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Abstract

Axions with broken discrete shift symmetry (axion monodromy) have recently played
a central role both in the discussion of inflation and the ‘relaxion’ approach to the
hierarchy problem. We suggest a very minimalist way to constrain such models by the
weak gravity conjecture for domain walls: While the electric side of the conjecture is
always satisfied if the cosine-oscillations of the axion potential are sufficiently small,
the magnetic side imposes a cutoff, Λ3 ∼ mfMpl, independent of the height of these
‘wiggles’. We compare our approach with the recent related proposal by Ibanez,
Montero, Uranga and Valenzuela. We also discuss the non-trivial question which
version, if any, of the weak gravity conjecture for domain walls should hold. In
particular, we show that string compactifications with branes of different dimensions
wrapped on different cycles lead to a ‘geometric weak gravity conjecture’ relating
volumes of cycles, norms of corresponding forms and the volume of the compact
space. Imposing this ‘geometric conjecture’, e.g. on the basis of the more widely
accepted weak gravity conjecture for particles, provides at least some support for the
(electric and magnetic) conjecture for domain walls.

December 11, 2015

1

ar
X

iv
:1

51
2.

03
76

8v
1 

 [
he

p-
th

] 
 1

1 
D

ec
 2

01
5



1 Introduction
The fog surrounding Large Field Inflation is rapidly dissolving. On the one hand, if experiments
are going to detect primordial gravitational waves in the very near future, then we will know that
trans-Planckian field displacements are required. On the other hand, ongoing theoretical effort
may rule out large field inflation in effective field theory coupled to gravity before the observational
verdict. In particular, recent constraints focus on models where the inflaton is an axion with a
super-Planckian decay constant.

Axions with large periodicities also occur in a different setting: they are a crucial ingredient
of the proposed relaxion solution to the hierarchy problem [1] (see also [2–8]).

However, trans-Planckian values of decay constants are problematic (see [9]). Nevertheless,
there exist several proposals to implement large-field axion inflation in effective field theory with
sub-Planckian decay constants. They include decay constant alignment (KNP) [10] and N-flation
[11] (for a biased collection of recent implementations in string theory see [12–20]). Another
proposal, which is the focus of this paper, is axion monodromy [21] (see also [22–28] for realisations
in string theory).

Recently, important quantum gravity arguments have been used to constrain, and in some cases
even rule out, many of these models (see [29–45]). A first criticism to large field displacements
is based on gravitational instantons [35]. A second one is based on the Weak Gravity Conjecture
(WGC) [29]. The latter has been successfully used to constrain models of N -flation and decay
constant alignment à la KNP . The implications of the WGC for axion monodromy are less clear
(see however [36]). A third criticism is based on entropy arguments ([30], see however [45]).

Very recently, developing an idea of [36], the authors of [46] have applied the WGC for domain
walls to axion monodromy, albeit mainly in the different context of the relaxion proposal. Their
analysis rests on interpreting the monodromy as being due to the gauging of the discrete shift
symmetry of an axion by a 3-form potential à la Kaloper-Sorbo (KS) [47, 48] (see also [49]). The
WGC for the original 3-form gauge theory says that this system comes with light domain walls
which, in turn, threaten the slow-roll field evolution in the resulting monodromy model.

The WGC is a statement which connects low energy effective field theories and their UV com-
pletion (which we assume to be string theory). In the very same spirit, this paper follows two
different, but related, directions: the first one is more phenomenological and relevant both to
inflation and relaxation, while the second one is more conceptual and deals with string compacti-
fications. The link is provided by the WGC.

Concerning the first direction, we advocate a different point of view on constraints coming from
4d membranes in models of axion monodromy (inflation and relaxation). In particular, we take a
minimalist effective field theory perspective: a generic realisation of monodromy is characterised
by ‘wiggles’ in the axion potential (see Fig. 1, 2). The latter define a four-form flux and associated
domain walls. Those differ from the membranes analysed in [36, 46], as they do not arise from a
gauging procedure: they originate purely from the oscillatory axion potential. In particular, their
tension can be made lighter without spoiling slow-roll. In fact, the lower the ‘wiggles’, the easier
it is to slow-roll. Therefore the electric WGC does not constrain generic realisations of axion
monodromy (inflation and relaxation).

We then seek for constraints arising from the magnetic WGC. It is generically expected that
axion monodromy models cannot allow for a parametrically large field range when correctly im-
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plemented in a setup of string compactifications. Our claim is that the magnetic WGC describes
precisely such a limitation to the field range (see also [50] for general constraints in setups of
string compactifications). It does so by bounding the cutoff of the effective theory: Λ3 . mfMpl.
Our point of view is relevant not only for models where monodromy is used to realise inflation,
but also for relaxation models, where the low energy barriers are a fundamental ingredient of the
mechanism. Applied to inflation, this condition allows in principle for large field displacements,
but forbids models with a too small decay constant. Our constraint may be considered as a posi-
tive statement about the feasibility of Axion Monodromy Inflation. In addition, this drives limits
on the amount of resonant non-Gaussianity [51, 52] from the ‘wiggles’, and on the possibility of
slow-roll eternal inflation.

