
Prepared for submission to JHEP

DESY 15-223

MITP 15-107

February 10, 2016

Potential NRQCD for unequal masses and the Bc

spectrum at N3LO

Clara Peset,a Antonio Pineda,a Maximilian Stahlhofenb,c
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1 Introduction

In analogy to Hydrogen, the dynamical properties of quark-antiquark systems near thresh-

old and with large quark masses (or Heavy Quarkonium for short) can be obtained by

solving a properly generalized nonrelativistic (NR) Schrödinger equation. Whereas po-

tential models have been used for years with reasonable phenomenological success, their

connection with QCD has always been obscure, to say the least. On the other hand, the use

of Effective Field Theories (EFT’s), in particular of potential NRQCD (pNRQCD) [1, 2]

(for reviews see [3, 4]), allows us to quantify this connection, and to derive the Schrödinger

equation and its corrections from the underlying theory, in a model independent and effi-

cient way. In the extreme weak-coupling limit we will consider in this paper, the EFT can

be summarized schematically by(
i∂0 − p2

m − V (0)(r)
)
φ(r) = 0

+ corrections to the potential

+ interaction with other low-energy degrees of freedom

pNRQCD. (1.1)

This EFT makes the NR nature of the problem manifest and exploits the strong hierarchy

of scales that govern the system:

m� mv � mv2 · · · , (1.2)

where v is the heavy-quark velocity in the center of mass frame.

A key ingredient in the EFT is the heavy quarkonium potential that appears in the

Schrödinger equation. It consists of the static potential V (0) at leading order, i.e. O(m0),

and relativistic corrections, which are suppressed by inverse powers of the heavy quark

masses.1 The potential is obtained by matching NRQCD [5, 6] to pNRQCD. There are

several ways to carry out the matching in practice. The most common are

i. On-shell matching,

ii. Off-shell matching,

iii. Wilson-loop matching.

1As commonly done in the literature we will frequently refer to the different (well-defined) terms at

different orders in the 1/m or v expansion of the potential as the ”potentials”.
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In the on-shell matching one equates S-matrix elements of NRQCD and pNRQCD order

by order in an expansion in the QCD coupling constant α and the velocity v (∼ α).2 The

S-matrix elements are defined for asymptotic external quark states satisfying the equations

of motion (EOMs) of free quarks. This necessarily requires the incorporation of potential

loops, i.e. loops with loop momenta (k0,k) ∼ (mv2,mv), in both calculations. The reason is

that the free-quark on-shell condition produces an imperfect cancellation between potential

loops in NRQCD and pNRQCD, and mixes different orders in the 1/m expansion. This

obscures the mass dependence of the potential, as it invalidates a strict 1/m expansion for

the determination of the potentials, i.e. in the on-shell matching computation the potentials

at a given order in 1/m also receive contributions from matrix elements involving operators

of higher order. On the other hand, the on-shell matching result for the potential is gauge

invariant (to a fixed order in v), as are the S-matrix elements.

In the off-shell matching one equates off-shell Green functions computed in NRQCD

with the corresponding off-shell Green functions in pNRQCD (still respecting global energy-

momentum conservation). In other words, we do not impose that the external quark

fields fulfill the free EOMs. This allows us to perform the matching within a strict 1/m

expansion, since potential loops in NRQCD and pNRQCD exactly cancel each other. Hence

we can keep exact track of the mass dependence of the resulting matching condition for

the potentials. The drawback is that the expression we get from the off-shell matching for

the individual potentials may depend on the gauge. The total expression for the potential,

though, still yields of course gauge invariant results for observables, in particular for the

bound state energies, within the accuracy of the computation. In addition, the potentials

may acquire some polynomial energy dependence, of which one should get rid by using

field redefinitions, or, equivalently, the complete leading order EOMs (including the static

potential) if working at lowest order.

In the Wilson-loop matching one equates NRQCD and pNRQCD gauge-invariant off-

shell Green functions, i.e. Wilson loops (with chromo-electric/magnetic insertions), directly

in position space. Working in position space is not the major difference with respect to

the previous matching schemes. (Obviously, by Fourier transforming the three-momentum,

the on- and off-shell matching computations could also be done in position space.) The

key point is that the time of the quark and antiquark fields are set equal. This is not a

restriction, and is in fact the natural thing to do for the heavy quark-antiquark system

near threshold. We also incorporate gluon strings between the quark and the antiquark

fields such that the whole system is gauge invariant. The details of how this matching

is performed can be found in Refs. [7, 8]. In the static limit, it reduces to the original

computation of the static potential by Wilson [9]. The advantage of this procedure is

twofold: the matching can be done in a strict 1/m expansion (potential loops do not have to

be considered), and closed expressions in terms of rectangular Wilson loops (with chromo-

electric/magnetic field operator insertions) can be obtained for each potential. They are

therefore explicitly gauge invariant. This makes this procedure quite appealing. In fact

2This matching can be understood as equating both theories in the physical cut in the situation m �
p2/m� α

r
.
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the static potential is typically computed this way. We will see that also the relativistic

corrections can be efficiently computed using this method.

At present, the heavy quarkonium potential is known with N3LO precision (V ∼ mv5)

for the equal mass case in the on-shell matching scheme [10]. Nevertheless, there are several

reasons why we would like to know the heavy quarkonium potential with N3LO precision

for the unequal mass case, and also in other matching schemes. Let us highlight two of

them:

• The Bc system

The LHC provides a unique opportunity to study the properties of the Bc bound

states in great detail. In particular, the possibility to measure a good deal of the Bc
spectrum and decays is now a reality. Obviously, a major ingredient in such analyses

is a detailed knowledge of the heavy quarkonium potential and spectrum in the short

distance limit. In this paper we calculate both.

• The heavy quarkonium potential in terms of Wilson loops

It is possible to give closed expressions for the potentials in terms of Wilson loops that

can be generalized beyond perturbation theory. They are therefore suitable objects

for the study of nonperturbative QCD dynamics by comparing different models with

lattice simulations. (The Wilson loop representation of the potentials indeed allows

for exact results in the case of QED, e.g. that the 1/m potential is zero to all

orders [7].) For such analyses it is also important to control the short distance

behavior of the potentials.

Another important motivation for this paper is to set the ground for higher order

computations of the potentials, which we stress again are key ingredients in any observable

related to heavy quarkonium we can think of (spectrum, decays, NR sum rules, t t̄ pro-

duction near threshold, ...). We would like to systematize their computation as much as

possible, since, as one goes to higher orders, and as soon as ultrasoft effects start to play

a role, the understanding of the relation of the computed potential to the EFT framework

becomes compulsory.

In this respect, we believe that it is important to clarify the relation between the

different matching schemes and to explore their advantages and disadvantages. The three

matching methods mentioned above have been employed more or less independently over

the years. The on-shell method has mostly been used to obtain the relativistic corrections to

the heavy quarkonium potential [10–15]. Earlier, low-order computations, did not require

the whole EFT machinery, and some recent computations have profited from the threshold

expansion of scattering diagrams [16]. The off-shell method has mainly been used in QED

[17, 18] but also in some QCD computations [19]. The Wilson loop matching has been the

less developed for weak-coupling calculations except for the very relevant case of the static

potential [20–24], and the leading, O(α2), contribution to the 1/m potential [7].

The results obtained with these methods are often different, which makes a comparison

difficult. On top of that, there is the problem of how to renormalize the potentials in

pNRQCD, i.e. how the ultrasoft divergences are subtracted from the bare potentials. There
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is much freedom here as well. One can perform the subtraction in momentum or position

space. In the latter case one can define the subtraction for the potentials in D = 4 + 2ε

or in four dimensions. These different subtraction/renormalization prescriptions give rise

to different expressions for the renormalized potentials (even if all of them only account

for soft physics), but not for physical observables. We also note that, while computations

using on-shell/off-shell Green functions are naturally done in momentum space, the Wilson

loop calculations are naturally carried out in position space (as is the computation of the

spectrum). We will discuss these issues in some detail. In particular we will put a special

emphasis on matching schemes that admit a strict 1/m expansion of the potential in this

paper.

In this work we will focus on the spin-independent potentials. The spin-dependent

potentials are not affected by ultrasoft divergences, nor by field redefinitions, to the order

required for the calculation of the heavy quarkonium mass with N3LO accuracy. Therefore,

we will not consider them in detail in this paper and only use known results for the final

determination of the Bc spectrum. Nevertheless, we will present the spin-dependent results

in a form compatible with our EFT computation.

Throughout this paper we will use the abbreviations FG for Feynman gauge and CG

for Coulomb gauge.

The outline of the paper is as follows. In Sec. 2 we present the NRQCD and pNRQCD

Lagrangians. We also discuss how the potentials are affected by field redefinitions. In Sec. 3

we determine the full D-dimensional result of the O
(
α2/m2

)
spin-independent potential

for different schemes: on-shell, off-shell in CG and FG, and with Wilson loops. In Sec. 4, we

obtain the O
(
α3/m

)
potential in the different schemes to O(ε). In Sec. 5, we present the

renormalized potentials. In Sec. 6, we confirm that our expressions comply with Poincaré

invariance constraints. Finally, in Sec. 7 we compute the full NNNLO spectrum for unequal

masses. We conclude in Sec. 8.

2 Preliminaries: NRQCD and general structure of the potential

2.1 NRQCD

The NRQCD Lagrangian is defined uniquely up to field redefinitions. In this paper we use

the following NRQCD Lagrangian density for a quark of mass m1, an antiquark of mass

m2 (m1 ∼ m2 ∼ m� ΛQCD) and nf massless fermions to O(1/m2) [5, 6, 25, 26]:3

LNRQCD = Lg + Ll + Lψ + Lχc + Lψχc , (2.1)

Lg = −1

4
Gµν aGaµν +

1

4

(
c
g (1)
1

m2
1

+
c
g (2)
1

m2
2

)
gfabcG

a
µνG

µ b
αG

να c, (2.2)

Ll =

nf∑
i=1

q̄ii /Dqi +
δL(1)

l

m2
1

+
δL(2)

l

m2
2

, (2.3)

3 We also include the D4/(8m3) terms since they will be necessary later on.
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δL(1)
l =

c
ll (1)
1

8
g2

nf∑
i,j=1

q̄iT
aγµqi q̄jT

aγµqj +
c
ll (1)
2

8
g2

nf∑
i,j=1

q̄iT
aγµγ5qi q̄jT

aγµγ5qj

+
c
ll (1)
3

8
g2

nf∑
i,j=1

q̄iγ
µqi q̄jγµqj +

c
ll (1)
4

8
g2

nf∑
i,j=1

q̄iγ
µγ5qi q̄jγµγ5qj , (2.4)

δL(2)
l = δL(1)

l ((1)→ (2)) , (2.5)

Lψ = ψ†1

{
iD0 +

c
(1)
k

2m1
D2 +

c
(1)
4

8m3
1

D4 +
c

(1)
F

2m1
σ · gB +

c
(1)
D

8m2
1

(D · gE− gE ·D)

+i
c

(1)
S

8m2
1

σ · (D× gE− gE×D)

}
ψ1 +

δL(1)
ψl

m2
1

, (2.6)

δL(1)
ψl =

c
hl (1)
1

8
g2

nf∑
i=1

ψ†1T
aψ1 q̄iγ0T

aqi +
c
hl (1)
2

8
g2

nf∑
i=1

ψ†1γ
µγ5T

aψ1 q̄iγµγ5T
aqi

+
c
hl (1)
3

8
g2

nf∑
i=1

ψ†ψ q̄iγ0qi +
c
hl (1)
4

8
g2

nf∑
i=1

ψ†γµγ5ψ q̄iγµγ5qi, (2.7)

Lχc = Lψ1(ψ1 → χ2c, g → −g, T a → (T a)T ,m1 → m2, (1)→ (2)), (2.8)

Lψχc = − dss
m1m2

ψ†1ψ1χ
†
2cχ2c +

dsv
m1m2

ψ†1σψ1χ
†
2cσχ2c

− dvs
m1m2

ψ†1Taψ1χ
†
2c(T

a)Tχ2c +
dvv
m1m2

ψ†1Taσψ1χ
†
2c(T

a)Tσχ2c . (2.9)

Here ψ is the NR fermion field represented by a Pauli spinor and χc ≡ −iσ2χ
∗ is the

respective antifermion field also represented by a Pauli spinor. The matrix (T a)T is the

transpose of the SU(Nc) generator T a in the fundamental representation, and T a → (T a)T

in Eq. (2.8) only applies to the matrices contracted with the heavy quark color indexes.

The components of the vector σ are the Pauli matrices. We define iD0 = i∂0 − gA0,

iD = i∇+ gA, Ei = Gi0 and Bi = −εijkGjk/2, where εijk is the three-dimensional totally

antisymmetric tensor4 with ε123 = 1 and (a × b)i ≡ εijka
jbk. For a list of the relevant

Feynman rules derived from Eq. (2.1) we refer e.g. to Refs. [4, 27].

We have c
(i)
k = c

(i)
4 = 1 and c

(i)
S = 2c

(i)
F − 1 due to reparameterization invariance [25].

In Ref. [28], cF was computed with NLO accuracy. The other NLO Wilson coefficients to

O(1/m2) were computed for the one and zero heavy-quark sector in Ref. [25] and for the

two heavy-quark sector in Ref. [29], both in FG. Here we only list the Wilson coefficients

that are directly relevant for our analysis.5 Their bare expressions read

c
(i)
F = c

(i)MS
F (ν)− c(i)

F CA
g2
B ν̄

2ε

(4π)2

1

ε
+O(ε) , (2.11)

4 In dimensional regularization several prescriptions are possible for the εijk tensors and σ, and the same

prescription as for the calculation of the Wilson coefficients must be used.
5Except for

c
g(1)
1 =

α(m)

90π
TF , (2.10)

as this equation corrects Eq. (218) in Ref. [4].

– 5 –



c
(i)
D = c

(i)MS
D (ν)−

(
2

3
CAc

(i)
D −

16

3
CF −

1

3
CA −

5

3
CAc

(i) 2
F +

4

3
TFnfc

hl (i)
1

)
g2
B ν̄

2ε

(4π)2

1

ε
+O(ε) ,

(2.12)

dss = dMS
ss (ν)− CF

(
CA
2
− CF

)
g4
B ν̄

2ε

(4π)2

1

ε
+O(ε) , (2.13)

dvs = dMS
vs (ν)−

[
2CF −

3CA
4

+
3

8
CA

(
m1

m2
c

(2)
D +

m2

m1
c

(1)
D

)
− 5

8
CA

(
m1

m2
+
m2

m1

)]
×

× g4
B ν̄

2ε

(4π)2

1

ε
+O(ε) , (2.14)

dsv = dMS
sv (ν) +O(ε) , (2.15)

dvv = dMS
vv (ν) +

CA
4
c

(1)
F c

(2)
F

g4
B ν̄

2ε

(4π)2

1

ε
+O(ε) , (2.16)

where

ν̄2ε = ν2ε

(
eγE

4π

)ε
, g2

B = g2

[
1 +

g2ν̄2ε

4π

β0

4π

1

ε
+O(g4)

]
, (2.17)

and α = g2ν2ε/(4π). The color constants TF , CA, CF and the QCD β-function coefficients

(βi) are given in Appendix A. In the following we will only distinguish between the bare

coupling gB and the MS renormalized coupling g when necessary. In the MS scheme the

respective renormalized Wilson coefficients of the single quark sector are (for mj 6= mi)
6

c
(i)MS
F (ν) = 1 +

α(ν)

2π
(CF + CA)− α(ν)

2π
CA ln

mi

ν
,

c
(i)MS
D (ν) = 1 +

α(ν)

2π
CA −

4α(ν)

15π

(
1 +

m2
i

m2
j

)
TF +

α(ν)

π

(
8

3
CF +

2

3
CA

)
ln
mi

ν
. (2.18)

The four-quark Wilson coefficients for unequal masses are given by (note that for the equal

mass case the annihilation contribution should be included, see Ref. [29] for the specific

expressions):

dMS
sv (ν) = α2CF

(
CA
2
− CF

)
m1m2

m2
1 −m2

2

ln

(
m2

1

m2
2

)
, (2.19)

dMS
vv (ν) = 2α2CF

m1m2

m2
1 −m2

2

ln

(
m2

1

m2
2

)
+

α2CA
4(m2

1 −m2
2)

{
m2

1

(
ln

(
m2

2

ν2

)
+ 3

)
− m2

2

(
ln

(
m2

1

ν2

)
+ 3

)
− 3m1m2 ln

(
m2

1

m2
2

)}
, (2.20)

dMS
ss (ν) = −CF

(
CA
2
− CF

)
α2

m2
1 −m2

2

(
m2

1

(
ln

(
m2

2

ν2

)
+

1

3

)
−m2

2

(
ln

(
m2

1

ν2

)
+

1

3

))
,

(2.21)

6The term in cD proportional to TF does not appear in the result quoted in Ref. [25]. It is generated by

the field redefinition that eliminates the operator GD2G from the NRQCD Lagrangian, see the discussion

in Ref. [8].
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dMS
vs (ν) = −2CF

α2

m2
1 −m2

2

(
m2

1

(
ln

(
m2

2

ν2

)
+

1

3

)
−m2

2

(
ln

(
m2

1

ν2

)
+

1

3

))
+
CA
4

α2

m2
1 −m2

2

[
3

(
m2

1

(
ln

(
m2

2

ν2

)
+

1

3

)
−m2

2

(
ln

(
m2

1

ν2

)
+

1

3

))
+

1

m1m2

(
m4

1

(
ln

(
m2

2

ν2

)
+

10

3

)
−m4

2

(
ln

(
m2

1

ν2

)
+

10

3

))]
. (2.22)

At the order we are working, we can set c
(i)hl
1 = 0. However, if we are interested in the

resummation of large logarithms, we must keep c
(i)hl
1 due to its non-trivial RG evolution.

For future purposes we will therefore retain the contribution proportional to c
(i)hl
1 in the

potential and only set it to zero in the final determination of the heavy quarkonium mass

with N3LO accuracy.

Since the basis of operators is not minimal, there are ambiguities in the values of some

Wilson coefficients. In particular the expressions of dvs and cD depend on the gauge used

to determine them (not only the finite pieces but also the logarithmic divergences, see

the discussion in Ref. [30]). The expression we give here is the FG result. Also, as we

have already mentioned, there is an ambiguity on how the Pauli matrices are treated in D

dimensions, affecting the coefficient dvv. Here, we choose the prescription used in Ref. [29].

This will also affect the soft computation of the potentials.

2.2 pNRQCD: Potentials

Integrating out the soft modes in NRQCD we end up with the EFT pNRQCD. The most

general pNRQCD Lagrangian compatible with the symmetries of QCD that can be con-

structed with a singlet and an octet (quarkonium) field, as well as an ultrasoft gluon field

to NLO in the multipole expansion has the form [1, 2]

LpNRQCD =

∫
d3r Tr

{
S† (i∂0 − hs(r,p,PR,S1,S2)) S + O† (iD0 − ho(r,p,PR,S1,S2)) O

}

+VA(r)Tr
{

O†r · gE S + S†r · gE O
}

+
VB(r)

2
Tr
{

O†r · gE O + O†Or · gE
}

−1

4
GaµνG

µν a +

nf∑
i=1

q̄i i /D qi , (2.23)

hs(r,p,PR,S1,S2) =
p2

2mr
+

P2
R

2M
+ Vs(r,p,PR,S1,S2), (2.24)

ho(r,p,PR,S1,S2) =
p2

2mr
+

P2
R

2M
+ Vo(r,p,PR,S1,S2), (2.25)

Vs = V (0) +
V (1,0)

m1
+
V (0,1)

m2
+
V (2,0)

m2
1

+
V (0,2)

m2
2

+
V (1,1)

m1m2
+ · · · , (2.26)

Vo = V (0)
o +

V
(1,0)
o

m1
+
V

(0,1)
o

m2
+
V

(2,0)
o

m2
1

+
V

(0,2)
o

m2
2

+
V

(1,1)
o

m1m2
+ · · · , (2.27)
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where iD0O ≡ i∂0O − g[A0(R, t),O], PR = −i∇R for the singlet, PR = −iDR for the

octet (where the covariant derivative is in the adjoint representation), p = −i∇r,

mr =
m1m2

m1 +m2
(2.28)

and M = m1 +m2. We adopt the color normalization

S = S 1lc/
√
Nc , O = OaTa/

√
TF , (2.29)

for the singlet field S(r,R, t) and the octet field Oa(r,R, t). We will usually suppress their

dependence on the quark-antiquark distance vector r, the center-of-mass position R and

the time t in the following.

Both, hs and the potential Vs are operators acting on the Hilbert space of a heavy

quark-antiquark system in the singlet configuration.7 According to the precision we are

aiming for, the potentials have been displayed up to terms of order 1/m2.8 The static

and the 1/m potentials are real-valued functions of r only. The 1/m2 potentials have an

imaginary part proportional to δ(3)(r), which we will drop in this analysis, and a real part

that may be decomposed as:

V (2,0) = V
(2,0)
SD + V

(2,0)
SI , V (0,2) = V

(0,2)
SD + V

(0,2)
SI , V (1,1) = V

(1,1)
SD + V

(1,1)
SI , (2.31)

V
(2,0)
SI =

1

2

{
p2

1, V
(2,0)
p2 (r)

}
+ V

(2,0)
L2 (r)

L2
1

r2
+ V (2,0)

r (r), (2.32)

V
(0,2)
SI =

1

2

{
p2

2, V
(0,2)
p2 (r)

}
+ V

(0,2)
L2 (r)

L2
2

r2
+ V (0,2)

r (r), (2.33)

V
(1,1)
SI = −1

2

{
p1 · p2, V

(1,1)
p2 (r)

}
− V (1,1)

L2 (r)
(L1 · L2 + L2 · L1)

2r2
+ V (1,1)

r (r), (2.34)

V
(2,0)
SD = V

(2,0)
LS (r)L1 · S1, (2.35)

V
(0,2)
SD = −V (0,2)

LS (r)L2 · S2, (2.36)

V
(1,1)
SD = V

(1,1)
L1S2

(r)L1 · S2 − V (1,1)
L2S1

(r)L2 · S1 + V
(1,1)
S2 (r)S1 · S2 + V

(1,1)
S12

(r)S12(r), (2.37)

where, S1 = σ1/2, S2 = σ2/2, L1 ≡ r× p1, L2 ≡ r× p2 and S12(r) ≡ 3r·σ1 r·σ2
r2

−σ1 ·σ2.

