
Prepared for submission to JHEP

Counting the number of master integrals for sunrise
diagrams via the Mellin–Barnes representation

Mikhail Yu. Kalmykov Bernd A. Kniehl

II. Institut für Theoretische Physik, Universität Hamburg, Luruper Chaussee 149, 22761 Hamburg,
Germany

E-mail: kalmykov.mikhail@gmail.com, kniehl@desy.de

Abstract: A number of irreducible master integrals for L-loop sunrise and bubble Feyn-
man diagrams with generic values of masses and external momenta are explicitly evaluated
via the Mellin–Barnes representation.
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1 Introduction

The sunrise or watermelon diagram (see Fig. 1) is one of the simplest Feynman diagrams
which have been studied by the physics community as well as by mathematicians over the
past fifty years [2–14]. This diagram has a few different representations. Within dimensional
regularization [1] in momentum space, it is defined as

J( ~M2
j ; ~αj ; p

2) =

∫ L∏
j=1

dnkj
[k2
j−M2

j ]αj
× 1

[(p−k1− · · ·−kL)2−M2
L+1]αL+1

,

(1.1)

where αj are positive integers, M2
j and p2 are some (in general, complex) parameters, and

n is a (in general, non-integer) parameter of dimensional regularization. The parametric
representation of this diagram has the following form:1

J ∼ Γ
(
α− n

2
L
)∫ ∞

0

L+1∏
i=1

dxi
xαi−1
i

Γ (αi)
δ

(
1−

∑
i

xi

)
F

n
2
L−α

U(x)
n
2

(L+1)−α , (1.2)

1 It could also be rewritten in projective space [2, 3].
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Figure 1. L-loop sunrise diagram.

where F and U are Symanzik polynomials [15] and α =
∑L+1

j=1 αj . Using the coordinate
representation of the Feynman propagator and integrating over the angle, it is easy to get
[4] a one-fold integral representation of this diagram (for details, see Refs. [10, 11] and
Appendix B). Applying the algorithm of Ref. [16], a Mellin–Barnes integral representation
[17] for the sunrise diagram can be deduced [6] (see Eq. (4.1)).

The aim of the present paper is to extend the approach described in Refs. [18, 19]
to the multivariable case with reducible monodromy. As an illustration, the number of
irreducible master integrals of the L-loop sunrise diagram is evaluated. In Appendix A,
the generalized sunrise diagram is considered. The application of our analysis to integrals
including products of Bessel functions is discussed in Appendix B.

2 Mellin–Barnes integral versus Horn hypergeometric function

Let us consider the function Φ defined through a K-fold Mellin–Barnes integral,

Φ(A,B; {Ck}; {zj}) =

∫ K∏
j=1

dtjΓ(−tj)Γ (Cj−tj) z
tj
j

Γ (A+t)

Γ (B−t)
, (2.1)

where t =
∑K

j=1 tj and {za} = (z1, z2, · · · , zK) . This function depends on K + 2 discrete
parameters A, B, and {Cj} = (C1, · · · , CK) and K variables z1, · · · , zK . Let us briefly
recall some basic steps of the differential-reduction procedure [20] applied to the Mellin–
Barnes integral. The differential contiguous relations for the function Φ follow directly from
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the Mellin–Barnes representation and have the following form:

Φ(A,B; {}, Cj + 1, {}; {zk}) = (Cj−θj)Φ(A,B; {}, Cj , {}; {zk}) , (2.2a)

Φ(A+ 1, B; {Ck}; {zk}) = (A+
K∑
j=1

θj)Φ(A,B; {Ck}; {zk}) , (2.2b)

Φ(A,B − 1; {Ck}; {zk}) = (B−1−
K∑
j=1

θj)Φ(A;B; {Ck}; {zk}) , (2.2c)

where
θj = zj

d

dzj
, j = 1, · · · ,K.

We denote the set of differential operators on the r.h.s. of Eq. (2.2) as B+
Cj ,A,B

. A linear
system of partial differential equations (PDEs) for the function Φ can be derived in two
steps. In the first step, we define the polynomials P and Q as

Pj
Qj

=
φ(tj + 1)

φ(tj)
.

In the second step, we set up the corresponding system of PDEs,

Lj :

(
Qj |tj→θj

1

zj
Φ = Pj |tj→θj Φ

)
,

where, for simplicity, we have introduced the short-hand notation: Φ ≡ Φ(A,B; {Ck}; {zk}).
For the function under consideration, we have

PΦ
j

QΦ
j

= − (A+ t) (1−B + t)

(1− Cj + tj)(1 + tj)
⇒ (2.3a)

LΦ
j : (θj−Cj) θjΦ = −zj

 K∑
j=1

θj+A

 K∑
j=1

θj+(1−B)

Φ , j = 1, · · · ,K.(2.3b)

To get the full system of PDEs for the function Φ, a prolongation procedure should be
applied [21, 22], which consists in applying new derivatives to the system of PDEs, so that
the system of PDEs in Eq. (2.3b) can be written in a Pfaffian form:2

d~φ = Ω~φ , (2.4)

where the matrix Ω only depends on the values of the parameters and the singular locus of
the system of PDEs, and the vector function ~φ is defined as (Φ, θiΦ, θijΦ, · · · , θj1,j2,··· ,jmΦ).
The rank r of the matrix Ω at the point z0 (in our case, z0 = ~z0 = 0) in Eq. (2.4) is equal
to the number of independent solutions of the full system of PDEs.

According to the algorithm described in Ref. [20], the differential operators b−j inverse
to the operators defined by Eq. (2.2) can be constructed so that

b−j B
+
j Φ(A,B; {Cj}; {zj}) = Φ(A,B; {Cj}; {zj}) , j = 1, · · · ,K . (2.5)

2The condition of complete integrability is valid.
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The operators b−a are defined3 modulo the full system of PDEs. The differential reduction
has the form of a product of several operators b−i and B+

j . In symbolic form, this can be
written as

Φ(~I + {A,B, {Cj}}; {zj}) =

Q0+

K∑
j=1

Qjθj+

K∑
i,j=1
i<j

Qijθij + · · ·

Φ(A,B, {Cj}; {zj}) ,(2.6)

where ~I is a set of integers, {A,B, {Cj}} is a set of parameters, and Qi are some rational
functions of {zi} and A,B, {Cj}.