We then justify our extension of the magnetic side of the WGC to domain walls. In assuming
that the electric WGC can be extended to any p-dimensional object in d dimensions, we are
motivated purely by the fact that string theory always fulfils the WGC. We argue that, adopting
this point of view, the extension of the magnetic part is equally well motivated. In fact, we show
that string theory fulfils the WGC precisely by lowering the cutoff of the 4d description, i.e. the
KK scale, rather than by providing objects which are light enough. The electric side is therefore
satisfied as a consequence of the magnetic WGC.

The second aim of this paper is to describe some insight concerning extensions of the WGC to
generic p-dimensional object in d-dimensions. This has been already the focus of recent activity
[36,41,43,46]. We make progress by showing that, in a setup of string compactifications, the WGC
can be phrased as a purely geometric constraint. In particular, it translates into a requirement on
the size and intersections of the q-cycles wrapped by the p-dimensional objects. Explicitly:

V
1/2
X |qΣ|
V Σ

≥ Ad,q,p, (1.1)

where VX is the volume of the compactification manifold, V Σ is the volume of the q-dimensional
cycle Σ, |qΣ| is the norm of the harmonic form related to Σ using the metric X, and Ad,q,p is a
O(1) number given below. Once assumed for one particular configuration (e.g. one leading to 4d
particles), this constraint is valid for any other s-dimensional object, with s 6= p, wrapped on the
same cycles of the same CY. Therefore, our strategy shows that string dualities are not needed
to generalise the WGC: one can separately constrain theories with different brane configurations
compactified on the same CY. In this sense our approach improves on the existing literature.

This paper is structured as follows. Sect. 2 is devoted to phenomenological considerations. In
particular, in Sect. 2.1 we describe the presence of domain walls in 4d effective field theory models
of axion monodromy and deduce the constraints coming from the electric WGC. In Sect. 2.2 we
assume the magnetic WGC for domain walls and extract the consequences for Axion Monodromy
Inflation. In Sect. 2.3 we motivate the extension of the magnetic WGC to domain walls and
in Sect. 2.4 we comment on the relation to KS membranes. Sect. 3 is devoted to a geometric
interpretation of the WGC. Finally, we offer our conclusions in Sect. 4.

2 Axion monodromy and Domain Walls
In this section we aim at obtaining constraints on models based on axion monodromy (inflation
or relaxation). We begin by pointing out the existence of light domain walls in those models.
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Interestingly, these are different from the membranes inherent to the KS approach to axion mon-
odromy. They belong purely to the effective field theory regime and do not descend from a higher
dimensional gauge theory. We apply the WGC to these low energy domain walls and then discuss
the relation of our result to the recent analysis of [46].

2.1 Light domain walls

We start by adopting a naive 4d effective field theory point of view of axion monodromy models.
The Lagrangian of such a model is given by:

L = (∂φ)2 − V (φ/f), (2.1)

and the inflationary (or relaxion) potential generically consists of a polynomial part and an oscil-
latory term, e.g.:

V (φ) =
1

2
m2φ2 + α cos

(
φ

f

)
(2.2)

Furthermore, in models of axion monodromy and relaxation one typically has (and for relaxation
actually needs) α ≡ α(φ), see e.g. [52–54]. The cosine term generates ‘wiggles’ on top of the
quadratic potential, see Fig. (1). These ‘wiggles’ correspond to domain walls: once the inflaton
(relaxion) gets stuck in one of the cosine wells, there is a nonvanishing probability to tunnel to
the next well, which is characterised by a smaller value of the potential. This happens by the
nucleation of a cosmic bubble containing the state of lower energy and its rapid expansion.

This system enjoys a dual description is in terms of a three-form potential which couples to
the domain walls:

L =
1

e2
F 2

4 +

∫
DW

A3, (2.3)

where the field strength F4 can be seen as the dual of the discrete vacuum values of the scalar
φ. Notice that the coupling e has units [E]2. In the presence of membranes, F4 is quantized in
units of e, as follows from its equations of motion: F4 = ne, n ∈ Z (as e.g. in [55–58], though in
different contexts). By crossing a membrane the flux changes by one unit. The energy density
away from the domain walls is given by E = 1

2
n2e2. In the dual scalar field picture, this energy

density is simply E = 1
2
m2φ2. Therefore, we deduce that the discretuum of points n corresponds

to the values of the field φ ∼ 2πnf in the regions surrounded by the barriers. In this vocabulary,
the coupling e translates into the parameters as e = 2πmf .

The surface tension of a bubble can be estimated as the product of the characteristic thickness
b ∼ ∆φ/

√
V and height of the domain wall V ∼ α (see e.g. [59]). One obtains: TDW ∼

√
V∆φ ∼

α1/2f . As we make the domain walls lighter, i.e. as we lower the value of α, the wiggles become
less pronounced, see Fig. (2).

In order to ensure that the inflaton (or relaxion) can slowly-roll for a sufficiently large distance,
one needs to make sure that the height of the wiggles, i.e. the tension of the domain walls, is small
enough. In this sense, slow roll inflation (or relaxation) can be viewed as continuous nucleation of
cosmic bubbles.

