.2151± 0.0040 (with an additional +0.9

−0.5 % theoretical uncertainty) [77]. The complete data
sets of H1 and ZEUS correspond to almost 1000 pb−1, thus one should expect a much better precision if
these data sets are combined.
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Fig. 9: Various existing (red points with black error bars [79]) and possible future measurements of the running (MS)
weak mixing angle, including a potential result from a SM fit to HERA data: ∆ sin2 θW = ±0.0011, corresponding to
∆MW = 55 MeV.

The sensitivity of a combination of neutral and charged current data with polarized electrons had
been estimated some 20 years ago [78] based on 103 pb−1 and assuming a 1 % systematic error. A SM
fit in the on-shell scheme combined with a very conservative expected precision for the top-quark mass
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of ∆mt = ±5 GeV would provide a W -mass determination with a precision ∆mW = ±55 MeV, corre-
sponding to ∆ sin2 θW = ±0.0011. Uncertainties in the PDFs have now reached the level of a percent
and would therefore indeed not obviate such a precision. It remains to be seen by how much the uncer-
tainty on mW is affected by (i) the different mixture of electron and positron data with about the same
total amount of luminosity as has been assumed in [78], and (ii) the different degree of polarisation. Such
a 0.5 % measurement of sin2 θW would not compete in precision with the available high-precision re-
sults, but is complementary and therefore a useful addition to the global picture of electroweak precision
measurements (Fig. 9).

HERA offers the unique possibility to measure the weak vector and axial–vector coupling con-
stants of quarks. The four independent measurements with polarised beams, e−L , e−R, e+

L , e+
R carry enough

information to separately determine vf and af for up- and down-type flavours. Preliminary results ex-
ist [77, 80], but from previous studies [81] one can conclude that there is a considerable potential for
improving the precision of these measurements.

4.4 Future electroweak and contact interaction fits
K. Wichmann, V. Myronenko, O.Turkot, A.F. Zarnecki

4.4.1 HERA polarised data
The H1 and ZEUS collaborations published their final results for inclusive DIS at high photon virtuality
Q2 with longitudinally polarised lepton beams at HERA [3–5,82]. The data were taken both for electron
and positron incoming beams and for right-handed and left-handed polarisation of the lepton beam. This
make these measurements perfect to study processes sensitive to the beam polarisation.

4.4.2 Combined electroweak and QCD global fits
Inclusive DIS cross sections measured at HERA are essential for studying electroweak physics and per-
forming a consistent QCD analysis to reveal the proton structure and obtain PDFs. Such studies were
performed previously by H1 and ZEUS using data from HERA I period (no lepton beam polarisation).
Using data from the HERA II period with polarised leptons gives additional sensitivity to the measure-
ments of light quark couplings to the Z0 boson, in particular to vector couplings. It is also possible to
measure the weak mixing angle and the mass of the W boson. Exploiting complete data samples from
H1 and ZEUS simultaneously and taking into account correlated systematic uncertainties and global
normalisations gives a significant improvement in precision. The study of the electroweak parameters
can be done either using HERA only data or with additional constraints from other experiments. Such
studies can be performed within the HERAFitter framework [83] to coherently take into account the PDF
uncertainties and the correlated uncertainties of inclusive measurements.

4.4.3 Contact interactions
In a search for contact interactions (CI) some channels are sensitive to the lepton polarisation. In previous
CI studies, the PDF uncertainty was a dominant source of systematic uncertainties and it was used to
vary model predictions in the limit setting procedure. The fact that PDFs used in the analysis already
include HERA high-Q2 data was neglected. This was acceptable for the HERA I data, dominated by the
statistical uncertainty, but for the full HERA data it has to be taken properly into account.

A procedure where the same high-Q2 DIS data are first included in the PDF fits used to describe
the data (assuming validity of the SM) and then for the CI mass scale limit calculation (testing possible
contributions beyond SM) is incorrect. A possible BSM contribution, modifying electron–quark inter-
actions at the highest Q2, would also be reflected in the PDF fit. Resulting PDFs would be biased and
the SM predictions would also include some BSM contributions “hidden” in the PDFs. As a result, one
could still obtain a good agreement of the data with the biased SM predictions and the limits on the BSM
parameters calculated with these PDFs could be artificially overestimated.
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The only proper procedure to set limits on the BSM models using the data included in the PDF fits
is to perform a combined analysis, i.e. include possible contribution from the BSM processes in the QCD
fit to the data. The resulting limits on the model parameters might not be competitive with the expected
LHC limits but these would be the first limits set in the strictly correct way.

5 Jets and hadronic final states
5.1 Precision jet physics in deep inelastic scattering

D. Kang, C. Lee, I.W. Stewart

Event shapes provide a key method of measuring jets in DIS. This was done successfully by H1 and
ZEUS [84–89] and compared with theoretical calculations with next-to-leading-logarithmic (NLL) re-
summation [90,91]. Here we consider the event shape, DIS thrust, τ , which is defined in the Breit frame
using the momentum of the exchanged γ or Z boson to determine the z-axis, q = (0, 0, 0, Q). It can be
measured solely from events in the current hemisphere where z > 0 via τ = 1− (2/Q)

∑
i∈HJ

piz , thus
avoiding the lack of detector coverage in parts of the beam region. The event shape τ also does not suffer
from non-global logarithms [91].

Recently an all orders factorisation theorem was derived for dσ/dτ [92], which enables higher
order perturbative results to be obtained, and a more rigorous treatment of power corrections,

1

σ0

dσ

dxdQ2dτ
= QH(Q, x, µ)

∫
dtBdtJd

2p⊥Bq(tB, x, ~p
2
⊥, µ) Jq(tJ − ~p 2

⊥, µ) S
(
Qτ − tB + tJ

Q
,µ
)
.

(5)

Results with a resummation of the singular αks lnj τ/τ terms at next-to-next-to-leading-log (NNLL) or-
der were given in [92]. Here we extend this analysis to one higher order, N3LL, by exploiting the recent
2-loop calculation of the quark beam function Bq [93, 94], the 2-loop DIS soft function S [95–97], and
known results for the 2-loop hard function H and jet function Jq, and their 3-loop anomalous dimen-
sions [33, 98, 99]. The smaller nonsingular contributions to dσ/dτ are also now known analytically at
O(αs) [100], while numerical results are available at O(α2

s) [101, 102]. Power corrections are encoded
by a hadronic matrix element Ω1 appearing in S, using formalism developed in Refs. [92,103–106]. (The
DIS thrust τ is equal to the Breit frame 1-jettiness τ b1 , and hence belongs to the class of 1-jettiness event
shapes [107]. Results for other 1-jettiness DIS variables were obtained in Refs. [92, 108–110], currently
up to NNLL order.)

Fits for αs(mZ) in the tail region of the DIS τ distribution, should simultaneously fit for the power
correction Ω1 (similar to the highly successful fits for the e+e− thrust event shape in [111]). This is
facilitated by considering dσ/dτ from multiple x and Q values. Interestingly, the factorisation theorem
in Eq. (5) remains valid for relatively small x, and the fractional contribution from the nonsingular
corrections even decreases with decreasing x, as shown at O(αs) in [112].