The fundamental system of solutions of Eq. (2.3b) is expressible in terms of the Lauri-
cella [21] function F (K)

C of K variables and include the following functions (see, for example,
Eq. (13) in Ref. [21] or Eq. (19) in Ref. [23]):

F
(K)
C (A, 1−B; {1−Cj}; {−zj}) ,

(−zj)Cj × FC(A+Cj , 1−B+Cj ; 1−C1, · · · , 1−Cj−1, 1+Cj , 1−Ck; {−zj}) ,
j = 1, · · · ,K ,

(−zj1)Cj1 (−zj2)Cj2 × F (K)
C (A+Cj1 +Cj2 , 1−B+Cj1 +Cj2 ; {1−Ck}, 1+Cj1 , 1+Cj2 ; {−zj}) ,

j1, j2 = 1, · · · ,K ,

· · ·
K∏

ja=1

(−zja)Cja × F (K)
C (A+

K∑
j=1

Cj , 1−B+

K∑
j=1

Cj ; {1 + Cj}; {−zj}) , (2.7)

where the Lauricella function F (K)
C is defined as

F
(K)
C (a, b; {cj}; {zj}) =

∞∑
j1,··· ,jk=0

(a)j1+···+jK (b)j1+···+jK

K∏
p=1

z
jp
p

jp!(cp)jp
, (2.8)

with (a)k = Γ(a + k)/Γ(a) being the Pochhammer symbol. Any particular solution of the
system defined by Eq. (2.3b) about the points zi = 0 for a generic set of parameters is a
linear combination of solutions defined by Eq. (2.7) with undetermined coefficients. To fix
these coefficients, it is necessary to evaluate the Mellin–Barnes integral as a power series
solution [24]. In particular, under the condition that the monodromy is irreducible (see

3Due to the differential relation

θpΦ(A,B; {Cj}; {zj}) = −zpΦ (1 +A,B − 1;Cp − 1, {Cj}; {zj}) ≡ −zpB+
AB

+
Bb

−
CΦ(A,B; {Cj}; {zj}),

not all operators b−c are independent.
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Eq. (2.10b)), the following representation is valid (see Ref. [16] for details):4

Φ(A,B, {Cj}; {zj}) =
Γ (A)

Γ (B)

K∏
j=1

Γ (Cj)× F (K)
C (A, 1−B; {1−Cj}; {−zj})

+

K∑
j=1

(−zj)Cj
Γ (A+Cj) Γ (−Cj)

Γ (B−Cj)

K∏
a=1
a6=j

Γ (Ca)

×FC (A+Cj , 1−B+Cj ; 1−C1, · · · , 1−Cj−1, 1+Cj , 1−Ck; {−zj})

+
K∑

j1,j2=1

(−zj1)Cj1Γ (−Cj1)× (−zj2)Cj2Γ (−Cj2)× Γ (A+Cj1 +Cj2)

Γ (B−Cj1−Cj2)

×
K∏
a=1

a6=j1,j2

Γ (Ca)× F (K)
C (A+Cj1 +Cj2 , 1−B+Cj1 +Cj2 ; {1−Ck}, 1+Cj1 , 1+Cj2 ; {−zj})

+ · · ·

+

K∑
b=1

Γ (Cjb)

(−zjb)
CjbΓ (−Cjb)

×
Γ
(
A+

∑K
j=1Cj−Cb

)
Γ
(
B−

∑K
j=1Cj−Cb

) × K∏
a=1

(−zja)CjaΓ (−Cja)

×F (K)
C (A+

K∑
j=1

Cj−Cb, 1−B+
K∑
j=1

Cj−Cn; 1− Cb, {1 + Cj}; {−zj})

+
K∏

ja=1

(−zja)CjaΓ (−Cja)
Γ
(
A+

∑K
j=1Cj

)
Γ
(
B−

∑K
j=1Cj

)
×F (K)

C (A+
K∑
j=1

Cj , 1−B+
K∑
j=1

Cj ; {1 + Cj}; {−zj}) . (2.9)

We wish to point out that, for the sunrise diagram, the last term in Eq. (2.9) is proportional
to 1/Γ(0) and so equal to zero.5

The holonomic6 rank7 of the system of PDEs in Eq. (2.3b) for a generic set of parameters
{A,B,Cj} is equal to 2K [21] (see also Refs. [27–30]). However, if the parameters A,B, {Ci}
satisfy certain linear relations, then additional differential operators are generated, so that
Puiseux-type solutions appear. The main questions are how to find such linear relations
between the parameters and how to define a minimal set of the additional PDEs. Our
approach [18, 19] to these problems is based on studying the inverse differential operators:
the exceptional case of parameters, where the dimension of the solution space is reduced,
corresponds to the condition that the denominators of the functions Qi entering Eq. (2.6)

4The interrelations between Mellin–Barnes integrals and multiple residues were discussed in Ref. [25].
5Another example of such a cancellation was presented in Ref. [26].
6We adopt the following definition of holonomic function [20]: a function is called holonomic if it satisfies a

system of linear differential equations with polynomial coefficients whose solutions form a finite-dimensional
vector space.

7The dimension of the space of solutions of a system of PDEs near some generic point is called holonomic
rank.

– 5 –



are equal to zero for arbitrary values of zi [31]. The same recipe works in its application
to Mellin–Barnes integrals [24], which can be treated as a particular case of the Gelfand–
Kapranov–Zelevinsky (GKZ) hypergeometric system [32]. However, the inverse differential
operators have a very complicated structure (see, for example, Ref. [30]), which gives rise
to technical problems in the analysis of the number of independent PDEs.

Fortunately, there is a simpler way [24, 33–35]) to find the conditions of reducibility
and to define the dimension of the (ir)reducible subspace of solutions. In our case, the
system of PDEs is irreducible if (for details, see Section 3)

FC :

{
a /∈ Z, b /∈ Z, a−

∑
s1

cp /∈ Z, b−
∑
s2

cp /∈ Z

}
, (2.10a)

Φ :

{
A /∈ Z, B /∈ Z, A+

∑
S1

Cp /∈ Z, B −
∑
S2

Cp /∈ Z

}
, (2.10b)

where si and Sj are any subsets of {ci} and {Cj}, respectively. Eq. (2.10a) corresponds
to the set of exceptional values of the parameters of the hypergeometric function FC ,8 and
Eq. (2.10b) defines the exceptional set of parameters for the function Φ. The conditions
defined by Eq. (2.10b) are invariant with respect to a linear change of variables {tj} →
{A1 ±

∑
A∈{1,··· ,p} tA} in the Mellin–Barnes integral in Eq. (2.1).

In a similar manner, we can consider the function Ψ defined as a K-fold Mellin–Barnes
integral,

Ψ(A,D; {Ck}; z1, · · · , zK) =

∫ K∏
j=1

dtjΓ(−tj)Γ (Cj−tj) z
tj
j Γ (A+t) Γ (D+t) .(2.11)

In this case, we have

PΨ
j

QΨ
j

=
(A+ t) (D + t)

(1− Cj + tj)(1 + tj)
⇒ (2.12a)

LΨ
j : (θj−Cj) θjΨ = zj

 K∑
j=1

θj+A

 K∑
j=1

θj+D

Ψ , j = 1, · · · ,K. (2.12b)

The system of PDEs for the function Ψ is irreducible if

Ψ :

{
A /∈ Z, D /∈ Z, A+

∑
S1

Cp /∈ Z, D +
∑
S2

Cp /∈ Z

}
, (2.13)

where S1 and S2 are any subsets of {Cj}. The solution of Eq. (2.12b) for a generic set
of parameters about the points zi = 0 can be written as linear combination of Lauricella