The crucial point is that lowering the tension of these domain walls goes precisely in the same
direction as required by the WGC. Let us recall that, in its original form [29], the conjecture
concerns 4d U(1) gauge theories with coupling e and gravity. The electric side of the conjecture

4



Φ

V

Figure 1: Monodromy potential,
as in (2.2). Here α/(m2f 2) =
10−2.

Φ

V

Figure 2: Monodromy potential,
as in (2.2). Here α/(m2f 2) = 5 ·
10−3.

requires that a particle of mass me exists such that: eMpl/me & 1. The statement can in principle
be extended to any (p + 1)-form gauge theory in d dimensions, with p-dimensional electrically
charged objects. The generalisation to domain walls, i.e. p = 2 in 4d, is actually not straightfor-
ward and may present subtleties (see [43,46]). For the moment, we assume that the conjecture is
valid for domain walls; we motivate our assumption in detail in Sec. (3). Therefore, we have the
following constraint on the tension and coupling of the domain wall:

WGC: T . eMpl. (2.4)

Applied to inflationary (relaxion) models, this condition leads to T . mfMpl. The conjecture
requires a small tension, which is what is needed to have slow-roll inflation (or relaxation).

Therefore, we are unable to constrain Inflation/Relaxation models by this logic.

2.2 Constraints from the magnetic WGC

In the previous subsection we have seen that the electric side of the WGC, as applied to light
domain walls, does not constrain models based on axion monodromy. However, there exist two
versions of the conjecture.1 The aim of this subsection is to show that the magnetic side imposes a
non-trivial constraint on the field range in models of Axion Monodromy (inflation or relaxation).

We start by providing a statement of the magnetic WGC in the form of a constraint on the
cutoff Λ of a gauge theory. To this aim, let us proceed by dimensional analysis. We consider a
(p+ 1)-form gauge theory with coupling ep,d in d dimensions with electrically charged Dp-branes
and magnetically charged D(d − (p + 4)) branes. The magnetic WGC simply states that the
minimally charged magnetic brane should not be a black brane. The tension of a black brane
is TBHd−(p+4) ∼ Md−2

d Rp+1, where R is the Schwarzschild radius of the black brane and Md is the
Planck scale in d dimensions. The tension of a magnetically charged brane can be estimated by

1There exists yet another version of the conjecture, demanding that the states satisfying the WGC are within
the validity range of the effective field theory [41]. In this paper, we do not consider it, since, in string models, this
appears not to hold if one identifies the KK scale with the cutoff. Also, there are further variants of the electric
version (“strong”,“mild”,“lattice”), which we do not discuss.
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integrating the field strength outside the core, as in the familiar case of the magnetic monopole.
In d dimensions and for a p+ 1-form, the coupling has dimensions [E](p+2)−d/2. Therefore:

Td−(p+4) ∼
Λp+1

e2
p,d

. (2.5)

The magnetic WGC then requires:

magnetic WGC: T . TBH ⇒ Λ2(p+1) . e2
p,dM

d−2
d . (2.6)

Although this derivation does not go through in 4d for p = 2 (since we cannot make sense of
D(−2) branes), we conjecture “by analytical continuation” in (p, d) that the constraint applies.
We therefore obtain:

Λ . e1/3M
1/3
Pl . (2.7)

This is the constraint we were after. We will provide more support for it later on.
We now apply (2.7) to axion monodromy models. As we have seen in the previous subsection,

the coupling e is related to the axion parameters by: e = 2πmf . Therefore, we get the condition
Λ . (2πmfMpl)

1/3. The relevant constraint is now obtained by requiring that the Hubble scale is
below the EFT cutoff, i.e. H = (V/3M2

pl)
1/2 = 1/

√
6 · (m/Mpl)φ . Λ. This gives an upper bound

on the field range:
φ

Mpl

.

(
Mpl

m

)2/3(
2πf

Mpl

)1/3

. (2.8)

As it stands, the constraint (2.8), although non-trivial, represent only a mild bound on the field
range. With m/Mpl ∼ 10−5, and 2πf/Mpl ' 1 one gets φ/Mpl . 103, which safely allows large
field inflation. We expect that our dimensional analysis estimate is modified only by O(1) factors
(see Sec. 3). However for models with small f the constraint (2.8) may become relevant.

It is a generic expectation that, in models of large field inflation, the field range cannot be
parametrically large. The discussion of this section confirms this expectation: In the case of axion
monodromy, the magnetic side of the WGC limits the field excursions. However, phenomenologi-
cally relevant field ranges are allowed.

Before moving on to the next subsection, we would like to remark on a well-known problem
of all the axion models, which also affects our setup. In these models there are always instantons
associated to the slowly-rolling axion. If they all contribute to the axion potential, there is no flat
direction on which to inflate (relax). It is a non-trivial task to suppress the higher order instantons
(our ‘wiggles’), and strategies to do so and evade the WGC have been an important focus of recent
work (see [38] for a proposal which realises a loophole of the WGC [34,36]).

Let us now motivate, as promised, our extension of the magnetic WGC to generic p-dimensional
objects.

