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We present a method to establish experimentally the relation between the top-quark mass mMC
t as

implemented in Monte-Carlo generators and the Lagrangian mass parameter mt in a theoretically
well-defined renormalization scheme. We propose a simultaneous fit of mMC

t and an observable
sensitive to mt, which does not rely on any prior assumptions about the relation between mt

and mMC
t . The measured observable is independent of mMC

t and can be used subsequently for a
determination of mt. The analysis strategy is illustrated with examples for the extraction of mt

from inclusive and differential cross sections for hadro-production of top-quarks.

INTRODUCTION

The top-quark mass is one of the fundamental param-
eters of the Standard Model (SM). Its value significantly
affects predictions for many observables either directly
or via radiative corrections. As a consequence, the mea-
sured top-quark mass is one of the crucial inputs to elec-
troweak precision fits, which enable comparisons between
experimental results and predictions within and beyond
the SM [1]. Furthermore, together with the Higgs-boson
mass, it has critical implications on the stability of the
electroweak vacuum [2–4].

The top-quark mass has been determined with re-
markable precision: the current world average quoted
as 173.34 ± 0.76 GeV is obtained by combining results
from the Tevatron and the LHC [5]. However, these
measurements rely on the relation between the top-quark
mass and the respective experimental observable, e.g.,
the reconstructed invariant mass of the top-quark de-
cay products. This relation is derived from Monte Carlo
(MC) simulations. Hence, these measurements deter-
mine the top-quark mass parameter implemented in this
simulation, i.e., the so-called Monte-Carlo mass mMC

t ,
which appears most appropriate to describe experimen-
tal data [1, 5, 6].

In theory predictions, on the other hand, the top-quark
mass appears as a parameter of the Lagrangian and,
therefore, depends on the choice of the renormalization
scheme once corrections beyond leading order (LO) are
consistently included. The conventional scheme choice in
many applications of Quantum Chromodynamics (QCD)
is the pole mass mp

t , while alternative definitions based
on the (modified) minimal subtraction realize the concept
of a running mass mt(µ) at a renormalization scale µ as
a particular example of so-called short-distance masses.
Since MC simulations generally contain not only hard-
interaction calculations at LO or next-to leading order
(NLO), but also contributions from initial and final state
radiation, hadronization, as well as underlying-event in-

teractions, modeled by parton shower programs based on
leading-logarithm approximations and heuristic models,
they do not allow for a precise definition of the quark
mass renormalization scheme.

The unambiguous interpretation of the experimental
results for mMC

t in terms of a Lagrangian top-quark
mass mt in a specific renormalization scheme employed
in the SM has been a longstanding and increasingly ur-
gent problem, given the importance of the value of the
top-quark mass for SM physics analysis and the small un-
certainty in the experimental measurement of mMC

t [5].
At present, the translation from mMC

t to a theoretically
well-defined mass definition in a short-distance scheme at
a low scale can only be estimated to be O(1) GeV, see,
e.g., Ref. [7, 8].

In consequence, a measurement of mt is preferable
and can be performed by confronting a measured ob-
servable sensitive to mt with its prediction, calculated at
NLO in QCD or beyond in a well-defined renormalization
scheme for the top-quark mass. For this purpose, inclu-
sive and normalized differential top-quark pair (tt̄) pro-
duction cross sections have been employed to determine
the pole mass [9–11]. For these measurements of mp

t , de-
tector and process modeling effects are evaluated using
MC simulations, so that the measured observable typi-
cally depends on mMC

t . Even though the extracted value
of mp

t does not depend on a specific mMC
t hypothesis, it

relies on the relation between both parameters, the exact
difference (∆m = mp

t −mMC
t ) being unknown [9–11] and

leading to a systematic uncertainty on the measurement.
This uncertainty can be negligible when only the shape of
a particular observable defined within the detectors fidu-
cial volume is considered [11], since the dependence on
mMC

t mainly enters through detector-acceptance effects.
However, the sensitivity to mt increases when the total
tt̄ production rate is also taken into account.

This letter describes a generic approach to measure an
observable ξ sensitive to mt without any prior assump-
tions on mMC

t or its relation to mt. The method employs
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a simultaneous likelihood fit of mMC
t and ξ, comparing

an observed distribution in data to its MC prediction.
For the latter, two categories of processes are taken into
account: the signal process, for which production cross
section and event kinematics depend on mt, and back-
ground processes with no or negligible dependence on
mt. Subsequently, one can perform a determination of
mt in a given renormalization scheme comparing to the-
ory predictions for ξ(mt) and, therefore, a calibration of
mMC

t by quantifying the difference ∆m = mt − mMC
t .