Note that neither L1 nor L2 correspond to the orbital angular momentum of the particle

or the antiparticle.

Due to invariance under charge conjugation plus m1 ↔ m2 interchange we have

V (1,0)(r) = V (0,1)(r). (2.38)

7Therefore, in a more mathematical notation: h → ĥ, Vs(r,p) → V̂s(r̂, p̂). We will however avoid this

notation in order to facilitate the reading.
8Actually, we also have to include the leading correction to the nonrelativistic dispersion relation for our

calculation of the Bc spectrum:

δVs = −
(

1

8m3
1

+
1

8m3
2

)
p4, (2.30)

and use the fact there is no O(α/m3) potential.
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This allows us to write
V (1,0)

m1
+
V (0,1)

m2
=
V (1,0)

mr
. (2.39)

Invariance under charge conjugation plus m1 ↔ m2 also implies

V
(2,0)
p2 (r) = V

(0,2)
p2 (r) , V

(2,0)
L2 (r) = V

(0,2)
L2 (r) , V (2,0)

r (r) = V (0,2)
r (r;m2 ↔ m1) ,

V
(2,0)
LS (r) = V

(0,2)
LS (r;m2 ↔ m1) , V

(1,1)
L1S2

(r) = V
(1,1)
L2S1

(r;m1 ↔ m2) . (2.40)

Our aim is to calculate the potentials. In order to do so we can neglect the center-of-

mass momentum, i.e. we set PR = 0 in the following and thus L1 ≡ r× p1 = r× p ≡ L,

L2 ≡ r × p2 = −r × p ≡ −L. As explained in the introduction we will not consider the

spin-dependent potentials for most of the paper and focus on the spin-independent ones.

2.2.1 Potentials in momentum space

Unlike the position space potential Vs, the momentum space potential Ṽs is a c-number,

not an operator. It is defined as the matrix element (with PR = 0 from now on)

Ṽs ≡ 〈p′|Vs|p〉 . (2.41)

For the static potential we have (k = p− p′)

Ṽ (0) = − 1

k2
D̃(0)(k) = − 1

k2
CF

∞∑
n=0

g2n+2
B k2nε

(4π)2n
D̃

(0)
n+1(ε) , (2.42)

where D̃
(0)
1 (ε) = 1. The coefficients D̃

(0)
2 (ε) and D̃

(0)
3 (ε) can be found in Ref. [31]. For the

one-loop result D̃
(0)
2 (ε) we have also done the computation in CG. Throughout this paper

we will use the notation

D ≡ 4 + 2ε , d ≡ 3 + 2ε . (2.43)

For the 1/m potential we follow the standard practice of making the prefactor 1/k

explicit:

Ṽ (1,0) ≡ 1

k
D̃(1,0)(k) =

1

k
CF

g4
Bk

2ε

4π

(
D̃

(1,0)
2 (ε) +

g2
Bk

2ε

(4π)2
D̃

(1,0)
3 (ε) +O(g4

B)

)
. (2.44)

In momentum space we choose the following basis for the 1/m2 potentials:

Ṽ
(2,0)
SI =

p2 + p′2

2k2
D̃

(2,0)
p2 (k) + D̃(2,0)

r (k) +
(p′2 − p2)2

k4
D̃

(2,0)
off (k), (2.45)

Ṽ
(1,1)
SI =

p2 + p′2

2k2
D̃

(1,1)
p2 (k) + D̃(1,1)

r (k) +
(p′2 − p2)2

k4
D̃

(1,1)
off (k) . (2.46)

The Wilson coefficients D̃
(n)
p2/r/off

are functions of d and k = |p−p′|. They have non-integer

(mass) dimension ∼M−2ε, and the following expansion in powers of the bare parameter g2
B
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(we start the Taylor expansion with the first non-vanishing term of each Wilson coefficient):

D̃
(2,0)
p2 = CF g

2
B

(
D̃

(2,0)
p2,1

(ε) +
g2
Bk

2ε

(4π)2
D̃

(2,0)
p2,2

(ε) +O(g4
B)

)
, (2.47)

D̃
(2,0)
off = CF g

2
B

(
D̃

(2,0)
off,1 (ε) +

g2
Bk

2ε

(4π)2
D̃

(2,0)
off,2 (ε) +O(g4

B)

)
, (2.48)

D̃(2,0)
r = CF g

2
B

(
D̃

(2,0)
r,1 (ε) +

g2
Bk

2ε

(4π)2
D̃

(2,0)
r,2 (ε) +O(g4

B)

)
, (2.49)

D̃
(1,1)
p2 = CF g

2
B

(
D̃

(1,1)
p2,1

(ε) +
g2
Bk

2ε

(4π)2
D̃

(1,1)
p2,2

(ε) +O(g4
B)

)
, (2.50)

D̃
(1,1)
off = CF g

2
B

(
D̃

(1,1)
off,1 (ε) +

g2
Bk

2ε

(4π)2
D̃

(1,1)
off,2 (ε) +O(g4

B)

)
, (2.51)

D̃(1,1)
r = D̃

(1,1)
r,0 (ε) + CF g

2
B

(
D̃

(1,1)
r,1 (ε) +

g2
Bk

2ε

(4π)2
D̃

(1,1)
r,2 (ε) +O(g4

B)

)
. (2.52)

In our convention the different coefficients of the Taylor expansion are dimensionless except

for D̃
(1,1)
r,0 (ε). Implicit in the definitions above is the fact that the mass dependence of the

potentials admits a Taylor expansion in powers of 1/m1 and 1/m2 (up to logarithms).

This is so in the off-shell and Wilson-loop matching scheme but not in the on-shell scheme.

An exception is again D̃
(1,1)
r,0 (ε), since it depends on the NRQCD four-fermion Wilson

coefficients, which have a non-trivial mass dependence.9 We will discuss these issues further

in the following sections.

2.2.2 The L2 operator and potentials in D dimensions

We work with dimensional regularization. Therefore, we need to define the potentials in

D = 4+2ε dimensions. In the previous section we have given D-dimensional expressions for

the potentials in momentum space. In position space, for the spin-independent potentials,

everything works as in four dimensions except for the L2 operator. The definition of the

operator L2 in D dimensions is ambiguous. In this paper we choose the definition

L2

r2
≡ pi(δij − rirj

r2
)pj . (2.53)

The right-hand-side of the equation is equal to L2

r2
in four dimensions and commutes with

pure functions of r in D dimensions, i.e. [f(r), L
2

r2
] = 0, as we would expect for an angular

momentum operator.

2.2.3 Position versus momentum space

We now proceed to relate the potentials in position and momentum space. For the static

and 1/m potentials the relation is straightforward. After Fourier transformation to position

space Eq. (2.42) becomes

V (0) =

∫
ddq

(2π)d
e−iq·rṼ (0)(q) = −CF

∞∑
n=0

g2n+2
B

(4π)2n
F2−2nε(r)D̃

(0)
n+1(ε) , (2.54)

9This makes the assignment of (part of) the four-fermion NRQCD Wilson coefficient to D̃
(1,1)
r,0 or D̃

(2,0)
r,0

ambiguous. We choose to put these coefficients in D̃
(1,1)
r,0 .
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where

Fn(r) =

∫
ddk

(2π)d
e−ik·r

|k|n =
2−nπ−d/2

rd−n
Γ (d/2− n/2)

Γ(n/2)
(2.55)

is the d-dimensional Fourier transform of |k|−n.

For the 1/m potential we have

V (1,0) =

∫
ddq

(2π)d
e−iq·rṼ (1,0)(q) = CF

∞∑
n=1

g2n+2
B

(4π)2n−1
F1−2nε(r)D̃

(1,0)
n+1 (ε) . (2.56)

To Fourier transform the 1/m2 potentials some preparation is required. Given two

generic functions of r, f(r) and gij(r) = A(r)δij +B(r) r
irj

r2
, the following equalities hold:10

pif(r)pi = [pi, f(r)]pi + f(r)p2 =
1

2

{
f(r),p2

}
− 1

2
[pi, [pi, f(r)]] ,

(2.57)

pi
(
A(r)δij +B(r)

rirj

r2

)
pj = −B(r)

L2

r2
+

1

2

{
A(r) +B(r),p2

}
− 1

2
[pi, [pi, A(r) +B(r)]] .

(2.58)

Furthermore, we can write

(p′2 − p2)2

k4
D̃

(2,0)
off (k) = p′i

(
4D̃

(2,0)
off (k)

kikj

k4

)
pj + D̃

(2,0)
off (k) , (2.59)

and analogously for D̃
(1,1)
off . The last equality is especially useful, because the first term has

the structure of the Fourier transform of the left-hand-side of Eq. (2.58). It allows us to

relate

Ṽ
(2,0)

off ≡ (p′2 − p2)2

k4
D̃

(2,0)
off (k) (2.60)

10 Recall that in coordinate representation (position space) pi = −i∂/∂ri and [pi, [pi, f(r)]] = −(∇2f(r))

for arbitrary functions f(r).
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with the potentials in position space:11

V
(2,0)

off = 4

(
d2g

(2,0)
off

dr2
− 1

r

dg
(2,0)
off

dr

)
L2

r2
− 2

{
d2g

(2,0)
off

dr2
,p2

}
+ 2[pi, [pi,

d2g
(2,0)
off

dr2
]] + hoff(r) ,

(2.64)

where

g
(2,0)
off (r) =

∫
ddk

(2π)d
e−ik·r

D̃
(2,0)
off (k)

k4
, h

(2,0)
off (r) =

∫
ddk

(2π)d
e−ik·rD̃

(2,0)
off (k) , (2.65)

and similarly for V
(1,1)

off . Note that the three potentials VL2 , Vp2 and Vr receive contributions

from the Fourier transform of Ṽoff . On the other hand, Ṽp2 and Ṽr only directly contribute

to Vp2 and Vr. We stress that Ṽp2/r is not the Fourier transform of Vp2/r.

In summary, we have the following relations:

V
(2,0)
L2 = 4

(
d2g

(2,0)
off

dr2
− 1

r

dg
(2,0)
off

dr

)
≡ CF

∞∑
n=0

g2n+2
B

(4π)2n+1
F2−2nε(r)D

(2,0)
L2,n+1

(ε) , (2.66)

V
(2,0)
p2 =

∫
ddq

(2π)d
e−iq·rṼ

(2,0)
p2 (q)− 4

d2g
(2,0)
off

dr2
≡ CF

∞∑
n=0

g2n+2
B

(4π)2n+1
F2−2nε(r)D

(2,0)
p2,n+1

(ε) ,

(2.67)

V (2,0)
r =

∫
ddq

(2π)d
e−iq·rṼ (2,0)

r (q) + 2[pi, [pi,
d2g

(2,0)
off

dr2
]] + h

(2,0)
off (r)

= CF

[
g2
B

4π
δ(d)(r)D

(2,0)
r,1 (ε) +

g4
B

(4π)3
F−2ε(r)D

(2,0)
r,2 (ε) +O(g6

B)

]
, (2.68)

V
(1,1)
L2 = 4

(
d2g

(1,1)
off

dr2
− 1

r

dg
(1,1)
off

dr

)
≡ CF

∞∑
n=0

g2n+2
B

(4π)2n+1
F2−2nε(r)D

(1,1)
L2,n+1

(ε) , (2.69)

V
(1,1)
p2 =

∫
ddq

(2π)d
e−iq·rṼ

(1,1)
p2 (q)− 4

d2g
(1,1)
off

dr2
≡ CF

∞∑
n=0

g2n+2
B

(4π)2n+1
F2−2nε(r)D

(1,1)
p2,n+1

(ε) ,

(2.70)

11For the inverse Fourier transform the following relation is useful:

〈p′|f(r)L2|p〉 =
k2

4

(
f̃ ′′(k)− f̃ ′(k)

k

)((
p2 − p′2

)2
k4

− 1

)
− k2

(
f̃ ′′(k) + (d− 2)

f̃ ′(k)

k

)
p2 + p′2

2k2

+
k2

2

(
f̃ ′′(k) + (d− 2)

f̃ ′(k)

k

)
, (2.61)

where

f(r) = r2
∫

ddk

(2π)d
e−ik·rf̃(k) (2.62)

and f̃ ′(k) = d
dk
f̃(k). Finally, note that in four dimensions

〈p′| L
2

2πr3
|p〉 =

(
p2 − p′2

k2

)2

− 1 . (2.63)
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V (1,1)
r =

∫
ddq

(2π)d
e−iq·rṼ (1,1)

r (q) + 2[pi, [pi,
d2g

(1,1)
off

dr2
]] + h

(1,1)
off (r) (2.71)

= δ(d)(r)D
(1,1)
r,0 (ε) + CF

[
g2
B

4π
δ(d)(r)D

(1,1)
r,1 (ε) +

g4
B

(4π)3
F−2ε(r)D

(1,1)
r,2 (ε) +O(g6

B)

]
.

In the second equality of each expression we have expanded in powers of g2
B. Again, Fn(r)

has been defined in Eq. (2.55) and expressions with F−2ε(r) should be treated with care,

as such operators are singular.

At each order in g2
B it is possible to obtain closed expressions relating the 1/m2 coeffi-

cients in momentum and position space. The position space expressions are, however, more

complicated than for the static and 1/m potentials. The off-shell potential Ṽoff obscures

the relation between the momentum and position space potentials. Note also that Vr can

always be written as [pi, [pi, Vr,bis(r)]], where Vr,bis(r) has the same dimensions as Vp2 and

VL2 .

2.3 Field redefinitions

The bases of potentials, Eqs. (2.56), (2.66)-(2.71), in position space, and (2.44)-(2.46) in

momentum space, are ambiguous. There is a large freedom to reshuffle (parts of) some

potentials into others using unitary transformations of the pNRQCD fields S and O, which

leave the spectrum unchanged. It turns out that we can even eliminate the 1/m potential

or, alternatively, the off-shell 1/m2 potential Ṽoff , completely by such field redefinitions.

In fact, the latter is achieved in the on-shell matching scheme, which provides us with a

minimal basis of operators by construction, as it systematically uses the free EOMs and

sets p′2 = p2. The drawback is that, as it relies on the free EOMs, the determination of

the potentials has to be corrected order by order in α, through potential loops. Still, once

a minimal basis is fixed, there is no ambiguity left and each potential is well defined on its

own. This can also be seen by looking at the energy shifts, or corrections to the S-matrix,

produced by each individual potential in a minimal basis. This also implies that unitary

transformations that keep the Hamiltonian in a given minimal basis cannot move terms

between the potentials.

In this work, however, we want to keep Ṽoff , in order to enable a strict 1/m expansion

and to maintain the Poincaré invariance relations, see Sec. 6. We are also not particularly

interested in completely eliminating the 1/m potential, as it naturally appears in the Wilson

loop matching, as well as in the off-shell/on-shell matching schemes.

Instead, the goal of this section is to determine the field redefinitions that translate

the results of different matching schemes into each other. This will eventually allow us to

combine our calculation of the 1/m2 potential with the result of the 1/m potential in the

on-shell matching scheme for the equal mass case computed in Ref. [15] to obtain the 1/m

potential in the unequal mass case in Sec. 4. Following Ref. [7] we proceed as follows. The

Hamiltonian has the form

hs =
p2

2mr
+ V (0)(r) +

δV1(r)

mr
+ · · · , (2.72)
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where · · · stands for O(1/m) (or higher order) potentials that we are not interested in

eliminating.

The unitary transformation

U = exp
(
− i

mr
{W(r),p}

)
(2.73)

transforms hs → h′s = U † hs U . More explicitly, under the condition {W,p} � mr (which

is necessary in order to maintain the standard form of the leading terms in the Hamiltonian,

i.e. a kinetic term plus a velocity independent potential) h′s reads

h′s =
p2

2mr
+ V (0) +

δV1

mr
+

2

mr
W · (∇V (0)) +

2

m2
r

W · (∇δV1)

+
2

m2
r

W i(∇iW j(∇jV (0)))− 1

2m2
r

{pi, {pj , (∇iW j)}}+O
(

1

m3
r

)
+ · · · . (2.74)

By choosing

W = −1

2
δV1

∇V (0)

(∇V (0))2
(2.75)

we completely eliminate δV1
mr

from h′s. Moreover, since δV1 ∼ α2 (as there is no tree-level

1/m potential), for the precision of the calculations in this paper, we can neglect some

terms in Eq. (2.74):

h′s =
p2

2mr
+ V (0) − 1

2m2
r

{pi, {pj , (∇iW j)}}+O
(

1

m3
r

,
α3

m2
r

)
+ · · · . (2.76)

Therefore, eliminating δV1/mr is equivalent to introducing an extra 1/m2 potential:

δVFR = − 1

2m2
r

{pi, {pj , (∇iW j)}} . (2.77)

Using

{pi, {pj , (∇iW j)}} = 4pi(∇iW j)pj +
[
pi,
[
pj , (∇iW j)

]]
(2.78)

and Eq. (2.58), we obtain

{
pi,
{
pj , (∇i∇jg)

}}
=− 4

(
g′′(r)− g′(r)

r

)
L2

r2
+ 2

{
p2, g′′(r)

}
− 2

[
pi
[
pi, g′′(r)

]]
+

[
pi,

[
pj ,

g′(r)

r
δij +

rirj

r2

(
g′′(r)− g′(r)

r

)]]
, (2.79)

where, without loss of generality,

(∇iW j) = −1

2
∇i
(
δV1

∇jV0

(∇V0)2

)
≡ ∇i∇jg(r) = δij

g′(r)

r
+
rirj

r2

(
g′′(r)− g′(r)

r

)
. (2.80)
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Hence, we find in momentum space (see Eq.(2.58) and following equations)

δṼFR = 〈p′|δVFR|p〉 =
1

2m2
r

(p′2 − p2)2

k4
g̃(k) , (2.81)

where we have defined

g(r) =

∫
ddk

(2π)d
e−ik·r

g̃(k)

k4
. (2.82)

This has the important consequence that through O(α2) the coefficients D̃r and D̃p2 re-

main invariant under the field redefinitions discussed above. One can also check that the

O(α/m3) potential is invariant under the field redefinition (2.76). We will make use of

these results in the following.

At higher orders in α the neglected terms in Eqs. (2.74) and (2.76) may give an extra

contribution to D̃r. On the other hand, note that D̃p2 is unaffected by the field redefinition,

Eq. (2.73), at any order in the α expansion.

Finally, we stress that, since the unitary transformation used in this section can move

us into a minimal basis, and, since the static and the α/m3 potential remain invariant

under such transformation, the result for these two potentials is independent of the specific

matching scheme used to determine them.

3 Determination of the O(α2/m2) potential for unequal masses

The spin-independent potential at O(α2/m2) for unequal masses is so far unknown. We

fill this gap in this section by explicitly calculating it in different matching schemes and

with full ε dependence. Our results directly fix the bare coefficients D̃ in each case. With

little effort and using the equations in Sec. 2.2.3, one can then obtain the expressions for

the bare coefficients D of the potential in position space. Note that all 1/m2 position

space potentials depend on the matching procedure (albeit some of them weakly, in the

sense that the matching scheme dependence vanishes when ε → 0), as do goff and hoff

in Eqs. (2.66)-(2.71). Therefore, instead of presenting explicit expressions, we give the

position space results only in terms of the momentum space coefficients in Sec. 3.1.4.

3.1 Matching with Green functions

In the off-shell matching we equate four-point off-shell Green functions computed in NRQCD

with the analogous four-point off-shell Green functions in pNRQCD. In this way we will de-

termine the 1/m2 pNRQCD potential at O(α2). We do not require the quarks to fulfill the

free EOMs, i.e. the only restriction on the external momenta is total energy-momentum

conservation. This allows us to perform the matching in a strict 1/m expansion, since

NRQCD and pNRQCD potential loops cancel each other exactly. Hence, we can directly

equate soft NRQCD diagrams (computed with static quarks) with the bare potentials in

pNRQCD at a given order in 1/m.

By contrast, in the on-shell matching S-matrix elements of NRQCD and pNRQCD are

equated order by order in an expansion in α and v (∼ α). These S-matrix elements are
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computed with asymptotic quarks satisfying the free EOM. This necessarily requires the

incorporation of potential loops in both calculations, since the on-shell condition causes

an imperfect cancellation between potential loops in NRQCD and pNRQCD. The latter

mix different orders in the 1/m expansion, i.e. potential loops involving a potential at a

given order can contribute to the matching of a potential at lower orders. See, for instance,

Ref. [11] for an illustrative example.

3.1.1 Off-shell matching: Coulomb gauge

In Refs. [17, 18] the off-shell matching between NRQED and pNRQED has been studied in

detail with O(mα5) precision in CG. The FG matching has also been discussed in Ref. [18]

with O(mα4) precision.

We now perform the matching for the case of QCD. We focus on the relativistic 1/m2

corrections to the potential. The tree-level matching is analogous to the one in QED up

to the straightforward incorporation of color factors:

D̃
(1,1)
r,0 (ε) = dss + CFdvs , (3.1)

D̃
(2,0)
p2,1

(ε) = 0 , (3.2)

D̃
(2,0)
off,1,CG(ε) = 0 , (3.3)

D̃
(2,0)
r,1 (ε) =

c
(1)
D

8
, (3.4)

D̃
(1,1)
p2,1

(ε) = −1 , (3.5)

D̃
(1,1)
off,1,CG(ε) =

1

4
, (3.6)

D̃
(1,1)
r,1 (ε) =

1

4
. (3.7)

The gauge-dependent off-shell coefficients D̃ are given here in CG and labeled accordingly.