2.3 String Theory and the WGC

It has been suggested in [46] that there is no magnetic side of the conjecture for domain walls, a
statement which conflicts with our previous discussion. Here we would therefore like to motivate
our use of the magnetic WGC. From now on, we work in units where Mpl ≡ 1.
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From the point of view of string theory, there are two possible ways of satisfying the elec-
tric WGC. On the one hand, string compactifications may provide light objects whose tension
and coupling satisfy the inequality T . e. However, Dp-branes in 10D are extremal, i.e. they
marginally fulfil the WGC. Under compactifications, the resulting objects are not guaranteed to
be extremal, unless SUSY is preserved. Therefore, it is not clear whether objects arising from
string compactifications could violate the WGC.

On the other hand, there exist another mechanism by which the conjecture can be satisfied
in a string compactification setup: The effective 4d field theory is valid up to the the KK scale
MKK ∼ 1/R, where R is the typical length scale of the compactification manifold. Above MKK ,
one has to work with the full 10D theory. In particular, if the tension of the objects descending
from string theory is larger than MKK , then these objects simply do not exist in the low energy
effective field theory. Therefore, by lowering the KK scale, one can ensure that the WGC is not
violated, by simply removing the dangerous objects from the spectrum of the low energy theory.
A low cutoff is precisely what is required by the magnetic side of the WGC for a weakly coupled
theory.

Explicitly, consider a q-dimensional object descending upon compactification from a p dimen-
sional brane in 10D. The ratio between its tension and the KK scale is given by: τq/M q+1

KK ∼
Mp+1

s Rp+1/gs. Therefore as R increases τ 1/(q+1)
q is larger than the KK scale and the corresponding

object simply disappears from the 4d theory.
The bottomline of this discussion is that, in many cases, string theory satisfies the WGC by

imposing a low cutoff to the 4d effective field theory, not by providing objects which are light
enough. In other words, setups of string compactifications satisfy the magnetic side of the WGC
and, as a consequence, the electric side as well.

This is the reason why we think that the magnetic constraint is the more fundamental conjec-
ture among the two version of the WGC. Therefore, we assume that the magnetic WGC is valid
for any p-form, and in particular for domain walls.

Recently, the electric WGC has been applied to another class of membranes in the context of
realisations of axion monodromy models à la Kaloper-Sorbo (KS) (see [47] for the KS proposal, [46]
for the recent developments) . In the next subsection we describe the relation of this work to our
findings.

2.4 Relation to domain walls à la Kaloper-Sorbo

We begin by reviewing the strategy of [36, 46] to constrain nucleation rates in models based on
axion monodromy. In this subsection, we follow the notation of [46], which differs from the one
used in the previous subsections.

The KS proposal [47] to implement monodromy models in a 4d setup is to introduce a 3-form
gauge potential A3 and to couple the corresponding 4-form field strength to the axion:

L = −1

2
(∂µφ)2 − 1

2
|F4|2 + gφF4, (2.9)

where |Fp|2 ≡ 1
p!
Fµ1...µpF

µ1...µp . Notice that this setup is different from the dual picture that we
have described in Sec. (2.1). We used just one scalar field theory with a discretuum of vacua, which
corresponds to a gauge theory with the same discretuum of vacua. By contrast, the lagrangian
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in (2.9) consists of a scalar field theory (first term) and a gauge theory (second term), each with
its own set of vacua. The third term couples these two theories. The potential A3 couples to
fundamental 4d domain walls via S ∼ q

∫
2−branesA3. The field strength F4 varies across the

membranes and is quantised in units of the membrane charge, i.e. F4 = nq (?1). A shift in the
value of F4 is a part of the residual gauge symmetry of the KS lagrangian. Under this symmetry,
also the scalar field shifts:

φ→ φ+ 2πf, nq → (n− k)q, n, k ∈ Z, (2.10)

with the consistency condition 2πfg = kq, and f being the axion periodicity. Due to this residual
gauge symmetry, we are left with only one set of vacua, labeled by one integer.

The quadratic potential for φ arises from integrating out the field strength F4:

VKS =
1

2
(nq + gφ)2. (2.11)

The crucial point is that each value of n corresponds to a different branch of the potential.
The gauge symmetry (2.10) provides a way to identify these branches. In this sense, crossing a
membrane corresponds to an alternative way to move one step down in the potential. This is
different from rolling over or tunneling through a “wiggle” of Fig. (1). The KS membranes can
potentially spoil the slow-roll behavior allowed by small “instanton-induced wiggles”. As usual, the
probability for such tunneling events is described in terms of a nucleation rate for the corresponding
bubbles.

Since this probability is exponentially suppressed, one might wonder whether this effect rep-
resent a concern for Axion Inflation. The nucleation rate Γ is given by e−B, where B ∼ T/H3 in
the relaxion regime (see [60]).

In [36], the authors show that a strong suppression of the nucleation rate requires a violation
of the WGC. More recently, in [46], the authors follow the same direction to constrain models of
relaxion monodromy. In this case, the WGC requires T . 2πfg. Constraints on the parameters
of relaxion models are then discussed.

Applied to inflationary models, T . eMpl and T � H3 lead to the same constraint that we
have found in (2.8). However, we have obtained it by using a different, arguably simpler, effective
field theory point of view, based on the magnetic, rather than the electric WGC. Notice also that
the objects that we have described in Sec. (2.1) can be naturally lighter than the KS membranes.

