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1 Introduction

Multiloop and/or multileg Feynman diagrams as well as phase space integrals in covariant
gauge within dimensional regularization [1] can be written in terms of generalized hyper-
geometric functions. The creation of the HYPERDIRE program packages [2–5] is moti-
vated by the importance of Horn-type hypergeometric functions for the analytical evalu-
ations of Feynman diagrams, especially at the one-loop level [6]. Possible applications of
the differential-reduction algorithm to Feynman diagrams beyond the one-loop level were
discussed in Ref. [7].

A Feynman diagram may be written in the form of a Mellin-Barnes integral [8], which
depends on external kinematic invariants, the dimension n of space-time, and the powers
of the propagators. Upon application of Cauchy’s theorem, the Feynman integral can be
converted into a linear combination of multiple series:

Φ(n, ~x ) ∼
∞
∑

k1,··· ,kr+m=0

∏

a,b

Γ(
∑m

i=1Aaiki +Ba)

Γ(
∑r

j=1Cbjkj +Db)
xk1
1 · · ·xkr+m

r+m , (1)

where xi are some rational functions of Mandelstam variables and Aai, Ba, Cbj, Db are linear
functions of the space-time dimension and the propagator powers. The representation of
Eq. (1) corresponds to a Horn-type hypergeometric series [9] if the hidden index of the
summation is considered as an independent variable.

In general, the multiple series

H(~z) =
∞
∑

~m=0

C(~m)~z ~m , (2)

where ~m = (m1, . . . , mr) and ~z ~m = zm1

1 · · · zmr
r , are called Horn-type hypergeometric if, for

each i = 1, . . . , r, the ratio C(~m+~ej)/C(~m), where ~ej = (0, · · · , 0, 1, 0, · · · , 0) is the jth unit
vector, is a rational function of the summation indices, i.e.

C(~m+ ~ej)

C(~m)
=

Pj(~m)

Qj(~m)
, (3)

where Pj(~m) and Qj(~m) are polynomials [9, 10]. In explicit form, the coefficients C(~m) can
then be written as

C(~m) =
r
∏

i=1

λmi

i R(~m)

∏N
j=1 Γ( ~µj · ~m+ γj)

∏M

k=1 Γ(~νk · ~m+ δk)
, (4)

where N,M ≥ 0, λi, γj, δk are arbitrary complex numbers, ~µj, ~νk are arbitrary integer-valued
vectors, and R is an arbitrary rational function.

From the condition (3) on the coefficients C(~m) of the Horn-type hypergeometric function
H(~z), we can derive the following proper system of partial differential equations (PDEs):

[

Qj(~θ)
1

zj
− Pj(~θ)

]

H(~z) = 0 , (5)
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where j = 1, . . . , r, ~θ = (θ1, . . . , θr), and θk is the differential operator

θk = zk
∂

∂zk
. (6)

In previous publications [2–5], we presented the Mathematica-based [11] package HY-
PERDIRE for the differential reduction of Horn-type hypergeometric functions. In Ref. [2],
we implemented the reduction of the Horn-type hypergeometric functions p+1Fp of one vari-
able to restricted sets of basis functions and predicted the numbers of such functions. We
demonstrated that the differential-reduction algorithm can be used for the reduction of Feyn-
man diagrams without resorting to the integration-by-parts technique. We established and
implemented the criterion of reducibility of the Horn-type hypergeometric functions p+1Fp

to simpler functions for special values of parameters. Subsequently, we developed the HY-
PERDIRE project further to cover the full set of Horn-type hypergeometric functions of
two variables [4], including the Appell functions F1, F2, F3, and F4 [3], and also certain
Horn-type hypergeometric functions of three variables, namely FD and FS [5]. In this paper,
we discuss the case of the Horn-type hypergeometric function FC of three variable, which
appears, e.g., in the calculation of two-loop bubble-type Feynman diagram with different
masses. With the implementation of FC , FD, and FS, we start to study the applicability of
the differential-reduction method to the set of Lauricella–Saran hypergeometric functions of
three variables.

2 Differential reduction of Horn-type hypergeometric

functions

Let us now consider the Horn-type hypergeometric function H(~z) = H(~γ;~σ; ~z), which ex-
plicitly depends on a set of contiguous variables, ~z = (z1, . . . , zk), and two sets of discrete
variables, ~γ = (γ1, . . . , γi) and ~σ = (σ1, . . . , σj), which are called upper and lower parameters,
respectively.