The method is first discussed for the special case with
ξ being an inclusive signal production cross section and
extended to differential cross sections in a second step.

INCLUSIVE CROSS SECTIONS

To measure the inclusive cross section σ, Nd events are
reconstructed and selected experimentally, with an effi-
ciency ε estimated from simulation. In total Np expected
events are confronted with those observed in data in bins
of an observable sensitive to mMC

t . The parameterization
is chosen such that the shape of the distribution con-
strains mMC

t , while its normalization determines σ. For
this purpose, the fraction of predicted signal events npi
in bin i is considered and the total number of predicted
events Np

i in the same bin is written as:

Np
i = L · ε(mMC

t , ~λ) σ · npi (mMC
t , ~λ) +N bg

i (~λ), (1)

with N bg
i being the contribution from background pro-

cesses and L the integrated luminosity. Potential sys-
tematic uncertainties due to detector effects as well as
signal and background process modeling are symbolized
as parameters ~λ and affect the expected event yields. For
each bin i, a Poisson likelihood P is derived from Np

i

and the number of observed events Nd
i . The values for

σ and mMC
t are determined from the maximum Lmax of

the global likelihood

L(σ,mMC
t , ~λ) =

∏
i

P
(
Np

i (σ,mMC
t , ~λ), Nd

i

)
· Ξ(~λ). (2)

Here, Ξ(~λ) represents optional terms that can model
prior knowledge on the systematic uncertainties specific
to the experiment. Alternatively, the fit can be repeated
for each individual systematic variation, leaving only
mMC

t and σ as free parameters.
Explicit correlations between σ and mMC

t are intro-

duced by the term ε(mMC
t , ~λ). Hence, the contribution

of mMC
t to the total uncertainty on σ can be minimized

by reducing the dependence of ε on mMC
t or by the strong

constraints on mMC
t through npi . For an optimal calibra-

tion of mMC
t to mt, both effects should be combined.

The predicted cross section σp is expressed as a func-
tion of mt. With σ being independent of mMC

t , mt can

be determined directly from the value for which the pre-
dicted and measured cross sections coincide. Uncertain-
ties on mt are evaluated using error propagation. For the
uncertainty on the calibration of mMC

t to mt, the corre-
lations between σ and mMC

t need to be accounted for
and are known precisely as a result of the simultaneous
fit. The contribution from the statistical uncertainty on
σ and mMC

t might be underestimated, since fluctuations
due to limited statistics in the MC simulation of the sig-
nal are not taken into account in the likelihood. However,
the effect can be evaluated using pseudo experiments.

Precise measurements of the inclusive tt̄ cross section
are performed in the dileptonic decay channel by the AT-
LAS and CMS collaborations [9, 10]. The uncertainties
of these measurements are below 4% and the dependence
on mMC

t is small. The precision is mainly limited by
variations of global normalization parameters such as the
luminosity, while jet energy scale and jet modeling un-
certainties are constrained. In both analyses, mp

t is ex-
tracted assuming |∆m| . 1 GeV, and assigning a corre-
sponding uncertainty. The resulting total precision of mp

t

is about 2 GeV [9]. Measurements of mMC
t have been per-

formed in the same tt̄ decay channel using LHC data at
a center-of-mass energy of

√
s = 7 or 8 TeV [12, 13]. The

value of mMC
t is extracted from the normalized distribu-

tion of the lepton and b-jet invariant mass mlb. The re-
sulting precision is about 1.3 GeV and in this case mostly
affected by uncertainties on the jet energy scale and mod-
eling. When combining these analyses of mMC

t and σ as
proposed in this letter, the correlation between the mea-
sured σ and mMC

t would therefore become small. In ad-
dition, a reduction of the uncertainty on mMC

t could be
achieved without increasing the uncertainty on σ. The
details of the implementation depend on the particular
analysis. Also additional observables can be considered
to constrain systematic uncertainties in a simultaneous
fit as in Ref. [9], but statistical correlations between the
bins must be avoided by considering each event only once.