We are left with two possibilities. The WGC may have to be separately satisfied by the two
types of membranes. In this case the constraints given in [46] and based on the electric WGC for
domain walls apply. The same constraint arises as a consequence of the magnetic WGC applied to
lighter domain walls. The other point of view is that the WGC needs to be satisfied only by those
lighter domain wall. Alternatively, one may think of setups where the KS gauging procedure is
not employed and there are therefore no membranes associated to the gauge symmetry introduced
via coupling F4 to φ. In this latter case the electric WGC is satisfied by the light domain walls
associated to the “wiggles”, therefore no further constraint on monodromy models arises from the
electric WGC.

Our conclusion is that in both cases the field range is constrained according to (2.8). In the
first case the latter comes from the electric side applied to KS membranes, as explained in [36,46],
and from the magnetic side applied to “wiggles” membranes. In the second point of view, which
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we adopt in this paper, no UV information on the origin of the gauge theory is required and (2.8)
follows only from the magnetic WGC.

3 The WGC as a geometric constraint
In this section we want to address the extension of the WGC to domain walls. We will do so in
the framework of 10D string theory compactified on a CY manifold.

3.1 Previous approaches and our perspective

In [43], the authors provide the following statement of the WGC for any p-form in d dimensions:[
α2

2
+
p(d− p− 2)

d− 2

]
T 2
p ≤ e2

p:dq
2Md−2

d . (3.1)

In the absence of a dilaton background, the inequality is degenerate for p = 0 (axions) and p = d−2
(strings). Moreover, for p = d − 1, i.e. for domain walls, the inequality cannot be satisfied, as
already pointed out in [43]. Therefore, one may worry that there is no statement of the electric
WGC for domain walls.

An idea to extend the WGC to generic p-dimensional objects, as noticed in [46], is to use string
dualities. This follows very closely the strategy of [36], where the conjecture is extended to axions
and instantons. In that case, the authors consider type IIB on a CY 3-fold with D1 branes and
their associated C2 gauge potential. Wrapping the branes on 2-cycles and compactifying to 4d,
one obtains a theory of C2 axions and D1 instantons. This type IIB theory is then T-dualised to
type IIA with D2 branes and their associated C3 potential. Since this theory is strongly coupled,
one actually uses the M -theory picture, introducing a further compact dimension. Again, by
wrapping the branes around 2-cycles and compactifying, one obtains a 5d theory with a U(1)
gauge field and M2 particles. This is the original content of the WGC, which can therefore be
applied to this particular 5D setting. Finally, one can translate the constraints obtained on the
particles/vector fields side to the axion/instanton side, by using the T-duality relations between
IIA and IIB couplings and mass scales.

In [46], the authors propose to implement the very same idea to constrain domain walls.
Starting with a 10D theory with p = d−1 objects, they propose to T-dualise twice along directions
transverse to the branes, so that the dual theory is of the same type but with p = d − 3 branes.
One can then apply (3.1) to the latter setup, then translate the constraints to the domain walls
side.

We agree with the authors of [46] that the apparent problems of the WGC for domain walls
disappear when considering them in a string theory setup. Notice that the dualisation procedure
works for any p-dimensional object in 10 dimensions reduced to a q dimensional object in d
dimensions. Indeed the moduli of the theory, i.e. the compactification radius and the string
coupling, disappear from the charge-to-tension ratio on both sides of the duality. Were this not
the case, we would not be able to extract a sensible constraint on the objects in the 4d theory.

This property suggests that the WGC conjecture in 10D string theory can be phrased as a
constraint on some geometrical data of the particular compactification manifold, independently
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of the specific p-dimensional object. Once the geometry of the compactification manifold is con-
strained, one can extract the consequences for any other q-dimensional object in the theory. This
is the novel point of this section.

In other words, there is no need of T-dualising in order to extend the WGC to objects other
than 4d particles. In the next subsection, we will verify this statement focusing on the case of
domain walls. Let us therefore outline the strategy to extend the conjecture to any p-dimensional
object, without using dualities. One starts with a type IIB setting with Dp branes wrapped on
p-cycles of the internal manifold X. Upon compactification, this leads to a 4d theory of particles
and gauge fields. One then applies the standard WGC to this setting: the result is a constraint
on the metric on the space of p-cycles in X. For example, in [36] the authors obtain a constraint
on Kab ∼

∫
wa ∧ ?wb, where wa is a basis of H2(X,Z). Once this constraint is obtained, it is valid

for any brane setup on the same CY. One can then consider Dq branes, with p 6= q wrapped on
the same p cycles and obtain inequalities for the tension and couplings of the 4d theory derived
by compactification on X.

3.2 Computation

Following our discussion, we now perform an explicit computation to prove our claim. We first
focus on obtaining particles in d = 4. As a starting configuration we choose type IIB with D3
branes compactified on a CY 3-foldX. Other choices are equally valid. We work in the conventions
of [61]. The relevant 10d action reads:

S10 ⊃
1

2κ2
10

∫
M10

[
1

g2
s

R10 ? 1−
1

4
F5 ∧ ?F5

]
+ µ3

∫
D3

C4 (3.2)

where κ2
10 = (1/2)(2π)7α′4 and µ3 = 2π(4π2α′)−2. Now let us perform dimensional reduction, by

wrapping the D3 on 3-cycles of X. We focus on the gauge kinetic term. We consider a symplectic
basis wi = (αa, β

b) of H3(X,Z), i.e. s.t.:∫
X

αa ∧ βb = δba, (3.3)

and the other intersection numbers vanish. By Poincaré duality, one can define the integral
charges:

qki =

∫
Σk

wi =

∫
X

wi ∧ wk, (3.4)

where Σk is a 3-cycle in X and wk is its dual form. By (3.3), these charges are either vanishing
or unit.