In Fig. 10 we show the convergence of the DIS thrust cross section and decrease in the perturbative
resummation uncertainty when going from NLL to NNLL to N3LL order. Results are displayed for a
representative value of x and Q, while cross sections for other values can be found in [112]. In Fig. 11
we show the percent uncertainty of dσ/dτ for various values of x and Q in the region accessible by
HERA, demonstrating that the theoretical resummation uncertainties become as low as 2% in accessible
regions of the phase space. Values are obtained as the average uncertainty in dσ/dτ in the tail region
0.15 < τ < 0.35. In Fig. 12 we show how much the cross section changes with variations of the input
parameters αs(mZ) and Ω1, as well as comparing the αs(mZ) sensitivity to the N3LL resummation
uncertainties, and to the uncertainties from the NNLO MSTW parton distributions [63]. Figures for
other values of x and Q are available in [112]. The degeneracy between αs(mZ) and Ω1 is broken
by measurements at multiple Q. The theoretical precision of our N3LL cross section indicates that
measurements with 1–2% uncertainty in αs(mZ) should now be possible. A measurement of Ω1 from
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DIS is also of broader use, since this same Ω1 parameter occurs in pp → Z + 1-jet, where it yields the
power correction for the jet mass that is linear in the jet radius [113].

5.2 Why and how to search for charm pentaquarks with the HERA data
U. Karshon

If a pentaquark is found and confirmed, it will provide a major testing ground for low-energy QCD dy-
namics. Many theorists think that heavy pentaquarks are more likely to exist than strange ones [114].
Some of them predict a stable heavy charm pentaquark with M < 2.8 GeV below the DN thresh-
old [115]. The negative experimental results [116] for a uuddc̄ charm pentaquark Θ0

c → D∗N,DN at
3.1 GeV, after its initial observation [117], could be due to the stability of charm pentaquarks. Thus they
should be searched for in weak decays. Both the H1 and ZEUS experiments had a microvertex detector
(MVD) enabling reconstruction of secondary vertices from weakly decaying particles. Weakly decaying
charm-strange pentaquarks could also exist [118], e.g. P 0

c̄s = c̄suud and P−c̄s = c̄sddu.

If Θ0
c exists with a mass below ≈ 2.8 GeV, it will decay weakly, e.g. Θ0

c → K0
sπ
−p where p, π−

come from a secondary MVD vertex and K0
s points to this vertex or Θ0

c → K+π−π−p where all 4
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particles come from a secondary vertex.

If Pc̄s exists below the strong decay threshold, it will decay weakly, e.g.:

P 0
c̄s → φπ−p, φ→ K+K−;P 0

c̄s → K∗0K−p, K∗0 → K+π−;

P 0
c̄s → (KK̄)0pπ−;P 0

c̄s → ΛK+π−,

P−c̄s → φπ−π−p, φ→ K+K−;P−c̄s → K∗0K−π−p, K∗0 → K+π−;

P−c̄s → Λπ−π−K+; P−c̄s → Λπ−K0 (a very clean channel!)

where all decaying particles come from a secondary MVD vertex. Any detection of p(p̄) or Λ(Λ̄) emerg-
ing from a MVD secondary vertex (unless coming from a Λc) could hint at the existence of an exotic
baryon [119].

5.3 A new search for instantons
E. Lohrmann

The existence of instantons is predicted by the Standard Model, but so far they have not been observed.
Their discovery would be a confirmation of an important prediction connected with the QCD vacuum.

Ringwald and Schrempp have identified kinematic regions in ep DIS, which allow an approxi-
mate calculaton of instanton-induced processes [120]. A Monte Carlo generator QCDINS [121] allows
simulation of DIS instanton events in detail.

A search for instanton events has been carried out by the H1 [122] and ZEUS collaborations [123].
In these searches DIS events are selected and cuts designed to enhance the instanton contribution of the
sample are applied.

In the meantime, the conditions for an instanton search have drastically improved. The work of
ref. [123] was carried out with an integrated luminosity of 38 pb−1. Now, about 10 times this luminosity
is available. Moreover, A.N. Barakbaev and E. Boos have proposed a new variable [124], which allows
a much better discrimination of instanton and normal DIS events. It is based on the large difference of
the transverse momentum/eta correlation between instanton and normal events.

In ref. [123] a conservative estimate of an upper limit for the fraction of instanton events in the
sample was made, which is independent of the Monte Carlo background estimate of normal DIS events.
This estimate is given by σd/σth, where σd is the number of data events after cuts and σth is the number
of instanton events predicted by theory after cuts.
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Starting from the DIS events sample of ref. [123], corresponding to an integrated luminosity of
38 pb−1, one obtains values for σd/σth, according to the new algorithm of ref. [124], as shown in the
table (data in the γ–proton CM system are used). For comparison, corresponding values for the analysis
published in ref. [123] are also shown. The comparison shows the advantage gained by the new algo-
rithm. It now formally excludes the theoretically predicted cross section, but probably is still within the
uncertainties of the theory.

Table 1: Ratio σd/σth, the ratio of signal events to events predicted by instanton theory, for an integrated
luminosity of 38 pb−1.

ZEUS ref. [123] cut σd/σth
16.4 4.5 ± 0.2
10.1 3.1 ± 0.2
5.5 2.4 ± 0.3
2.7 2.1 ± 0.5

algorithm ref. [124] cut σd/σth
0.45 6.7 ± 0.2
0.35 1.7 ± 0.2
0.30 0.9 ± 0.2
0.25 0.22 +0.29

−0.13

The H1 Collaboration has conducted a new search [18] for instantons, using the full HERA statis-
tics. In a preliminary result they set an upper limit on the instanton cross section of a factor about 6 below
the theoretically predicted value. However, this value has some uncertainties, like e.g. the background
subtraction from the DIS Monte Carlo calculation. Using the new algorithm could probably further
improve their result.

6 Physics topics common with other experiments
6.1 Common physics between HERA and LHCb

R. McNulty

6.1.1 PDFs at HERA and LHCb
The effort to understand the proton structure extends from HERA to the LHC, both in developing a
coherent picture at different parton fractional momenta, x, and energy scales, Q2, and in making pre-
dictions for proton–proton interaction rates. The kinematic region accessible at the LHCb experiment,
which is instrumented between pseudorapidities of 2 and 5, is of particular interest as it involves colli-
sions between one high-x parton, already well measured at HERA, and one low-x parton, which is either
unknown or requires a large DGLAP extrapolation in Q2 of HERA results.

LHCb has made differential cross-section measurements [125,126] of W and Z boson production
at
√
s = 7 TeV, which both test the Standard Model and constrain the PDFs. The ratio of W+ to

W− boson production provides strong constraints on the u/d quark distributions, and the experimental
ratio has been measured with a precision of better than 1% using data corresponding to an integrated
luminosity of about 1 fb−1 (see Fig. 13).

6.1.2 Diffraction at HERA and LHCb
Photoproduction of vector mesons at HERA and the LHC proceeds through the interaction of a photon
and a Pomeron (a colour neutral combination of two gluons). At HERA the photon couples to the
electron; at the LHC its source is the proton, leading to an unusual experimental topology for a hadron
collider of a single meson and no additional particles in the final state.
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Fig. 13: Cross sections for W+ and W− bosons production inside the LHCb kinematic region compared
to NNLO predictions obtained with various PDF sets.