8This set of parameters complies with the condition that the monodromy group of the Lauricella function
FC is reducible [27]. For recent results on the evaluation of the monodromy of the GKZ system, see Ref. [33].
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functions F (K)
C of K variables. For completeness, we present it here:

Ψ(A,D, {Cj}; {zj}) = Γ (A) Γ (D)
K∏
j=1

Γ (Cj)× F (K)
C (A,D; {1−Cj}; {zj})

+
K∑
j=1

(zj)
CjΓ (A+Cj) Γ (D+Cj) Γ (−Cj)

K∏
a=1
a6=j

Γ (Ca)

×F (K)
C (A+Cj , D+Cj ; 1−C1, · · · , 1−Cj−1, 1+Cj , 1−CK ; {zj})

+

K∑
j1,j2=1

(zj1)Cj1Γ (−Cj1)× (zj2)Cj2Γ (−Cj2)× Γ (A+Cj1 +Cj2)× Γ (D+Cj1 +Cj2)

×
K∏
a=1

a6=j1,j2

Γ (Ca)× F (K)
C (A+Cj1 +Cj2 , D+Cj1 +Cj2 ; {1−Ck}, 1+Cj1 , 1+Cj2 ; {zj})

+ · · ·

+
K∑
b=1

Γ (Cjb)

(zjb)
CjbΓ (−Cjb)

× Γ

A+

K∑
j=1

Cj−Cb

× Γ

D+

K∑
j=1

Cj−Cb


×

K∏
a=1

(zja)CjaΓ (−Cja)× F (K)
C (A+

K∑
j=1

Cj−Cb, D+
K∑
j=1

Cj−Cn; 1− Cb, {1 + Cj}; {zj})

+

K∏
ja=1

(zja)CjaΓ (−Cja) Γ

A+

K∑
j=1

Cj

Γ

D+

K∑
j=1

Cj


×F (K)

C (A+

K∑
j=1

Cj , D+

K∑
j=1

Cj ; {1 + Cj}; {zj}) . (2.14)

3 What happens if the monodromy is reducible?

Here, we present a short algebraic deviation of the condition in Eq. (2.10) for the system
of PDEs related to the Mellin–Barnes integral in Eq. (2.1) to be irreducible and count
the dimension of the invariant subspace of the differential contiguous operators defined by
Eqs. (2.2b) and (2.2c). We follow an idea presented in Ref. [34] (see also Ref. [35]).

Let Φ be the set of solutions for the system of linear differential operators LΦ
j defined

by Eq. (2.3b) as

LΦ
j (A,B, ~C) :

(θj−Cj) θj + zj

 K∑
j=1

θj+A

 K∑
j=1

θj+(1−B)

 , j = 1, · · · ,K.

Let S(A,B, ~C) denote the local solution space of the operators LΦ
j (A,B, ~C) about some

point z0. The contiguous differential operatorsB+
A,B,Cj

defined by Eq. (2.2) map the solution

space S(A,B, ~C) to the solution space S(A ± I1, B ± I2, ~C ± ~I), where {Ia} are a set of
integers. If the monodromy is reducible, then there is a monodromy-invariant subspace
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(invariant under the action of the monodromy) in the space of solutions. In this case, the
contiguous differential operators B+

A,B,Cj
have a nontrivial kernel, and it is necessary to

evaluate their dimension.
Let us consider the equation B+

AΦ = 0, where B+
A is defined by Eq. (2.2b). Then, the

system of equations defined by Eq. (2.3b) reduces to

LΦ
j (A,B, ~C)Φ ≡ (θj−Cj) θjΦ ≡ 0 , j = 1, · · · ,K. (3.1)

If all Cj /∈ Z, which is true for the considered Feynman diagrams, then the solution Φ0 of
Eq. (3.1) has the following form:

Φ0 = c0 +

K∑
i=1

ciz
Ci
i +

K∑
i,j=1
i<j

ci,jz
Ci
i z

Cj

j + · · ·+ Const.×
K∏
i=1

zCi
i . (3.2)

Applying the operator B+
A to the function Φ0, we get

B+
AΦ0 ≡ 0 = Ac0 +

K∑
i=1

ci(A+ Ci)z
Ci
i +

K∑
i,j=1
i<j

ci,j(A+ Ci + Cj)z
Ci
i z

Cj

j + · · ·

+

(
K∏
i=1

zCi
i

)
×

K∑
a=1

c̃a

zCa
a

A+

K∑
j=1

Cj−Ca

+ Const.×
K∏
i=1

zCi
i

A+

K∑
j=1

Cj

 ,(3.3)

where ci, ci,j , . . . , c̃i are some constants. As follows from Eq. (3.3), B+
AΦ = 0 if and only if

A+
∑

S Cp = 0, where S are any subsets of {Cj}. In this way, under the conditions that

• A /∈ Z,

• Ca /∈ Z , ∀a = 1, · · · ,K,

• A+
∑K

j=1Cj − Ca = 0 , ∀a = 1, · · · ,K,

there is an invariant subspace of dimension K for the operator B+
A .

A similar consideration can also be made for the operator B+
B defined by Eq. (2.2c).

In particular, it is easy to show that, under the conditions that

• B /∈ Z ,

• Ca /∈ Z , ∀a = 1, · · · ,K,

• B −
∑K

j=1Cj = 0 ,

there is a one-dimensional invariant subspace. Collecting the previous results, we get the
following lemma:
Lemma Φ:
Under the conditions that

• A and B /∈ Z ,
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• Ca /∈ Z , ∀a = 1, · · · ,K,

• B −
∑K

j=1Cj ∈ Z ,

• A+
∑K

j=1Cj − Ca ∈ Z , ∀a = 1, · · · ,K ,

there is a (K + 1)-dimensional invariant subspace (of Puiseux-type solutions) in the space
of solutions of the linear PDEs defined by Eq. (2.3b), and the dimension of the space of
nontrivial solutions is equal to

NΦ = 2K − (K + 1) . (3.4)

A similar consideration can also be made for the function Ψ in Eq. (2.11).
In the application to the Lauricella function F

(K)
C (a, b; {cj};~z) of K variables, our

analysis is equivalent to the following lemma:
Lemma F:
Under the conditions that

• a and b /∈ Z ,

• cj /∈ Z , ∀ j = 1, · · · ,K,

• b+
∑K

j=1 cj ∈ Z ,

• a+
∑K

j=1 cj − ck ∈ Z , ∀ k = 1, · · · ,K ,

there is a (K + 1)-dimensional invariant subspace (of Puiseux-type solutions) so that the
dimension of the space of nontrivial solutions is equal to

NF = 2K − (K + 1) , (3.5)

and the differential reduction applied to the hypergeometric function F (K)
C (a, b; {cj};~z) of

K variables has the following form:

F
(K)
C (~I + {a, b, cj};~z) =

K−2∑
j=0

~Qj~θ
jF

(K)
C (a, b; {cj};~z) +

K+1∑
j=1

Pj(~z) , (3.6)

where ~I is a set of integers, ~Qj are some rational functions, Pj(~z) denote the Puiseux-type
solutions, and ~θp means θ i1,i2,··· ,ip

i1<i2<···<ip
.