The 4d action is obtained by expanding the five-form flux and the four-form potential in terms
of the symplectic basis of H3(X,Z):

F5 =
N∑
i=1

F i
2(x) ∧ wi(y), C4 =

N∑
i=1

Ai1(x) ∧ wi(y), (3.5)

then integrating over X. Here N is the number of 3 cycles of X. D3-branes wrapping a 3-cycle Σ
generate particles in the 4d theory. For the moment being, let us focus on one such cycle. We will
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later extend our results to particles descending from different cycles. Let us introduce the metric
on the space of 3-forms:

Kij ≡
∫
X

wi ∧ ?wj. (3.6)

The 4d action reads:

S4 ⊃
M2

pl

8

∫
M4

g2
s

VX
Kij

2! · 3!

5!
F2 ∧ ?F2 + qΣ

i µ3

∫
0−brane

Ai1, (3.7)

where M2
pl = VX/κ

2
10g

2
s is the 4d Planck mass. The equations of motion arising from (3.7) read:

d ? F iKij =
8 · 5!VX

(2!3!)M2
plg

2
s

µ3q
Σ
i . (3.8)

From the latter, it is clear that only a certain linear combination of gauge fields is sourced by the
particle with charge qΣ

i . To make this visible in the 4d action, we define the field A1 and its field
strength F2 = dA1 by:

Ai1 ≡ A1K
ijqΣ

j . (3.9)

In terms of A1 and F2 the 4d action reads:

S4 ⊃
M2

pl

4
|qΣ|2 g

2
s

VX

∫
M4

1

10
F2 ∧ ?F2 + |qΣ|2µ3

∫
0−brane

A1, (3.10)

where |qΣ|2 ≡ KijqΣ
i q

Σ
j . In order to extract the 4d gauge coupling, we normalise the gauge

potential. Finally, we obtain:

S4 ⊃
1

2e2

∫
M4

F2 ∧ ?F2 +

∫
0−brane

A1, (3.11)

where we have kept the same notation for the normalised fields and the 4d gauge coupling is
defined as:

e2 =
40VXµ

2
3|qΣ|2

M2
plg

2
s

. (3.12)

The result of this procedure is therefore a 4d theory of a U(1) gauge field with coupling (3.12).
The particle descending from the D3 brane wrapped on Σ has massMΣ = T3/gs

∫
Σ
?1 = T3/gsV

Σ,
and T3 = µ3.

We are now ready to apply the WGC to the 4d theory defined by (3.11) with particles of mass
MΣ:

eMpl

MΣ
≥
√

2

2
⇒ V

1/2
X |qΣ|
V Σ

≥
√

2

4
√

10
. (3.13)

Before moving to the case of domain walls, let us pause to extract the full meaning of (3.13).
The WGC for particles arising from a string compactification translates into a purely geometric
constraint on the size and intersections of the cycles of the manifold, in this case 3-cycles. Crucially,
all couplings and 4d scales have disappeared from the final statement. Despite the presence of
volume factors, the charge-to-mass ratio is independent on any rescaling of the 6d metric g̃mn.
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This statement is actually true for any p-cycle: indeed the metric Kij on the dual space of p-
forms contains (3 − p) powers of the 6d metric, so the numerator scales as g̃p/2mn , but so does the
denominator.

The conclusion is as follows: the procedure that we have followed works for any p-dimensional
object and associated field strength defined on a chosen manifold X and dimensionally reduced to
a q dimensional object in 4d. In particular, (3.13) is a constraint on the 3-cycles of X. As such,
it can be applied applied to any other 4d object descending from any p-brane on X wrapped on
the same 3-cycles.

We are particularly interested in constraining 4d domain walls. In order to apply our previous
result, we study the case in which the membranes arise from compactifications of type IIB string
theory with D5 branes wrapped on 3-cycles. The action is obtained by simply replacing the D3
branes with D5 branes in (3.2):

S10 ⊃
1

2κ2
10

∫
M10

[
−1

2
F7 ∧ ?F7

]
+ µ5

∫
D5

C6 + SDBI , (3.14)

with µ5 = µ3/(2πα
′). Dimensional reduction to 4d goes as in the previous case, therefore we do

not repeat the computation. The 4d action reads:

S4 ⊃
1

2e2
DW

∫
M4

F4 ∧ ?F4 +

∫
D2

A3 (3.15)

with:

e2
DW =

7 · 5 · 2VXµ2
5|qΣ|2

(M2
plg

2
s

. (3.16)

The tension of the 4d domain wall is: TDW = T5/gsV
Σ. The charge-to-tension ratio is:

eDWMpl

TDW
=

(70VX)1/2|qΣ|
V Σ

. (3.17)

As expected, (3.17) is the same as (3.13), up to a relative prefactor
√

7/4. Therefore the WGC
constraint on particles translates into the following inequality for the charge-to-tension ratio of
domain walls:

WGC:
eDWMpl

TDW
≥
√

2

2
·
√

7

4
=

√
7

2
√

2
. (3.18)

This is the result we were after, namely a WGC for domain walls. As expected, up to a O(1) factor,
the conjecture is the same as for particles. In particular, the precise prefactor is determined purely
by the different normalisation of the higher dimensional gauge fields. In this case it is

√
7/2 ' 1.3.