LHCb has measured the central exclusive production of single J/ψ mesons at
√
s = 7 TeV [127]

and the results can be compared to HERA photoproduction results, with some mild model dependence
to account for the photon flux, the gap survival probability, and a two-fold ambiguity in knowing which
of the two protons the photon radiated from. The comparison is shown in Fig. 14, which also plots
the results of fixed target experiments and of proton–lead collisions measured by the ALICE collabo-
ration [128] at the LHC. A consistent picture emerges of J/ψ photoproduction across a wide range of
W , the centre-of-mass of the photon–proton system. This is a promising channel to access the low-x
gluon PDF [129], where in the upcoming

√
s = 13 TeV running, LHCb will have sensitivity down to

x ≈ 2× 10−6.

These results are also important in our understanding of diffraction. The extensive programme of
work at HERA now continues at the LHC where Pomeron–Pomeron collisions can be observed, as for
example in the recent observation of the central exclusive production of double J/ψ mesons. [130].
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Fig. 14: Cross section for J/ψ photoproduction as a function of the photon–proton centre-of-mass energy
for various experiments.
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7 Diffraction and low-x physics
7.1 Future prospects for diffraction at HERA

M. Ruspa

By looking at the HERA harvest in diffraction with the aim to identify if and where the data can still tell
something, what emerges are on the one hand open and critical issues, on the other hand the potential of
measurements that were never carried out but are feasible with the latest high-statistics samples. There
are also measurements that, though already performed, would benefit from the latest data. An overview
is presented in the following.

The critical issues are related to the QCD factorisation theorem and the portability of HERA
diffractive data to hadron–hadron environments:

- Diffractive Parton Distribution Functions. H1 and ZEUS published during the years a wealth of data on
the diffractive structure function FD2 [131–138]. As in inclusive DIS, these data can be used as input to
NLO DGLAP fits. A few sets of diffractive PDFs (DPDFs) have been extracted over the years by H1 and
ZEUS [131,139,140]. There are differences among the various fits, notably for the gluon density, which
reflects the uncertainty in this quantity. A consistent determination of the DPDFs, felt as mandatory by
the diffractive community outside HERA, can come only from the HERA experiments as only the HERA
collaborations can understand the differences between the data. Adding diffractive dijet data in the fits
has already proven to provide extra constraining power to the gluon density [139,140]. Very recent high
precision H1 dijet data [141] would thus provide a valuable further input.

- Mechanism of factorisation breaking. A key physics issue is whether the DPDFs are or are not uni-
versal. Support to the factorisation theorem has been provided by analyses of diffractive dijet cross
sections in DIS [139, 142, 143]. However, hard scattering factorisation was proven to fail at the Teva-
tron [144,145] and LHC [146]. In resolved photoproduction at HERA, where the exchanged real photon
behaves like a hadron, factorisation is expected to fail as in the hadron–hadron case. Whether H1 and
ZEUS dijet photoproduction data show a suppression along the range of xγ , the fraction of the photon
momentum entering the hard scattering, as predicted by theory [147, 148], has been a dilemma for the
last decade. H1 measures a suppression factor of around 0.6 [139, 145], independent of xγ , whereas the
ZEUS data [143] are consistent with no suppression. To shed light on this difference is highly desirable.
This can be achieved only with a ZEUS analysis of the post-upgrade data. Another handle might come
from HERA II data on diffractive charm photoproduction – the HERA I data were analysed [149, 150]
but the large stastistical uncertainty was a limiting factor. Gap-suppression effects were seen also in the
photoproduction of jet pairs separated by a LRG [151]; consensus was not reached with theorists on their
interpretation, but certainly this is a production process fertile for further investigation.

Guidelines for the measurements never carried out before are

- high-statistics opportunities, which mostly apply to H1 post-upgrade data and notably to the proton-
tagged data (which, due to the severe acceptance limitations, are statistically disfavoured in the HERA I
samples). Top of the list is the extraction of F c2 and F b2 in diffraction. The former was already measured
with the HERA I data tagging the rapidity gap [149,150]. Both would be valuable ingredients for global
fits.

- interpreting the data where not already done before. In addition to the investigation of charm, beauty or
dijet processes in diffraction and the measurement of the related contribution to the diffractive structure
function, another lens on the proton structure is provided by final states with a leading neutron or a
leading proton, described in terms of the exchange of “sub-leading” trajectories, dominantly the pion
and the Reggeon. The production of leading neutrons may therefore provide constraints on the structure
of the pion at low- to medium-Bjorken-x values, while fixed target experiments are limited to higher x
values. F π2 was extracted [152, 153], but a QCD analysis was never perfomed. The high statistics H1
leading neutron HERA II data could be used as input to a pion parton density extraction.
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- seeking very low cross section processes. Central exclusive production processes are the most sought
exclusive processes in proton–proton and proton–antiproton collisions. Evidence was found at TEVA-
TRON and LHC (see e.g. [146, 154] and references therein). At HERA such a topology is realised in
double Pomeron exchange processes like γ∗p → ρ0Xp, with rapidity gaps on both sides of the central
system X . For tagged photoproduction the typical MX range would be 1–6 GeV, with the maximum at
2–3 GeV, therefore very intriguing for the observation of low-mass resonances (glueballs?). It is not yet
established if the experimental coverage in rapidity is enough to incorporate the two gaps and to measure
MX at the same time – even a feasibility study would be interesting.

There are measurements worth repeating with the augmented statistics now available in the
field of exclusive vector meson production. H1 and ZEUS are presently finalising their analyses of the
post-upgrade data, notably for low cross section processes. Concerning a global interpretation of the
available vector meson data, there might be potential studies left behind. For instance, H1 undertook
a global fit of H1, ZEUS and OMEGA data on elastic ρ0 production for the extraction of the Pomeron
trajectory, but this work is still preliminary [155]. It would be highly desirable to bring it to completion
with the addition of the latest ZEUS data [156] and of the low-energy data. It must be said that the
high-|t| domain, very suitable to search for parton dynamics driven by BFKL evolution, has been little
explored so far. HERA I data on light vector mesons, J/ψ and real photons at high−|t| have allowed
tests of BFKL predictions but their limited precision has prevented a firm interpretation. Looking at the
HERA II data would greatly improve the precision and hence strengthen the conclusions.

7.2 Twist decomposition in DIS and DDIS in the dipole approach
L. Motyka

The standard QCD description of the proton structure functions in DIS and diffractive DIS based on
the leading twist-2 DGLAP evolution scheme is usually quite precise and successful. However, this
approximation has limitations. In the complete description of the proton structure one should take into
account also the higher twist terms in the Operator Product Expansion. From a pragmatic point of
view the higher twist contributions may introduce a discrepancy between the DGLAP fits and the data
and contribute to errors and uncertainties of parton densities. In particular the relative magnitude of the
higher twist terms may be used to determine the applicability range of the DGLAP description. Although
the higher twist components are suppressed by powers of Q2 the most important higher twist corrections
at HERA at small x are enhanced by additional powers of a large gluon density xg(x,Q2). So the small
x and moderate Q2 regime are sensitive to higher twist effects.