In Refs. [12, 13], it was shown that there exist unique linear differential operators which
can generate identities called contiguous or ladder relations between the hypergeometric
function H(~γ;~σ; ~z) and its counterparts with one of the upper (lower) parameters shifted by
unity, namely

H(~γ + ~ec;~σ; ~x) =
1

γc

(

r
∑

a=1

µcaθa + γc

)

H(~γ;~σ; ~x) = U+
γc
H(~γ;~σ; ~x) , (7)

H(~γ;~σ − ~ec; ~x) =
1

σc − 1

(

r
∑

b=1

νcbθb + σc − 1

)

H(~γ;~σ; ~x) = U−
σc
H(~γ;~σ; ~x) . (8)

The direct operators U+
γc

and U−
σc

are called step-up and step-down operators for the upper
and lower indices, respectively. It is possible to construct the inverse differential operators

4



U−
γc

and U+
σc

satisfying

[

U−
γc
U+
γc

]

H(~γ;~σ; ~x) = H(~γ;~σ; ~x) ,
[

U+
σc
U−
σc

]

H(~γ;~σ; ~x) = H(~γ;~σ; ~x) . (9)

Once these operators are constructed, we can combine them to shift the parameters of the
Horn-type hypergeometric function by any integer, i.e. to obtain contiguous relations of the
form

[

U−U+
]

H(~γ;~σ; ~x) = H(~γ + ~k;~σ +~l; ~x) . (10)

The process of applying U±
γc

and U±
σc

to a Horn-type hypergeometric function to shift its
parameters by integers is called differential reduction. In this way, the Horn-type structure
provides an opportunity to reduce hypergeometric functions to a set of basis functions with
parameters differing from the original values by integer shifts,

H(~γ + ~k;~σ +~l; ~x) =
∏

i,j,m,n

U+
γi
U−
γj
U+
σm

U−
σn
H(~γ;~σ; ~x) . (11)

The development of systematic techniques for the solution of contiguous relations has a
long history. It was started by Gauss, who described the reduction of the hypergeometric
function 2F1 in 1823 [14]. Numerous papers have since then been published on this problem
[15]. An algorithmic solution was found by Takayama in Ref. [13], and this method was later
extended in a series of publications [16] (see also Refs. [17]).

Previously, it was pointed out [7] that the differential-reduction algorithm in Eq. (11) can
be applied to the reduction of Feynman diagrams to some subsets of basis hypergeometric
functions with well-known analytical properties and that the system of differential equations
in Eq. (5) can also be used for the construction of so-called ε expansions of hypergeometric
functions about rational values of their parameters via direct solutions of the systems of
differential equations.

[5].

3 Lauricella function FC

The Lauricella function FC of three variables [18] is defined as a Taylor expansion about the
point ~z = ~0 as follows:

F
(3)
C (a, b; c1, c2, c3; z1, z2, z3) =

∞
∑

m1,m2,m3=0

(a)m1+m2+m3
(b)m1+m2+m3

(c1)m1
(c2)m2

(c3)m3

zm1

1 zm2

2 zm3

3

m1!m2!m3!
, (12)

where (a)m = (a + m − 1)!/(a − 1)! is the Pochhammer symbol. The corresponding PDEs
of Eq. (5) read:

1

zi
θi (ci − 1 + θi)FC(~z) = (a+ θ1 + θ2 + θ3) (b+ θ1 + θ2 + θ3)FC(~z) , i = 1, 2, 3 , (13)

5



where we have used the short-hand notation FC(~z) = F
(3)
C (a, b; c1, c2, c3; z1, z2, z3). The

canonical form of Eq. (13) reads:

θ21FC(~z) =
1

D0







−abz1 + [(a+ b)z1 + (z2 + z3 − 1)(c1 − 1)]θ1

− z1
∑

i∈{2,3}

(1 + a+ b− ci)θi + z1

3
∑

i 6=j

θiθj







FC(~z) ,

θ22FC(~z) =
1

D0







−abz2 + [(a+ b)z2 + (z1 + z3 − 1)(c2 − 1)]θ2

− z2
∑

i∈{1,3}

(1 + a+ b− ci)θi + z2

3
∑

i 6=j

θiθj







FC(~z) ,

θ23FC(~z) =
1

D0







−abz3 + [(a+ b)z3 + (z1 + z3 − 1)(c3 − 1)]θ3

− z3
∑

i∈{1,2}

(1 + a+ b− ci)θi + z3

3
∑

i 6=j

θiθj







FC(~z) , (14)

where D0 = 1− z1 − z2 − z3, which can be written in compact form as

LiFC(~z) = θ2i FC(~z) =

(

3
∑

i 6=j=1

Pijθiθj +
3
∑

m=1

Rimθm + Si

)