Unfortunately, this prefactor depends on the particular type of brane one starts with in 10D.
One can give a general inequality for a (q + 1)-dimensional object in d dimensions descending

from a s-brane wrapped on a (s − q) cycle of a CY X, by relating its charge-to-mass ratio to
that of particle descending from a p-brane wrapped on the same (s − q) cycle. For consistency
s− q = p. The WGC then states that the charge-to-tension ratio of the D(q)-brane must satisfy
the condition:

epMpl

Tp
≥
√
d− 2

d− 1
·

√
2(p+ q + 2)!

(q + 2)!(p+ 2)!
. (3.19)
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For the cases s = 3, or p = 3, one has to respectively multiply or divide (3.19) by
√

2, because
of the special normalisation of F5. Notice that the prefactors differ by O(1) factors, as expected
from the original formulation of the WGC.

Finally, let us generalise our results to the case of N cycles Σk, k = 1, . . . , N . Correspondingly,
we have a set of charge vectors qΣk . This vectors belong to RN equipped with metric Kij defined
as in (3.6). With the same notation as above, consider Dp-branes wrapped on p-cycles of a CY
manifold. These lead to particles in d dimensions with mass Mk. The Convex Hull Condition
(CHC) for the p-cycles reads:

The convex hull spanned by the vectors zk ≡ V
1/2
X qΣk

V Σk
, must contain the ball of radius r =√

d−2
d−1

√
p!

(p+2)!
.

Now consider a q-brane in d dimensions obtained by wrapping a D(s)-brane on p-cycles of the
same CY. The tension and the charge vectors of the (q + 1)-dimensional objects are respectively
Tq and eqq

Σk , where eq is the prefactor in (1/e2
q)Fq ∧ ?Fq in the effective theory. Assuming the

CHC for particles, we obtain the following statement for the q-branes:

The convex hull spanned by the vectors Zk ≡ eqqΣkMd

Tq
must contain the ball of radius rq =√

d−2
d−1

√
2(p+q+2)!

(q+2)!(p+2)!
.

The same consideration for the WCG about the normalisation of F5 apply in this case as well.
It is important to remark that (3.18) has been obtained without using any string duality: the

WGC for particles imposes a constraint on the geometry of CY three cycles. This constraint,
applied to objects derived from any p-brane in the 10d setup, translates to a corresponding WGC
for these particular objects. This line of reasoning can be applied also to the case of axions and
instantons. In that case one starts from a Dp brane wrapped on p cycles, then considers D(p− 1)
branes wrapped on the same cycles. Obviously this requires a change in the theory, e.g. from type
IIB to type IIA/M-theory on the same CY. However, the constraints obtained in the IIB setting
are still just geometric constraints on p-cycles of the CY, therefore there is no need of performing
a duality between the two theories. It is sufficient to consider a type IIA/M-theory setup with
the appropriate branes, and impose on this setup the previously determined geometric constraint.
It would be interesting to think about manifolds with backreaction and fluxes. In this case, the
transition from IIA and IIB (or other setups) would not be so straightforward.

4 Conclusions
In this paper we have investigated two different aspects of the Weak Gravity Conjecture. Firstly,
we have discussed its consequences for models based on Axion Monodromy (Inflation and Relax-
ation). Secondly, we have provided a geometric interpretation of the conjecture in the framework
of string compactification. We now provide a detailed summary of our results.

In the first part of this paper, we have adopted an effective field theory point of view. Inflaton
(Relaxion) potentials in models of Axion Monodromy are characterised by the presence of ‘wiggles’
on top of a polynomial potential. These low energy oscillations define 4d domain walls. This is
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more evident by using a dual description in terms of a four-form flux, whose value changes across
these membranes.

We assumed that the WGC can be extended to domain walls. In our setup, its electric version
gives an upper bound on the tension of the 4d membranes. Crucially, this condition agrees with
what is required to realise slow-roll: as the tension decreases, the height of the ‘wiggles’ decreases
and slow roll can be seen as a continuous nucleation of cosmic bubbles. Therefore, we conclude
that, in this logic, the electric WGC does not constrain models of axion monodromy (Inflation
and Relaxation).

For this reason, we focused on the constraints imposed by the magnetic side of the WGC,
which we stated as an upper bound on the cutoff of a generic (p + 1)-form gauge theory (in the
spirit of [29]). We then applied the condition to inflationary models, i.e. we required H � Λ.
This gives a non-trivial constraint on the field range: φ . m−2/3f 1/3M

4/3
pl . The latter however

allows for large field displacements, but forbids models with a small decay constant.
We then discussed our extension of the magnetic WGC. We argued that string theory lowers the

KK scale to fulfil the WGC for objects which descend from compactifications of string theory with
Dp-branes, rather than making them light enough. As a consequence, heavy “stringy” objects,
which could potentially violate the WGC are confined above the cutoff MKK . Therefore they
do not exist from an effective field theory point of view. Of course, low energy light objects
are allowed, as is the case for our domain walls. Consequently, the electric side is automatically
satisfied. We suggest that the magnetic WGC should be seen as the fundamental constraint among
the different versions of the WGC.