On the other hand the higher twist components of the proton structure provide new and unique
information on proton structure and QCD evolution. In particular in higher twist measurements one
probes multi-parton distributions and correlations. These objects are related to multiple scattering effects
and governed by higher twist evolution equations. Currently, neither the theoretical understanding nor
experimental information on higher twist components of the proton structure are satisfactory and new
input here should be enlightening.

Theoretical studies of higher twist effects in DIS [157, 158] and DDIS [159] data at small x were
performed within the QCD inspired colour dipole model with saturation (the GBW model) [160–162].
Recently, also another approach to higher twist effects at small x was proposed [163] based on the
BFKL/BK small x resummation formalism, with a significantly different higher twist pattern than emerg-
ing from the saturation model. The most important finding of these studies is an evidence of strong (of
the order of 50%) positive higher twist effects in diffractive DIS at small xP and for Q2 below 5 GeV2.
The saturation model predicts correctly the (x,Q2) DGLAP breakdown line in DDIS and provides a
much better description of the DDIS data than the leading twist DGLAP fit [159] .

In inclusive DIS the sensitivity to higher twist effects is smaller than in diffractive DIS. The highest
higher twist corrections are expected in FL – about 20% at Q2 = 2 GeV2 and x = 3 · 10−4, in F2 one
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predicts a cancellation of higher twist effects from FL and FT and a small few per cent effect down to
Q2 = 1 GeV2. Thus in the preceisely measured ‘reduced cross section’, σr = F2 − y2

1+(1−y)2
FL, one

should expect sizeable higher twist effects at larger y. Indeed, a preliminary analysis of the combined
HERA data for σr shows some problems of the DGLAP fits at small x and Q2 [164].

Thus, the combined HERA data are expected to reveal the higher twist effects in diffractive and
inclusive DIS. In order to determine them with the best precision, fits to the DIS and DDIS reduced
cross sections should be performed that will combine the standard DGLAP evolution at leading twist
and non-leading twist corrections. The latter are known or may be computed within saturation models
or assuming a significantly different BFKL/BK scheme, and the fits may be able to differentiate between
these models of high energy scattering. Another promising possibility in the twist analysis with less
model dependence would be to apply a generic parameterization for the twist-4 correction, based on
its Q2 scaling. Such studies are expected to provide a stronger evidence for HERA findings of higher
twist effects at small x, more accurate parton densities and a valuable insight into the multiple scattering
mechanism in QCD.

7.3 Photoproduction of π+π− pairs in a model with tensor-pomeron and vector-odderon ex-
change
M. Sauter, A. Bolz, C. Ewerz, M. Maniatis, O. Nachtmann, A. Schöning

We consider a Monte Carlo event generator for the reaction γp → π+π−p at HERA energies, which is
based on the recently formulated model for soft high-energy scattering [165]. In this model, the pomeron
and the C = +1 reggeons are formulated as effective tensor exchanges, and the odderon and C = −1
reggeons as vector exchanges. In the high energy limit the same results are obtained as for the standard
Donnachie-Landshoff pomeron. The model provides everything to apply it to a concrete calculation of
amplitudes. Namely, it provides a large set of Feynman rules for vertices and propagators (pomeron,
odderon and reggeons) and a list of form factors. It also includes photon-exchanges (Primakoff-effect)
formulated in the vector-dominance model, and estimated values of all known parameters.

In the Monte Carlo event generator published in [166], we study dipion production via resonances
ρ, ω, ρ′, f2, via non-resonant mechanisms through the exchanges of photon, pomeron, odderon and
reggeons. The cross section as a function of dipion invariant mass mπ+π− is shown in Fig. 15(a) for
the full model and the various contributions. Cross sections as a function t, Wγp and cos θπ+ have been
shown in the presentation [167] and compared to data where possible. Further, several interference-
effects occurring between the different contributions to the total amplitude have been discussed. The
largest effect arises due to interference of resonant ρ production with non-resonant diagrams (Drell-
Söding mechanism) and leads to a distortion of the ρ line-shape (often referred to as "skewing-effect"),
as shown in Fig. 15(b). Also shown is the interference of the ρ with the ω meson. Another discussed
interference effect is due to a completely different nature: On the f2 mass peak at 1.27 GeV the interfer-
ence of C = +1 and C = −1 diagrams leads to an asymmetry in the angular distribution of the pions.
This asymmetry can be exploited to construct a total charge asymmetry Atot, shown in Fig. 16(a) as a
function of mπ+π− . It has a prominent structure around mπ+π− = 1.27 GeV and is predicted to be of
the order of 5− 10%. The total charge asymmetry is mainly driven by the interference of the high mass
tail of the ρ-resonance with the f2-resonance, whereas the production of the f2-meson is modelled by
exchanges of photons and (possible) odderons are taken into account. The overall share of the total asym-
metry is of the same order for the two contributions, but they have a different behaviour as a function
of squared momentum transfer t, as presented in Fig. 16(b). The asymmetry due to the Primakoff-effect
(photon exchange) shows as a function of t an almost flat behaviour. In contrast the asymmetry due to
a possible odderon increases, in absolute value, with |t|, reaching around 20% at |t| = 1 GeV for our
choice of parameters. The observation of such a structure in data would be a clear sign for an odderon at
work.

Interested readers should also consult the following related works [168–170] and the references
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therein.

mπ+π− [GeV]

0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

d
σ
/d

m
π
+
π
−
[µ
b
/
G
eV

]

10−3

10−2

10−1

1

10

102

103

104 total
ρ0(770)
non-resonant
ω(782)
ρ′(1450)
f2(1270)

Wγp = 30 GeV

(a)

mπ+π− [GeV]

0.4 0.6 0.8 1 1.2 1.4

d
σ
/d

m
π
+
π
−
[µ
b
/
G
eV

]

-10

0

10

20

30

40

50

60

70

80

Wγp = 30 GeV

(b)
total
ρ0(770)
non-resonant
interf. ρ0(770)
& non-resonant

interf. ρ0(770)
& ω(782)

Fig. 15: Differential cross sections dσ/dmπ+π− (γp→ π+π−p) as function of mπ+π− for fixed Wγp =
30 GeV and integrated over the range−1 GeV2 ≤ t ≤ 0. (a) The full model, non-resonant contributions
and the contributions from the resonances ρ0(770), ω(782), f2(1270) and ρ′(1450) are shown. (b)
Dominant contributions in the ρ mass region including the leading interferences of ρ0(770) with the
non-resonant π+π− production and the ω(782) meson are shown.
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Fig. 16: Total charge asymmetry Atot as function of the (a) invariant mass of the π+π− system and (b)
squared momentum transfer t. The asymmetries are presented for fixedWγp = 30 GeV and (a) integrated
over the range−1 GeV2 ≤ t ≤ 0 and (b) integrated over the range 1.1 GeV < mπ+π− < 1.35 GeV. The
individual contributions to the asymmetries from photon (Primakoff) and odderon exchange are shown
by the green dashed-dotted and blue dashed lines, respectively.