Now we consider the one-loop corrections. In Appendix B we present the result of the

(sum of the) relevant diagrams in CG as well as in FG. It has always been assumed that

the evaluation of Feynman diagrams in the CG can be quite cumbersome, especially for

non-Abelian gauge theories. We find that this is not the case, at least for the computation

we perform in this paper. More details on the computation will be shown in Ref. [32].

The diagrams depend on the energies of the four external quarks Ei, see Appendix B.

This dependence can be eliminated in the potentials using field redefinitions. Their imple-

mentation can however be cumbersome. Fortunately, for our purposes it is not necessary.

As discussed in Appendix B, at the order we are working, we should use the complete

EOMs, which include the static potential. Effectively, though, we can neglect the static

potential, as the difference contributes to the 1/m potential, which we will determine in

an independent way, anyhow. This is equivalent to using the free EOMs, but still keeping

p2 6= p′2 for the incoming and outgoing quark momenta (in the center of mass frame),
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unlike in the on-shell matching. Finally, we obtain the following (bare) CG results

D̃
(2,0)
p2,2

(ε) =
2CA

3

π
3
2
−ε

16ε
csc(πε)

Γ
(
ε+ 1

2

) =

(
eγE

4π

)ε 2

3
CA

1

ε
+O(ε) , (3.8)

D̃
(2,0)
r,2 (ε) =

π
3
2
−ε csc(πε)

24ε+3Γ
(
ε+ 5

2

){(c
(1)
D + c

hl (1)
1 )TFnf (1 + ε)

− CA
[

1

4

(
c

(1)
F

)2
(1 + ε)(5 + 4ε) +

1

3
(2 + ε)(3 + 2ε)(3 + 4ε)

]}

=

(
eγE

4π

)ε{[
CA

(
−1 +

11

24
c

(1)
D −

5

24
c

(1)2
F

)
+

1

6
c
hl (1)
1 TFnf −

c
(1)
D

8
β0

]
1

ε

+

(
1

3
+

13

36

(
c

(1)
F

)2) CA
2
− 5

18

(
c

(1)
D + c

hl (1)
1

)
TFnf

}
+O(ε), (3.9)

D̃
(1,1)
p2,2

(ε) = −1

3

π
3
2
−ε csc(πε)

24ε+2Γ
(
ε+ 5

2

){12TFnf (ε+ 1)− CA(40ε2 + 89ε+ 45)
}

=

(
eγE

4π

)ε{
−a1 +

(
4

3
CA + β0

)
1

ε

}
+O(ε) , (3.10)

D̃
(1,1)
r,2 (ε) =

1

3

π
3
2
−ε csc(πε)

24ε+3Γ
(
ε+ 5

2

){2CF (1 + ε)(3 + 2ε)(7 + 8ε) + 6TFnf (1 + ε)

− CA(8ε3 + 47ε2 + 74ε+ 33)
}

=

(
eγE

4π

)ε{a1

4
− 1

12
CA +

1

3
CF −

(
11

12
CA −

7

3
CF +

β0

4

)
1

ε

}
+O(ε) , (3.11)

D̃
(2,0)
off,2,CG(ε) = CA

(3 + 2ε)

3

π
3
2
−ε csc(πε)

24ε+3Γ
(
ε+ 5

2

) {4 + ε(7 + 4ε)− 23+2ε(1 + ε)Γ2
(
ε+ 3

2

)
√
πΓ
(
2ε+ 3

2

) }

=

(
eγE

4π

)ε
CA

(
1

2
− 4

3
ln 2

)
+O(ε) , (3.12)

D̃
(1,1)
off,2,CG(ε) =

π
3
2
−ε csc(πε)

24ε+3Γ
(
ε+ 5

2

){2TFnf (1− ε2) +
CA
6

(
− 25+2ε(3 + 2ε)(1 + ε)Γ2

(
ε+ 3

2

)
√
πΓ
(
2ε+ 3

2

)
+ 56ε3 + 137ε2 + 92ε+ 15

)}

=

(
eγE

4π

)ε{a1

4
+ CA +

β0

4
− 8

3
CA ln 2− β0

4

1

ε

}
+O(ε) , (3.13)

where a1 and β0 are defined in Sec. A. Note that, strictly speaking, there are subleading

contributions in powers of α encoded in the NRQCD Wilson coefficients.

3.1.2 Off-shell matching: Feynman gauge

The matching in FG involves considerably more (soft) NRQCD diagrams. In particular,

diagrams with only A0 gluon exchanges now give a nonzero contribution. As a consequence,
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the dependence on the (off-shell) external quark energies is more complicated. The com-

plete expression for the sum of all one-loop diagrams can be found in Appendix B. Yet,

after using the free EOMs (which is sufficient at the order we are working at) we find that

the coefficients D̃r and D̃p2 agree with their CG results. This is indeed what we expected,

as these potentials remain the same in the on-shell limit. The differences to CG therefore

manifest themselves only in the D̃off coefficients.

At tree level in FG (and at one loop in the CG) an energy-dependent term ∝ k2
0 =

(E′1 − E1)2 occurs. In principle, the redefinition of the quark energies in terms of three-

momenta is ambiguous. In this special case, however, there is a preferred prescription (see

Ref. [18]) to transform away the energy dependence, namely Eq. (B.7). It is the only way to

preserve the 1/(m1m2) structure and at the same time leave the 1/m potential unchanged,

see Appendix B for details. Adopting this prescription we arrive at the same result as in

CG:

D̃
(1,1)
off,1,FG = D

(1,1)
off,1,CG , D

(2,0)
off,1,FG = D

(2,0)
off,1,CG . (3.14)

With the energy replacement rules given in Appendix B we obtain at one loop

D̃
(2,0)
off,2,FG(ε) = D̃

(2,0)
off,2,CG(ε) +

CA
3

π
3
2
−ε csc(πε)

24ε+3Γ(ε+ 5
2)

(
22ε+3(ε+ 1)(2ε+ 3)Γ2(ε+ 3

2)√
πΓ(2ε+ 3

2)

+ 20ε3 + 39ε2 +
25ε

4
− 12

)
= D̃

(2,0)
off,2,CG(ε) + CA

(
35

24
+

4 ln 2

3

)
+O(ε) , (3.15)

D̃
(1,1)
off,2,FG(ε) = D̃

(1,1)
off,2,CG(ε) +

CA
3

π
3
2
−ε csc(πε)

24ε+2Γ(ε+ 5
2)

(
22ε+3(ε+ 1)(2ε+ 3)Γ2(ε+ 3

2)√
πΓ(2ε+ 3

2)

+ 20ε3 + 39ε2 +
25ε

4
− 12

)
= D̃

(1,1)
off,2,CG(ε) + CA

(
35

12
+

8 ln 2

3

)
+O(ε) . (3.16)

3.1.3 On-shell matching

Finally, we determine the potential in the on-shell matching scheme. In this scheme we

have D̃off,on−shell = 0 by construction. At the order we are working at, this means

D̃
(2,0)
off,1,on−shell(ε) = D̃

(1,1)
off,1,on−shell(ε) = D̃

(2,0)
off,2,on−shell(ε) = D̃

(1,1)
off,2,on−shell(ε) = 0 . (3.17)

It turns out that for the other potentials a dedicated on-shell matching computation is

not necessary. A priori, we must take into account potential loops, which are not needed

in the off-shell computation, in addition to the soft NRQCD loops. The discussion on

field redefinitions in Sec. 2.3 however shows that the transformation from an off-shell to

the on-shell scheme leaves the coefficients D̃p2 and D̃r, as well as the O(α/m3) potential,

unchanged at the order we are working at. Hence, potential loops can neither contribute

to D̃p2,2 and D̃r,2,12 nor to the O(α/m3) potential. Therefore, these coefficients are equal

12At higher orders in α potential loop contributions to Vr are possible.
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irrespectively of computing them on- or off-shell, and in the latter case they are independent

of the gauge, as we have seen. This is in fact the reason why we have not labeled them

according to the matching procedure.

For equal masses and in the on-shell matching scheme the potential has been computed

in Refs. [10–14]. In particular, we compared our results with the ones of Refs. [10] and [14].

The complete ε dependence for the equal mass case can be found in Ref. [27]. We agree

with their results. The novel results of the present section are the potentials for unequal

masses (keeping track of the NRQCD Wilson coefficients).

As another cross check we have calculated the O(α2/m2) potential for unequal masses

from soft on-shell scattering amplitudes in vNRQCD [33] using the Feynman rules given in

Ref. [14]. We found complete agreement with our momentum space results in the on-shell

matching scheme.

3.1.4 Potentials in position space

From our momentum space results we obtain the potentials in position space using Eqs.

(2.66)-(2.71). For conciseness we write the coefficients in terms of the ones found in mo-

mentum space. For a given matching scheme X we have

D
(1,1)
r,0,X(ε) = D̃

(1,1)
r,0 (ε) = dss + CFdvs , (3.18)

D
(2,0)
p2,1,X

(ε) = 4π
(
D̃

(2,0)
p2,1
− 4εD̃

(2,0)
off,1,X

)
, (3.19)

D
(2,0)
L2,1,X

(ε) = 8π(1 + 2ε)D̃
(2,0)
off,1,X, (3.20)

D
(2,0)
r,1,X(ε) = 4π

(
D̃

(2,0)
r,1 + (1 + 2ε)D̃

(2,0)
off,1,X

)
, (3.21)

D
(1,1)
p2,1,X

(ε) = 4π
(
D̃

(1,1)
p2,1
− 4εD̃

(1,1)
off,1,X

)
, (3.22)

D
(1,1)
L2,1,X

(ε) = 8π(1 + 2ε)D̃
(1,1)
off,1,X, (3.23)

D
(1,1)
r,1,X(ε) = 4π

(
D̃

(1,1)
r,1 + (1 + 2ε)D̃

(1,1)
off,1,X

)
, (3.24)

D
(2,0)
L2,2,X

(ε) = 8π
1 + 4ε

1− ε D̃
(2,0)
off,2,X , (3.25)

D
(2,0)
p2,2,X

(ε) = 4π

(
D̃

(2,0)
p2,2
− 8ε

1− εD̃
(2,0)
off,2,X

)
, (3.26)

D
(2,0)
r,2,X(ε) = 4π

(
D̃

(2,0)
r,2 +

1 + 3ε

1− ε D̃
(2,0)
off,2,X

)
, (3.27)

D
(1,1)
L2,2,X

(ε) = 8π
1 + 4ε

1− ε D̃
(1,1)
off,2,X , (3.28)

D
(1,1)
p2,2,X

(ε) = 4π

(
D̃

(1,1)
p2,2
− 8ε

1− εD̃
(1,1)
off,2,X

)
, (3.29)

D
(1,1)
r,2,X(ε) = 4π

(
D̃

(1,1)
r,2 +

1 + 3ε

1− ε D̃
(1,1)
off,2,X

)
, (3.30)

where X is ”CG”/”FG” for the CG/FG off-shell matching scheme, ”W” for the Wilson-loop

scheme to be introduced in the next section, and ”on-shell” for the on-shell scheme.
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3.2 Matching with Wilson loops

3.2.1 The quasi-static energy and general formulas

An alternative determination of the potentials is the direct matching of NRQCD and

pNRQCD gauge-invariant Green functions in position space. One key point is that the

time of the quark and antiquark are now set equal. This is not a restriction. Instead,

it is rather natural to describe quark-antiquark bound states by fields that depend on a

single time coordinate. Another difference to the off-shell matching scheme is the insertion

of gluon strings (Wilson lines) between the static quark and antiquark in order to form a

Wilson loop, so that the whole system is gauge invariant.

The details of the Wilson-loop matching procedure are given in Refs. [7, 8]. In these

references the emphasis was put on the matching in the nonperturbative scenario without

ultrasoft degrees of freedom. Two alternative methods were worked out in detail. One

is the direct matching between NRQCD and pNRQCD Wilson loops, and the other one

is a generalized ”quantum-mechanical” matching, which gives the spectral decomposition

of the potentials, allowing them to be rewritten in terms of Wilson loops. Either way,

the matching can be done in a strict 1/m expansion (potential loops do not have to be

considered at all) and closed expressions in terms of Wilson loops can be obtained for each

potential, which are then manifestly gauge invariant. This allows for a nonperturbative

definition of the potential Es, to which we will refer to as the ”quasi-static” energy in the

following. Formally we write

Es(r,p,PR,S1,S2) =
p2

2mr
+

P2
R

2M
+ E(0) +

E(1,0)

m1
+
E(0,1)

m2

+
E(2,0)

m2
1

+
E(0,2)

m2
2

+
E(1,1)

m1m2
+ · · · . (3.31)

We use ”E” to make the distinction to the potentials ”V ” explicit. The latter are, by

definition, the potentials of the Schrödinger equation. In the strong-coupling regime (and

provided there are no ultrasoft degrees of freedom), the ”quasi-static” energy replaces the

potential in the Schrödinger equation describing the nonperturbative heavy quarkonium

bound state. Once ultrasoft effects are included (as e.g. in our calculation of the Bc
spectrum) this is not true anymore. That is why we distinguish explicitly between E and

V . We will elaborate on this in Sec. 3.2.2 and in a forthcoming paper.

We shall use the following definitions for the Wilson-loop operators (see Ref. [8] for

extra details). The angular brackets 〈. . . 〉 denote the average value over the Yang–Mills

action, W� is the rectangular static Wilson loop of dimensions r × TW :

W� ≡ P exp

{
−ig

∮
r×TW

dzµAµ(z)

}
, (3.32)

and 〈〈. . . 〉〉 ≡ 〈. . .W�〉/〈W�〉; P is the path-ordering operator. Moreover, we define the

connected Wilson loop with O1(t1), O2(t2), ..., On(tn) operator insertions for TW /2 ≥ t1 ≥
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t2 ≥ · · · ≥ tn ≥ −TW /2 by

〈〈O1(t1)O2(t2)〉〉c = 〈〈O1(t1)O2(t2)〉〉 − 〈〈O1(t1)〉〉〈〈O2(t2)〉〉, (3.33)

〈〈O1(t1)O2(t2)O3(t3)〉〉c = 〈〈O1(t1)O2(t2)O3(t3)〉〉 (3.34)

− 〈〈O1(t1)〉〉〈〈O2(t2)O3(t3)〉〉c − 〈〈O1(t1)O2(t2)〉〉c〈〈O3(t3)〉〉 − 〈〈O1(t1)〉〉〈〈O2(t2)〉〉〈〈O3(t3)〉〉,
〈〈O1(t1)O2(t2)O3(t3)O4(t4)〉〉c = 〈〈O1(t1)O2(t2)O3(t3)O4(t4)〉〉
− 〈〈O1(t1)〉〉〈〈O2(t2)O3(t3)O4(t4)〉〉c − 〈〈O1(t1)O2(t2)〉〉c〈〈O3(t3)O4(t4)〉〉c
− 〈〈O1(t1)O2(t2)O3(t3)〉〉c〈〈O4(t4)〉〉 − 〈〈O1(t1)〉〉〈〈O2(t2)〉〉〈〈O3(t3)O4(t4)〉〉c
− 〈〈O1(t1)〉〉〈〈O2(t2)O3(t3)〉〉c〈〈O4(t4)〉〉 − 〈〈O1(t1)O2(t2)〉〉c〈〈O3(t3)〉〉〈〈O4(t4)〉〉
− 〈〈O1(t1)〉〉〈〈O2(t2)〉〉〈〈O3(t3)〉〉〈〈O4(t4)〉〉, (3.35)

· · · .

At leading order in the 1/m expansion, we get nothing but the static energy already

found by Wilson many years ago [9]

E(0)(r) = lim
T→∞

i

T
ln〈W�〉 . (3.36)

The complete expression of the 1/m and 1/m2 potentials in the quenched approximation

(no light quarks) in terms of Wilson loops has been determined in Refs. [7, 8] (partial

results for the 1/m2 potential can be found in Refs. [34–37]). For these we define the

shorthand notation

lim
T→∞

≡ lim
T→∞

lim
TW→∞

, (3.37)

where TW is the time length of the Wilson loop and T is the time length appearing in the

time integrals shown below. By performing the limit TW → ∞ first, the averages 〈〈. . .〉〉
become independent of TW and thus invariant under global time translations.

The incorporation of light quarks introduces extra terms in E
(2,0)
r . We include them

in this paper. The other Wilson loop expressions for the potentials equal the ones in

Refs. [7, 8], with the exception that we rewrite some of them so that they remain valid in

D dimensions. For the spin-independent potentials we have

E(1,0)(r) = −1

2
lim
T→∞

∫ T

0
dt t 〈〈gE1(t) · gE1(0)〉〉c , (3.38)

E
(2,0)
p2 (r) =

i

2

rirj

r2
lim
T→∞

∫ T

0
dt t2〈〈gEi

1(t)gEj
1(0)〉〉c , (3.39)

E
(2,0)
L2 (r) =

i

2(d− 1)

(
δij − dr

irj

r2

)
lim
T→∞

∫ T

0
dt t2〈〈gEi

1(t)gEj
1(0)〉〉c , (3.40)

E
(1,1)
p2 (r) = i

rirj

r2
lim
T→∞

∫ T

0
dt t2〈〈gEi

1(t)gEj
2(0)〉〉c , (3.41)

E
(1,1)
L2 (r) =

i

d− 1

(
δij − dr

irj

r2

)
lim
T→∞

∫ T

0
dt t2〈〈gEi

1(t)gEj
2(0)〉〉c , (3.42)
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E(2,0)
r (r) = −c

(1)
D

8
lim

TW→∞
〈〈[D1·, gE1](t)〉〉c (3.43)

− ic
(1) 2
F

4
lim
T→∞

∫ T

0
dt〈〈gB1(t) · gB1(0)〉〉c +

1

2
(∇2

rV
(2,0)
p2 )

− i

2
lim
T→∞

∫ T

0
dt1

∫ t1

0
dt2

∫ t2

0
dt3 (t2 − t3)2〈〈gE1(t1) · gE1(t2)gE1(t3) · gE1(0)〉〉c

+
1

2

(
∇i
r lim
T→∞

∫ T

0
dt1

∫ t1

0
dt2 (t1 − t2)2〈〈gEi

1(t1)gE1(t2) · gE1(0)〉〉c
)

− i

2

(
∇i
rV

(0)
)

lim
T→∞

∫ T

0
dt1

∫ t1

0
dt2 (t1 − t2)3〈〈gEi

1(t1)gE1(t2) · gE1(0)〉〉c

+
1

4

(
∇i
r lim
T→∞

∫ T

0
dt t3〈〈gEi

1(t)gEj
1(0)〉〉c(∇j

rV
(0))

)
− i

12
lim
T→∞

∫ T

0
dt t4〈〈gEi

1(t)gEj
1(0)〉〉c(∇i

rV
(0))(∇j

rV
(0))

− c
g(1)
1

4
fabc

∫
d3x lim

TW→∞
g〈〈Gaµν(x)Gbµα(x)Gcνα(x)〉〉

− 1

2
lim
T→∞

∫ T

0
dt1

∫ t1

0
dt2 (t1 − t2)2〈〈[D1., gE1](t1)gE1(t2) · gE1(0)〉〉c

+
i

8
lim
T→∞

∫ T

0
dt t2〈〈[D1., gE1](t)[D1., gE1](0)〉〉c

− i

4

(
∇i
r lim
T→∞

∫ T

0
dt t2〈〈gEi

1(t)[D1., gE1](0)〉〉c
)

− 1

4
lim
T→∞

∫ T

0
dt t3〈〈[D1., gE1](t)gEj

1(0)〉〉c(∇j
rV

(0))

− c
hl(1)
1

8
g2

nf∑
i=1

lim
TW→∞

〈〈T a1 q̄iγ0T
a
1 qi(t)〉〉c −

chl2

8
g2

nf∑
i=1

lim
TW→∞

〈〈q̄iγ0qi(t)〉〉c

−
∫
d3x lim

TW→∞
〈〈δL(1)

l 〉〉 ,

where in the second-to-last line the light-quark operators are located in the heavy-quark

Wilson line (i.e. at the position x1). The last term contains the 1/m2 operators in the

NRQCD Lagrangian that only involve light degrees of freedom. Note also that the other

Wilson-loop expectation values should be computed with dynamical light quarks. Equa-

tion (3.43) generalizes the result of Ref. [8] to the case with light fermions (as usual neglect-

ing ultrasoft effects). Note that, although, formally, the first, the second-to-last, and the

last lines of Eq. (3.43) depend on the time where the operators are inserted on the heavy-

quark lines, this is not so after performing the TW → ∞ limit, due to time translation

invariance.
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Finally, the last term we need in Eq. (3.31) is13

E(1,1)
r (r) =

1

2
(∇2

rV
(1,1)
p2 ) (3.44)

− i lim
T→∞

∫ T

0
dt1

∫ t1

0
dt2

∫ t2

0
dt3 (t2 − t3)2〈〈gE1(t1) · gE1(t2)gE2(t3) · gE2(0)〉〉c

+
1

2

(
∇i
r lim
T→∞

∫ T

0
dt1

∫ t1

0
dt2(t1 − t2)2〈〈gEi

1(t1)gE2(t2) · gE2(0)〉〉c
)

+
1

2

(
∇i
r lim
T→∞

∫ T

0
dt1

∫ t1

0
dt2(t1 − t2)2〈〈gEi

2(t1)gE1(t2) · gE1(0)〉〉c
)

− i

2

(
∇i
rV

(0)
)

lim
T→∞

∫ T

0
dt1

∫ t1

0
dt2(t1 − t2)3〈〈gEi

1(t1)gE2(t2) · gE2(0)〉〉c

− i

2

(
∇i
rV

(0)
)

lim
T→∞

∫ T

0
dt1

∫ t1

0
dt2(t1 − t2)3〈〈gEi

2(t1)gE1(t2) · gE1(0)〉〉c

+
1

4

(
∇i
r lim
T→∞

∫ T

0
dt t3

{
〈〈gEi

1(t)gEj
2(0)〉〉c + 〈〈gEi

2(t)gEj
1(0)〉〉c

}
(∇j

rV
(0))

)
− i

6
lim
T→∞

∫ T

0
dt t4〈〈gEi

1(t)gEj
2(0)〉〉c(∇i

rV
(0))(∇j

rV
(0))

+ (dss + dvsCF ) δ(3)(x1 − x2)

− 1

2
lim
T→∞

∫ T

0
dt1

∫ t1

0
dt2(t1 − t2)2〈〈[D1., gE1](t1)gE2(t2) · gE2(0)〉〉c

+
1

2
lim
T→∞

∫ T

0
dt1

∫ t1

0
dt2(t1 − t2)2〈〈[D2., gE2](t1)gE1(t2) · gE1(0)〉〉c

− i

4
lim
T→∞

∫ T

0
dt t2〈〈[D1., gE1](t)[D2., gE2](0)〉〉c

+
i

4

(
∇i
r lim
T→∞

∫ T

0
dt t2

{
〈〈gEi

1(t)[D2., gE2](0)〉〉c − 〈〈gEi
2(t)[D1., gE1](0)〉〉c

})
− 1

4
lim
T→∞

∫ T

0
dt t3

{
〈〈[D1., gE1](t)gEj

2(0)〉〉c − 〈〈[D2., gE2](t)gEj
1(0)〉〉c

}
(∇j

rV
(0)) .