The obtained value of σ can be used to extract the pole
mass mp

t independently of its relation to mMC
t and to de-

termine ∆m. However, the pole mass scheme, which is
inspired by the definition of the electron mass in Quan-
tum Electrodynamics, has short-comings when applied
to quarks in a confined theory [14, 15]. Non-perturbative
corrections to mp

t due to the infrared renormalon lead
to an intrinsic theoretical ambiguities of the order of
ΛQCD [14–16]. Alternatively, σ can be calculated using
other mass schemes [17–20], such as the aforementioned
running mass definition at a scale µ, mt(µ), the so-called
MS mass. Since σ is measured independently of ∆m, also
mt can be determined directly. By using mt in the cal-
culation of σ, the perturbative expansion in the strong
coupling exhibits a significantly faster convergence [20].
This fact has two implications: the extracted mt will be
more precise than mp

t obtained at the same order of per-
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turbation theory and additional higher-order corrections
will result in smaller corrections to mt than mp

t .
A detailed experimental analysis employing the

method proposed here is documented in Ref. [21]. For
illustration, the tt̄ production cross section measured
in Ref. [10] at

√
s = 8 TeV for mMC

t = 172.5 GeV as
σ = 242.4 ± 9.5 pb is used to determine mt and mp

t .
The value and uncertainty on σ is assumed to be inde-
pendent of mt. The LHC beam-energy uncertainty of
1.72% is assigned to the predicted cross section, evalu-
ated with the program HATHOR [22] relying on calcula-
tions of Refs. [20, 23–26]. The cross section is calculated
at LO, NLO, and next-to-next-to leading order (NNLO)
accuracy with the strong coupling constant αS at the Z-
boson mass MZ set to αS(MZ) = 0.118±0.001 and based
on the parton distribution (PDF) set CT14 [27] evaluated
at NNLO. Renormalization and factorization scales are
set to mp

t or mt, respectively, and varied independently
by a factor of 2 up and down. The uncertainties due to
variations of the CT14 PDF eigenvectors are scaled to
68% confidence level.

The extraction of mp
t and mt is performed by compari-

son of predicted and measured σ. Experimental and the-
oretical uncertainties are considered uncorrelated. The
resulting top-quark mass values are illustrated in Fig. 1.
Predictions at LO cannot fix the mass scheme. When
higher orders are accounted for in the calculation of σ,
mt exhibits a more rapid convergence than mp

t . More-
over, the variations of the renormalization and factoriza-
tion scales affect the prediction of σ expressed in terms
of mt less than for mp

t , resulting in a smaller total uncer-
tainty on mt than on mp

t with ±2.1
2.2 GeV and ±2.4

2.9 GeV at
NNLO, respectively.
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FIG. 1. Top-quark pole (mp
t ) and MS mass (mt) extracted

from the inclusive tt̄ production cross section by comparison
with its prediction at different orders of perturbative QCD.
The hatched areas indicate the total uncertainty on the mea-
sured mass values.

The obtained MS mass mt can be converted to the
pole mass mp

t in perturbation theory with up to four-loop
accuracy in QCD [28]. It is well-known that this leads to

additional positive shifts of the value of mp
t , the size of

which indicates the residual theoretical uncertaintymp
t at

higher orders. E.g., using a fixed mt as input, the value
of mp

t is approximately 0.5 GeV (0.2 GeV) larger if the
conversion formula is applied at three(four)-loop instead
of two(three)-loop accuracy, respectively.

All extracted top-quark mass values in well-defined
schemes can be used to calibrate the mMC

t parameter,
which is non universal and, in principle, depends on the
subtleties of its implementation in the MC simulation. In
a given renormalization scheme the difference mt−mMC

t

can be quantified fully consistently, and, with the current
precision of the measured and predicted tt̄ production
cross sections and mMC

t measurements, an uncertainty of
approximately 2 GeV on this calibration can be expected,
depending on the correlations between the parameters.

DIFFERENTIAL CROSS SECTIONS

An extension of the method to differential cross sec-
tions used for the determination of mt can provide a
larger sensitivity and, possibly, a further reduction of sys-
tematic uncertainties. In the following, a differential pro-
duction cross section for the signal process as a function
of an observable x is considered and employed to deter-
mine mt. The approach used for σ is applied to each
bin of this differential cross section. For this purpose,
the efficiency ε is replaced by a matrix M describing the
detector response to the predicted cross section σMC

k in
bin k of the distribution in terms of x, defined by:

Nps
j = L ·

∑
k

Mjkσ
MC
k , (3)

with Nps
j being the predicted number of reconstructed

and selected signal events in bin j of the reconstructed
distribution. The response matrix is derived from MC
simulation and therefore depends on ~λ as well as on
mMC

t [29].
Each bin j of the reconstructed distribution is consid-

ered as a category. In each category, a second observable
y is defined, sensitive to mMC

t . The shape of this observ-
able is used to constrain mMC

t , while the total number of
signal events in each category corresponds to Nps

j , and
hence can be used to derive the differential cross section.
The number of predicted events, Np

ij , in bin i of the ob-
servable y is given as:

Np
ij = L ·

∑
k

Mjk(mMC
t , ~λ) σMC

k · npij(m
MC
t , ~λ) +N bg

ij (~λ),

(4)
with npij being the fraction of predicted signal events in

bin i with respect to Nps
j and N bg

ij the contribution from
background processes.