8 Spin physics
8.1 GPDs from exclusive meson leptoproduction

P. Kroll

In the generalised Bjorken regime of large Q2 and large W but fixed Bjorken-x the amplitudes for
exclusive leptoproduction of mesons and photons factorise in hard partonic subprocesses and generalised
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parton distributions (GPDs). For an extraction of the GPDs from experimental data in analogy to that of
the usual parton distributions, a parametrisation of the GPDs is required. A frequently employed concept
is to construct the GPDs from a double distribution where the latter is represented by a product of a
zero-skewness GPD and a weight function that generates the skewness dependence. The zero-skewness
GPDs is parametrised as their ξ = t = 0 limit (i.e. a PDF for H or H̃ , for others parametrised like a
PDF) multiplied by an exponential in t with a Regge-like profile function, for a review see [171] and
references therein.

From the form factors of the proton which represent the lowest moment of appropriate GPDs, the
GPDs H,E and H̃ for valence quarks are determined and used in subsequent analyses. The longitudinal
cross section for ρ0 and φ leptoproduction fix H for sea quarks and gluons, HERMES data on π+

electroproduction provide information on H̃ and the transversity GPDHT . Spin density matrix elements
for ρ0 and ω production as well as JLAB data on π0 production hint at a large contribution from ĒT
which has also been observed in a lattice QCD calculation. This result however needs confirmation.
Data on the π0 cross section from HERMES or COMPASS would allow for a determination of ĒT . Data
on ALU (π0) would also be of help.

Not much is known on the GPD E for gluon and sea quarks as yet. Their contributions to the
sin (φ− φs) modulation of the transverse target spin asymmetry measured by HERMES and COMPASS,
being related to an interference term of E and H , cancels to a high degree of accuracy. However, the
corresponding observable for DVCS, although suffering from rather large errors, tells us at least that
the convolution of Esea is likely negative. This rather poor information in combination with a positivity
bound for Esea allows for an evaluation of the angular momenta the partons inside the proton carry. At
a scale of 2 GeV the spin of the proton is shared about equally by u quarks and gluons. In the context
of the much debated so-called spin crisis this is an interesting result. A measurement of AUT for DVCS
with substantially smaller errors would be extremely helpful in reducing the uncertainties of the angular
momenta.

8.2 Inclusive and semi-inclusive spin physics
A. Bacchetta

The experimental investigation of the internal structure of the nucleon has been the “core business” of
the HERA experiments. The ultimate goal of this investigation is to produce maps of the distribution
of partons in the nucleon in all possible details. Why do we map partons? The main reasons are: to
understand QCD and to make predictions for hadronic collisions. In the last years, much emphasis was
put on the second motivation, but the first should not be overlooked. From this point of view, we should
not focus only on specific corners of these maps, but widen our view as much as possible.

Unpolarised standard PDFs represent a very important specific corner of nucleon mapping. HERA
experiments have given and keep giving landmark contributions to the reconstruction of PDFs. They can
be intuitively viewed as partonic maps in one dimension. A way to widen the view is to map partons in
more dimensions, in particular accessing the so-called Transverse Momentum Distributions (TMDs) in
semi-inclusive DIS. The HERMES experiment at HERA truly pioneered this exploration, even though it
was not foreseen in the original plans. The HERMES Technical Design Report [172] mentioned several
goals, all related to collinear (polarized) PDFs, with no mentioning of TMDs. However, the most cited
paper of the collaboration to this date is related to TMDs [173].

Given the relative novelty of 3D mapping, it is still possible to find measurements to be performed
using the unique data from HERA.

Let us start first from unpolarized measurements, where all three HERA experiments can con-
tribute. The formula for the semi-inclusive DIS cross section, differential in all possible variables, is
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(see [174] for the definitions of all elements involved)

dσ

dx dy dψ dz dφhdP
2
h⊥

=
α2

xyQ2

y2

2(1− ε)

(
1 +

γ2

2x

){
FUU,T + εFUU,L

+
√
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UU

}
.

(6)

When integrated over the outgoing particle, the formula reduces to the well-known inclusive DIS formula
with structure functions FT and FL.

HERMES analysed all terms of the above formula. The multiplicities, proportional to the structure
function FUU,T , have been published in Ref. [175]. A lot of information about TMDs can be obtained
from these measurements (see, e.g. [176, 177]), although other measurements are required. HERMES
could still analyse π0 and η production, and some data from 2006/2007 still need to be included in the
analysis. ZEUS and H1 measured the standard structure functions FT and FL, but also some measure-
ments with transverse-momentum dependence [178]. However, it would be very interesting to make an
analysis similar to HERMES, especially because the extension of the Q2 and x range is crucial to gain
insight into the properties of TMDs [179], in particular their evolution equations [180–183], currently
under careful scrutiny.

The cosine modulations in Eq. (6) contain also twist-3 contributions. Measurements of these mod-
ulations have been performed by HERMES [184] and ZEUS [185, 186]. They are more complicated
and have a less transparent interpretation compared to twist-2 contributions, but they are also a source of
new information about QCD, not accessible at twist-2, and are largely unexplored. Moreover, structure
functions that are dominated by twist-2 contributions always contain some higher-twist contaminations.
Therefore, high-precision extractions of twist-2 observables requires the knowledge of the twist-3 con-
tribution (see, e.g. the recent discussion in Ref. [187]).

On top of this, it would be interesting also to look for signals that are not included in the above
formula. They can be due to parity-violating electroweak interactions, or to two-photon exchange [188].
It would be much less likely and much more surprising to be able to spot physics beyond the Standard
Model (e.g. strong parity violation or heavy photons).

Let us turn now to polarised measurements. First of all, we could include lepton polarisation
and obtain an additional sinφh modulation in the cross section of Eq. (6). This modulation arises from
twist-3 contributions. If we include also target polarisation (something that only HERMES can do), the
situation becomes more complex, with 18 different structure functions [174]. HERMES has published
measurements of some of them, without a full multi-dimensional binning [173,189–193]. The “ultimate”
HERMES polarised DIS analysis (multi-dimensional, with all structure functions) is in progress, but still
needs to be published.

Apart from single-hadron DIS measurements, also two-hadron measurements [194] and single-
hadron inclusive leptoproduction should be taken into consideration. HERMES has already published
something on these topics [195, 196], but something still remains to be done. ZEUS and H1 could try
similar analyses in the unpolarised sector.

Apart from DESY experiment, similar measurements have been performed by the COMPASS
collaboration [197–205] and Jefferson Lab collaborations [206–211]. More measurements will come in
the near future from these experiments. In the far future, an Electron Ion Collider would be an excellent
machine to fully exploit the rich opportunities of this field [58, 59].

8.3 The longitudinal spin structure of the nucleon
E. Nocera

The decomposition of the one-half nucleon spin into individual contributions arising from the spin and
orbital angular momentum of quarks and gluons is encoded in the helicity sum rule [212], which may be
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written as [213]
1

2
=

1

2
∆Σ(µ2) + ∆G(µ2) + Lq(µ2) + Lg(µ2) , (7)

with ∆Σ and ∆G the first moments of the helicity-dependent, or polarised, parton distribution functions

∆Σ(µ2) =
∑

q=u,d,s

∫ 1

0
dx
[
∆q(x, µ2) + ∆q̄(x, µ2)

]
∆G(µ2) =

∫ 1

0
dx∆g(x, µ2) , (8)

and Lq,g the quark and gluon orbital angular momentum. All these quantities depend on the factorisation
scale µ, and such a dependence can be computed in perturbative Quantum Chromodynamics (QCD).
Polarised parton distributions are defined as the net amount of momentum densities of partons polarised
along or opposite the polarisation direction of the parent nucleon. Because of Eq. (8), they encode
the information on the longitudinal spin structure of the nucleon, and much effort has been devoted to
determine their non-perturbative dependence on the momentum fraction x carried by partons in several
global analyses of experimental data (for a review, see e.g. Ref. [214]).