Let us further elaborate on the expressions for E
(2,0)
r and E

(1,1)
r . The first term of

E
(2,0)
r admits the alternative representation

lim
TW→∞

〈〈[D1·, gE1](t)〉〉c = −
(
∇2
rV

(0) + 2i lim
T→∞

∫ T

0
dt 〈〈gE1(t) · gE1(0)〉〉c

)
. (3.45)

It is also possible to use the Gauss law

(D ·E)a|phys〉 = g(ψ̄†1T
aψ1 − χ2c(T

a)Tχ2c)|phys〉+

nf∑
i=1

q̄iγ0T
aqi|phys〉 (3.46)

13The first term of this equation corrects a sign error in the first term of Eqs. (48) and (54) in Ref. [8].

Note that its spectral decomposition in Eq. (23) of that reference is correct though.
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to simplify Eq. (3.45). This was done in Ref. [8] for the case without light fermions.

Including them we find

lim
TW→∞

〈〈[D1·, gE1](t)〉〉c = −g2δ(d)(x1 − x2) + g2

nf∑
i=1

lim
TW→∞

〈〈T a1 q̄iγ0T
a
1 qi(t)〉〉c . (3.47)

It is quite remarkable that Eqs. (3.45) and (3.47) are equal, because, unlike in the former,

it is obvious in the latter that only the delta-function term survives for nf = 0.

For the other terms of E
(2,0)
r and E

(1,1)
r that involve the commutator [D·, gE] we can

make the replacement [D·, gE]→ g2T aq̄iγ0T
aqi everywhere. This makes their dependence

on the light fermions more explicit. We obtain

E(2,0)
r (r) = −c

(1)
D

8

[
−g2δd(x1 − x2) + g2

nf∑
i=1

lim
TW→∞

〈〈T a1 q̄iγ0T
a
1 qi(t)〉〉c

]
(3.48)

− ic
(1) 2
F

4
lim
T→∞

∫ T

0
dt〈〈gB1(t) · gB1(0)〉〉c +

1

2
(∇2

rV
(2,0)
p2 )

− i

2
lim
T→∞

∫ T

0
dt1

∫ t1

0
dt2

∫ t2

0
dt3 (t2 − t3)2〈〈gE1(t1) · gE1(t2)gE1(t3) · gE1(0)〉〉c

+
1

2

(
∇i
r lim
T→∞

∫ T

0
dt1

∫ t1

0
dt2 (t1 − t2)2〈〈gEi

1(t1)gE1(t2) · gE1(0)〉〉c
)

− i

2

(
∇i
rV

(0)
)

lim
T→∞

∫ T

0
dt1

∫ t1

0
dt2 (t1 − t2)3〈〈gEi

1(t1)gE1(t2) · gE1(0)〉〉c

+
1

4

(
∇i
r lim
T→∞

∫ T

0
dt t3〈〈gEi

1(t)gEj
1(0)〉〉c(∇j

rV
(0))

)
− i

12
lim
T→∞

∫ T

0
dt t4〈〈gEi

1(t)gEj
1(0)〉〉c(∇i

rV
(0))(∇j

rV
(0))

− c
g(1)
1

4
fabc

∫
d3x lim

TW→∞
g〈〈Gaµν(x)Gbµα(x)Gcνα(x)〉〉

− 1

2
g2

nf∑
j=1

lim
T→∞

∫ T

0
dt1

∫ t1

0
dt2 (t1 − t2)2〈〈T a1 q̄jγ0T

aqj(t1)gE1(t2) · gE1(0)〉〉c

+
i

8
g4

nf∑
j,s=1

lim
T→∞

∫ T

0
dt t2〈〈T a1 q̄sγ0T

a
1 qs(t)T

a
1 q̄jγ0T

a
1 qj(0)〉〉c

− i

4
g2

nf∑
j=1

(
∇i
r lim
T→∞

∫ T

0
dt t2〈〈gEi

1(t)T a1 q̄jγ0T
a
1 qj(0)〉〉c

)

− 1

4
g2

nf∑
j=1

lim
T→∞

∫ T

0
dt t3〈〈[T a1 q̄jγ0T

a
1 qj(t)gE

j
1(0)〉〉c(∇j

rV
(0))

− c
hl(1)
1

8
g2

nf∑
i=1

lim
TW→∞

〈〈T a1 q̄iγ0T
a
1 qi(t)〉〉c −

chl2

8
g2

nf∑
i=1

lim
TW→∞

〈〈q̄iγ0qi(t)〉〉c

−
∫
d3x lim

TW→∞
〈〈δL(1)

l 〉〉 ,
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where the last six lines are due to light fermions, and the light quark operators are located

on the heavy quark Wilson line (i.e. at the position x1) except for the last operator, and

E(1,1)
r (r) =

1

2
(∇2

rV
(1,1)
p2 ) (3.49)

− i lim
T→∞

∫ T

0
dt1

∫ t1

0
dt2

∫ t2

0
dt3 (t2 − t3)2〈〈gE1(t1) · gE1(t2)gE2(t3) · gE2(0)〉〉c

+
1

2

(
∇i
r lim
T→∞

∫ T

0
dt1

∫ t1

0
dt2(t1 − t2)2〈〈gEi

1(t1)gE2(t2) · gE2(0)〉〉c
)

+
1

2

(
∇i
r lim
T→∞

∫ T

0
dt1

∫ t1

0
dt2(t1 − t2)2〈〈gEi

2(t1)gE1(t2) · gE1(0)〉〉c
)

− i

2

(
∇i
rV

(0)
)

lim
T→∞

∫ T

0
dt1

∫ t1

0
dt2(t1 − t2)3〈〈gEi

1(t1)gE2(t2) · gE2(0)〉〉c

− i

2

(
∇i
rV

(0)
)

lim
T→∞

∫ T

0
dt1

∫ t1

0
dt2(t1 − t2)3〈〈gEi

2(t1)gE1(t2) · gE1(0)〉〉c

+
1

4

(
∇i
r lim
T→∞

∫ T

0
dt t3

{
〈〈gEi

1(t)gEj
2(0)〉〉c + 〈〈gEi

2(t)gEj
1(0)〉〉c

}
(∇j

rV
(0))

)
− i

6
lim
T→∞

∫ T

0
dt t4〈〈gEi

1(t)gEj
2(0)〉〉c(∇i

rV
(0))(∇j

rV
(0))

+ (dss + dvsCF ) δ(3)(x1 − x2)

− 1

2
g2

nf∑
j=1

lim
T→∞

∫ T

0
dt1

∫ t1

0
dt2(t1 − t2)2〈〈T a1 q̄jγ0T

aqj(t1)gE2(t2) · gE2(0)〉〉c

+
1

2
g2

nf∑
j=1

lim
T→∞

∫ T

0
dt1

∫ t1

0
dt2(t1 − t2)2〈〈T a2 q̄jγ0T

a
2 qj(t1)gE1(t2) · gE1(0)〉〉c

− i

4
g4

nf∑
j,s=1

lim
T→∞

∫ T

0
dt t2〈〈T a1 q̄jγ0T

a
1 qj(t)T

a
2 q̄sγ0T

a
2 qs(0)〉〉c

+
i

4
g2

nf∑
j=1

(
∇i
r lim
T→∞

∫ T

0
dt t2

{
〈〈gEi

1(t)T a2 q̄jγ0T
a
2 qj(0)〉〉c − 〈〈gEi

2(t)T a1 q̄jγ0T
a
1 qj(0)〉〉c

})

− 1

4
g2

nf∑
j=1

lim
T→∞

∫ T

0
dt t3

{
〈〈T a1 q̄jγ0T

a
1 qj(t)gE

j
2(0)〉〉c − 〈〈T a2 q̄jγ0T

a
2 qj(t)gE

j
1(0)〉〉c

}
(∇j

rV
(0)).

In summary, the results of this subsection are the generalization of the results of Ref. [8]

for the strong-coupling version of the 1/m2 pNRQCD potential after the inclusion of light

fermions (and neglecting ultrasoft degrees of freedom). The expressions of the potentials in

terms of Wilson loops are equal to the quenched case except for E
(2,0)
r and E

(1,1)
r (and one

should keep in mind that dynamical light quarks should be included in the computation

at loop level). We have presented expressions valid in D dimensions.

3.2.2 Results in perturbation theory: the O(α2/m2) potential

Once we focus on the weak-coupling regime, ultrasoft degrees of freedom certainly con-

tribute to the quasi-static energies. They do so with energies/momenta of order ∆V ≡
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V
(0)
o − V (0) ∼ CAα/r ∼ mv2. Nevertheless, for a consistent description of the weakly-

coupled quark-antiquark system, the potentials in the Schrödinger equation (i.e. in the

pNRQCD Lagrangian) should only include contributions associated with the soft modes.

Taylor expanding in powers of 1/m before integrating over the gauge or light-quark dynam-

ical variables effectively sets the potential loops to zero. However, this does not eliminate

the ultrasoft contributions from the potential expressed in terms of Wilson loops. Actually,

as far as the ultrasoft modes are concerned, the 1/m expansion can be formally understood

as exploiting the hierarchy ∆V � p2/m, which is the limit implicit in the discussion of

Sec. 3.2.1.14

In order to obtain the potentials in perturbation theory, the ultrasoft contribution has

to be subtracted. This can be easily achieved by expanding in the ultrasoft scale before

performing the loop integration. Thus, only the soft scale appears in the integrals, which

become homogeneous in that scale. The potentials then take the form of a power series

in g2 (and, eventually, in ∆V , when working beyond the order we are interested in). In

summary we have, cf. Eqs. (3.31) and (2.23),

Vs,W (r) = Es(r)|soft , (3.50)

where we have put the subscript W to indicate the Wilson-loop matching scheme.

For the static potential V (0), the Wilson loop definition is given in Eq. (3.36). Its

perturbative evaluation in powers of α can be transformed into a calculation in momentum

space, where the energies of the external quark and antiquark are set to zero for TW →
∞, since the time-dependent part of the external quark propagator, θ(TW − t), can be

approximated by 1. See also Ref. [31] for a detailed discussion. In addition, for a certain

class of gauges (including FG and CG), one usually neglects the exchange of asymptotic

gluons from the boundaries of the Wilson loop at ±TW /2 for TW →∞, see the discussion in

Refs. [20, 31]. In this setup, the Wilson-loop matching for the static potential is equivalent

to a standard diagrammatic S-matrix calculation with off-shell static quarks, i.e. with zero

(kinetic) quark energies, but nonzero external three-momenta. This is indeed equivalent

to the off-shell matching computation at leading order in the 1/m, E1 and E2 expansion.

On the other hand, at lowest order in 1/m no kinetic propagator insertions are involved

in a soft NRQCD S-matrix calculation, as they would inevitably come with factors of 1/m.

It therefore does actually not matter for the latter calculation, whether the external quarks

are on- or off-shell. Furthermore, potential loop contributions to the static potential in the

on-shell matching scheme must vanish, because there are no field redefinitions (compatible

with the symmetries of QCD) that could possibly remove them by modifying a higher order

potential, cf. Sec. 2.3. Hence, we conclude, that the static potential is the same in any of

the matching schemes discussed in this paper.

The Wilson-loop calculation for the higher-order potentials cannot be related to a

purely momentum space S-matrix calculation due to the insertions of gluonic/light-quark

operators that are integrated over time. Nevertheless, we will see that we can also compute

the higher-order potentials in the Wilson-loop matching scheme efficiently based on Feyn-

14Obviously, this is not the kinematic situation we face in the bound state, where ∆V ∼ p2/m.
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man diagrams. It is worth emphasizing that the expressions for the potentials in terms

of Wilson loops encapsulate all effects at the soft scale in a compact way, and they are

correct to any finite order in perturbation theory. In particular, compared to the stan-

dard calculation of the static potential, only a few extra Feynman rules for the operator

insertions have to be introduced (see Appendix C) once the exchange of asymptotic gluons

from the boundaries of the Wilson loop at ±TW /2 for TW →∞ is neglected. This is to be

contrasted with the matching of Green functions, where higher-order kinetic insertions on

the propagators must be taken into account, both for on-shell and off-shell matching, which

can be quite tedious at higher orders. When matching on-shell, in addition, potential loops

must be considered.

Fig. 1. Tree-level Wilson-loop diagrams contributing to V
(1,1)
L2,W (r). Dotted and wavy lines represent

A0 and A gluons, respectively. The crossed vertices denote insertions of the chromo-electric field

operator Ei according to Eq. (3.42). Their horizontal displacement indicates that they are located

at different times (0 and t).

Let us now compute V
(2,0)
L2,W

= E
(2,0)
L2 |soft and V

(1,1)
L2,W

= E
(1,1)
L2 |soft. We use this case in

order to illustrate how we perform the Wilson loop calculations.

At O(α) we only have contributions to V
(1,1)
L2,W

. The diagrams needed are drawn in

Fig. 1. In CG only the second diagram contributes and using the Feynman rules derived

in Appendix C, the detailed calculation reads

V
(1,1)
L2,W

(r) =
i

(d− 1)

(
δij − dr

irj

r2

)
g2
BCF lim

T→∞

∫ T

0
dt t2

∫
dDk

(2π)D
eikr

ik2
0

k2 + i0
Pij(k)

=
i

(d− 1)

(
δij − dr

irj

r2

)
g2
BCF

∫
ddk

(2π)d
e−ikrPij(k)

∫
dk0

(2π)

ik2
0

k2 + i0

(
− ∂2

∂k2
0

)∫ ∞
0

dt eik0t

=
1

(d− 1)

(
δij − dr

irj

r2

)
g2
BCF

∫
ddk

(2π)d
e−ikrPij(k)

∫
dk0

(2π)

k2
0

k2
0 − k2 + i0

∂2

∂k2
0

i

k0 + i0

=
−1

(d− 1)

(
δij − dr

irj

r2

)
g2
BCF

∫
ddk

(2π)d
e−ikrPij(k)

1

k2
=
CF g

2
B

8π

(1 + 2ε)Γ(1
2 + ε)

π
1
2

+εr1+2ε

=
CFα

2r
+O(ε) , (3.51)

where the projector Pij(k) = δij − kikj

k2
.

In FG both diagrams in Fig. 1 contribute, but we still obtain the same result, as

expected due to gauge invariance of the Wilson loop. At this order the result coincides
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Fig. 2. One-loop diagrams contributing to V
(2,0)
L2,W (r). Left-right mirror graphs are understood.

with the result obtained using off-shell matching.15 Therefore

D̃
(2,0)
off,1,W(ε) = D̃

(2,0)
off,1,CG(ε) , D̃

(1,1)
off,1,W(ε) = D̃

(1,1)
off,1,CG(ε) . (3.52)

At O(α2) the diagrams needed for V
(2,0)
L2,W

are drawn in Fig. 2 and the calculation reads

V
(2,0)
L2,W

(r) =

=
g2
B

2(d− 1)

(
δij − dr

irj

r2

)∫
ddk

(2π)d
e−ikr

∫
dDq

(2π)D

∫ ∞
0

dt t2e−iq0t
∫
dl0
2π
e−il0t

iMij(q)

l0 + i0

=
g2
B

2(d− 1)

(
δij − dr

irj

r2

)∫
ddk

(2π)d
e−ikr

∫
dDq

(2π)D
Mij(q)

∫ ∞
0

dt t2e−iq0tθ(t)

=
ig2
B

2(d− 1)

(
δij − dr

irj

r2

)∫
ddk

(2π)d
e−ikr

∫
dDq

(2π)D
Mij(q)

(
∂2

∂q2
0

1

q0 − i0

)
, (3.53)

where, D = d + 1. Here we chose the energy l0 to flow along the arrow between the

crossed vertices in Fig. 2 and the momentum q to flow counter-clockwise in the loop. The

(integrand of) the one-loop amplitude Mij can be obtained by applying standard static

Wilson-loop Feynman rules together with the additional rules for the Ei operator insertions

as given in Appendix C. Note that we have pulled out a factor 1/(l0 + i0), corresponding

to the upper static quark propagator from the amplitude’s integrand, in order to render

M l0-independent.

We emphasize that, as in the calculation of soft on/off-shell Green functions, we must

neglect the (ill-defined) contribution of pinch singularities. The latter are related to it-

erations of lower order potentials and are not part of the soft regime. In fact, the pinch

singular terms are explicitly removed in the definition of connected Wilson loops according

to Eq. (3.33).

In CG only the first two diagrams of Fig. 2 contribute (the first gives a divergent con-

tribution). Using our Wilson-loop Feynman rules in Appendix C we find the (unintegrated)

amplitude

MCG
ij (q)

l0 + i0
=

1

l0 + i0

CFCAg
2
B

k2

(
Pil(q)Pjl(q− k)q3

0

((q − k)2 + i0) (q2 + i0)
− 2

kl(qj − kj)Pil(q)q0

(q− k)2(q2 + i0)

)
. (3.54)

15In CG it coincides exactly, in FG only after using the EOMs as discussed above.
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Fig. 3. One-loop diagrams contributing to V
(1,1)
L2,W (r). Left-right and up-down mirror graphs give

the same result as the original diagram and are understood. In all diagrams (including the mirrored

ones) the upper and lower crossed vertices are located at times t and 0, respectively. In CG only

the first seven diagrams contribute. In FG also the other six diagrams have to be evaluated.

Plugging this in Eq. (3.53) gives

V
(2,0)
L2,W

(r) = −
(
g2
B

4π

)2
CFCA

6
F2−2ε(r)

(4ε+ 1)(ε(4ε+ 7) + 4) csc(πε)

24επε−
3
2 (ε− 1)Γ

(
ε+ 3

2

)
=

4πCFCA
3

F2(r)
g4
B

16π3
ν̄2ε

(
1

ε
+

19

4
− 2 ln(rνeγE ) +O(ε)

)
. (3.55)

We have also checked that we get the same result performing the calculation in FG,

where all four diagrams contribute. Note that V
(2,0)
L2,W

differs from V
(2,0)
L2,CG/FG

obtained by

off-shell matching, not only in the finite but also in the divergent part.