Recently, the electric WGC has been applied to membranes arising from the realisation of Axion
Monodromy á la Kaloper-Sorbo (KS), in the context of new realisations of relaxion models [46].
When the tension of these membranes decreases, the probability of tunneling to another branch of
the potential increases. Such a transition can spoil slow-roll, as it corresponds to discrete “jumps”
in the axion trajectory. The requirement that the tunneling rate is suppressed parametrically
leads to the same constraint on the field range that we obtained by studying the domain walls
arising from ‘wiggles’ in the axion potential.

However, KS membranes look different from the low energy domain walls described in this
paper, at least from the point of view of the electric WGC.

There are therefore two possibilities. On the one hand, one could impose the WGC separately
on the two classes of membranes. In this case, the constraints given in [46] for relaxion models
apply. The magnetic WGC applied to the low energy domain walls constrains the field range for
inflationary models.

On the other hand, there could be realisations for which a fundamental KS description does
not exists or cannot be found. Then the electric version does not give any constraint, but the
magnetic side applied to the low energy barriers gives a non-trivial constraint on the field range.
The same conclusion applies if one requires that only the lightest among the KS and ‘wiggles’
membranes satisfy the WGC.

In the second part of this paper, we worked in the framework of string compactifications. We
started with 10D type IIB with D3 branes and compactified to 4d by wrapping the branes around
3-cycles of a CY manifold. Therefore, we obtained particles and gauge fields in 4d. We applied
the original WGC to this setup. Very interestingly, the final constraint does not depend on the
couplings and moduli of the 10D setup. The WGC translates into a purely geometric constraint
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on the size and intersection of the 3-cycles of the CY. The same happens for any p-dimensional
object wrapped on the same 3-cycles. Therefore, by constraining the geometry of those cycles
through the D3/particles case, we obtain a WGC for any p − 3-dimensional object in 4d arising
from compactification of type IIB with Dp-branes wrapped on 3-cycles. In particular, by taking
p = 5 we obtain the WGC for 4d domain walls. Crucially, we do so without the use of string
dualities.

The same procedure applies to any p-dimensional object wrapped on some q-cycle of a CY, to
obtain a p − q-dimensional object in 4d. Therefore, our approach provides a simple strategy to
extend the WGC to any q-dimensional object, without the use of string dualities.

Let us close our discussion with observing two further consequences implied by the con-
straint on the tension of the low-energy domain walls from the WGC. We note firstly, that
we get a fundamental upper bound on the size of resonant oscillating non-Gaussianity induced
by the ‘wiggles’ in the scalar potential. Following the analyses of [51, 52], the magnitude f res.NL

of this type of non-Gaussianity with an oscillating shape in k-space is approximately given by
f res.NL ∼ bM3

pl/(fφ)3/2. Here, b = α/(m2fφ) denotes the ‘monotonicity’ parameter of the scalar
potential with ‘wiggles’ (b < 1 corresponds to V ′ > 0 for φ > 0). We can rewrite this as
b = αf 2/(m2f 3φ) ∼ T 2

DW/(m
2f 3φ) < m2f 2M2

pl/(m
2f 3φ) = M2

pl/(fφ) where the inequality
arises from the WGC TDW < eMpl = mfMpl. Hence, we get a bound f res.NL . M5

pl/(fφ)5/2,
to be evaluated at φ = φ60 ∼ 10Mpl for the observable CMB scales. The bound thus fi-
nally reads f res.NL . 3 × 10−3 (Mpl/f)5/2. The typical range for the axion decay constant is
10−4Mpl . f . 0.1Mpl (see e.g. [52]). Consequently, for f & 5 × 10−2Mpl this fundamental
upper bound on f res.NL becomes stronger, f res.NL . O(1) for f & 5 × 10−2Mpl, than the current
observational bounds [62].

Secondly, we observe that in a quadratic potential the boundary to slow-roll eternal inflation
(defined as the value of φ = φ? where ε ∼ V ) φ? ∼ M

3/2
pl m

−1/2 can be higher than our magnetic
WGC field range bound φ < m−2/3f 1/3M

4/3
pl for values of f . 10−3Mpl, because COBE normal-

ization of the CMB fluctuations fixes m ∼ 10−5Mpl. Intriguingly, recent analyses such as [54, 63]
(see also e.g. [64] for earlier work on the WMAP 9-year data) of the PLANCK data searching
for oscillating contributions to the CMB power spectrum and the 3-point-function hint with the
highest significance at very-high-frequency oscillating patterns with f ∼ 10−4Mpl. If this were
corroborated in the future, then jointly with the magnetic WGC this would rule out slow-roll
eternal inflation in quadratic axion monodromy inflation potentials in the past of our part of the
universe.

We leave the generalization of both of these observations to more general axion monodromy
potentials V ∼ φp with ‘wiggles’ as an interesting problem for the future.
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