The bulk of the experimental information on polarised distributions comes from neutral-current
inclusive and semi-inclusive deep-inelastic scattering (DIS and SIDIS) with charged lepton beams and
nuclear targets. The HERMES experiment at DESY has significantly contributed to pioneering measure-
ments of this kind, specifically on proton, deuteron and neutron DIS structure functions gp,d,n1 [215–217]
and gp2 [193], and on SIDIS spin-asymmetries for the production of π±, K± and charged hadrons [218–
220]. Because of the way the corresponding observables factorise, inclusive DIS data constrain the total
quark combinations ∆q+ = ∆q+ ∆q̄, q = u, d, s, while hadron-tagged SIDIS data constrain individual
quark and antiquark distributions. In principle, both DIS and SIDIS data would also constrain the gluon
distribution ∆g via scaling violations, but in practice their effect is rather weak because of the small Q2

range covered. One- or two-hadron production may provide a direct handle on ∆g, and this has also
been measured by HERMES [221, 222].

The inclusion of SIDIS data in a global analysis of polarised parton distributions requires an ac-
curate knowledge of fragmentation functions: indeed these enter the factorised expression of the corre-
sponding observables, since they encode the non-perturbative fragmentation of partons into the observed
hadrons. Fragmentation functions are on the same footing as parton distributions, hence they must be
determined from a global analysis of experimental data, see e.g. Ref. [223]. The HERMES experiment
also provided data useful for such a determination, specifically multiplicities for π0, π± and K± produc-
tion in SIDIS [175, 224]. These were recently included in a global QCD analysis of π± fragmentation
functions [225], and it was found that they are in fairly good agreement with a large variety of different
measurements in e+e− and pp collisions. These HERMES data are presented in both [x, z] and [Q2, z]
bins, where x is the target momentum fraction carried by the parton, z is the final hadron momentum
fraction carried by the parton, and Q2 is the energy transferred in the process. It was shown [226] that
[x, z] and [Q2, z] presentations of HERMES data are not mutually consistent, and that π± [Q2, z] data
(also used in Ref. [225]) may be not consistent with analogous preliminary data measured by the COM-
PASS experiment [227]. Also, it has been advocated that the HERMES data bin corresponding to the
smallest value of z, 0.2 ≤ z ≤ 0.3 lies in a kinematic region where the usual QCD description of SIDIS
may be not reliable [228]. Further careful phenomenological studies, possibly including a re-analysis
of HERMES multiplicities and their inclusion in a methodologically improved global determination of
fragmentation functions, are needed to clarify this state of affairs.

Overall, the potential of the HERMES experiment in unveiling the longitudinal structure of the
proton has been fully exploited, with all possible analyses finalized. Unfortunately, these allow for a
determination of ∆Σ and ∆G, Eq. (8), which remains largely uncertain and prevents from any firm con-
clusion on their contribution to Eq. (7) [229]. This is especially due to the dominance of the uncertainty
coming from extrapolation in the small-x region, x . 10−3, not covered by experimental data. In order
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to overcome this issue, a significantly extended kinematic coverage and increased statistical precision, in
comparison to the HERMES reach, are needed.

For instance, a significant amount of data in longitudinally polarised proton–proton (pp) collisions
have become available from the Relativistic Heavy Ion Collider (RHIC) [230], specifically single-spin
asymmetries for W± production [231] and longitudinal double-spin asymmetries for π0 and high-pT
inclusive jet production [232,233]. These data have been included in two independent global analyses of
longitudinally polarised parton distributions, DSSV14 [234] and NNPDFpol1.1 [235], and provided first
evidence respectively of a sizeable, positive polarised light sea quark asymmetry, ∆ū − ∆d̄ > 0, and
of a sizeable, positive polarised gluon distribution, ∆g > 0, though in the limited range of momentum
fractions covered by RHIC, 0.04 . x . 0.4. Further improvements of these results are expected after
RHIC run-2015 [230].

In order to probe the nucleon spin structure at the intensity and energy frontier, brand new facilities
will be required. On the one hand, the 12 GeV Jefferson Lab (JLab) electron beam energy upgrade [236]
will extend the kinematic reach of the existing JLab data to twice smaller x as well as to larger x values:
large luminosity and high resolution available will allow for a substantial reduction of parton distribu-
tion uncertainties in the medium-to-large x region, and for a discrimination among different models of
nucleon structure [237]. On the other hand, a high-energy, polarised Electron–Ion Collider (EIC) [59]
will extend the kinematic reach down to x ∼ 10−4 and up to Q2 = 104 GeV2: this will allow for an
accurate determination of ∆g via scaling violations in inclusive DIS, of ∆ū and ∆d̄ via inclusive DIS at
high Q2 mediated by electroweak bosons, and of ∆s via kaon-tagged SIDIS [238–240]. Also, would the
EIC data confirm the DSSV14 or NNPDFpol1.1 best fit behaviours of ∆Σ and ∆G, only a small fraction
of the proton spin is expected to come from orbital angular momentum, Lq + Lg in Eq. (7) [241].

9 Monte Carlo programmes for HERA physics
9.1 Parton shower Monte Carlo generators beyond collinear approximations

F. Hautmann, H. Jung

Phenomenological studies of final states at hadron colliders use Monte Carlo event generators [242]
based on collinear evolution of QCD parton showers combined with perturbative hard matrix elements.
It has been known for a long time, however, that when this approach is pushed to increasingly high
energies new effects arise from non-collinear corrections to parton branching processes [243], due to
soft but finite-angle multi-gluon emission. As was noted already long ago [244], such effects can be
taken into account by treating the QCD evolution of the initial state via transverse-momentum dependent
branching algorithms coupled [245] to hard matrix elements at fixed transverse momentum.

Besides these dynamical contributions, effects of kinematical origin have more recently been
pointed out [246] which arise from combining the collinearity approximations in the showering algo-
rithms with energy–momentum conservation constraints. These effects are responsible for a significant
fraction of the large parton-showering corrections [247] observed for a number of hadronic final-state
observables at the LHC, particularly at noncentral rapidities of jets [248], photons and leptons [249].

Parton-shower algorithms which go beyond the collinear approximations are thus needed for pre-
cision phenomenology at high-energy colliders, if one is to evaluate the theory consistently and control
the theoretical uncertainties associated with higher-order QCD radiation. DIS measurements play an
important role in this. An example is given in [26].

Ref. [26] studies the effects of soft-gluon coherence from finite-angle multiple QCD emission [243,
244, 250, 251] on multi-jet final states associated with Drell-Yan vector boson production at the LHC.
These effects go beyond any calculation based on next-to-leading-order perturbation theory matched
with collinear parton showers (see e.g. [252]) but according to the method [26] can be determined via
high-energy factorisation [245] from deep inelastic scattering. The results of [26] incorporate the high-
precision DIS data as described in [253], and show that multi-gluon emissions beyond next-to-leading
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order and beyond collinear logarithmic approximations are extremely relevant to ascribe theoretical un-
certainties to W + jets predictions.