The calculation of V
(1,1)
L2,W

is carried out along the same lines. The diagrams contributing

at O(α2) are displayed in Fig. 3. In order to have a cross check we compute again in both,

CG and FG, and indeed obtain the same result:

V
(1,1)
L2,W

(r) =
g2
B

4π

CF
2

{
4π(1 + 2ε)F2(r) +

g2
B

(4π)2
F2−2ε(r)

π
5
2
−ε(4ε+ 1) csc(πε)

42ε(1− ε)Γ
(
ε+ 5

2

) [4TFnf (1− ε2)

+
CA
3

(15 + 92ε+ 137ε2 + 56ε3)
]}
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= CF
g2
B

2
F2(r)

{
1 +

g2
B ν̄

2ε

4π2

[(
4

3
CA −

β0

4

)(
1

ε
− 2 ln(rνeγE )

)
+

127

36
CA +

7

9
TFnf

]
+O(ε)

}
. (3.56)

The above calculations of the VL2,W potentials to O(α2) are actually all we need to

fix also the other spin-independent position space potentials Vp2,W and Vr,W with O(α2)

precision. The reason is that we can use Eqs. (2.66) and (2.69) to determine goff,W and

then (by inverse Fourier transformation) D̃off,W (k) in momentum space. We find

D̃
(1,1)
off,1,W(ε) =

1

4
, (3.57)

D̃
(2,0)
off,2,W(ε) =

CA
12

π
3
2
−ε(ε(4ε+ 7) + 4) csc(πε)

42εΓ
(
ε+ 3

2

) =
CA
6

(
eγE

4π

)ε(4

ε
− 1 +O(ε)

)
, (3.58)

D̃
(1,1)
off,2,W(ε) =

π
3
2
−ε csc(πε)

16ε+1Γ
(
ε+ 5

2

) (1

3
CA
(
56ε3 + 137ε2 + 92ε+ 15

)
+ 4TFnf

(
1− ε2

))
=

(
eγE

4π

)ε [1

ε

(
4

3
CA −

β0

4

)
+

13

9
CA −

8

9
TFnf +O(ε)

]
. (3.59)

These are the only 1/m2 Wilson coefficients that are affected by the field redefinition in

Eq. (2.76) at O(α2). Therefore, by the same argument as in Sec. 3.1.3, D̃p2,W (k) = D̃p2(k)

and D̃r,W (k) = D̃r(k) with the precision of our computation. Then, using Eqs. (2.67),

(2.68), (2.70) and (2.71), we obtain

V
(2,0)
p2,W

(r) =

(
g2
B

4π

)2
CFCA

3
F2−2ε(r)

(ε+ 1)(8ε2 + 8ε− 1) csc(πε)

42επε−
3
2 (ε− 1)Γ

(
ε+ 3

2

)
=
CFCA

6
F2(r)

g4
B ν̄

2ε

4π2

(
1

ε
− 8− 2 ln(rνeγE ) +O(ε)

)
, (3.60)

V
(2,0)
r,W (r) =

CF g
2
B

8

{
c

(1)
D δ(d)(r)− g2

B

4π2

(ε+ 1) csc(πε)

3(ε− 1)24ε+4πε−
3
2 Γ
(
ε+ 5

2

)
×
[
3
(
c

(1)
F

)2
CA
(
4ε2 + ε− 5

)
− 12TFnf (ε− 1)(c

(1)
D + c

hl(1)
1 )

]
F−2ε(r)

}
+

1

2
∇2V

(2,0),W
p2,B

, (3.61)

where

∇2V
(2,0),W
p2,B

= −g4
BCFCA

16−ε−1π−ε−
1
2 (ε+ 1)(8ε2 + 8ε− 1) csc(πε)

3(ε− 1)Γ
(
ε+ 3

2

) F−2ε(r) , (3.62)

V
(1,1)
p2,W

(r) = −g
2
B

4π
CF

{
4π(1 + ε)F2(r) +

g2
B

(4π)2
F2−2ε(r)

4−2επ
5
2
−ε(ε+ 1) csc(πε)

(ε− 1)Γ
(
ε+ 5

2

)
×
[
− 4(1 + ε− 2ε2)TFnf +

CA
3

(45− 31ε− 202ε2 − 112ε3)
]}

= −CF g2
BF2(r)

{
1− g2

B ν̄
2ε

4π2

(
CA
3

+
β0

4

)(
1

ε
− 2 ln(rνeγE )
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+
61

36
CA +

1

9
TFnf

)
+O(ε)

}
, (3.63)

V
(1,1)
r,W (r) = (dss + CFdvs) δ

(d)(r) +
1

2
∇2V

(1,1),W
p2,B

+

(
g2
B

4π

)2
CF
3

π
3
2
−ε(ε+ 1) csc(πε)

16ε+1Γ
(
ε+ 5

2

)
×
[
CA(40ε2 + 83ε+ 39) + 4CF (2ε+ 3)(8ε+ 7)− 12TFnf ε

]
F−2ε(r) , (3.64)

and

∇2V
(1,1)
p2,W

(r) = g2
BCF

{
(ε+ 1)δ(d)(r) +

g2
B

(4π)3

4−2επ
5
2
−ε(ε+ 1) csc(πε)

(ε− 1)Γ
(
ε+ 5

2

) (3.65)

×
[1

3
CA(−112ε3 − 202ε2 − 31ε+ 45)− 4TFnf (1− ε)(2ε+ 1)

]
F−2ε(r)

}
.

As a check, we can also directly compute V
(2,0)
p2,W

(r) in the same way as V
(2,0)
L2 (r). Note

that the diagrams, Fig. 2, are the same and only the prefactor changes, cf. Eqs. (3.39) and

(3.40). Using Eq. (3.54), we obtain

V
(2,0)
p2,W

(r) =
ig2
B

2

rirj

r2

∫
ddk

(2π)d
e−ikr

∫
dDq

(2π)D
MCG

ij (q)

(
∂2

∂q2
0

1

q0 − i0

)
, (3.66)

which yields the same result as Eq. (3.60). On top of that, we have also checked that we

obtain the same result in FG.

We have also computed V
(1,1)
p2 (r) directly in CG and FG finding agreement with

Eq. (3.63). This is an even stronger check, because the calculation is more difficult, as

it involves more diagrams.

From the above analysis we can also determine (the soft part of) some Wilson loops

that contribute to Vr,W and can be treated separately, because they are multiplied by

different NRQCD Wilson coefficients. Let us first focus on V
(2,0)
r,W . Comparing all terms

proportional to cD in Eq. (3.61), with the cD dependent terms of the Wilson loop expression

in (the 1st line of) Eq. (3.43), and using Eq. (3.45), we find

lim
T→∞

∫ T

0
dt 〈〈gEi

1(t)gEi
1(0)〉〉c

∣∣∣∣∣
soft

= −i
(
g2
B

4π

)2

CFCA
2−3−4επ

3
2
−ε(1 + ε)(11 + 8ε) csc(πε)

Γ
(

5
2 + ε

) F−2ε(r) . (3.67)

We can also directly compute the Wilson loop and check this result. The relevant diagrams

are the same as in Fig. 2. An analogous calculation for the VL2,W potentials yields

lim
T→∞

∫ T

0
dt 〈〈gEi

1(t)gEi
1(0)〉〉c

∣∣∣∣∣
soft

= −g2
B

∫
ddk

(2π)d
e−ikr

∫
dDq

(2π)D
MCG

ii (q)
1

q0 − i0
, (3.68)

which is equal to Eq. (3.67).

Using this result and Eq. (3.45) we obtain

g2

nf∑
i=1

lim
TW→∞

〈〈T a1 q̄iγ0T
a
1 qi(t)〉〉c

∣∣∣∣∣
soft

= −CF
g4
B

4π2

(ε+ 1) csc(πε)

24ε+2πε−
3
2 Γ
(
ε+ 5

2

)TFnfF−2ε(r) (3.69)
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from the comparison to Eq. (3.47). Note that this results from a nontrivial cancellation of

non-Abelian contributions so that only light-quark effects survive. This is precisely what

should happen according to Eq. (3.47). We can also confirm confirm Eq. (3.69) by direct

inspection of the cD+chl1 term of V
(2,0)
r,W (but now written in terms of light-quark operators),

which, thus, provides us with an independent check.

Finally, by comparing the terms proportional to c2
F we find

i lim
T→∞

∫ T

0
dt〈〈gB1(t) · gB1(0)〉〉c

∣∣∣∣∣
soft

=
CFCA

2

g4
B

4π2

(ε+ 1) csc(πε)

(ε− 1)24ε+4πε−
3
2 Γ
(
ε+ 5

2

)
×
(
4ε2 + ε− 5

)
F−2ε(r). (3.70)

With this we have already exhausted all contributions to V
(2,0)
r,W . Therefore, we conclude

that all the remaining terms are O(α3), i.e.,[
− i

2
lim
T→∞

∫ T

0
dt1

∫ t1

0
dt2

∫ t2

0
dt3 (t2 − t3)2〈〈gE1(t1) · gE1(t2)gE1(t3) · gE1(0)〉〉c

+
1

2

(
∇i
r lim
T→∞

∫ T

0
dt1

∫ t1

0
dt2 (t1 − t2)2〈〈gEi

1(t1)gE1(t2) · gE1(0)〉〉c
)

− i

2

(
∇i
rV

(0)
)

lim
T→∞

∫ T

0
dt1

∫ t1

0
dt2 (t1 − t2)3〈〈gEi

1(t1)gE1(t2) · gE1(0)〉〉c

+
1

4

(
∇i
r lim
T→∞

∫ T

0
dt t3〈〈gEi

1(t)gEj
1(0)〉〉c(∇j

rV
(0))

)
− i

12
lim
T→∞

∫ T

0
dt t4〈〈gEi

1(t)gEj
1(0)〉〉c(∇i

rV
(0))(∇j

rV
(0))

− c
g(1)
1

4
fabc

∫
d3x lim

TW→∞
g〈〈Gaµν(x)Gbµα(x)Gcνα(x)〉〉

− 1

2
g2

nf∑
j=1

lim
T→∞

∫ T

0
dt1

∫ t1

0
dt2 (t1 − t2)2〈〈T a1 q̄jγ0T

aqj(t1)gE1(t2) · gE1(0)〉〉c

+
i

8
g4

nf∑
j,s=1

lim
T→∞

∫ T

0
dt t2〈〈T a1 q̄sγ0T

a
1 qs(t)T

a
1 q̄jγ0T

a
1 qj(0)〉〉c

− i

4
g2

nf∑
j=1

(
∇i
r lim
T→∞

∫ T

0
dt t2〈〈gEi

1(t)T a1 q̄jγ0T
a
1 qj(0)〉〉c

)

− 1

4
g2

nf∑
j=1

lim
T→∞

∫ T

0
dt t3〈〈[T a1 q̄jγ0T

a
1 qj(t)gE

j
1(0)〉〉c(∇j

rV
(0))

− c
hl(1)
2

8
g2

nf∑
i=1

lim
TW→∞

〈〈q̄iγ0qi(t)〉〉c −
∫
d3x lim

TW→∞
〈〈δL(1)

l 〉〉
]

soft

= O(α3) . (3.71)

Unfortunately a similar analysis for V
(1,1)
r,W gives much less information on the values of the

different contributing Wilson loops.
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4 Determination of the O(α3/m) potential for unequal masses

The O(α2/m) potential for the unequal mass scheme was computed first in the on-shell

matching in Ref. [11]. The D-dimensional expression in the same matching scheme, but for

the equal mass case, can be found in Ref. [38]. The O(α3/m) potential for equal masses was

obtained in Ref. [15] using on-shell matching and the O(ε) piece can be found in Ref. [39].

Overall, the equal mass result (to the highest order in ε presently known) reads[
Ṽ

(1,0)
on−shell + Ṽ

(0,1)
on−shell

]
m=m1=m2

=
g2πCF

4k

{
g2

4π
k2εb1

(
1 +

(
g2ν̄2ε

4π

)
β0

2π

1

ε

(
1− k2ε

ν2ε

))
+

1

π

(
g2ν̄2ε

4π

)2(
k2ε

ν2ε

)2(
b2L
2

1

ε
+ b2 + εb2ε +O(ε2)

)}
,

(4.1)

where

b1 = (4π)−ε
Γ2
(

1
2 + ε

)
Γ
(

1
2 − ε

)
π3/2Γ (1 + 2ε)

(
CF
2

(1 + 2ε)− CA(1 + ε)

)
, (4.2)

b2L =
4

3
(C2

A + 2CACF ),

b2 = −C2
A

(
101

36
+

4

3
ln 2

)
+ CACF

(
65

18
− 8

3
ln 2

)
+

49

36
CATFnf −

2

9
CFTFnf ,

b2ε = −CFCA
(−631

108
− 15

16
π2 +

65

9
ln 2− 8

3
ln2 2

)
− CFTFnf

(
17

27
− 11

36
π2 − 4

9
ln 2

)
+ C2

A

(
1451

216
+

161

72
π2 +

101

18
ln 2 +

4

3
ln2 2

)
− CATFnf

(
115

54
+

5

18
π2 +

49

18
ln 2

)
.

Note that, unlike the expressions for the potentials in the previous sections, we have written

the potential in Eq. (4.1) in terms of the MS renormalized coupling g2 evaluated at the

scale ν (see Eq. (2.17)),16 because this allows for an easier comparison with the results of

Ref. [15].

It is the aim of this section to obtain the expression for the 1/m potential in the

unequal mass case for the on-shell, off-shell (CG and FG) and the Wilson-loop matching

schemes described in Sec. 3. We will rely on the 1/m2 results obtained in Sec. 3, as well

as on the results of Ref. [15]. A key point in our derivation will be the use of the field

redefinitions discussed in Sec. 2.3.

Based on these field redefinitions we have argued in Sec. 3 that through O(α2) the

potential coefficients D̃p2 and D̃r are the same in all three matching schemes. We have

checked this prediction explicitly for on-shell and off-shell matching. We have also deter-

mined all other 1/m2 potentials at O(α2). Our results of Sec. 3 thus represent the complete

O(α2/m2) potential in the Wilson-loop, off-shell and on-shell scheme.

The scheme differences can be compactly expressed in momentum space:

Ṽs,X

∣∣∣∣∣
O(1/m2)

= Ṽs,on−shell

∣∣∣∣∣
O(1/m2)

+ δṼ
(2)
X , (4.3)

16For brevity, we avoid writing out the argument, i.e. g ≡ g(ν) is understood in the following.
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where

δṼ
(2)
X =

(p′2 − p2)2

k4

(
D̃

(2,0)
off,X(k)

(
1

m2
1

+
1

m2
2

)
+ D̃

(1,1)
off,X(k)

1

m1m2

)
, (4.4)

and the subscript X stands for the matching scheme: Wilson-loop (W ), CG or FG. The

term δṼ
(2)
X has the same structure as Eq. (2.81), and can be completely eliminated through

the field redefinition in Eqs. (2.73), (2.75), generating a new 1/m potential: δṼ
(1)
X , which

can have a nontrivial dependence on the masses.

This δṼ
(1)
X , plus the on-shell scheme expression of the 1/m potential in the equal-mass

case, is all we need to derive the O(α3/m) potential for unequal masses in the X or on-shell

schemes. The reason is that

Ṽ
(1,0)
X

m
+
Ṽ

(0,1)
X

m
+ δṼ

(1)
X

∣∣∣∣
m=m1=m2

=

[
Ṽ

(1,0)
on−shell

m
+
Ṽ

(0,1)
on−shell

m

]
m=m1=m2

. (4.5)

The potentials Ṽ
(1,0)
X and Ṽ

(0,1)
X are the unknown quantities in this equation. They do

not depend on the mass, because, as discussed in Sec. 3, all schemes X admit a strict

1/mi expansion. Hence Eq. (4.5) allows us to completely fix the (original) 1/m potential

Ṽ
(1,0)
X = Ṽ

(0,1)
X . We emphasize that this is possible because we know the complete off-

shell 1/m2 potential. In addition, our 1/m2 results contain the full information on the

mi dependence of the potentials. Therefore, we are also able to determine the O(α3/m)

potential for unequal masses in the on-shell matching scheme, as we will see below.

We start with the results in the Wilson-loop scheme, where the appropriate field re-

definition gives

m δṼ
(1)
W

∣∣∣∣
m=m1=m2

=

(
g2
B

4π

)2
k2ε

k
π2C2

Fd1 +

(
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B

4π

)3
k4ε

k
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F

4−3ε−1π2−2ε csc(πε) sec(2πε)
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×
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(
136ε4 + 363ε3 + 297ε2 + 89ε+ 15

)
− 12TFnf (ε− 1)(ε+ 1)(3ε+ 1)

}
=
πC2

F g
2

4k

{
g2
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(
1 +

(
g2ν̄2ε

4π

)
β0

2π

1

ε

(
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+

1

π

(
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)2(
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)2(
4

3
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1

ε
+

(
65

18
− 8

3
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)
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2

9
TFnf
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[
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(
631

108
+
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− 65 ln 2

9
+

8 ln2 2

3

)
+ TFnf

(
−17

27
+

11π2

36
+

4 ln 2

9

)]
+ O(ε2)

)}
, (4.6)

with

d1 =
2−2επ

−1
2
−εΓ

(
3
2 + ε

)
sec(πε)

Γ(1 + 2ε)
. (4.7)
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We can now use Eq. (4.5) to determine Ṽ
(1,0)
W . We find the following momentum space

coefficients according to Eq. (2.44):

D̃
(1,0)
2,W = −CA

π(1 + ε)

4(1 + 2ε)
d1 = −CAπ

8
+O(ε) , (4.8)

D̃
(1,0)
3,W =

CAπ

4

(
eγE

4π

)ε 2(1 + ε)

1 + 2ε
d1β0

1

ε

+
CAπ

2

(
eγE

4π

)2ε(2

3
CA

1

ε
+

49

36
TFnf − CA

(
101

36
+

4

3
ln 2

)
+ ε
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CA

(
1451

216
+

161π2

72
+

101

18
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4

3
ln2 2

)
− TFnf

(
115

54
+

5π2

18
+

49

18
ln 2

)]
+O(ε2) . (4.9)

Note that these coefficients refer to the expansion of the 1/m potential in powers of g2
B.

After Fourier transformation to position space we obtain

V
(1,0)
W (r) = −1

2
lim
T→∞

∫ T

0
dt t 〈〈gE1(t) · gE1(0)〉〉c

∣∣∣∣∣
soft

=
πCACF g

2

8

{
− g2

4π

2(1 + ε)

1 + 2ε
d1F1−2ε(r)
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1 +

(
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β0

2π

1

ε

(
1− F1−4ε(r)

ν2εF1−2ε(r)
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+

(
g2ν̄2ε

4π

)2
1

π

F1−4ε(r)

ν4ε

(
2

3
CA

1

ε
+

49

36
TFnf − CA

(
101

36
+
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3
ln 2

)
+ ε

[
CA

(
1451

216
+

161π2

72
+

101

18
ln 2 +
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3
ln2 2

)
− TFnf

(
115
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+

5π2

18
+

49

18
ln 2

)]
+O(ε2)

)}
. (4.10)

Note that this expression does not have terms proportional to the color factors C2
FCA and

C2
FTFnf . This appears to be similar to the static potential, where there are no C2

F terms

at O(α2) due to the exponentiation of diagrams. Here, it is the fact that we consider

connected Wilson loops, which seems to eliminate such contributions, see Eq. (3.33).

Just like Eq. (4.6), it is straightforward to identify the field redefinitions that relate

the potentials obtained in the Wilson-loop and the CG/FG off-shell matching schemes. We

emphasize that the differences δṼ
(2)
W − δṼ (2)

CG and δṼ
(2)
W − δṼ (2)

FG are precisely of the form

of Eq. (2.81) with a mass-independent g̃(k). Hence, according to the field redefinition in

Eq. (2.76), the corresponding differences in the 1/m potential are proportional to 1/mr =

1/m1 + 1/m2. This explicitly verifies that the strict 1/m expansion also holds for the CG

and FG off-shell schemes.

We now give expressions for the 1/m potentials in the latter schemes. The CG/FG

coefficients in Eq. (2.44) read

D̃
(1,0)
2,W = D̃

(1,0)
2,CG = D̃

(1,0)
2,FG , (4.11)

D̃
(1,0)
3,CG = D̃
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3,W +

πCFCA
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)
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, (4.12)
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D̃
(1,0)
3,FG = D̃

(1,0)
3,CG −

πCACF
6

sec(2πε)Γ(ε− 1)
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4

− 4Γ
(
ε+ 5

2
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Γ(ε+ 1)Γ
(
2ε+ 3

2

) ) . (4.13)

In the CG computation it is easy to see that there are no C2
FTFnf contributions to the

1/m potential by inspection of the possible diagrams at O(α3).

Furthermore, as stated above, we can determine the NLO 1/m potential in the on-shell

scheme for unequal masses. Now, however, the field redefinition relating it to the off-shell

potentials induces a non-trivial dependence on the masses, because 2D
(2,0)
off,X 6= D

(1,1)
off,X in

Eq. (4.4). We obtain
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=
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B
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ε
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3
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ν̄4ε
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1
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1

ε
−
(

101

36
+

4 ln 2

3

)
CA +

49

36
TFnf

+ ε

[
CA

(
161π2

72
+

1451

216
+

4 ln2 2

3
+

101 ln 2

18

)
− TFnf

(
5π2

18
+

115

54
+

49 ln 2

18

)]
+O(ε2)

})}

=
πC2

F g
2

2(m1 +m2)

{
g2

4π
d1F1−2ε(r)

(
1 +

(
g2ν̄2ε

4π

)
β0

2π

1

ε

(
1− F1−4ε(r)

ν2εF1−2ε(r)

))
(4.15)

+

(
g2ν̄2ε

4π

)2 1

π

F1−4ε(r)

ν4ε

(
1

4
(a1 − β0) +

ε

2

[
CA

(
91

54
− 121π2

72
+

2 ln 2

9

)

+ TFnf

(
−34

27
+

11π2

18
+

8 ln 2

9
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+O(ε2)
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+
πCACF g

2

8mr

{
− g2

4π

2(1 + ε)

1 + 2ε
d1F1−2ε(r)

(
1 +

(
g2ν̄2ε

4π

)
β0

2π

1

ε

(
1− F1−4ε(r)

ν2εF1−2ε(r)

))

+

(
g2ν̄2ε
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π

F1−4ε(r)

ν4ε

(
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(CA + 2CF )

1

ε
− CA

(
101

36
+
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3
ln 2

)
+ CF

(
11

3
− 8

3
ln 2

)
+

49

36
TFnf + ε

[
CF

(
5 +

16π2

9
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3
ln 2 +

8
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ln2 2

)
− TFnf

(
115

54
+

5π2

18
+

49

18
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+ CA

(
1451

216
+

161π2

72
+

101 ln 2

18
+

4 ln2 2

3

)]
+O(ε2)

)}
.

We remark that in the first equality we keep the complete ε dependence of the terms

proportional to the color factors C2
FCA and C2

FTFnf . This is an outcome of our calculation.

In the second equality we expand to O(ε).

Finally, note that, unlike for the off-shell and Wilson-loop potentials, it does not make

sense to define V
(1,0)

on−shell alone. Only the combination
V

(1,0)
on−shell

m1
+

V
(0,1)
on−shell

m2
is meaningful.

5 Renormalized potentials

So far we have obtained the bare potentials for different matching procedures. The different

results can be related by unitary field redefinitions. Therefore, the physical spectrum of

the quark-antiquark system will be the same irrespectively of the matching scheme used

to determine the potentials.17 In order to produce physical results one always has to add

the ultrasoft contribution to the respective observable. The ultrasoft calculation relevant

for the determination of the Bc spectrum yields the following contribution to the (singlet)

heavy quarkonium self-energy (in the quasi-static limit) [17, 22, 40]:

ΣB(1− loop) = −g2
BCFV

2
A(1 + ε)

Γ(2 + ε)Γ(−3− 2ε)

π2+ε
r (hs − E + ∆V )3+2εr , (5.1)

where ∆V ≡ V (0)
o − V (0).

In general, ultrasoft contributions will depend on the basis of potentials used, but, up

to the order we work at here, it only depends on the static octet potential, which is not

affected by the field redefinition in Eq. (2.75).