FC(~z) , i = 1, 2, 3 . (15)

Here, we can define the conditions of complete integrability,

θi [θjLk]FC(~z) = θj [θiLk]FC(~z) , i, j, k = 1, 2, 3 . (16)

Eq. (16) does not provide new independent conditions between the differential operators θi.
Thus Eq. (15) can be reduced to the following Pfaff system of eight independent differential
equations:

d~f = R~f , (17)

where ~f = (FC(~z), θ1FC(~z), θ2FC(~z), θ3FC(~z), θ1θ2FC(~z), θ1θ3FC(~z), θ2θ3FC(~z), θ1θ2θ3FC(~z)).

3.1 Differential reduction of FC

In the case of the Lauricella function FC(~z), the direct differential operators for the upper
parameters in Eq. (7) read:

FC(a + 1, b; c1, c2, c3; ~z) = U+
a FC(~z) =

1

a
(a+ θ1 + θ2 + θ3)FC(~z) ,

FC(a, b+ 1; c1, c2, c3; ~z) = U+
b FC(~z) =

1

b
(b+ θ1 + θ2 + θ3)FC(~z) , (18)
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and those for the lower parameters in Eq. (8) read:

FC(a, b; c1 − 1, c2, c3; ~z) = U−
c1
FC(~z) =

1

c1 − 1
(c1 − 1 + θ1)FC(~z) ,

FC(a, b; c1, c2 − 1, c3; ~z) = U−
c2
FC(~z) =

1

c2 − 1
(c2 − 1 + θ2)FC(~z) ,

FC(a, b; c1, c2, c3 − 1; ~z) = U−
c3
FC(~z) =

1

c3 − 1
(c3 − 1 + θ3)FC(~z) . (19)

As explained above, we can determine the corresponding inverse differential operators, U−
a

and U−
b , through eight independent solutions of Eq. (17),

FC(a− 1, b; c1, c2, c3; ~z) = U−
a FC(~z) ,

FC(a, b− 1; c1, c2, c3; ~z) = U−
b FC(~z) , (20)

where

U−
x = Ax +Bxθ1 + Cxθ2 +Dxθ3 + Exθ1θ2 + Fxθ1θ3 +Gxθ2θ3 +Hxθ1θ2θ3 , (21)

with x = a, b. Similar solutions can be obtained for the inverse differential operators U+
ci

(i = 1, 2, 3) with eight independent functions in the form of Eq. (21).
By using the definitions of the inverse operators in Eqs. (9) and (21), we can explicitly

obtain the following equation for the coefficients ~Ax = (Ax, Bx, Cx, Dx, Ex, Fx, Gx, Hx):

f0( ~Ax) +

3
∑

i=1

fi( ~Ax)θi +

3
∑

i,j=1

fij( ~Ax)θiθj +

3
∑

i 6=j=1

fijj( ~Ax)θiθ
2
j + f123( ~Ax)θ1θ2θ3

+

3
∑

i=1

f123i( ~Ax)θ1θ2θ3θi = 1 , (22)

where the coefficients f...( ~Ax) are linear maps of ~Ax and rational functions of the discrete
and continuous variables of FC(~z).

Multiplying the PDEs for FC(~z) in Eq. (15) by different powers of θi, we can eliminate
higher powers of θi in Eq. (22) and write it using a minimal set of eight independent terms,

F0( ~Ax) +
3
∑

i=1

Fi( ~Ax)θi +
3
∑

i 6=j=1

Fij( ~Ax)θiθj + F123( ~Ax)θ1θ2θ3 = 1 . (23)

Setting in turn F0( ~Ax) = 1, Fi( ~Ax) = 0, Fij( ~Ax) = 0, and F123( ~Ax) = 0, we obtain eight

equations for the variables ~Ax, and, by solving this system, we can obtain the inverse oper-
ators in the form

U inv
x =

1

Ddiscr
x Dcont

x

(A′
x +B′

xθ1 + C ′
xθ2 +D′

xθ3 + E ′
xθ1θ2 + F ′

xθ1θ3 +G′
xθ2θ3 +H ′

xθ1θ2θ3) ,(24)
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where Ddiscr
x and Dcont

x are polynomials in the discrete variables a, b, c1, c2, c3 and the con-

tinuous variables ~z, respectively, and ~A ′
x are some rather cumbersome polynomials in the

variables of FC(~z). Specifically, we have

Ddiscr
a =

3
∏

i 6=j=1

(1 + a− ci)(2 + a− ci − cj)(3 + a− c1 − c2 − c3) ,

Ddiscr
b = Ddiscr

a |a→b ,

Ddiscr
ci

=
∏

p∈{a,b}

3
∏

j 6=i=1

(1 + p− ci)(2 + p− ci − cj)(3 + p− c1 − c2 − c3) .