The number of symmetric derivatives θi1,i2,··· ,im , where i1 < i2 < · · · < im, is equal to
K!

m!(K−m)! , and the number of terms entering the reduction procedure of Eq. (3.6) is equal to∑K−2
j=0

K!
j!(K−j)! = 2K − (K + 1), which coincides with Eq. (3.5). Consequently, the highest

differential operators, namely, one operator of order K, θi1,i2,··· ,iK , and K operators of order
K − 1, θi1,i2,··· ,iK−1 , are expressible in terms of low-dimensional differential operators.
Remark A: As follows from Eq. (3.3), for a special set of parameters, the K+1 Puiseux-type
solutions have the following form: K solutions are of the type 1/zCa

a ×
[∏K

j=1 z
Cj

j

]
, and one

solution is
[∏K

j=1 z
Cj

j

]
.
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Remark B: For sunrise and bubble diagrams, each term of the hypergeometric representation
in Eqs. (2.9) and (2.14) satisfies the conditions of Lemma F, so that the dimension of the
space of nontrivial solutions of each term is defined by Eq. (3.5) and the differential reduction
of each term is described by Eq. (3.6).

4 L-loop sunrise diagram

The Mellin–Barnes representation for the Feynman diagram defined by Eq. (1.1) follows
from the algorithm presented in Ref. [16] (see also Ref. [6]) and has the following form:

J (L)(M2
1 , · · · ,M2

L+1;α1, · · · , αL+1; p2) = (p2)
n
2L−α[i1−nπn/2]L

×
∫ {L+1∏

j=1

dtj
Γ(−tj)Γ

(
n
2−αj−tj

)
Γ(αj)

(
−
M2
j

p2

)tj}
Γ
(
α− n

2L+t
)

Γ
(
n
2 (L+ 1)−α−t

) , (4.1)

where

α =
L+1∑
j=1

αj , t =
L+1∑
j=1

tj ,

αj , L are positive integers, M2
j and p2 are some (in general, complex) parameters, and d is

a parameter (in general, non-integer) of dimensional regularization [1].

Let us introduce the variables zj = −M2
j

p2
(j = 1, 2, · · · , L+ 1) and define the functions

ΦJ as

ΦJ =
L+1∏
k=1

Γ(αk)

[i1−nπn/2]L(p2)
n
2
L−α × J

(L)(M2
1 , · · · ,M2

L+1;α1, · · · , αL+1; p2) . (4.2)

After this redefinition, the results of Sections 2 and 3 are directly applicable to the analysis
of the sunrise diagram. In particular, in the application to the L-loop sunrise diagram, we
have

A = α− n

2
L , B =

n

2
(L+ 1)− α , Cj =

n

2
− αj , j = 1, . · · · , L+ 1 . (4.3)

As follows from Eq. (3.3), to find the dimension of the invariant subspace, it is necessary
to find all solutions of the following system of algebraic equations:

n

2
L−

∑
S1

n

2
= 0 (mod Z) , (4.4a)

n

2
(L+ 1)−

∑
S2

n

2
= 0 (mod Z) , (4.4b)

where S1 and S2 are any subsets of 1, . . . , L + 1, Z = {. . . ,−1, 0, 1, . . .}, and n is non-
integer. The subset S1 in Eq. (4.4a) can be constructed in L+ 1 different ways (it includes
all possible combinations of L out of the L+1 massive lines), and there is only one solution
of Eq. (4.4b) (the subset S2 includes all the lines). In this way, among the 2L+1 solutions
of the system of PDEs related to the sunrise diagram, there are L + 1 + 1 Puiseux-type
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solutions.9 Then, the following theorem is valid:
The number NJ of irreducible master integrals of the L-loop sunrise diagram
with generic values of masses and momenta is equal to

NJ = 2L+1 − L− 2 . (4.5)

For example, for L = 1, 2, 3, 4, 5, 6, we have NJ = 1, 4, 11, 26, 57, 120, respectively.
The result of the differential reduction can be written in a more familiar form via

propagators with dots: the term without derivatives on the r.h.s. of Eq. (2.6) corresponds
to the diagram itself, whereas terms with derivative(s) θiΦ correspond to diagrams with
dot(s). In the application to the sunrise diagram, we have

J (L)({M2
i }; ~I + ~α; p2) =

L−1∑
j=0

~Qj~∂
jJ (L)({M2

i }; ~α; p2) +
L+1∑
j=1

Pj( ~M) , (4.6)

where we have introduced the short-hand notation

J (L)({M2
i }; ~α; p2) ≡ J (L)(M2

1 , · · · ,M2
L+1;α1, · · · , αL+1; p2),

~Qj are some rational functions, Pj(~z) denote the Puiseux-type solutions, and ~∂j means
symmetric derivatives with respect to the masses M2

j , i.e.

~∂j ≡

(
M2
i1

∂

∂M2
i1

)(
M2
i2

∂

∂M2
i2

)
· · ·

(
M2
ij

∂

∂M2
ij

)
, (4.7)

and i1 < i2 < · · · < ij . Indeed, the number of symmetric derivatives ~∂j in the considered
case is equal to (L+1)!

j!(L+1−j)! , so that

2L+1 − (L+ 2) =
L−1∑
j=0

(L+ 1)!

j!(L+ 1− j)!
. (4.8)

In other words, (i) an L-loop sunrise diagram with two or more derivatives on one of its lines
is reducible to a linear combination of sunrise diagrams with no more than one derivative
on any of its lines, and (ii) the number of lines with one dot is less or equal to L − 1.10

The latter statement can also be understood as follows: instead of excluding higher-order
derivatives, the function (one element) and its first derivatives (L + 1 elements) can be
excluded in favor of higher derivatives, and the reduction procedure has the following form:

9As was pointed out in Ref. [19], a Puiseux-type solution corresponds to a product of one-loop bubble
diagrams.

10Let us recall that there are L+ 1 massive lines in this case.
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J (L)({Mi},~1; p2) =

L+1∑
j=2

~̃Qj~∂
jJ (L)({Mi}, {1}; p2) +

L+1∑
j=1

P̃j( ~M) , (4.9a)

M2
a

∂

∂M2
a

J (L)({Mi},~1; p2) =
L+1∑
j=2

~̂
Qj~∂

jJ (L)({Mi}, {1}; p2) +
L+1∑
j=1

P̂j( ~M) , ∀a = 1, · · · , L+ 1,

(4.9b)

J (L)({Mi}, ~I + {α}; p2) =
L+1∑
j=2

~Qj~∂
jJ (L)({Mi}, {1}; p2) +

L+1∑
j=1

Pj( ~M) , (4.9c)

(4.9d)

where ~Qj ,
~̃Q,
~̂
Q are some rational functions, Pj(~z), P̃j( ~M), P̂j( ~M) denote the Puiseux-type

solutions, and ~∂j is defined by Eq. (4.7). As an illustration of these relations, let us consider
some special cases.