The (ultraviolet) divergences of Eq. (5.1) that are associated with the pole of the heavy

quarkonium propagator (i.e. those independent of hs − E) should cancel the divergences

of the bare potential Vs. We collect the latter in δVs:

V MS
s + δVs = Vs , (5.2)

so that V MS
s produces finite physical results. This does not necessarily mean that V MS

s is

finite in the four-dimensional limit, as the cancellation of divergences should only occur in

physical quantities and not necessarily for each individual potential separately.

Let us elaborate on this point. We take Eq. (5.1) and move one factor of (hs−E)

to the left, one to the right, and the remaining one in is moved such that one obtains

a (hs − E)-free divergence that is cancelled by the counterterm (note that VL2 does not

17Nevertheless, one should be careful with other observables such as decays. The Wilson coefficients of

the corresponding operators will potentially depend on the basis of potentials used.
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appear in this expression):

δV (GF)
s =

(
r2(∆V )3 − 1

2m2
r

[
p,
[
p, V (0)

o

]]
+

1

2m2
r

{
p2,∆V

}
+

2

mr
∆V

(
r
d

dr
V (0)

)

+
1

2mr

[
(∆V )2(3d− 5) + 4∆V

((
r
d

dr
∆V

)
+ ∆V

)
+

((
r
d

dr
∆V

)
+ ∆V

)2
])

× 1

ε
CFV

2
A

1

3π

g2
B ν̄

2ε

4π
. (5.3)

This expression was used in Ref. [4]. It is however not unique. If we take (hs−E)3 and

move one factor of (hs−E) to the left, one to the right, and the remaining one is split in

half and symmetrically moved to the left and right in Eq. (5.1), we obtain

δV (W )
s =

(
r2(∆V )3 − 1

2m2
r

[
p,
[
p, V (0)

o

]]
+

1

2m2
r

{
p2,∆V

}
+

i

2m2
r

{
pi,
{
pj , [pj ,∆V ri]

}}
+

1

2mr

[
(∆V )2(3d− 5) + 4∆V

((
r
d

dr
∆V

)
+ ∆V

)
+

((
r
d

dr
∆V

)
+ ∆V

)2
])

× 1

ε
CFV

2
A

1

3π

g2
B ν̄

2ε

4π
. (5.4)

Therefore, even if Eq. (5.1) is not ambiguous, Eqs. (5.3) and (5.4) are. Still, they are

related by field redefinitions, or in other words, they differ by terms of O(hs−E).18 Hence,

combining Eq. (5.3) or Eq. (5.4) with our expressions for the potential yields the same

physical result for the spectrum. Yet, note that in Vs,CG − δV (W )
s there is no cancellation

of the divergences: We cannot get finite four-dimensional expressions for the potentials.

Formally this is not a problem, because the uncanceled divergences vanish in the calculation

of the spectrum, but we are then forced to compute intermediate results in D dimensions.

In practice, it is therefore convenient to find finite renormalized expressions that allow us to

work in four dimensions. This is achieved by subtracting δV
(W )
s from Vs,W and δV

(GF)
s from

the bare potentials in the CG/FG off-shell and on-shell schemes. Finally, using Eq. (2.17),

that VA = 1 with leading logarithmic accuracy [42], and the relation between the bare

and renormalized expressions of the NRQCD Wilson coefficients presented in Sec. 2.1, we

obtain the renormalized potentials for the different matching prescriptions.

In order to simplify the notation we drop the index MS of the NRQCD Wilson coeffi-

cients in the expressions of the renormalized potentials we give below. Note also that the

divergences of the bare NRQCD Wilson coefficient dsv we use in this paper (computed in

FG), do not cancel the divergences of V
(1,1)
r , they rather compensate the divergences of

V
(2,0)
r and V

(0,2)
r . On the other hand, had we computed the NRQCD Wilson coefficients in

CG, we would find no mixing between these potentials for the cancellation of divergences.

See the renormalization group equations in Ref. [30] for the latter case.

18See also the discussion in Ref. [41].
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We now list the final expressions for the renormalized potentials obtained in the dif-

ferent matching schemes in position space. In the off-shell CG scheme they read

V
(2,0),MS
r,CG (r) =

CFα

8

(
c

(1)
D +

α

π

{
− 5

9

(
c

(1)
D + c

hl(1)
1

)
TFnf +

(
13

36
c

(1) 2
F +

4

3
− 8

3
ln 2

)
CA

+

((
4 +

5

6
c

(1) 2
F

)
CA −

2

3

(
c

(1)
D + c

hl (1)

1MS

)
TFnf

)
ln(ν)

})
4πδ(3)(r)

+
CFα

2

8π

{(
4 +

5

6
c

(1) 2
F

)
CA −

2

3

(
c

(1)
D + c

hl (1)
1

)
TFnf

}
reg

1

r3
, (5.5)

V
(2,0),MS
L2,CG

(r) =
CFα

2

4π

1

r
CA

(
1− 8

3
ln 2

)
, (5.6)

V
(2,0),MS
p2,CG

(r) = −CFα
2

3π

1

r
CA ln(νreγE ) , (5.7)

V
(1,1),MS
r,CG (r) =

[
1

4π
(dss + CFdvs) +

CFα

2

(
1 +

α

π

{
31

36
CA +

CF
6
− 4

3
CA ln 2

− 7

18
TFnf +

(
11

12
CA −

7

3
CF +

β0

2

)
ln(ν)

})]
4πδ(3)(r)

+
CF
2

α2

π

(
11

12
CA −

7

3
CF +

β0

2

)
reg

1

r3
, (5.8)

V
(1,1),MS
L2,CG

(r) =
CFα(e−γE/r)

2r

{
1 +

α

π

(
CA
36
− 8

3
CA ln 2 +

1

9
TFnf

)}
, (5.9)

V
(1,1),MS
p2,CG

(r) = −CFα(e−γE/r)

r

{
1 +

α

π

(
−CA

18
− 2

9
nfTF +

2

3
CA ln (νreγE )

)}
, (5.10)

V
(1,0),MS

CG (r) = −CFCAα
2(e−γE/r)

4r2

{
1 +

α

π

(
89

36
CA −

49

36
TFnf −

8

3
CF ln 2

+
4

3
(CA + 2CF ) ln (νreγE )

)}
. (5.11)

In the off-shell FG scheme, we have

V
(2,0),MS
SI,FG (r) = V

(2,0),MS
SI,Coulomb(r) +

CFCAα
2

3π

(
2 ln 2 +

35

16

)[
2πδ3(r) +

1

r3
L2

]
, (5.12)

V
(1,1),MS
SI,FG (r) = V

(1,1),MS
SI,Coulomb(r) +

2CFCAα
2

3π

(
2 ln 2 +

35

16

)[
2πδ3(r) +

1

r3
L2

]
, (5.13)

V
(1,0),MS

FG (r) = V
(1,0),MS

Coulomb (r)− C2
Fα

3

3πr2
CA

(
2 ln 2 +

35

16

)
. (5.14)

The renormalized potentials obtained from the Wilson-loop prescription are

V
(2,0),MS
r,W (r) =

CFα

8

(
c

(1)
D +

α

π

{
−5

9

(
c

(1)
D + c

hl (1)
1

)
TFnf +

(
13

36
c

(1) 2
F +

8

3

)
CA

+

((
4

3
+

5

6
c

(1) 2
F

)
CA −

2

3

(
c

(1)
D + c

hl (1)
1

)
TFnf

)
ln(ν)

})
4πδ(3)(r)

+
CFα

2

8π

{(
4

3
+

5

6
c

(1) 2
F

)
CA −

2

3

(
c

(1)
D + c

hl (1)
1

)
TFnf

}
reg

1

r3
, (5.15)
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V
(2,0),MS
L2,W

(r) =
CACFα

2

4πr

(
11

3
− 8

3
ln (rνeγE )

)
, (5.16)

V
(2,0),MS
p2,W

(r) = −CACFα
2

πr

(
2

3
+

1

3
ln (rνeγE )

)
, (5.17)

V
(1,1),MS
r,W (r) =

[
1

4π
(dss + CFdvs) +

CFα

2

(
1 +

α

π

{
55

36
CA +

CF
6
− 7

18
TFnf

+

(
− 5

12
CA −

7

3
CF +

β0

2

)
ln(ν)

})]
4πδ(3)(r)

+
CF
2

α2

π

(
− 5

12
CA −

7

3
CF +

β0

2

)
reg

1

r3
, (5.18)

V
(1,1),MS
L2,W

(r) =
CFα(e−γE/r)

2r

{
1 +

α

π

(
97CA

36
+

1

9
TFnf −

8

3
CA ln (νreγE )

)}
, (5.19)

V
(1,1),MS
p2,W

(r) = −CF
α(e−γE/r)

r

{
1 +

α

π

(
23

18
CA −

2

9
TFnf +

2

3
CA ln (νreγE )

)}
, (5.20)

V
(1,0),MS
W (r) = −CFCAα

2(e−γE/r)

4r2

{
1 +

α

π

(
89

36
CA −

49

36
TFnf +

4

3
CA ln (νreγE )

)}
.

(5.21)

Finally, we present the renormalized potentials in the on-shell scheme:

V
(2,0),MS
r,on−shell(r) =

CFα

8

(
c

(1)
D +

αR
π

{
−5

9

(
c

(1)
D + c

hl (1)
1

)
TFnf +

(
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36
c

(1) 2
F +

1

3
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+
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5

6
c
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2

3

(
c

(1)
D + c
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+
CFα

2
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5

6
c

(1) 2
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2

3

(
c

(1)
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hl (1)
1

)
TFnf

}
reg

1

r3
, (5.22)

V
(2,0),MS
p2,on−shell

(r) = −CFα
2

3π

1

r
CA ln (νreγE ) , (5.23)

V
(1,1),MS
r,on−shell(r) =

[
1

4π
(dss + CFdvs) +

CFα

2

(
1 +

α

π

{
a1

4
− 1

12
CA +

CF
3

+

(
11

6
CA −

14

3
CF +

β0

2

)
ln(ν)

})]
4πδ(3)(r)

+
CF
4

α2

π

(
11

6
CA −

14

3
CF +

β0

2

)
reg

1

r3
, (5.24)

V
(1,1),MS
p2,on−shell

(r) = −CFα(e−γE/r)

r

{
1 +

α

4π

(
a1 +

8

3
CA ln (νreγE )

)}
, (5.25)

V
(1,0),MS

on−shell (r)

m1
+
V

(0,1),MS
on−shell (r)

m2
=
C2
Fα

2(e−γE/r)

2r2

mr

m1m2

(
1 +

α

2π
(a1 − β0)

)
(5.26)

− CFCAα
2(e−γE/r)

4mrr2

{
1 +

α

π

(
89

36
CA −

49

36
TFnf − CF +

4

3
(CA + 2CF ) ln (νreγE )

)}
.

We remark again that in Eqs. (5.15)-(5.21), the renormalized expressions of the Wilson loop

potentials have been obtained by subtracting Eq. (5.4) from the soft Wilson loop result,
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whereas the rest of renormalized potentials have been obtained by subtracting Eq. (5.3).

Any of the above sets of potentials produces the same spectrum. We also stress that our

renormalization procedure does not just subtract the 1/ε poles, but also adds some finite

pieces and an ε dependence to the renormalized potentials. We do this in such a way that

the ultrasoft bound state calculation is simplified, see Sec. 7.2.

We can now transform these expressions back to momentum space. With the defini-

tions in Eqs. (2.45) and (2.46) we then obtain

D̃(2,0),MS
r (k) =

CFπα(k)

2

{
c

(1)
D +

α

π

[(
1

3
+

13

36
c

(1)2
F

)
CA −

5

9

(
c
hl (1)
1 + c

(1)
D
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TFnf

+
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(
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12
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F − 11

12
c

(1)
D

)
+

1

3
c
hl (1)
1 TFnf

)
ln

(
k2
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)]}
, (5.27)

D̃
(2,0),MS
p2 (k) =

2CFCAα
2

3
ln

(
k2

ν2

)
, (5.28)

D̃(1,1),MS
r (k) = πCFα(k)

(
1 +

α

4π

{
a1 −

1

3
CA +

4

3
CF +

(
−11

3
CA +

28

3
CF

)
ln

(
k2
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)})
+ CFdvs + dss , (5.29)

D̃
(1,1),MS
p2 (k) = −4πCFα(k)

(
1 +

α

4π

{
a1 −

4

3
CA ln

(
k2

ν2

)})
. (5.30)

The coefficients D̃off and D̃(1,0) depend on the matching scheme. For the cases considered

in this paper we find

D̃
(2,0),MS
off,CG (k) = CFCAα

2

(
1

2
− 4

3
ln 2

)
, (5.31)

D̃
(1,1),MS
off,CG (k) = CFπα(k)

(
1 +

α

4π

{
a1 + 4CA + β0 −

32

3
CA ln 2

})
, (5.32)

D̃
(1,0),MS
CG (k) = −CFCAα

2(k)π2

2
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α
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36
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49

36
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8

3
ln 2
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(
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, (5.33)

D̃
(2,0),MS
off,FG (k) = D̃

(2,0),MS
off,CG (k) + α2 2

3
CFCA

(
2 ln 2 +

35

16

)
, (5.34)

D̃
(1,1),MS
off,FG (k) = D̃

(1,1),MS
off,CG (k) + α2 4

3
CFCA

(
2 ln 2 +

35

16

)
, (5.35)

D̃
(1,0),MS
FG (k) = D̃

(1,0),MS
CG (k)− πα3 2

3
C2
FCA

(
2 ln 2 +

35

16

)
, (5.36)

D̃
(2,0),MS
off,W (k) = −1

6
CFCAα

2

(
1− 4 ln
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))
, (5.37)

D̃
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off,W (k) = CFα(k)π
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3
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(
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)]}
, (5.38)

D̃
(1,0),MS
W (k) = −CFCAα
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. (5.39)
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Finally, in the on-shell scheme (where obviously D̃
(2,0),MS
off,on-shell(k) = 0), we have

D̃
(1,0),MS
on−shell(k)

m1
+
D̃

(0,1),MS
on−shell(k)

m2
= C2

Fπ
2α2(k)

mr

m1m2

(
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α

2π
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)
(5.40)

− CFCAπ
2α2(k)

2mr

{
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α

π

(
89

36
CA −

49

36
TFnf − CF −

2

3
(CA + 2CF ) ln

(
k2

ν2

))}
.

Note that this is not the result one obtains by just subtracting the 1/ε poles in momen-

tum space (which is what it is usually named MS scheme). This renormalization scheme

would complicate the (ultrasoft part of the) bound state calculation for the spectrum. For

our purposes, it is more convenient to do the subtraction in position space, and the pre-

scription we have proposed here is particularly useful, because it avoids spurious logarithms

of k2. We will refer to it as MS scheme in this paper. In this way we can efficiently carry

out the bound state computations in four dimensions.

6 Poincaré invariance constraints

Poincaré invariance (of full QCD) poses constraints on the form of the heavy quark poten-

tial. In the context of our computation the following two relations can be derived

2V
(2,0)
L2 − V (1,1)

L2 +
r

2

dV (0)(r)

dr
= 0 , (6.1)

− 4V
(2,0)
p2 + 2V

(1,1)
p2 − V (0)(r) + r

dV (0)(r)

dr
= 0 . (6.2)

Note that they do not involve the NRQCD Wilson coefficients.

These relations were originally found in Ref. [36] by explicit calculation of the potentials

in terms of Wilson loops. In the context of pNRQCD, and explicitly using the Poincaré

algebra, they were deduced in Refs. [43, 44]. We have checked that our results fulfill

these equalities: We have explicitly verified that Eqs. (6.1) and (6.2) are fulfilled by the

renormalized potentials obtained from off-shell matching in CG [Eqs. (5.5)-(5.11)] and FG

[Eqs. (5.12)-(5.14)], and from Wilson-loop matching, [Eqs. (5.15)-(5.21)]. They also hold

for the respective bare (D dimensional) potentials.

On the other hand, we stress that the Poincaré invariance constraints cannot be applied

to the results in the on-shell matching scheme. The reason is that Eqs. (6.1) and (6.2) are

derived assuming a certain mass scaling of the potentials. This assumption does not hold

for the potentials obtained by on-shell matching, as the latter mixes different orders in the

1/m expansion.

Finally, it is easy to see that the above Poincaré invariance relations are not affected

by our field redefinition in Eq. (2.76), as the latter produces shifts of the form δV
(1,1)
L2 =

2δV
(2,0)
L2 , δV

(1,1)
p2 = 2δV

(2,0)
p2 , and leaves the static potential V (0) invariant.

7 The Bc mass to N3LO

We are now in the position to compute the spectrum of a heavy quarkonium bound state

made of two heavy quarks with different masses with N3LO accuracy in the weak cou-
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pling limit. We have derived explicit expressions for the (spin-independent) relativistic

corrections to the potential. For ease of reference, we quote the known expressions for the

renormalized static potential and the spin-dependent potentials in Sec. 7.1. They are not

affected by possible ambiguities due to field redefinitions of the kind discussed in Sec. 2.3

to the order we are working at. The static potential is, however, affected by ultrasoft

divergences, which we renormalize following the discussion of Sec. 5. In Sec. 7.2 we quote

the energy shift produced by the ultrasoft contribution. In Sec. 7.3 we quote the energy

shifts associated with the static potential. In Sec. 7.4 we compute the energy shifts associ-

ated with the relativistic corrections to the potential, and in Sec. 7.5 we present our final

expression for the heavy quarkonium mass.

7.1 Static and spin-dependent potentials

The MS renormalized static potential reads

V
(0)

s,MS
(r) = −CF α(ν)

r

{
1 +

3∑
n=1

(
α(ν)

4π

)n
an(r)

}
, (7.1)

with the coefficients

a1(r) = a1 + 2β0 ln (νeγEr) ,

a2(r) = a2 +
π2

3
β2

0 + (4a1β0 + 2β1) ln (νeγEr) + 4β 2
0 ln2 (νeγEr) ,

a3(r) = a3 + a1β
2
0π

2 +
5π2

6
β0β1 + 16ζ3β

3
0

+

(
2π2β3

0 + 6a2β0 + 4a1β1 + 2β2 +
16

3
C 3
Aπ

2

)
ln (νeγEr)

+
(
12a1β

2
0 + 10β0β1

)
ln2 (νeγEr) + 8β3

0 ln3 (νeγEr) . (7.2)

Explicit expressions for the coefficients ai can be found in the literature [20–24, 40]. For

ease of reference we list them in Appendix A.

The spin-dependent potentials have been defined in Eqs. (2.35)-(2.37). Their renor-

malized expressions read (renormalized NRQCD Wilson coefficients are understood)

V
(2,0)
LS (r) =

CF
2

α(e1−γE/r)

r3

{
c

(1)
S −

α

π

[(
5

36
+ ln

( rν

e1−γE

))
CA +

5

9
TFnf

]}
, (7.3)

V
(0,2)
LS (r) = V

(2,0)
LS

(
r; c

(1)
S → c

(2)
S

)
, (7.4)

V
(1,1)
S2 (r) =

2CF
3

{
c

(1)
F c

(2)
F α− 3

2πCF
(dsv + CFdvv)

+
α2

π

(−1

72
CA −

5

9
nfTF +

(
β0

2
− 7

4
CA

)
ln (ν)

)}
4πδ3(r)

+
CF
6

α2

π

(
β0

2
− 7

4
CA

)
reg

1

r3
, (7.5)

V
(1,1)
S12

(r) =
CF
4

α(e4/3−γE/r)

r3

{
c

(1)
F c

(2)
F +

α

π

[(
13

36
− ln

( νr

e4/3−γE

))
CA −

5

9
nfTF

]}
, (7.6)
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V
(1,1)
L2S1

(r) = CF
α(e1−γE/r)

r3

{
c

(1)
F +

α

π

[(
13

36
− 1

2
ln
( νr

e1−γE

))
CA −

5

9
nfTF

]}
, (7.7)

V
(1,1)
L1S2

(r) = V
(1,1)
L2S1

(
r; c

(1)
F → c

(2)
F

)
, (7.8)

where

− 1

4π
reg

1

r3
=

∫
d3k

(2π)3
e−ik·r log k . (7.9)

Eqs. (7.3) and (7.6)-(7.8) correct misprints in Eqs. (70) and (71) of Ref. [4] (when

setting the masses equal). For the spin-dependent potentials, in this paper, we can work

with the four dimensional expressions for L · Si, S12 and S2. Even though the (soft)

matching calculation for these spin-dependent potentials exhibits ultraviolet divergences,

they do not require renormalization in pNRQCD. The divergences exactly cancel the ones of

the NRQCD Wilson coefficients, so that the overall spin-dependent potential in pNRQCD

is finite (to the order of interest), cf. Eqs. (7.3)-(7.8).

The spin-dependent potentials are unambiguous (at least to the order we are working

at). They were originally computed in Ref. [11] at NNLO, in Ref. [45] for the N3LO hyper-

fine splitting, and in Ref. [12] the complete expression for unequal masses was obtained.

7.2 The ultrasoft energy correction

Combining the results given in Refs. [18, 19, 40] we find for the ultrasoft contribution to

the energy:

δEUSnl = −E(0)
n

α3

π

[
2

3
C3
FL

E
nl +

1

3
CA

(
Lν − LUS +

5

6

)(
C2
A

2
+

4CACF
(2l + 1)n

+ 2C2
F

(
8

(2l + 1)n
− 1

n2

))
+

8δl0
3n

C2
F

(
CF −

CA
2

)(
Lν − LUS +

5

6

)]
, (7.10)

where E
(0)
n = −C2

Fα
2mr

2n2 , Lν = ln
(

nν
2mrCFα

)
+ S1(n+ l) and LUS = ln

(
CFαn

2

)
+ S1(n+ l),

and

LEn =
1

(CFα)2ECn

∫ ∞
0

d3k

(2π)3
|〈r〉kn|2

(
ECn − k2/mq

)3
ln

EC1
ECn − k2/mq

. (7.11)

Numerical determinations of these non-Abelian Bethe logarithms were obtained for low

values of n in Ref. [40] for l = 0 and in Ref. [46] also for l 6= 0.