(25)

The denominator Dcont
a coincides with the surfaces of the singularities of the PDE system

for FC(~z) with three variables,

Dcont
a =

[

−1 +
3
∑

i

(3zi − 3z2i + z3i )−
3
∑

i 6=j=1

(z2i zj + zizj) + 10z1z2z3

]

(1− z1 − z2 − z3) ,

Dcont
a = Dcont

b = Dcont
ci

, i = 1, 2, 3 . (26)

It is well known that, in the limit zi → 0, FC(~z) degenerates to the Lauricella function of
two variables, F4(a, b, c1, c2, ~z). So, by taking the limit zi → 0 in Eq. (24), we can obtain the
corresponding inverse operators [3] for F4, with a reduced number of independent functions,

U inv
x |zi→0 =

1

Ddiscr
i,x Dcont

i,x

(A′
i,x +

3
∑

j 6=i=1

B′
i,xθj +

3
∑

j 6=i 6=k=1

E ′
i,j,xθjθk) . (27)

In Eq. (27), the expressions for Ddiscr
i,x are obtained from Eq. (25) by putting all the factors

involving the variable ci to unity, and Dcont
i,x = 1−∑3

j 6=i=1 xj .
Using the explicit forms of the direct and inverse operators in Eqs. (18), (19), and (24)

and eliminating the higher powers of θi via the same procedure as in Eq. (23), we can write
the results of the differential reduction according to Eq. (11) in the following form:

FC(a+ n1, b+ n2; c1 +m1, c2 +m2, c3 +m3; ~z)

=

[

S0(~z) +
∑

i

Si(~z)
∂

∂zi
+
∑

i 6=j

Sij(~z)
∂2

∂zi∂zj
+ S123(~z)

∂3

∂z1∂z2∂z3

]

FC(~z) , (28)

where ni and mi is a set of integers, and S, Sj, Sij are polynomials in zi and the discrete
variables of FC(~z).

It is easy to see that, if one of the factors in the denominator Ddiscr
x is equal to zero, we

obtain from Eq. (22) some new PDE identities,

(A′
x +B′

xθ1 + C ′
xθ2 +D′

xθ3 + E ′
xθ1θ2 + F ′

xθ1θ3 +G′
xθ2θ3 +H ′

xθ1θ2θ3)FC(~z) = 0 . (29)
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Eq. (29) means that the hypergeometric functions entering Eq. (17) are expressible in terms
of simpler hypergeometric functions, e.g. Gauss hypergeometric functions, and corresponds
to the condition of reducibility of the monodromy group of FC(~z). As a consequence, the
inverse operators in Eq. (24) and the differential-reduction algorithm in Eq. (28) can be
expressed in a simpler form involving just seven and six independent functions, respectively.

4 FcFunction — Mathematica-based program for the

differential reduction of the Lauricella function FC

In this section, we present the Mathematica-based3 program package FcFunction for the
differential reduction of the Lauricella function FC(~z) of three variables, which is freely
available from Ref. [19]. It allows one to automatically perform the differential reduction
in accordance with Eq. (28). Its current version only handles non-exceptional parameter
values.

The file readme.txt provides a brief description of the installiation and usage of the
program package FcFunction. The main package file FcFunction.m contains the general
definitions of the differential-reduction formulas. All the cumbersome formulas needed for
shifting the values of single parameters are accommodated in additional files that are gzipped
and end with *.m.gz. The file example-FcFunction.m includes the example calculations
explained in subsection 4.3.

4.1 Input format

The program package FcFunction may be loaded in the standard way:

<< ”FcFunction.m”

It includes the following basic routines for the Lauricella function FC(~z):

FcIndexChange[changingVector, parameterVector] (30)

and
FcSeries[. . . ], (31)

where “parameterVector” defines the list of parameters of that function and “changingVector”
defines the set of integers by which the values of these parameters are to be shifted, i.e. the
vector pairs (~γ, ~σ) and (~k,~l) in Eq. (11), respectively. For example, the operator:

FcIndexChange[{1,−1, 0, 0, 2}, {a, b, c1, c2, c3, z1, z2, z3}] (32)

shifts the arguments of the function FC(a, b; c1, c2, c3; z1, z2, z3) so as to generate FC(a+1, b−
1; c1, c2, c3 + 2; z1, z2, z3).