• At the two-loop level (L = 2), only first derivatives with respect to masses enter the
reduction procedure, in agreement with Refs. [36–38].

• At the three-loop level (L = 3), according to Eq. (4.6), the second symmetric deriva-
tives with respect to masses ∂2

∂M2
i ∂M

2
j
J (3)(M2

i ;~1; p2) where i < j and i, j = 1, 2, 3, 4, are

generated (1, 4, 6 terms) or, according to Eq. (4.9), the basis can be constructed from
the second, third, and fourth symmetric derivatives (6, 4, 1 terms), ∂2

∂M2
i ∂M

2
j
J (3)(M2

i ;~1; p2),
∂3

∂M2
i ∂M

2
j ∂M

2
k
J (3)(M2

i ;~1; p2), and ∂4

∂M2
1 ∂M

2
2 ∂M

2
3 ∂M

2
4
J (3)(M2

i ;~1; p2), where i < j < k and
i, j, k = 1, 2, 3, 4.

• At the four-loop level (L = 4), according to Eq. (4.6), the third symmetric deriva-
tives with respect to masses ∂3

∂M2
i ∂M

2
j ∂M

2
k
J (4)(M2

i ;~1; p2), where i < j < k and i, j, k =

1, 2, 3, 4, 5, are generated (1, 5, 10, 10 terms) or, according to Eq. (4.9), the basis in-
cludes the second, third, fourth, and fifth symmetric derivatives (10, 10, 5, 1 terms),

∂2

∂M2
i ∂M

2
j
J (4)(M2

i ;~1; p2), ∂3

∂M2
i ∂M

2
j ∂M

2
k
J (4)(M2

i ;~1; p2), ∂4

∂M2
i ∂M

2
j ∂M

2
k∂M

2
l
J (4)(M2

i ;~1; p2), and
∂5

∂M2
1 ∂M

2
2 ∂M

2
3 ∂M

2
4 ∂M

2
5
J (4)(M2

i ;~1; p2), where i < j < k < l and i, j, k, l = 1, 2, 3, 4, 5.

The case of integer n requires an extra analysis [39].

4.1 L-loop sunrise diagram with R massive lines

Let us consider the L-loop sunrise diagram in which only R lines (R ≤ L) have different
masses,

JR({M2
i }; {αj}, {βk}; p2) =

∫ R∏
j=1

dn(k1 · · · kL)

[k2
j−M2

k ]αj [k2
R+1]β1 · · · [(p−k1− · · ·−kL)2]βL+1−R

.

(4.10)
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The Mellin–Barnes representation of this diagram is

JR({M2
R}; {αj}, {βk}; p2) = (p2)

n
2L−α−β[i1−nπn/2]L

×

{
L+1−R∏
k=1

Γ
(
n
2−βk

)
Γ(βk)

}
Γ
(
β− n

2 (L−R)
)

Γ
(
n
2 (L−R+1)−β

)
×
∫ { R∏

j=1

dtj
Γ(−tj)Γ

(
n
2−αj−tj

)
Γ(αj)

(
−
M2
j

p2

)tj}
Γ
(
α+β− n

2L+t
)

Γ
(
n
2 (L+ 1)−α−β−t

) , (4.11)

where

α =
R∑
j=1

αj , β =
L−R+1∑
j=1

βj , t =
R∑
j=1

tj .

In this case, we have:

A = α+β−n
2
L , B =

n

2
(L+ 1)−α−β , Cj =

n

2
− αj , j = 1, · · · , R.

To find the dimension of the invariant subspace, we use the algorithm described in Section
3. In this case, it is necessary to find all solutions (all subsets) of the following system of
algebraic equations:

n

2
L−

∑
S1

n

2
= 0 (mod Z) , (4.12a)

n

2
(L+ 1)−

∑
S2

n

2
= 0 (mod Z) , (4.12b)

where S1 and S2 are any subsets of 1, . . . , R, and n is non-integer. There is only one solution
for the subset S1 (if R = L), and there is no solution for Eq. (4.12b). In this way, among
the 2R solutions, there is only one Puiseux-type solution (if R = L). Then we have the
following theorem:
The number NJ,R of irreducible master integrals of the L-loop sunrise diagram
with R massive lines (R ≤ L) is equal to

NL,R = 2R − δ0,L−R . (4.13)

As follows from this relation, the sunrise diagrams with R massive and two or more massless
lines are irreducible, and their holonomic ranks near ~z = 0 coincide with the holonomic ranks
of the hypergeometric functions F (R)

C with irreducible monodromies.
There is a one-dimensional invariant subspace (Puiseux-type solution) if the sunrise

diagram has one massless line.11 If at least one of the values of βj is non-integer, which
happens if a massless line is dressed by other massless lines, then the number of irreducible
master integrals is equal to 2R.

Example:

N1,1 = 1 ; N2,2 = 3 , N2,1 = 2 ; N3,3 = 7 , N3,2 = 4 , N3,1 = 2 .
11At the two-loop level, this was shown explicitly by Tarasov in Ref. [36] (see also the discussion in

Ref. [37]).
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Figure 2. L-loop bubble diagram.

5 L-loop bubble diagram

In a similar manner, let us consider the L-loop bubble diagram (see Fig. 2) defined as

B(M2
1 , · · · ,M2

L+1;α1, · · · , αL+1) =

∫
dn(k1 · · · kL)

[k2
1−M2

1 ]α1 · · · [k2
L−M2

L]αL [(k1− · · ·−kL)2−M2
L+1]αL+1

,

(5.1)

where αj are integers. Its Mellin–Barnes representation is

B(M2
1 , · · · ,M2

L+1;α1, · · · , αL+1) = (−M2
L+1)

n
2L−α × [i1−nπn/2]L

Γ
(
n
2

)
Γ(αL+1)

×
∫ { L∏

j=1

dtj
Γ(−tj)Γ

(
n
2−αj−tj

)
Γ(αj)

(
M2
j

M2
L+1

)tj}
Γ
(
α+αL+1−

n

2
L+t

)
Γ
(
α−n

2
(L−1)+t

)
,

(5.2)

where

α =
L∑
j=1

αj , t =
L∑
j=1

tj .

Let us introduce the variables zj =
M2

j

ML+1
, j = 1, · · · ,K, and define the functions ΨB as

ΨB =
L+1∏
k=1

Γ(αk)×
Γ
(
n
2

)
[i1−nπn/2]L(−M2

L+1)
n
2
L−α ×B(M2

1 , · · · ,M2
L+1;α1, · · · , αL+1) .