7.3 Energy correction associated with the static potential

This contribution we extract from the results of Ref. [46]. We (partially) adopt their

notation in the following. For the ground state and first excitations the contribution

was computed in Refs. [47–49]. It follows from standard (time-independent) quantum

mechanical perturbation theory up to third order and reads

δE(n, l, s, j)
∣∣∣
V (0)

= E(0)
n

(
1 +

α

π
P1(Lν) +

(α
π

)2
P c2 (Lν) +

(α
π

)3
P c3 (Lν)

)
, (7.12)
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where

P1(Lν) = β0Lν +
a1

2
, (7.13)

P c2 (Lν) =
3

4
β2

0L
2
ν +

(
−β

2
0

2
+
β1

4
+

3β0a1

4

)
Lν + cc2 , (7.14)

P c3 (Lν) =
1

2
β3

0L
3
ν +

(
−7β3

0

8
+

7β0β1

16
+

3

4
β2

0a1

)
L2
ν

+

(
β3

0

4
− β0β1

4
+
β2

16
− 3

8
β2

0a1 + 2β0c
c
2 +

3β1a1

16

)
Lν + cc3 + π2C

3
A

6
Lν , (7.15)

and

cc
2 =

a2
1

16
+
a2

8
− β0a1

4
+ β2

0

(
n

2
ζ(3) +

π2

8

(
1− 2n

3
∆S1a

)
− 1

2
S2(n+ l) +

n

2
Σa(n, l)

)
,

(7.16)

cc
3 =

β2
0a1

8
+

3β0a
2
1

32
− β0a2

16
− β1a1

16
− a3

1

16
− 3a1a2

32
+
a3

32
+ a1c

c
2 + β0β1σ(n, l) + β3

0τ(n, l) .

(7.17)

Expressions for the different functions involved in these formulae are quoted in Appendix F.

7.4 Energy correction associated with the relativistic potentials

Here we explicitly compute the energy correction up to N3LO associated with our results

for the relativistic 1/m and 1/m2 potentials. Recall that there is no O(α/m3) potential.

The non-static (i.e. relativistic) NNLO correction to the bound state energy reads

δE(n, l, s, j) = E(0)
n

(α
π

)2
cnc

2 , (7.18)

where

cnc
2 = −2m2

rπ
2C2

F

nm1m2

{
1− δl0

l(l + 1)(2l + 1)

(
m2

m1
XLS1 + (DS + 2XLS) +

m1

m2
XLS2

)
+

8δl0
3
S12

}
+
m2
rπ

2CF
4n2

{
1

m1m2
CF +

1

m2
r

[
−3CF +

8n

2l + 1

(
CF +

CA
2

)
− 4nCF δl0

]}
≡ cnc,SD

2 + cnc,SI
2 , (7.19)

and XLS , XLSi , DS and S12 have been defined in Appendix D.

By default we will use the on-shell potential for the computation, as it will ease the com-

parison with other results, in particular those of Ref. [46]. We split the computation of the

N3LO correction to the bound state energy into a spin-dependent and a spin-independent

part. The spin-dependent contribution can be organized as follows:

δESDjj1nls = 〈nl|
(
V

(2,0)
SD

m2
1

+
V

(0,2)
SD

m2
2

+
V

(1,1)
SD

m1m2

)∣∣∣∣∣
O(α2)

|nl〉+
16CFπα

3m1m2
S12〈nl|V1

1

(En − h)′
δ3(r)|nl〉

+
αCF
m1m2

(
DS + 2XLS +

m1

m2
XLS2 +

m2

m1
XLS1

)
〈nl|V1

1

(En − h)′
1

r3
|nl〉

= E(0)
n

(α
π

)3 (
cnc,SD

3 − 2β0Lνc
nc,SD
2

)
, (7.20)
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where

V1 ≡ −
CFα

r

α

4π

(
2β0 ln(νreγE ) + a1

)
, (7.21)

and
1

(En − h)′
= lim

E→En

(
1

E − h −
1

E − En

)
. (7.22)

Using the expectation values given in Appendix D for single and Appendix E for double

potential operator insertions we find

cnc,SD
3 = π2

(
C3
F ξ

SD
FFF + C2

FCAξ
SD
FFA + C2

FTFnfξ
SD
FFnf −

n

6
β0c

nc,SD
2

)
, (7.23)

where,

ξSD
FFF =

2

3n

m2
r

m1m2

{ −3(1− δl0)

l(l + 1)(2l + 1)

(
DS +XLS +

m1

m2
XLS2 +

m2

m1
XLS1

)
− 4S12δl0

[
2 + 3

m1m2

m2
2 −m2

1

ln

(
m2

1

m2
2

)]}
, (7.24)

ξSD
FFnf =

2m2
r

9n2m1m2

{
1− δl0

l(l + 1)(2l + 1)

[
2n(4S12 −DS)

+ 6
(
DS +

m2

m1
XLS1 +

m1

m2
XLS2 + 2XLS

)( 3n

2l + 1
+

n

2l(l + 1)(2l + 1)
+ l +

1

2

+ 2n
{
S1(l + n) + S1(2l − 1)− 2S1(2l + 1)− l(Σ(k)

1 + Σ
(m)
1 ) + nΣb − Σ

(m)
1 +

1

6

})]
+ 8δl0S12

[
1 + 4n

(
11

12
− 1

n
− S1(n− 1)− S1(n) + nS2(n)

)]}
, (7.25)

ξSD
FFA =

m2
r

m1m2

{
1− δl0

l(l + 1)(2l + 1)n

[
2

3

(
DS +

m2

m1
XLS1 +

m1

m2
XLS2 + 2XLS

)
×
{

22S1(2l + 1)− 17S1(l + n)− 5S1(2l − 1) + 11
[
l(Σ

(k)
1 + Σ

(m)
1 )− nΣb + Σ

(m)
1

]
− 5(2l + 1)

4n
− 15

2(2l + 1)
− 5

4(l(l + 1)(2l + 1))
+

1

6
+

3

2
ln

(
m1m2

4m2
r

)
+ 3LH

}
− 2

9
(2DS + S12) + ln

(
m1

m2

)(
m1m2XLS1

m2
r

− m1XLS

m2

)
− 2XLS

(
2(S1(2l − 1)− S1(l + n)) +

2l + 1

2n
+

1

2(l(l + 1)(2l + 1))
+

3

2l + 1

− 2 +
1

2
ln

(
m2

1

4m2
r

)
+ LH

)]

− 4δl0S2

3n

[
− 67

3
S1(l + n)− 7LH +

65S1(n)

3
+

44nΣ
(k)
2

3
+

1

6n
+

41

18

+
1

m1 −m2

(
(5m2 − 2m1) ln

(
m1

2mr

)
− (5m1 − 2m2) ln

(
m2

2mr

))]}
, (7.26)
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and LH = ln
(

n
CFα

)
+ S1(n+ l).

For the spin-independent part of the energy we proceed in the same way. In this case

the energy shift can be written as

δESInl = 〈nl|
(
V (1,0)

m1
+
V (0,1)

m2

)∣∣∣∣∣
O(α3)

|nl〉+ 〈nl|
(
V

(2,0)
SI

m2
1

+
V

(0,2)
SI

m2
2

+
V

(1,1)
SI

m1m2

)∣∣∣∣∣
O(α2)

|nl〉

+ δEUS −
1

4

(
1

m3
1

+
1

m3
2

)
〈nl|V1

1

(En − h)′
p4|nl〉 − CFα

m1m2
〈nl|V1

1

(En − h)′

{
1

r
, p2

}
|nl〉

+ CFα
2

(
CF

mr

m1m2
− CA

2mr

)
〈nl|V1

1

(En − h)′
1

r2
|nl〉+

CFπα

m2
r

〈nl|V1
1

(En − h)′
δ3(r)|nl〉

= 〈nl|
(
V (1,0)

m1
+
V (0,1)

m2

)∣∣∣∣∣
O(α3)

|nl〉+ 〈nl|
(
V

(2,0)
SI

m2
1

+
V

(0,2)
SI

m2
2

+
V

(1,1)
SI

m1m2

)∣∣∣∣∣
O(α2)

|nl〉

+ δEUS +
1

2mr

(
1− m2

r

m1m2

)(
〈nl|V1|nl〉〈nl|V0|nl〉 − 〈nl|V1V0|nl〉

+
C3
Fα

3mr

n2
〈nl|V1

1

(En − h)′
1

r
|nl〉

)
− α2

2mr
CF

(
CF +

CA
2

)
〈nl|V1

1

(En − h)′
1

r2
|nl〉

+
CFπα

2m2
r

〈nl|V1
1

(En − h)′
δ3(r)|nl〉 = E(0)

n

(α
π

)3
(
cnc,SI

3 − 2β0Lνc
nc,SI
2 − π2

6
C3
ALν

)
.

(7.27)

Using again the expectation values in Appendix D for single and Appendix E for double

potential insertions we obtain

cnc,SI
3 = π2

(
C3
A ξAAA + C2

ACF ξAAF + CACFTFnfξAFnf
+ C2

FTF ξFF + C3
F ξ

SI
FFF

+ C2
FCAξ

SI
FFA + C2

FTFnfξ
SI
FFnf −

n

6
β0c

nc,SI
2

)
, (7.28)

where,

ξAAA =
1

6
LUS −

5

36
, (7.29)

ξAAF =
1

(2l + 1)n

(
5

4
− 7

3(2l + 1)
+

8

3

[
S1(2l)− S1(l + n)

]
+

11n

3
Σb +

4

3
LUS

)
, (7.30)

ξAFnf = − 4

3n(2l + 1)

(
65

48
− 1

2l + 1
+ nΣb

)
, (7.31)

ξFF =
8

15n
δl0

(
1− 2

m2
r

m1m2

)
, (7.32)

ξSIFFF =
2

3n

{
7m2

r

m1m2

[
1− δl0

l(l + 1)(2l + 1)
+ δl0

(
1

n
− 1− 2(S1(l + n) + S1(n))

)]
(7.33)

− nLEnl + 2δl0LH

(
7
m2
r

m1m2
− 2

)
− 2m2

rδl0
m1m2

[
m2

m1
ln

(
m2

1

4m2
r

)
+
m1

m2
ln

(
m2

2

4m2
r

)
+

3m1m2

2(m2
1 −m2

2)

(
m2

m1
ln

(
m2

1

4m2
r

)
− m1

m2
ln

(
m2

2

4m2
r

))]
− 2δl0

(
5

3
− 2LUS
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,
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ξSIFFA =
1

3n

{
− δl0

4

(
1 +

29

n
+ 20LH + 16LUS + 8S1(n)− 124S1(l + n) + 44nΣ

(k)
2

)
− 29(1− δl0)

4l(l + 1)(2l + 1)
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2l + 1

(
5

24
− 1

2
LUS + S1(l + n)− S1(2l + 1)− 11nΣb

16

)
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(2l + 1)2
− 2

n
LUS −

7

12n
− 11π2

8

}
+

m2
r

m1m2n

{
7(1− δl0)

6l(l + 1)(2l + 1)

+
δl0
6

(
7

n
+ 17− 14(S1(l + n) + S1(n)− LH)

)
+

11

3(2l + 1)
− 35

36n
+

11π2

72

}
+

δl0m
2
r

6n(m1 −m2)

{
1

m2
2

(2m2 − 5m1) ln

(
m2

2

4m2
r

)
− 1

m2
1

(2m1 − 5m2) ln

(
m2

1

4m2
r

)}
,

(7.34)

ξSIFFnf =
2

3n

{
1− δl0

2l(l + 1)(2l + 1)
+

m2
r

m1m2

(
1

6n
− π2

12
− 2

2l + 1

)
+

3

2n
− 4n

2l + 1
Σb

− 14

3(2l + 1)
+

4

(2l + 1)2
+

1

2
δl0

(
4
(
nΣ

(k)
2 − S1(n)

)
+

1

n
+

11

3

)
+
π2

4

}
. (7.35)

7.5 The O
(
mα5

)
spectrum for unequal masses

Summarizing the previous results, we can present the complete expression for the energy

levels of a heavy quark-antiquark bound state with unequal quark masses and N3LO accu-

racy:

E(n, l, s, j) = E(0)
n

(
1 +

α

π
P1(Lν) +

(α
π

)2
P2(Lν) +

(α
π

)3
P3(Lν)

)
, (7.36)

P1(Lν) = β0Lν +
a1

2
, (7.37)

P2(Lν) =
3

4
β2

0L
2
ν +

(
−β

2
0

2
+
β1

4
+

3β0a1

4

)
Lν + c2 , (7.38)

P3(Lν) =
1

2
β3

0L
3
ν +

(
−7β3

0

8
+

7β0β1

16
+

3

4
β2

0a1

)
L2
ν

+

(
β3

0

4
− β0β1

4
+
β2

16
− 3

8
β2

0a1 + 2β0c2 +
3β1a1

16

)
Lν + c3 , (7.39)

where ci = cc
i + cnc

i .

We have checked that for the ground state the result agrees with the NNLO Bc energy

given in Ref. [50]. For arbitrary quantum numbers the NNLO result can be found in

Ref. [51] (though in a basis different from ours), and in Ref. [52] for the equal mass case.

We have also checked that our results agree with the N3LO energy in the equal mass case,

which was obtained in Ref. [47] for the ground state, in Refs. [48, 49] for S-wave states,

and in Ref. [46] for general quantum numbers. We also agree with the numerical results

given in Ref. [53].

All relevant definitions for the functions and parameters in the previous formulae can

be found in Appendix F.
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8 Conclusions

In this paper we have computed the O(α2/m2) contribution to the heavy quarkonium spin-

independent potential in the unequal mass case. We have obtained the bare expressions (in

D = 4 + 2ε dimensions) for different matching schemes in momentum and position space.

We have performed all our calculations in Coulomb and Feynman gauge. Perturbative

evaluations of loop diagrams in Coulomb gauge have always been thought to be compli-

cated and difficult to handle, especially for non-Abelian theories. On the other hand one

typically has to compute less diagrams in that gauge. For the one-loop calculations (using

dimensional regularization) carried out in this paper, Coulomb gauge has proven to be a

competitive method.

In momentum space, the results are encoded in the coefficients D̃2. The coefficients

D̃
(2,0)
p2,2

, D̃
(2,0)
r,2 , D̃

(1,1)
p2,2

and D̃
(1,1)
r,2 are independent of the matching procedure. Their expres-

sions can be found in Eqs. (3.8)-(3.11). The expressions for D̃
(2,0)
off,2 , D̃

(1,1)
off,2 are matching-

scheme dependent. They vanish in the on-shell matching scheme. For off-shell match-

ing in Coulomb and Feynman gauge we give their results in Eqs. (3.12), (3.13), and in

Eqs. (3.15), (3.16), respectively. Wilson-loop matching yields the corresponding expres-

sions in Eqs. (3.58), (3.59). The results for the individual potentials in terms of Wilson

loops are manifestly gauge invariant.

These results, obtained from different matching procedures, can be related by field

redefinitions. We have identified the field redefinitions that relate the O(α2/m2) heavy

quarkonium potentials in the different matching schemes. These field redefinitions are

valid in D dimensions and can be applied to the bare potentials.

Our calculation yields an independent determination of the bare O(α3/m) potential

proportional to the color factors C2
FCA and C2

FTFnf for unequal masses and for the differ-

ent matching schemes considered in this paper. For the equal-mass on-shell case it agrees

with the results of Ref. [15] up to O(ε), but we remark that we also predict the complete ε

dependence of these terms. Using the equal-mass on-shell result of Ref. [15] together with

our new O(α2/m2) potentials we have determined the other terms of the O(α3/m) poten-

tial (proportional to CFC
2
A and CFCATFnf ) for unequal masses and the three different

matching schemes to O(ε).

For the 1/m potential in terms of Wilson loops we summarize our results in Eq. (4.10),

and the corresponding momentum space coefficients D̃
(1,0)
2,W and D̃

(1,0)
3,W can be found in

Eqs. (4.8) and (4.9). In the off-shell Coulomb and Feynman gauge matching schemes, the

coefficients D̃
(1,0)
2 and D̃

(1,0)
3 can be found in Eqs. (4.11)-(4.13). In Eq. (4.14) we present

the position-space expression for the unequal-mass 1/m potential in the on-shell scheme

(note the non-trivial mass dependence). In the latter case it is actually meaningless to

define the coefficients D̃(1,0), as they would depend on the heavy quark masses.

We remark that, in the Wilson-loops scheme, the terms of the O(α3/m) potential

proportional to the color factors C2
FCA and C2

FTFnf vanish. For the Coulomb/Feynman

gauge off-shell matching the C2
FTFnf term is zero, whereas in the on-shell scheme all

possible color structures contribute. This suggests that using Wilson loops might be the

optimal setup to determine the 1/m potential.
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In summary, we have obtained the bare heavy quarkonium potential for unequal masses

with the required precision to compute the Bc mass with N3LO accuracy. We have deter-

mined the renormalized potentials in the different matching schemes in Sec. 5 and discussed

their dependence on the specific ultrasoft subtraction scheme. We have seen that the rel-

ativistic potentials obtained in the Wilson-loop and off-shell matching schemes (both the

renormalized and bare expressions) satisfy certain constraints due to Poincaré invariance,

unlike those obtained in the on-shell matching scheme.

We have performed the computation of the Bc mass with N3LO accuracy for arbitrary

quantum numbers in Sec. 7. The final theoretical expression is given in Eq. (7.36). Note

that, even though the expressions have been obtained in the weak-coupling limit, one can

easily obtain expressions valid for mrα
2 ∼ ΛQCD by subtracting the perturbative expression

of the ultrasoft contribution, Eq. (7.10), and adding the corresponding expression in that

regime (which then includes nonperturbative effects). A phenomenological analysis will be

carried out elsewhere.

Other important results of our computation are the NLO expressions for the soft contri-

bution of the 1/m and spin-independent (and velocity-dependent) 1/m2 ”quasi-static” en-

ergies in the short-distance limit. These ”quasi-static” energies represent non-perturbative

definitions of the heavy quarkonium potentials. At this order, the ”quasi-static” energies

start to be sensitive to ultrasoft effects. Therefore, our results are, in fact, factorization

scale dependent. To obtain ”physical” results that can be compared with Monte Carlo

lattice simulations, like those obtained in Refs. [54–56], the ultrasoft contributions to the

relevant Wilson loops must be computed and added to the results of this paper. This

calculation will be carried out in a forthcoming publication.

The analysis of this paper allows us to grasp the advantages and inconveniences of

each matching scheme for perturbative evaluations of the potential. As a matter of fact,

we find that all methods appear to be feasible in practice. In particular we found that

perturbative computations using Wilson loops are not only feasible but may even have

some advantages: The potentials in terms of Wilson loops encapsulate in a compact way all

the information related to the soft scale, they are correct to any finite order in perturbation

theory, and neither kinetic operator insertions nor potential loops have to be considered

in the computation (which otherwise can be quite cumbersome at higher orders). We

emphasize that, in the case of pure QED, it is possible to obtain closed expressions for

some potentials, so that only a few orders in perturbation theory contribute. This implies

some all-orders non-renormalization theorems (for the QED part) and, thus, constrains

also the ultrasoft contributions.
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A Constants and useful Formulae

TF =
1

2
; CA = Nc; CF =

N2
c − 1

2Nc
. (A.1)

β0 =
11

3
CA −

4

3
nfTF ; β1 =

34

3
C2
A −

20

3
CATFnf − 4CFTFnf ; (A.2)

β2 =
2857

54
C3
A −

1415

27
C2
ATFnf +

158

27
CAT

2
Fn

2
f −

205

9
CACFTFnf +

44

9
CFT

2
Fn

2
f + 2C2

FTFnf .

(A.3)

a1 =
31CA − 20TFnf

9
; (A.4)

a2 =
400T 2

Fn
2
f

81
− CF TF nf

(
55

3
− 16 ζ(3)

)
+C2

A

(
4343

162
+

16π2 − π4

4
+

22 ζ(3)

3

)
− CA TF nf

(
1798

81
+

56 ζ(3)

3

)
;

a3 = a
(3)
3 n3

f + a
(2)
3 n2

f + a
(1)
3 nf + a

(0)
3 , (A.5)

where

a
(3)
3 = −

(
20

9

)3

T 3
F ,

a
(2)
3 =

(
12541

243
+

368ζ(3)

3
+

64π4

135

)
CAT

2
F +

(
14002

81
− 416ζ(3)

3

)
CFT

2
F ,

a
(1)
3 = (−709.717)C2

ATF +

(
−71281

162
+ 264ζ(3) + 80ζ(5)

)
CACFTF

+

(
286

9
+

296ζ(3)

3
− 160ζ(5)

)
C2
FTF + (−56.83(1))

dabcdF dabcdF

NA
,

a
(0)
3 = 502.24(1) C3

A − 136.39(12)
dabcdF dabcdA

NA
, (A.6)

and
dabcdF dabcdA

NA
=
Nc(N

2
c + 6)

48
. (A.7)
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a) b) c) d) e)

f) g) h) i) j)

k) l) m) n) o)

p) q) r) s) t)

Fig. 4. One-loop NRQCD diagrams contributing to the off-shell matching of the spin-independent

1/m2 potentials in Feynman gauge. In Coulomb gauge only diagrams c-h, j, k, m-o, s and t con-

tribute. The square, crossed-circle and triangular vertices denote the subleading NRQCD vertices

with Wilson coefficients cD, cF and chl1 , respectively. The black bubble represents the complete

gluon self-energy correction Πµν , which in Feynman gauge also has nonzero off-diagonal elements

Π0i. Mirror graphs and all possible insertions of higher order kinetic corrections from quark and

gluon propagators to reach the second order in the 1/m expansion, e.g. in diagrams a and b, are

understood.