3This program package was tested using Mathematica 8.0 [11].
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The function FcSeries[. . .] is designed for the numerical evaluation of FC(~z) and its
derivatives. It returns the values of the Taylor series of FC(~z) in Eq. (12) and its derivatives
upon the commands:

FcSeries[vectorInit, numbSer] ,

FcSeries[numberOfvariable, vectorInit, numbSer] , (33)

respectively, where “numberOfvariable” is the list of the variables with respect to which to
differentiate, “vectorInit” is the set of parameters of FC(~z), and “numbSer” is the number
of terms to be retained in the Taylor expansion.

4.2 Output format

The output structure of all the operators of the program package FcFunction in Eq. (30)
is as follows:

{{Q0, Q1, Q2, Q3, Q12, Q13, Q23, Q123}, {parameterVectorNew}} , (34)

where “parameterVectorNew” is the new set of parameters of FC(~z), i.e. (~γ + ~k, ~σ + ~l) in
Eq. (11), and Q0, Q1, Q2, . . . , Q123 are the rational coefficient functions of the differential
operators in Eq. (21), so that

FC(~γ;~σ; ~z) = (Q0 +Q1θ1 +Q2θ2 +Q3θ3 +Q12θ1θ2 +Q13θ1θ3 +Q23θ2θ3

+Q123θ1θ2θ3)FC(~γ + ~k;~σ +~l; ~z) . (35)

4.3 Examples

Example 1:4 Reduction of the Lauricella function FC(a, b; c1, c2, c3; z1, z2, z3).
FcIndexChange[{−1,0,1,0,0}, {a,b,c1,c2,c3,z1,z2,z3}]

{{

1− bz1
c1 (z1 + z2 + z3 − 1)

,
(c1 − b) z1 + (a− 1) (z2 + z3 − 1)

(a− 1)c1 (z1 + z2 + z3 − 1)
,
1− (a+b−c2)z1

c1(z1+z2+z3−1)

a− 1
,

1− (a+b−c3)z1
c1(z1+z2+z3−1)

a− 1
,

−z1 + z2 + z3 − 1

(a− 1)c1 (z1 + z2 + z3 − 1)
,

−z1 + z2 + z3 − 1

(a− 1)c1 (z1 + z2 + z3 − 1)
,

− 2z1
(a− 1)c1 (z1 + z2 + z3 − 1)

, 0

}

, {a− 1, b, c1 + 1, c2, c3, z1, z2, z3}
}

(36)

4All functions in the program package HYPERDIRE generate output without additional simplification
for maximum efficiency of the algorithm. To get the output in a simpler form, we recommend to use the
command Simplify in addition.
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In explicit form, this reads:

Fc(a, b; c1, c2, c3; z1, z2, z3)

=

[

1− bz1
c1 (z1 + z2 + z3 − 1)

+
(c1 − b) z1 + (a− 1) (z2 + z3 − 1)

(a− 1)c1 (z1 + z2 + z3 − 1)
θ1

+
1− (a+b−c2)z1

c1(z1+z2+z3−1)

a− 1
θ2 +

1− (a+b−c3)z1
c1(z1+z2+z3−1)

a− 1
θ3 +

−z1 + z2 + z3 − 1

(a− 1)c1 (z1 + z2 + z3 − 1)
θ1θ2

+
−z1 + z2 + z3 − 1

(a− 1)c1 (z1 + z2 + z3 − 1)
θ1θ3 −

2z1
(a− 1)c1 (z1 + z2 + z3 − 1)

θ2θ3

]

× Fc(a− 1, b; c1 + 1, c2, c3; z1, z2, z3) . (37)

The functions in Eq. (33) allow us to expand the results as formal Taylor series in
the variables zi about zero and to analytically check the results of the differential reduc-
tion in Eq. (37). For example, FC(a − 1, b; c1 + 1, c2, c3; z1, z2, z3) and θ1θ2FC(a − 1, b; c1 +
1, c2, c3; z1, z2, z3) may be Taylor expanded through order ten as:

FcSeries[a− 1, b, c1 + 1, c2, c3; z1, z2, z3, 10] ,

FcSeries[{1, 1, 0}, a− 1, b, c1 + 1, c2, c3; z1, z2, z3, 10] , (38)

respectively. Eq. (33) is also useful for numerical estimations of the Lauricella function FC(~z)
and its derivatives near the point ~z = ~0. However, the user has to control the convergence of
the Taylor series and the accuracy of the numerical evaluation. Specifically, he has to ensure
that the condition

√
z1 +

√
z2 +

√
z3 < 1 is satisfied. Here are two examples:

FcSeries[{1 + ε, 2 + ε, 4 + 3ε, 6 + 7ε, 3 + 3ε, 0.1, 0.2, 0.15}, 10]//.ε → 0.1

FcSeries[{1, 0, 0}{1 + ε, 2 + ε, 4 + 3ε, 6 + 7ε, 3 + 3ε, 0.1, 0.2, 0.15}, 10]//.ε → 0.1

1.34179

1.35774 (39)

Example 2: Reduction of the Lauricella function FC(1 + ε, 1 + 2ε; 3ε, 4ε, 5ε; z1, z2, z3).
FcIndexChange[{0,0,2,0,0}, {1 + ε,1 + 2ε,3ε,4ε,5ε,z1,z2,z3}]
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{{

1− (ǫ+ 1)(2ǫ+ 1)z1
3ǫ(3ǫ+ 1) (z1 + z2 + z3 − 1)

,
3− z1

ǫ(z1+z2+z3−1)

3(3ǫ+ 1)
,

(ǫ− 3)z1
3ǫ(3ǫ+ 1) (z1 + z2 + z3 − 1)

,

(2ǫ− 3)z1
3ǫ(3ǫ+ 1) (z1 + z2 + z3 − 1)

,− 2z1
3 (3ǫ2 + ǫ) (z1 + z2 + z3 − 1)

,

− 2z1
3 (3ǫ2 + ǫ) (z1 + z2 + z3 − 1)

,− 2z1
3 (3ǫ2 + ǫ) (z1 + z2 + z3 − 1)

, 0

}

,

{ǫ+ 1, 2ǫ+ 1, 3ǫ+ 2, 4ǫ, 5ǫ, z1, z2, z3}
}

(40)

This corresponds to the following mathematical formula:

FC(1 + ε, 1 + 2ε; 3ε, 4ε, 5ε; z1, z2, z3)

=

[

1− (ǫ+ 1)(2ǫ+ 1)z1
3ǫ(3ǫ+ 1) (z1 + z2 + z3 − 1)

+
3− z1

ǫ(z1+z2+z3−1)

3(3ǫ+ 1)
θ1

+
(ǫ− 3)z1

3ǫ(3ǫ+ 1) (z1 + z2 + z3 − 1)
θ2 +

(2ǫ− 3)z1
3ǫ(3ǫ+ 1) (z1 + z2 + z3 − 1)

θ3

− 2z1
3 (3ǫ2 + ǫ) (z1 + z2 + z3 − 1)

θ1θ2 −
2z1

3 (3ǫ2 + ǫ) (z1 + z2 + z3 − 1)
θ1θ3

− 2z1
3 (3ǫ2 + ǫ) (z1 + z2 + z3 − 1)

θ2θ3

]

Fc(1 + ε, 1 + 2ε; 2 + 3ε, 4ε, 5ε; z1, z2, z3) . (41)

5 Conclusions

The differential-reduction algorithm [12] allows one to relate Horn-type hypergeometric func-
tions with parameters whose values differ by integers. In this paper, we presented a further
extension of the Mathematica-based [11] program package HYPERDIRE [2–5] for the dif-
ferential reduction of generalized hypergeometric functions to sets of basis functions by in-
cluding the Lauricella function FC(~z) [18] of three variables. We intend to complete the
treatment of the Lauricella functions of three variables in the future.
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[12] M. Saito, B. Sturmfels, N. Takayama, Gröbner Deformations of Hypergeometric Differ-
ential Equations, Springer, Berlin, 2000.

[13] N. Takayama, Japan J. Appl. Math. 6 (1989) 147.

[14] C.F. Gauss, Gesammelte Werke, Vol. 3, Teubner, Leipzig, 1823, p. 1866.

[15] J.A. Mullen, SIAM J. Appl. Math. 14 (1966) 1152;
R.P. Singal, SIAM J. Math. Anal. 11 (1980) 390;
M. Saito Funkcial. Ekvac. 38 (1995) 37.

[16] N. Takayama, J. Symbolic Comput. 20 (1995) 637;
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