In this case, we have

A = α+αL+1−
n

2
L , D = α−n

2
(L− 1) , Cj =

n

2
− αj , j = 1, · · · , L .
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As follows from Eq. (3.3), the dimension of the invariant subspace it defined by the number
of solutions of the following system of algebraic equations:

n

2
L−

∑
S1

n

2
= 0 (mod Z) , (5.3a)

n

2
(L− 1)−

∑
S2

n

2
= 0 (mod Z) , (5.3b)

where S1 and S2 are any subsets of 1, . . . , L, and n is non-integer. There is only one solution
for the subset S1, and there are L solutions for Eq. (5.3b). In this case, there are L + 1

Puiseux-type solutions, and the following theorem is valid:
The number NB of irreducible master integrals for the L-loop bubble diagram
with generic values of masses is equal to

NB = 2L − L− 1 . (5.4)

For example, for L = 1, 2, 3, 4, 5, 6, there are NB = 0, 1, 4, 11, 26, 57 nontrivial master
integrals. Let us explain the zero result for L = 1. The one-loop tadpole A0 is treated as a
constant in the framework of the differential algebra (see the discussion in Refs. [18, 19]).

Remark 1: The result in Eq. (5.4) can be derived from Eq. (4.5) by considering bubble
diagrams as sunrise diagrams with external momenta put equal to zero, which effectively
reduces the number of independent variables by one.

Remark 2: In contrast to the sunrise diagram, the reduction for the bubble diagrams
with L ≥ 3 does not have a completely symmetric structure with respect to mass deriva-
tives. At the three-loop level, this statement was confirmed in Ref. [40]. In the framework
of integration-by-parts (IBP) relations [41], there is a so-called {dim} relation (see the dis-
cussion in Ref. [42]) connecting the diagram in Eq. (5.1) without derivatives to a linear
combination of diagrams with a first derivative,

L+1∑
j=1

M2
j

∂

∂M2
j

−

n
2
L−

L+1∑
j=1

αj

B(M2
1 , · · · ,M2

L+1;α1, · · · , αL+1) = 0 , (5.5)

so that

B({M2
L+1};~1) =

1[
n
2L− (L+ 1)

]
L+1∑
j=1

B({M2
i };~1 + ~ej)

 , (5.6)

where ~ej is the unit vector with unity in the j-th place and we have introduced the short-
hand notation B({M2

L+1};~1) ≡ B(M2
1 , · · · ,M2

L+1; 1, · · · , 1) .

Remark 3: Let us find out which diagrams form the symmetric set of master integrals
for the bubble diagrams with L ≥ 4. It is easy to see that the lists of diagrams are different
for even and odd numbers of loops. If L is even, then the symmetric set of master integrals
is defined by the following expression:

L−2∑
j=0

(L+ 1)!

j!(L+ 2− j)!
(1 + (−1)j)

2
~∂jB(M2

1 , · · · ,M2
L+1; 1, · · · , 1) , (5.7)
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where ~∂j is defined by Eq. (4.7). For odd values of L, a similar expression is valid, namely

L−2∑
j=0

(L+ 1)!

j!(L+ 2− j)!
(1− (−1)j)

2
~∂jB(M2

1 , · · · ,M2
L+1; 1, · · · , 1) . (5.8)

As an illustration of these relations, let us consider some special cases.

• At the four-loop level (L = 4), there are 11 irreducible master integrals, and the
symmetric set of master integrals includes the diagram B({M2

i }; {1}) (1 term) and
its second symmetric derivatives with respect to masses, ∂2

∂M2
i ∂M

2
j
B({M2

i }; {1}), where
i < j and i, j = 1, · · · , 5 (10 terms).

• At the five-loop level (L = 5), there are 26 irreducible master integrals, and the sym-
metric set of master integrals include their first derivatives with respect to masses,
∂

∂M2
i
B({M2

i }; {1}), where j = 1, · · · , 6 (6 terms), and their third symmetric deriva-

tives with respect to masses, ∂3

∂M2
i ∂M

2
j ∂M

2
k
B({M2

i }; {1}), where i < j < k and i, j, k =

1, · · · , 6 (20 terms).

• At the six-loop level (L = 6), there are 57 irreducible master-integrals, and the sym-
metric set of master integrals include the diagram B({M2

i }; {1}) (1 term), its second
and fourth symmetric derivatives with respect to masses, ∂2

∂M2
i ∂M

2
j
B({M2

i }; {1}) and
∂4

∂M2
i ∂M

2
j ∂M

2
k∂M

2
r
B({M2

i }; {1}), where i < j < k < r and i, j, k, r = 1, · · · , 7 (21 and

35 terms, respectively).

5.1 L-loop bubble diagram with R massive lines

Let us consider the L-loop bubble diagram for the case where only R lines (R ≤ L) have
different masses,

BR(M2
1 , · · · ,M2

R; {αj}, {βk}) =

∫
dn(k1 · · · kL)

[k2
1−M2

1 ]α1 · · · [k2
R−M2

R]αR [k2
R+1]β1 · · · [(k1− · · ·−kL)2]βL+1−R

.

(5.9)

The Mellin–Barnes representation of this diagram is

BR(M2
1 , · · · ,M2

R; {αj}, {βk}) = (−M2
R)

n
2L−α−β

[i1−nπn/2]L

Γ
(
n
2

)
Γ(αL+1)

×

{
L+1−R∏
k=1

Γ
(
n
2−βk

)
Γ(βk)

}

×
Γ
(
β− n

2 (L−R)
)

Γ
(
n
2 (L−R+1)−β

) × ∫ {R−1∏
j=1

dtj
Γ(−tj)Γ

(
n
2−αj−tj

)
Γ(αj)

(
M2
j

MR

)tj}

×Γ
(
α+β−n

2
(L− 1)+t

)
Γ
(
α+β+αR−

n

2
L+t

)
,

(5.10)

where

α =

R−1∑
j=1

αj , β =

L−R+1∑
j=1

βj , t =

R−1∑
j=1

tj .
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In terms of the notations of Section 2, we have

A = α+β−n
2

(L− 1) , D = α+β+αR−
n

2
L , Cj =

n

2
− αj , j = 1, · · · , R− 1.

Applying again the algorithm described in Section 3, we get

n

2
(L− 1)−

∑
S1

n

2
= 0 (mod Z) , (5.11a)

n

2
L−

∑
S2

n

2
= 0 (mod Z) , (5.11b)

where S1 and S2 are any subsets of 1, . . . , R − 1, and n is non-integer. There is only one
solution for the subset S1 (if R = L), and there is no solution for Eq. (5.11b). In this way,
among the 2R−1 solutions, there is only one Puiseux-type solution (if R = L). Then we
have the following theorem:
The number BL,R of irreducible master integrals of the L-loop bubble diagram
with R massive lines (R ≤ L) is equal to

BL,R = 2R−1 − δ0,L−R . (5.12)

Example:

B2,2 = 1 , B3,3 = 3 , B3,2 = 2 , B4,4 = 7 , B4,3 = 4 , B4,2 = 2 .

6 Independent verification

Fortunately, there are a few others ways to cross-check our key results, Eqs. (4.5), (4.13),
(5.4), and (5.12). One is based on the reduction of sunrise and bubble diagrams to some
bases by using IBP relations [41]. However, there is no guarantee that the freely available
programs will perform the complete reduction (see the discussions in Refs. [14, 43, 44]).