By comparison with the number of observed events Nd
ij

in each category j and bin i, and considering σMC
k → σk



4

as free parameters a fit can be performed maximizing the
likelihood:

L(σ0, ..., σk,m
MC
t , ~λ) =

∏
i

∏
j

P
(
Np

ij , N
d
ij

)
· Ξ(~λ). (5)

This unfolding problem can be ill-posed and regulariza-
tion techniques might need to be applied. A well-suited
regularization condition is provided, for instance, by the
aim to determine mt by comparison of σk with its pre-
diction σp

k(mt) as a function of mt. Replacing σk with
this prediction corresponds to the folding approach used
in Ref. [12] and reduces the number of free parameters
significantly, such that the likelihood becomes:

L(mt,m
MC
t , ~λ,~κ) =

∏
i

∏
j

P
(
Np

ij , N
d
ij

)
· Ξ(~λ,~κ), (6)

with Ξ(~λ,~κ) representing optional nuisance terms and ~κ
being theoretical uncertainties on the predicted σp

k(mt).

Both, ~λ and ~κ can be incorporated as nuisance terms in
Ξ or can be evaluated individually. In the latter case,
L depends on mt and mMC

t , only. A maximization of
L directly returns the relation between these parameters
as well as their correlations. The correlations are mainly
incorporated through the response matrix M . Therefore,
the event selection and the observable x should be chosen
such, that the dependence of M on mMC

t is minimized
and the sensitivity of y on mMC

t becomes maximal.

For the optimization of the result, also the correlation
between the observables x and y should be small. A
possible choice for x would be the differential tt̄ produc-
tion cross section as a function of the top-quark trans-
verse momentum predicted up to NNLO accuracy [30].
The dependence of this observable on mp

t and mt can
be studied at approximate NNLO with programs pub-
licly available [31]. This distribution, describing the pro-
duction dynamics, can be combined with an observable
based on the kinematics of the decay products such as
mlb in the dileptonic decay channel or the invariant mass
of the 3 jets that originate from the top-quark decay
t→Wb→ bqq̄ in the semileptonic channel.

The additional sensitivity of the differential cross sec-
tions to mt can result in uncertainties below 2 GeV on mt

and ∆m, starting to challenge the measurements of mMC
t

in precision and improving the understanding of this pa-
rameter. Moreover, a simultaneous determination of the
strong coupling αS and mt becomes possible.

CONCLUSION

The simultaneous determination of mMC
t and differ-

ential or inclusive production cross sections of processes
sensitive to the top-quark mass mt with subsequent ex-
traction of mt in a well-defined renormalization scheme

from those measured cross sections solves the longstand-
ing problem of the calibration of the top-quark Monte
Carlo mass mMC

t . The proposed method, therefore, al-
lows to consistently quantify the difference ∆m = mt −
mMC

t within the uncertainties of the measurement.

The extraction of mt is preferably performed in a
scheme, where the perturbative expansion of the the-
ory prediction for the respective cross section displays
fast apparent convergence. This applies to short-distance
masses and favors an experimental determination of a
running top-quark mass mt over the pole mass mp

t . The
latter can always be obtained from conversion formula
up to four-loop accuracy in QCD.

With the current precision of the inclusive top-quark
cross-section and mass measurements an uncertainty on
∆m of approximately 2 GeV is expected. Dedicated anal-
yses based on differential cross sections seem to be a
promising approach to further decrease these uncertain-
ties and to measure theoretically well-defined mass pa-
rameters independently of the top-quark MC mass to a
high precision.

Acknowledgments

We would like to thank Olaf Behnke for useful discus-
sions.

[1] K. A. Olive et al. (Particle Data Group), Chin. Phys.
C38, 090001 (2014).

[2] F. Bezrukov, M. Yu. Kalmykov, B. A. Kniehl, and
M. Shaposhnikov, JHEP 10, 140 (2012), arXiv:1205.2893
[hep-ph].

[3] G. Degrassi, S. Di Vita, J. Elias-Miro, J. R. Es-
pinosa, G. F. Giudice, et al., JHEP 1208, 098 (2012),
arXiv:1205.6497 [hep-ph].

[4] S. Alekhin, A. Djouadi, and S. Moch, Phys. Lett. B716,
214 (2012), arXiv:1207.0980 [hep-ph].

[5] (ATLAS and CDF and CMS and D0 Collaborations),
(2014), arXiv:1403.4427 [hep-ex].

[6] A. Buckley, J. Butterworth, S. Gieseke, D. Grellscheid,
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