B Off-shell NRQCD amplitudes for the O(α2/m2) potential

The set of all one-loop diagrams relevant for the off-shell matching of the spin-independent

O(1/m2) potentials is displayed in Fig. 4. For the sum of these diagrams we obtain in FG

Σ
(2)
FG =

ig4
B

3m1m2

2−4(ε+2)π−ε−
1
2 |k|2ε−4 csc(πε)

Γ(ε+ 5
2)

{
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+ CACF

[
3(4ε2 + 9ε+ 5)k4

(
c

(2)
F

)2
m2

1 +
(
c

(1)
F

)2
m2

2

2m1m2
− 12(8ε3 + 5ε2 − 9ε+ 4)k2

0 m1m2

− 2(16ε3 + 76ε2 + 109ε+ 48)
(
p2+ p′

2)
k2 + 2(8ε3 + 47ε2 + 74ε+ 33)k4

+ (32ε3 + 72ε2 + 40ε+ 6)k2
[
m1(E1 + E′1) +m2(E2 + E′2)

]
+ (64ε3 + 168ε2 + 122ε+ 21)k2

[
m1(E2 + E′2) +m2(E1 + E′1)

]
+ 4(8ε3 + 12ε2 − 2ε− 3)

(
4m1m2(E2

1 + E1E
′
2 + E2

2 + E2E
′
1 + E′21 + E′22 )

−
(
p2+ p′

2)[
m1(E1 + 2E2 + E′1 + 2E′2) +m2(2E1 + E2 + 2E′1 + E′2)

]
+
(
p2+ p′

2)2 m2
1+m1m2+m2

2

2m1m2

)
− (64ε3+ 200ε2+ 186ε+ 45)

(
p2+ p′

2)
k2m

2
1 +m2

2

2m1m2

+ 2(8ε3 + 34ε2 + 45ε+ 18)k4m
2
1 +m2

2

m1m2
+ (8ε2 + 10ε− 3)

(
p2− p′

2)2 m2
1 +m2

2

m1m2

− (8ε2 + 19ε+ 9)
(
p2− p′

2)2 − 6(8ε2 + 13ε+ 1)k0

(
p2− p′

2)
(m1 −m2)

]

+ CF nfTF 6(ε+ 1)

[
4k2
(
p2+ p′

2)− 2
(
p2− p′

2)2 − 2k4 − 8(ε− 2)k2
0 m1m2

− k4

(
c
hl(1)
1 + c

(1)
D

)
m2

2 +
(
c
hl(2)
1 + c

(2)
D

)
m2

1

m1m2
− 4k0

(
p2− p′

2)
(m1−m2)

]

+ C2
F

[
8(16ε3 + 36ε2 + 20ε+ 3)k2

[(
p2+ p′

2)−m1(E1 + E′1)−m2(E2 + E′2)
]

+ 8(8ε3 + 12ε2 − 2ε− 3)
(

2
[
m1(E1 + E′1) +m2(E2 + E′2)

](
p2+ p′

2)− (p2+ p′
2)2

− 4m1m2(E1 + E′1)(E2 + E′2)
)
− 4(16ε3 + 54ε2 + 59ε+ 21)k4

]}
. (B.1)

Here E1,2 (E′1,2) denote the incoming (outgoing) heavy quark and antiquark energies, re-

spectively, k0 = E′1 − E1 = E2 − E′2 is the total energy transfer from the antiquark to the

quark and we have projected the quark pair onto the color singlet state.

In CG the result reads

Σ
(2)
CG =

ig4
B

3m1m2

2−4(ε+2)π−ε−
1
2 |k|2ε−4 csc(πε)

Γ(ε+ 5
2)

{

+ CACF

[
(12ε2 + 27ε+ 15)k4

(
c

(2)
F

)2
m2

1 +
(
c

(1)
F

)2
m2

2

2m1m2
+

22ε+3
(
2ε2 + 5ε+ 3

)
Γ
(
ε+ 3

2

)2
√
πΓ
(
2ε+ 3

2

) ×

×
{

2
[
k2 +

(
p2− p′

2)]
(E1m2 + E2m1) + 2

[
k2 −

(
p2− p′

2)]
(E′1m2 + E′2m1)

+
[(

p2− p′
2)2 − k2

(
p2+ p′

2)]m2
1 +m2

2

m1m2
− 20k2

0m1m2 −
(
p2− p′

2)2}
− 2(8ε3 + 26ε2 + 29ε+ 12)

(
p2− p′

2)2m2
1 +m2

2

m1m2
+ 2(8ε3 + 34ε2 + 45ε+ 18)k4m

2
1 +m2

2

m1m2
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− 4(4ε2 + 8ε+ 3)k2
(
p2+ p′

2)m2
1 +m2

2

m1m2
+ 4(56ε3 + 177ε2 + 181ε+ 60)k2

0m1m2

− (40ε2 + 89ε+ 45)
[
2k2
(
p2+ p′

2)− (p2− p′
2)2]

+ 2(8ε3 + 47ε2 + 74ε+ 33)k4

]

+ CFnfTF 6(ε+ 1)

[
− k4

(
c
hl(1)
1 + c

(1)
D

)
m2

2 +
(
c
hl(2)
1 + c

(2)
D

)
m2

1

m1m2
− 8k2

0m1m2ε

− 2k4 + 4k2
(
p2+ p′

2)− 2
(
p2− p′

2)2]− C2
F 4(16ε3 + 54ε2 + 59ε+ 21)k4

}
, (B.2)

and only diagrams (g) and (j) depend on the heavy quark energies.

In the off-shell matching procedure the sum of the soft NRQCD diagrams Σ(2) is

directly identified with

−i
[
Ṽ

(1,1)
SI

m1m2
+
Ṽ

(2,0)
SI

m2
1

+
Ṽ

(0,2)
SI

m2
2

]
. (B.3)

In order to obtain energy-independent potentials we have to express the energies Ei, E
′
i

and k0 in Σ(2) in terms of three-momenta. We achieve this by redefining the heavy quark

fields in the pNRQCD Lagrangian before projecting onto the quark-antiquark system, i.e.

where the potentials are four-fermion operators (see, for instance, Eq. (42) in Ref. [4]).

For an example of such a field redefinition see Eq. (B13) of Ref. [57]. At the order we are

working, this can be approximated by applying the full heavy quark EOMs

∂tψ(t,x1) = i
∇2

2m1
ψ(t,x1)− i

∫
ddx2ψ(t,x1)V (0)(|x1 − x2|)χ†cχc(t,x2) + · · · ,

∂tψ
†(t,x1) = −i ∇

2

2m1
ψ†(t,x1) + i

∫
ddx2ψ

†(t,x1)V (0)(|x1 − x2|)χ†cχc(t,x2) + · · · , (B.4)

(and analogously for the antiquark) in the matrix elements. In addition to the free EOMs,

they include the static potential. Higher order terms in the coupling constant g and/or in

1/m produce subleading effects. Therefore, we neglect them in Eq. (B.4) for the following

discussion.

Eq. (B.4) mixes different orders in 1/m (and sectors with different number of heavy

quarks), but still maintains the strict 1/m expansion in the off-shell scheme. As we do not

compute the 1/m potential explicitly in this work, instead of using Eq. (B.4), we can make

the following replacement in the potentials (p1 = p, p′1 = p′):

Ei =
p2
i

2mi
+O(αm0) ,

E′i =
p′2i
2mi

+O(αm0) , (B.5)

and neglect the O(αm0) contributions. In other words, for the matching of the O(α2/m2)

potentials, we can simply use the free EOMs in Σ(2), while keeping p2 − p′2 6= 0, as

neglecting the O(αm0) contributions sets to zero terms that would contribute to the 1/m
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potential, which we extract by other means, see Sec. 4. On the other hand, replacing

the heavy quark energies by means of the EOMs introduces a potential ambiguity in the

determination of the 1/m2 potentials, since each energy Ei, E
′
i can be written in terms

of the others by the equality E1 + E2 = E′1 + E′2 (energy conservation). This can lead to

different results for the individual 1/m2 potentials. Consider e.g. a term proportional to

p2 − p′2

m1m2

[
m1(E′1 − E1)−m2(E2 − E′2)−m1(E2 − E′2) +m2(E′1 − E1)

]
→ −

(
p2− p′

2)2 ( 1

2m2
1

+
1

2m2
2

+
1

m1m2

)
= −

(
p2− p′2

)2
2m2

r

. (B.6)

The first line in Eq. (B.6) is zero due to energy conservation. Therefore, we are free to

add it to Σ(2). Transforming the energies Ei using Eq. (B.5) generates nonzero contribu-

tions to the off-shell terms in V (2,0), V (0,2) and V (1,1), as indicated by the second line in

Eq. (B.6). However, using Eq. (B.4) in Eq. (B.6) also generates additional contributions to

the 1/m potentials such that physical observables, like the heavy quarkonium mass, remain

unaffected by the apparent ambiguities.

For the k2
0-dependent terms we use the prescription

k2
0

k4
→ − 1

4m1m2

(p′2 − p2)2

k4
. (B.7)

As shown in Appendix B of Ref. [18], this transformation does not affect the 1/m potential,

because it is based on the continuity equation, which does not contain potential terms.

Eqs. (B.5) and (B.7) are relevant for both the FG and the CG result. In addition, we

have chosen the prescriptions

nfTF k0

(
p2− p′

2)
(m1−m2) → −nfTF

(
p2− p′

2)2
,

CA k0

(
p2− p′

2)
(m1−m2) → CA

3m2
1 + 2m1m2 + 3m2

2

4m1m2

(
p2− p′

2)2
, (B.8)

for the energy dependent terms in Σ
(2)
FG in order to obtain the concrete off-shell matching

results in Eqs. (3.15)-(3.16). These prescriptions are motivated by simplicity, and the fact

that the resulting off-shell potentials are finite and, therefore, do not require renormaliza-

tion, see Sec. 5.

Finally, note that the on-shell 1/m2 potentials resulting from the calculation above are

gauge-invariant and independent of the conventions for the field redefinitions we performed.

C Feynman rules for the matching with Wilson loops

In this appendix, we present a set of Feynman rules that can be used to calculate the soft

contribution to Wilson-loop expectation values, such as V (1,0) and VL/p2,W in Eqs. (3.38)-

(3.42), diagrammatically.

Besides the standard set of (static) Feynman rules of NRQCD at leading order in

1/m, the only additional Feynman rules needed to calculate V (1,0) and VL/p2,W are the
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−ikiT ae−i(k0+l0+q0)t ig[T a, T b]e−i(k0+l0+q0+p0)tik0T
ae−i(k0+l0+q0)t

b ak, a k, a

Fig. 5. Feynman rules for an Ei(t) operator insertion (denoted by a cross in the diagram) on a

static quark line. Dotted and wavy lines represent A0 and A gluons, respectively. All momenta

(k, l, q, p) are incoming. Note that in contrast to Ref. [31] we use the ”NRQCD” convention for

nonrelativistic scattering amplitudes, where the antiquarks are treated as particles living in the

anti-representation of SU(3), i.e. the fermion flow (little arrows) of the antiquark is the same as

for the quark. The corresponding Feynman rules for the antiquark are then obtained by replacing

g → −g and T a → (T a)T .

ones for the chromo-electric field operator Ei(t) insertions given in Fig. 5. Because of the

explicit factors of t in Eqs. (3.40) and (3.42) we are forced to retain the t dependence in

the Feynman rules for Ei(t). As a consequence there is no energy conservation at these

vertices: Unlike for the pure momentum space Feynman rules for the static potential, the

Feynman rules in Fig. 5 do not include an implicit energy conserving (Dirac) δ-function.

Three-momentum conservation is however understood as usual.

D List of expectation values of single potential insertions

For the computation of the spectrum we have used the following expectation values of the

relevant operators:

〈n l|p4|n l〉 =
(mrCFα)4

n4

(
8n

2l + 1
− 3

)
, (D.1)

〈n l|
{

1

2r
,p2

}
|n l〉 = −(mrCFα)3

(
1

n4
− 4

(2l + 1)n3

)
, (D.2)

〈n l|
{

ln(reγE )

2r
,p2

}
|n l〉 = −(mrCFα)3

n4(2l + 1)

[
(2l + 1− 4n) ln

na

2

+ (2l + 1 + 4n)S1(n+ l)− 4n(S1(2l + 1) + S1(2l))

]
, (D.3)

〈n l| 1
r3

L2|n l〉 = (mrCFα)3 2

(2l + 1)n3
(1− δl0), (D.4)

〈n l| ln(reγE )

r3
L2|n l〉 =

2(mrCFα)3

n3(2l + 1)
(1− δl0)

[
ln
na

2

−S1(n+ l) + S1(2l + 2) + S1(2l − 1)− n− l − 1/2

n

]
, (D.5)

〈n l|δ(3)(r)|n l〉 =
(mrCFα)3

πn3
δl0, (D.6)
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〈n l|reg
1

r3
|n l〉 =

2(mrCFα)3

n3

[(
ln
na

2
− S1(n)− n− 1

2n

)
2δl0

+
1− δl0

l(l + 1)(2l + 1)

]
, (D.7)

〈n l|1
r
|n l〉 =

mrCFα

n2
, (D.8)

〈n l| ln(reγE )

r
|n l〉 =

mrCFα

n2

(
ln
na

2
+ S1(n+ l)

)
, (D.9)

〈n l| 1
r2
|n l〉 =

2(mrCFα)2

n3(2l + 1)
, (D.10)

〈n l| ln(reγE )

r2
|n l〉 =

2(mrCFα)2

n3(2l + 1)

[
ln
na

2
− S1(n+ l) + S1(2l + 1) + S1(2l)

]
,

(D.11)

〈n l| 1
r3
|n l〉 =

2(mrCFα)3

n3l(2l + 1)(l + 1)
(1− δl0), (D.12)

〈n l| ln(reγE )

r3
|n l〉 =

2(mrCFα)3(1− δl0)

n3l(2l + 1)(l + 1)

[
ln
na
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n

]
(D.13)

〈n l|δ(3)(~r)S2|n l〉 = s(s+ 1)
(mrCFα)3

πn3
δl0, (D.14)
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1

r3
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2
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]
, (D.15)

〈n l|δ(3)(~r)S1 · S2|n l〉 = S12
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1
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2
− S1(n)− n− 1

2n

)
2δl0 +

(1− δl0)

l(l + 1)(2l + 1)

]
, (D.17)

〈n l| 1
r3

L · S|n l〉 = XLS
2(mrCFα)3

l(l + 1)(2l + 1)n3
(1− δl0), (D.18)

〈n l| 1
r3
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2(mrCFα)3

l(l + 1)(2l + 1)n3
(1− δl0), (D.19)

〈n l| 1
r3
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〈n l| ln(reγE )
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n

)
,

(D.22)

〈n l| ln(reγE )

r3
L · S2|n l〉 = XLS2

2(mrCFα)3(1− δl0)

n3l(2l + 1)(l + 1)

×
(

ln
na

2
− S1(n+ l) + S1(2l + 2) + S1(2l − 1)− n− l − 1/2

n

)
,

(D.23)

〈n l|S12(r)

r3
|n l〉 = DS

4(mrCFα)3

n3l(2l + 1)(l + 1)
(1− δl0), (D.24)

〈n l|S12(r) ln(reγE )

r3
|n l〉 = DS

4(mrCFα)3(1− δl0)

n3l(2l + 1)(l + 1)

×
(

ln
na

2
− S1(n+ l) + S1(2l + 2) + S1(2l − 1)− n− l − 1/2

n

)
,

(D.25)

with

S12 ≡ 〈S1 · S2〉 =
1

2
(s(s+ 1)− s1(s1 + 1)− s2(s2 + 1)) , (D.26)

DS ≡
1

2
〈S12(r)〉 =

2l(l + 1)s(s+ 1)− 3XLS − 6X2
LS

(2l − 1)(2l + 3)
, (D.27)

XLS ≡ 〈L · S〉 =
1

2
[j(j + 1)− l(l + 1)− s(s+ 1)] , (D.28)

XLSi ≡ 〈L · Si〉 =
1

2
[ji(ji + 1)− l(l + 1)− si(si + 1)] , (D.29)

and where a = 1/(mrCFα), S = S1 + S2, J = L + S, Ji = L + Si.

E List of expectation values of double potential insertions

Here we list the expectation values of the double potential insertions relevant for our

computation:

〈n l|1
r

1

(En − h)′
1

r
|n l〉 = −mr

2n2
, (E.1)

〈n l|1
r

1

(En − h)′
1

r2
|n l〉 = − 2αCFm

2
r

(2l + 1)n3
, (E.2)

〈n l|1
r

1

(En − h)′
1

r3
|n l〉 = −3α2C2

Fm
3
r(1− δl0)

l(l + 1)(2l + 1)n3
, (E.3)

〈n l|1
r

1

(En − h)′
δ3(r)|n l〉 = −3α2C2

Fm
3
r

2πn3
δl0, (E.4)

〈n l| ln(reγE )

r

1

(En − h)′
1

r
|n l〉 = −mr

2n2

(
ln
na

2
+ S1(n+ l)− 1

)
, (E.5)
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〈n l| ln(reγE )

r

1

(En − h)′
1

r2
|n l〉 =

2αCFm
2
r

(2l + 1)n3

[
1

2
+ n

(
π2

6
− Σ

(k)
2 (n, l)− Σ

(m)
2 (n, l)

)
− ln

na

2
− S1(n+ l)

]
, (E.6)

〈n l| ln(reγE )

r

1

(En − h)′
1

r3
|n l〉 =

2α2C2
Fm

3
r(1− δl0)

l(l + 1)(2l + 1)n3

[
1

2
− 3

2
ln
na

2
− 3

2
S1(n+ l)

+Σ
(m)
1 (n, l) + l

(
Σ

(m)
1 (n, l) + Σ

(k)
1 (n, l)

)
+
nπ2

6
− n

(
Σ

(m)
2 (n, l) + Σ

(k)
2 (n, l)

)]
,

(E.7)

〈n l| ln(reγE )

r

1

(En − h)′
δ3(r)|n l〉 =

α2C2
Fm

3
rδl0

πn3

[
1

2
+
nπ2

6
− nΣ

(k)
2 (n, 0)− 3

2
ln
na

2
− 3

2
S1(n)

]
. (E.8)

F Functions and definitions

The following functions are defined here in order to lighten the notation of the spectrum.

We follow the notation of [46] for ease of comparison, and quote the functions here for

completeness.

These functions are associated with finite sums that we have used throughout the

computation of the spectrum:

Sp(N) =
N∑
i=1

1

ip
, Sp,q(N) =

N∑
i=1

i∑
j=1

1

ipjq
, (F.1)

∆S1a = S1(n+ l)− S1(n− l − 1), ∆S1b = S1(n+ l)− S1(2l + 1), (F.2)

Σa(n, l) = Σ
(m)
3 + Σ

(k)
3 +

2

n
Σ

(k)
2 , Σb(n, l) = Σ

(m)
2 + Σ

(k)
2 −

2

n
∆S1b, (F.3)

Σ(m)
p (n, l) =

(n+ l)!

(n− l − 1)!

l∑
m=−l

R(l,m)

(n+m)p
S1(n+m), (F.4)

Σ(k)
p (n, l) =

(n− l − 1)!

(n+ l)!

n−l−1∑
k=1

(k + 2l)!

(k − 1)!(k + l − n)p
, (F.5)

where

R(l,m) =
(−1)l−m

(l +m)!(l −m)!
. (F.6)
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These functions are present in the energy correction associated to the static potential:

σ(n, l) =
π2

64
− 1

16
S2(n+ l) +

1

8
Σ

(k)
2

+
1

2

(
n

2
ζ(3) +

π2

8

(
1− 2n

3
∆S1a

)
− 1

2
S2(n+ l) +

n

2
Σa(n, l)

)
, (F.7)

τ(n, l) =
3

2
ζ(5)n2 − π2

8
ζ(3)n2 +

π4

1440
n (5n∆S1a − 4)

− 1

4
ζ(3)

[
(n∆S1a − 2)2 + n2 {2S2(n+ l)− S2(n− l − 1)}+ n− 4

]
+
π2

12

[
n

2
∆S1a {nS2(n+ l) + 1}+

n2

2
S3(n+ l)− 3

4
− n2Σa(n, l)

]
− n2

2
S4,1(n− l − 1) + nS3,1(n− l − 1) +

1

4
S2(n+ l) +

1

2
S3(n+ l)

+ Στ,1(n, l) + Στ,2(n, l) + Στ,3(n, l). (F.8)

Στ,1 = − n2(n+ l)!

4(n− l − 1)!

n−l−1∑
k=1

(k − 1)!S1(n− l − k)

(k + 2l)!(k + l − n)4
+

(n− l − 1)!

4(n+ l)!

n−l−1∑
k=1

(k + 2l)!

(k − 1)!(k + l − n)4

×
[
(k + l − n)(2k + 2l − n) {2nS2(n− l − k − 1)− 1}

− 6
{

(k + l − n)(2k + 2l − n) + n
(
k + l − n

3

)}
S1(n− l − k − 1)

+ {3(k + l − n)(2k + 2l − n) + n(k + l)} {S1(k + 2l)− S1(n+ l)}
]
, (F.9)

Στ,2 =
n(n+ l)!

8(n− l − 1)!

l∑
m=−l

R(l,m)

(n+m)5

×
[
4n(n+m)2S2,1(n+m)− (4m+ 3n)(n+m)S2(n+m)

+ S1(n+m)
{
−2(n+m)2 − 8n+ 8(n+m)2S1(2l + 1)− 2n(n+m)S1(l +m)

− 2(4m+ 3n)(n+m)S1(l + n)− (4m− n)(n+m)S1(n+m)
}]
, (F.10)

Στ,3 = n2
l∑

m=−l

n−l−1∑
k=1

(k + 2l)!S1(n+m)R(l,m)

(k − 1)!(n+m)2(k + l +m)

{
1

2(k + l − n)2
− 1

n(n+m)

}
.

(F.11)
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