Another way of cross-checking our result is to apply the Lee-Pomenransky approach
[45] (see also the discussion in Ref. [46]). This algorithm is based on counting the critical
points of the sum of the Symanzik polynomials F +U defined by Eq. (1.2). As was pointed
out by the authors of Ref. [45], there are situations where their program does not reproduce
the correct number of master integrals. Here, we present a pedagogical example in which
differential reduction allows us to predict and construct an algebraic relation between two
master integrals [43], which is not predictable by the algorithm described in Ref. [45] or by
the program LiteRed [47].12 Let us consider the two-loop sunrise diagram with arbitrary
kinematics. The sum of the corresponding Symanzik polynomials has the following form:

G ≡ F +U = z1z2 +z1z3 +z2z3 +z1z2z3p
2− (z1z2 + z1z3 + z2z3)

(
z1M

2
1 + z2M

2
2 + z3M

2
3

)
.

In this case, there are eight critical points, defined by the conditions G = 0 and ∂ziG = 0,
i = 1, 2, 3. Four of them are trivial, G({q1, q2, q3, q4}) = 0, where q1 = (1/M2

1 , 0, 0),
12 For the considered example, the diagram J011, the program Azurite [48] also produces two irreducible

master integrals. We thank the authors of Ref. [48] for confirming and verifying this result.
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q2 = (0, 1/M2
2 , 0), q3 = (0, 0, 1/M2

3 ), and q4 = (0, 0, 0). The remaining four points are
algebraically independent for a generic set of masses and momenta, so that there are four
independent master integrals, in agreement with the result of Ref. [36] . The number and
the values of critical points do not depend on the values of αi (power of propagators) and
the dimension of space-time n, and the product of one-loop bubble diagrams does not enter
the counting of master integrals.

Let us consider as another particular case the two-loop on-shell diagram, which is
denoted as J011 in Ref. [43], with M3 = 0 and all other masses on-mass shell, M2

1 = M2
2 =

p2 = 1. In this case, there are six non-degenerate13 critical points,

q1 = (0, 0, 0), q2 = (1, 0, 0), q3 = (0, 1, 0),

q4 =

(
−1

3
,
2

3
,−2

3

)
, q5 =

(
2

3
,−1

3
,−2

3

)
, q6 =

(
2

3
,
2

3
,−2

3

)
,

and
G(q1) = G(q2) = G(q3) = 0; G(q4) = G(q5) = G(q6) = − 4

27
.

The index14 of points q1 = q2 = q3 is equal to 2, and the index of points q4 = q5 = q6

is equal to 1. According to the criteria suggested in Ref. [45], there are two independent
critical points, q4 and q6, and there are two master integrals which are not reducible to
products of one-loop bubble diagrams. However, as was shown in Refs. [43, 49], there is
only one non-trivial master integral in this case, the second one only being a product of Γ

functions.15

The difference between the differential-reduction technique and the counting of the
critical points is related to the treatment of the values of the propagator powers and the
space-time dimension. In the framework of the differential-reduction technique, one can
consider the parameters αi (powers of propagators) as well as the dimension of space-time
n as non-integer, and, as a consequence, the number of additional differential equations
for the Mellin–Barnes integrals should be different in this case. In the Lee-Pomeransky
approach, the dimension of space-time and the powers of the propagators do not enter the
analysis. Nevertheless, if αi are integer, then the results of our evaluations and those of the
application of Mint should be equal. Roman Lee kindly agreed to cross-check our results
by the help of his packages [45, 47] and got full agreement with our expressions through
L = 5 for the sunrise diagrams and through L = 6 for the bubble diagrams.

7 Conclusions

The method of counting master integrals described in Refs. [18, 19] was applied to the
multivariable case with reducible monodromy. In contrast to our previous considerations

13The corresponding Hessian matrix is non-singular at these points.
14 The index of a critical point is the dimension of the negative eigenspace of the corresponding Hessian

matrix at this point.
15Roman Lee made the following comment on this: since the algebraic relation between the master

integrals established in Refs. [14, 43] does not follow from IBP relations related to the sunrise diagram [49],
our results do not contradict the algorithm described in Ref. [45].
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[43, 50], the case where some additional differential equations are generated simultaneously
was analysed in the present paper. Our technique is based on the methods developed for
the analysis of the monodromy of GKZ hypergeometric functions [24, 33–35].

For completeness, we recall the three basic steps of our algorithm: (i) get a system
of linear PDEs for a given Feynman diagram via its Mellin-Barnes representation, which
does not exploit IBP relations [41]; (ii) evaluate the holonomic rank (including zero and
Puiseux-type solutions) of the system of PDEs by the help of the prolongation procedure;
(iii) evaluate the dimension of the invariant subspace of the differential contiguous operators.

As a demonstration of the validity of this technique applied to Feynman diagrams,
the numbers of irreducible master integrals for the L-loop sunrise and bubble diagrams
with generic sets of masses and momenta were evaluated (see Eqs. (4.5), (4.13), (5.4), and
(5.12)). In the considered cases, the non-integer value of the space-time dimension n serves
as a regulator which allows us to count the number of independent solutions.

As a by-product, we discovered the following interesting consequences of our analysis:

• As follows from Eq. (4.6), the bases for L-loop sunrise diagrams can be constructed
in two equivalent ways. In the first set, sunrise diagrams with higher symmetric
derivatives with respect to masses, ∂J

∂M2
i1
∂M2

i2
···∂M2

iJ

J (L)( ~M2
j ;~1; p2), where J = L,L+1

and i1 < i2 < · · · < iJ , can be excluded (see Eq. (4.6)). In the second set, the diagram
with unit powers of propagators and its first derivatives with respect to masses can
be excluded in favor of higher derivatives (see Eq. (4.9)). In both cases, the numbers
of basic elements coincide with Eq. (4.5), and the bases do not include the diagrams
with powers of propagator larger than 2.

• As follows from Eq. (5.4), the bases for L-loop bubble diagrams have the following
structure: for even numbers of loops L = 2, 4, 6, · · · , the basis includes the diagram
with unit powers of propagators, B({M2

i }; {1}), and its even-order symmetric deriva-
tives with respect to masses (see Eq. (5.7)). For odd numbers of loops L = 3, 5, 7, · · · ,
the basis includes only odd-order symmetric derivatives with respect to masses (see
Eq. (5.8)), but does not include the original diagram.

• As follows from Eq. (4.13), a sunrise diagram with Rmassive and two or more massless
lines, or with one “dressed” massless line, is irreducible, and its holonomic rank near
~z = 0 coincides with the holonomic rank of the hypergeometric function F

(R)
C with

irreducible monodromy. The latter property is relevant for the analysis of special
functions generated by the ε expansions of multiloop sunrise diagrams [11, 13, 51].

A L-loop V-type diagram

In recent analyses aiming at finding the full sets of IBP relations for the complete reduction
of Feynman diagram to minimal sets of master integrals [14, 19, 49, 52], diagrams of V type
(see Fig. 3) have played an important role. In this section, we prove the following theorem:
For generic values of masses and external momenta, the V -type diagrams (see
Fig. 3) are reducible to sunrise diagrams with the same masses and momenta.
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Figure 3. L-loop V-type diagram.