This in turn implies that new determinations of parton distribution functions to be used in conjunc-
tion with parton showers are needed, in order to consistently take into account important radiative effects
in higher order, and that the use of combined DIS and Drell-Yan data has the potential to constrain such
determinations.

DIS structure function measurements as well as single-particle and jet cross sections will be rel-
evant for this. A particularly interesting – and very challenging – area will involve charged-particle
distributions in the region of low pT . In this region, connecting single-particle cross sections at HERA
and mini-jet (or leading-particle) production at the LHC [254] could contribute to theoretical insights
into the physics of parton saturation.

9.2 Herwig++ for ep4 and Rivet for ep5

S. Plätzer

Herwig++ [255] builds on the experience gained with its predecessor HERWIG, but features a number
of new capabilities and improvements to all aspects of the simulation. Being designed mainly with the
LHC in mind, we have, however, always emphasised the importance of legacy and future collider data.
Not only is this required for a thorough validation and tuning of the non-perturbative models considered
in Herwig++ [256, 257], but also for improvements to the description of the hard scattering process
and subsequent parton showering. In its current release 2.7 [258], Herwig++ offers two parton shower
modules: the default angular ordered parton shower based on [259], and a dipole-type parton shower
described in more detail in [260,261]. Both parton showers are able to simulate deep inelastic scattering
without any restriction; the multiple interactions module is not yet ready to address photoproduction
though there is no conceptual obstacle in doing so.

Next-to-leading order QCD corrections to the hard scattering process have been considered for
a variety of processes and have been matched to both parton cascades available. This has mainly been
done for the angular ordered shower on a process-by-process basis following the Powheg method, see
[262, 263] for examples, and both via the MC@NLO and Powheg methods for the dipole shower, using
a more flexible framework for NLO calculations and matching, see [261] for more details. Specifically
DIS has been addressed at NLO in combination with both shower algorithms [261, 264]. Based on
the development of a flexible NLO framework, the upcoming release of Herwig++ will feature a fully-
automated way of calculating NLO QCD corrections to Standard Model processes at pp, ep and ee
colliders, via both major matching paradigms and for both shower modules available.

Besides reaching NLO accuracy for the hard process with the fewest number of external legs, the
combination (or merging) of hard processes with different jet multiplicities and parton showers, both at
leading and next-to-leading order is desirable to obtain a smooth description across jet bins. A modified
leading order merging algorithm has been pioneered for the angular ordered shower [265], and work
is underway to follow up recent proposals on next-to-leading order merging [266, 267] with the dipole
shower.

Both the NLO matched simulations and those based on merging different jet multiplicities have
so far only been studied in great detail for LEP, Tevatron and LHC data, especially for the case where
additional, hard jets become relevant. Comparisons to HERA and future ep data are extremely important
to validate these new algorithms, but have so far not been addressed due to the lack of analyses which can
easily be integrated with LHC-age Monte Carlo event generators, notably via the Rivet framework [268].

To overcome this limitation, first steps have been undertaken to develop a Rivet wrapper around
HZTOOL to provide easy access to the analyses contained there. This Rivet plug-in is currently subject

4Work presented on behalf of the Herwig++ collaboration.
5Work in progress with Hannes Jung.
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to validation and will be made available along with an upcoming HZTOOL release. It should be stressed,
however, that this does not encourage the addition of new analyses of HERA data into HZTOOL, but
rather to provide them directly as Rivet plug-ins, with a minimum amount of corrections, i.e. solely
account for detector acceptance, applied to the data.

In terms of future analyses, certainly the characterisation of multijet final states is highly welcome
from the perspective of contemporary event generator development, though also different jet algorithms
and jet shapes are valuable input to benchmark new shower algorithms and improvements. If possible,
data sensitive to hadronisation effects, especially in the forward region, could help in constraining colour
reconnection models which are highly relevant to LHC physics.

10 Summary: from Dirac’s electron to Dirac electrons and quarks6

J. Dainton

"(The) history of science has shown that even during that phase of her progress in which she devotes
herself to improving the accuracy of the numerical measurements of quantities long familiar, she is
preparing the materials for the subjection of new regions, which would have remained unknown if she
had been contented with the rough methods of her earlier pioneers."

James Clerk Maxwell

10.1 The 1992 HERA perspective
In 1992 lepton–hadron physics is recognised to be at the root of a Standard Model (SM) in which was still
missing the sixth quark. The physics of electron–positron annihilation at LEP continues to probe with
precision following discoveries at DESY and SLAC at lower energy which in many respects defined the
template of the symbiosis of theory and experiment which gave us the SM. At and beyond the Fermi scale
is probed with anti-proton–proton interactions at the Fermilab Tevatron with a focus on more quarks and
as always even then on the Higgs-boson. The discovery of the SM vector-bosons is only a decade old.
Hadron (proton) structure is maturing rapidly after the pioneering deep-inelastic experiments at SLAC,
Fermilab and CERN in terms of parton density functions in a paradigm in which the visible valence
quarks carry barely 50% of hadron momentum. Soft hadronic physics remains a conundrum built round
what many take to be an anachronistic and limited phenomenology based on constraints which must be
met by scattering amplitudes – namely a Regge asymptotic expansion.

10.2 HERA at the close of 2014
HERA has discovered that hadron mass, us – humanity and the presently visible Universe, is chromody-
namic field energy. Less than 1% of visible mass in the proton is attributable to constituent mass, that is
to mass due to the spontaneous breaking of SU(2)×U(1)broken, the Higgs mechanism. We are gluons!
HERA has measured with precision this discovery such that we now have a quantitative prescription for
how a proton interacts in the SM in the form of chromodynamic phenomenology. HERA achieved this
as an ever-improving instrument which probed the structure of the proton with the unified electroweak
sector, that is, with each, and with all together, of lepton and quark flavour, of chirality, and of the differ-
ences between lepton–matter and anti-lepton–matter interactions. The anti-matter–matter asymmetry of
the proton is thereby measured directly for the first time.

6The presentation on which this very short summary is based is very much a personal perspective of 22 years of HERA
physics. It is based on an invitation to speak at the end of the colloquium and workshop at DESY in November 2014. It is not
inclusive of the multitude of results and measurements from the four HERA experiments, H1 ZEUS, HERMES and HERA-
B. It is made possible by generations of colleagues, both on the experiments and on the HERA machine, whose hard work,
dedication, innovative determination and unswerving commitment has secured HERA as pivotal in the development of 20th
and early 21st century physics, culminating in the SM of today. Specific contributions to this colloquium, which are to be found
in other presentations included with this short summary, contain more details of latest results in respect of what is written down
here. A long write-up is nearly complete which will be published as a DESY preprint shortly.
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HERA’s success in quantifying hadron structure with precision reveals new issues in short-distant,
dense chromodynamics, "low-x physics", which must be met and understood in pursuing the detailed
behaviour of non-abelian field theory. Remember that chromodynamics is the only experimentally ac-
cessible non-abelian field! The precision of the measurements, together with the technology used to
quantify proton structure which reveals these issues, now challenges field theory with precision akin to
that of Lamb and Rutherford who first discovered in 1947 the "Lamb-shift", who thereby opened a new
window on the interactions of Dirac protons, and thereby whose work led the way to the SM. Taking this
consequence of HERA physics onwards must be part of understanding unification which is inclusive of
chromodynamics.