Let us consider the L-loop V-type diagram defined in momentum space as

V (L)(M2
1 , · · · ,M2

L+1, α1, · · · , αL+1;σ; p2)

=

∫
dn(k1 · · · kL)

[k2
1−M2

1 ]α1 · · · [(k1− · · ·−kL)2−M2
L]αL [(p−kL)2−M2

L+1]αL+1 [k2
L]σ

.

(A.1)

The Mellin–Barnes representation of this diagram is

V (L)(M2
1 , · · · ,M2

L+1, α1, · · · , αL+1;σ; p2) = (p2)
n
2L−α−αL+1−β−σ[i1−nπn/2]L

×
∫ {L+1∏

j=1

dtj
Γ(−tj)Γ

(
n
2−αj−tj

)
Γ(αj)

(
−
M2
j

p2

)tj}
Γ
(
n
2L−α−σ−t

)
Γ
(
α− n

2 (L− 1)+t
)

Γ
(
n
2L−α−t

)
Γ
(
α+σ− n

2 (L− 1)+t
)

×
Γ
(
α+αL+1+σ− n

2L+t+tL+1

)
Γ
(
n
2 (L+ 1)−α−αL+1−σ−t−tL+1

) , (A.2)

where

L ≥ 2 , α =

L∑
j=1

αj , t =

L∑
j=1

tj .

For σ = 0, the V-type diagram coincides with the L-loop sunrise diagram. The integral in
Eq. (A.2) includes the following ratio of Γ functions with arguments differing by integers:

Γ
(
n
2L−α−σ−t

)
Γ
(
n
2L−α−t

) ×
Γ
(
α− n

2 (L− 1)+t
)

Γ
(
α+σ− n

2 (L− 1)+t
) .

Let us introduce two differential operators, K1 and K2, defined as

K1 :

σ−1∏
j=0

[(

L∑
k=1

θk + b+ j)] , K2 :

σ∏
j=1

[(−
L∑
k=1

θk + a− j)] ,
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where a = n
2L− α and b = α− n

2 (L− 1). Applying these operators to Eq. (A.2), we get

(K1 ◦K2)V (L) = J (L),

where J (L) is the sunrise diagram defined by Eq. (4.1). Indeed, we have

K1 ◦K2

 L∏
j=1

z
tj
j

(
Γ (b+t)

Γ (b+σ+t)

)(
Γ (a−σ−t)

Γ (a−t)

) =

L∏
j=1

z
tj
j .

The operators K1 and K2 are products of differential operators of the first order, so that
their inverse operators correspond to one-fold integrals over linear forms. Integrals of this
type convert Puiseux-type solutions of diagram J (L) into Puiseux-type solutions of diagram
V (L). As a consequence, the dimension of the space of nontrivial solutions of the differen-
tial operators related to the V -type diagram coincides with the dimension of the space of
nontrivial solutions of the differential operators related to the sunrise diagram. �

B Sunrise diagram and Bessel functions

Let us consider the one-fold integral representation of the sunrise diagram according to
Ref. [4] (see also Ref. [6]). Using the Fourier transform of the massive propagator in Eu-
clidean space-time,

∆(x,M) ≡
∫
dnk

exp (−ikx)

(k2 +M2)α
=

2π
n
2

Γ(α)

(x
2

)α−n2
M

n
2−αKn

2−α
(Mx)

∼
(
M

x

)n
2
−α

Kn
2−α

(Mx) , (B.1)

where Kν(z) is the MacDonald function (for details, see Section 3.7 in Ref. [53]) and n is
non-integer, and performing the angular integration in n dimensions,∫

dnx̂ exp (−ikx) = 2π
n
2

(
x
√
−p2

2

)1−n
2

Jn
2−1(x

√
−p2) ,

where Jν(z) is the Bessel function, we find the one-fold integral representation of the massive
sunrise diagram in Euclidean space-time to be

JE( ~M2
j ; ~αj ; p

2) =

∫ L∏
j=1

dnkj
[k2
j +M2

j ]αj
× 1

[(p−k1− · · ·−kL)2+M2
L+1]αL+1

, (B.2)

∼
∫ ∞

0

dt

t
n
2L−

∑L+1
k=1 αk

× Jn
2−1(t

√
−p2)×

L+1∏
j=1

Kn
2−αj

(Mjt) .

For the massless propagator, we have

lim
z→0

Kν(z) → 1

2

(z
2

)−ν
Γ(ν) + O(z−ν+1 ) ,

∆(x, 0) ≡
∫
dnk

exp (−ikx)

(k2)α
∼
(

1

x2

)n
2
−α

,
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so that

JER ( ~M2
j ; ~αj , ~βi; p

2) =

∫ R∏
j=1

dn(k1 · · · kL)

[k2
j +M2

k ]αj [k2
R+1]β1 · · · [(p−k1− · · ·−kL)2]βL+1−R

∼
∫ ∞

0

dt

t
d
2L−

∑R
k=1 αk−

∑L+1−R
j=1 βj

× Jn
2−1(t

√
−p2)×

R∏
j=1

Kn
2−αj

(Mjt) .

(B.3)

The recurrence relations for the MacDonald functions,

Kν−1(z) = Kν+1(z)− 2

z
νKν(z) ,

d

dz
Kν(z) = −1

2
(Kν−1(z) +Kν+1(z)) ,

in combination with recurrence relations for the Bessel functions,

Jν−1(z) = −Jν+1(z) +
2

z
νJν(z) ,

d

dz
Jν(z) =

1

2
(Jν−1(z)− Jν+1(z)) ,

allow us to change the power of t and the orders of the Bessel and MacDonald functions
to any integer values. The result of Section 3 can be applied to evaluate the dimension of
the basis within this reduction. If all the values of αj and βk are integer, then the results
of Section 3 are valid. In particular, the difference between the reducible and irreducible
monodromies of the integrals defined by Eqs. (B.3) and (B.3), respectively, is an extra
integer power of the variable t. There are a few other cases where the results of Section 3
are applicable, namely, different combinations of integer and non-integer values of αi and
βj . In the following, we present a few examples.

1. Under the conditions that

• n
2 /∈ Z ,

• αj /∈ Z, for ∀j = 1, · · · , L+ 1 ,

• n
2 − αa /∈ Z, for ∀a = 1, · · · , L+ 1 ,

•
∑

S αk /∈ Z, for any subset of ∀k = 1, · · · , R,

there is an invariant subspace of dimension 1 for the integral defined by Eq. (B.3).
Indeed, in this case, only one equation, n2 (L+1)−

∑
S2

n
2 = 0 (mod Z), is valid. In

this case, the number of irreducible integrals defined by Eq. (B.3) is equal to 2L+1−1.

2. Under the conditions that

• n ∈ Z,
• βa ∈ Z, ∀a = 1, · · · , L+ 1−R ,

• αj /∈ Z, for ∀j = 1, · · · , R
•
∑

S αk /∈ Z, for any subset of ∀k = 1, · · · , R,

there is an invariant subspace of dimension 1 for the integral defined by Eq. (B.3).
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