A feature of HERA physics which was completely overlooked in the years of its proposal, fund-
ing and construction, and which therefore now stands as another discovery, is the elucidation of the
chromodynamic nature of high energy, "diffractive", hadronic, interaction. The ability to measure at
sub-femtoscopic inelastic, high energy, hadron production in which one proton or low mass baryon exci-
tation scatters has enabled beautiful measurements of the partonic behaviour of what has been for years
no more than a phenomenological box quantified in terms of long-range hadron–hadron interactions.
The resulting "structure" of the chromodynamic field as it works in the form of the nucleon–nucleon
interaction is now understood quantitatively with an accuracy better than that of the proton itself at the
time of HERA’s inauguration. The symbiosis of this structure of the diffractive high energy proton inter-
action with that of the structure of the proton can now, because of HERA, be clearly seen as the basis of
low-x physics as a cornerstone of the physics of dense, non-abelian, matter. Other cornerstones include
heavy-ion physics at the LHC, at RHIC (BNL), and at CERN in the fixed target ion physics which, all
together, will lead ultimately to an understanding of the phase-equilibria of confining, asymptotically
free, chromodynamics.

The space-like domain of electroweak, Glashow–Salam–Weinberg (GSW), unification, that is the
non-abelian, SU(2)×U(1)broken, field dynamics, is now quantified because of HERA. Unification of
force at the Fermi-scale has been for the first time demonstrated directly to be as predicted in GSW
theory. The combination of cross-section measurements of neutral current and charged current inclu-
sive scattering with incident lepton and anti-lepton polarisation has revealed no evidence for anything
unexpected in electroweak force. After 80 years Fermi’s original hypothesis for a weak β-interaction is
confirmed with the simultaneous demonstration of unification at an energy scale of ∼ 100 GeV in terms
of an SU(2)-isospin in respect of lepton and quark couplings at what we now call the Fermi energy
scale. It is gratifying then that in 2012 science has finally managed to produce evidence with the LHC
for the scalar field, the Higgs-field, which underpins the dynamic mechanism behind the SM of GSW
unification, the Higgs-miracle, by observing its "quantum", the Higgs-boson!

Lastly, the discoveries at HERA which must be mentioned concern both the distinction between
the lepton and quark sectors of the SM and the properties of quarks as Dirac fermions.

Despite sensitivity to new interactions as a means of securing new physics beyond the time-like
kinematic limit ∼ 200 GeV, no evidence for anything has emerged for new physics beyond the SM at
HERA. Indeed, quite the opposite. Neither direct resonant (s-channel with associated phase variation
with respect to SM) nor contact (or even u-channel space-like going beyond the time-like kinematic
limit) (anti-)lepton–(anti-)quark phenomena have been observed. This window on one possible way in
which chromodynamic–electroweak unification may be manifest is thus seen to remain an inadequacy of
the SM landscape and therefore not to signal what could otherwise have been new development of it in
respect of the relationship between a quark and a lepton. At LHC this conclusion has already been pushed
fruitlessly to about three times as high a mass using time-like production and decay. The discovery at
HERA was therefore that there was nothing new, which is as important as is any null result in science,
the previous, most recent, example in particle physics being at LEP!

And finally, last but certainly not least HERA can close a new loop on the ever extending horizon
of Dirac’s original theoretical discovery concerning spin-1

2 fermions. Precision comparison of inelastic

30



(posi)electron–proton scattering at the highest possible with the expectations of point-like lepton plus
point-like quark scattering, all now embedded in all that has been discovered concerning HERA’s wealth
of new understanding of hadronic structure and the validity of space-like GSW unification, leads to the
firm statement that quarks are Dirac fermions at the distance scale of an attometer. It seems that nearly a
hundred years on from the discovery of his equation, after it formed a template against which to establish
the theoretical paradigm of field theory which underpins our SM, that at a distance scale of 1

1000 th the
size of the atomic nucleus, 1

100,000,000 th of the size of an atom, we do understand what we are dealing
with, namely still Dirac’s fermions, even if we manifestly have still no understanding why they, with the
GSW quantum fields which define their interactions, are there at all.

10.3 Onwards?
The significance and importance of the "HERA era" of physics can be seen as pivotal. For more than 24
years (1983–2007) the construction and operation of the first ever, and until now only, collider of different
particle species probed all aspects of the Standard Model (SM). The impact of its scientific output has
continued so far for a further 7 years. The combination of an energy reach beyond the Fermi scale,
with the precision which the comprehensive experiments H1, ZEUS, HERMES and HERA-B brought
to bear on the panoply of physics, have provided a cornerstone in the development of the SM. Because
only of the unforeseeable stubbornness of Nature, HERA has thus been able to secure with precision the
consistency of the SM in the space-like domain, but without unfortunately opening up any understanding
of the underlying reasons for the existence of the Dirac fermions, the leptons and the quarks, on which
the SM is based.

This is nevertheless by any criterion a noble pedigree with an immensely important legacy. HERA’s
place is that of the contemporary manifestation by which has been discovered the nature and origin of
matter since the discovery of the atomic nucleus. When taken alongside the pivotal experimental dis-
covery by Thomson of his "corpuscle" in 1897 in Cambridge and the theoretical foundation of Dirac’s
original theory of the spin-1

2 electron, it can therefore be seen as that which has cemented in place the
basis of the triumph of the latter half of 20th century physics, the Standard Model.

HERA’s success has thus been pivotal. Further, and based on the success which is the SM, as
we scramble to justify the future of particle physics in terms of any major new investment which costs
factors more than an international initiative such as the ITER fusion facility, we must the humility not to
forget the unchallengeable fact that nothing has ever been discovered beyond a Dirac fermion, and if it
were to be discovered it would be truly revolutionary. Optimism is indeed essential, but with innovative
pragmatism too! The way that HERA happened, the way it was funded with the HERA model by our
predecessors, exemplified this innovative pragmatism. The way that HERA was designed, built and op-
erated exemplified it. The excellence and importance of the science at HERA, which is so characteristic
of the excellence of all who have had the privilege to work at DESY Hamburg, exemplifies it. In turn,
we must exemplify it by continuing to recognise that none of it could have happened if the German tax-
payers, along with their peers in all countries which have contributed to science at DESY, had not been
willing to support our science following a reasonable request for financial investment. What we ask for
next must exemplify it too.

I thank everyone with whom I have had the privilege for decades to interact and work at DESY
Hamburg, including my late wife Josephine whose contributions to DESY science I know from so many
will also never be forgotten. My time at DESY will always be unforgettable doing great science. I also
am sure that all who worked on HERA are indebted to the taxpayers of Germany, Europe and beyond
who funded the HERA adventure. We hope like us that they all will agree that their investment in science
at HERA at DESY has been priceless, and therefore certainly worth their investment!
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