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Abstract

We study the OPE of correlation functions of local operators in planar
N = 4 super Yang–Mills theory. The considered operators have an ex-
plicit spacetime dependence that is defined by twisting the translation
generators with certain R-symmetry generators. We restrict to opera-
tors that carry a small number of excitations above the twisted BMN
vacuum. The OPE limit of the four-point correlator is dominated by
internal states with few magnons on top of the vacuum. The twisting
directly couples all spacetime dependence of the correlator to these
magnons. We analyze the OPE in detail, and single out the extremal
states that have to cancel all double-trace contributions.
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1 Introduction
Solving planar N = 4 super Yang–Mills theory (sYM) at any value of its coupling constant con-
tinues to be an important goal in mathematical physics. This most symmetric four-dimensional
gauge theory serves as a key towards understanding general properties of interacting gauge
theory, AdS/CFT duality, and quantum gravity. In probing the theory at ever deeper levels, we
have witnessed extraordinary progress due to the emergence of integrability [1]. By now, the
spectrum of single-trace operators is virtually solved, for any value of the coupling constant [2].
In the past few years, also three-point functions of local operators, as well as scattering ampli-
tudes have come into focus. For both types of observables, essential proposals for finite-coupling
descriptions have been made [3,4], and highly non-trivial implications could be derived from
these proposals [5]. At this point, it appears not unlikely that all correlation functions will
eventually be computable at any value of the coupling, at least in the planar limit.

In this paper, we focus on four-point correlation functions of local gauge-invariant operators.
While two- and three-point functions in principle determine all higher-point functions via the
conformal operator product expansion, actually resumming the expansion to recover explicit
higher-point functions is very difficult in practice. Conversely, four-point (and higher-point)
functions contain a wealth of information on structure constants and scaling dimensions, and
are thus very interesting physical objects in their own right. It therefore remains desirable to
devise efficient methods for computing higher-point correlators directly. Here, our primary goal
will be to find the right language and variables for making use of the integrable structure for
general correlation functions.

A key point of the integrability-based solution to the spectral problem is the organization of
local operators in terms of excitations above a “vacuum” BPS operator tr[ZJ ], where Z is a
complex scalar. The spectrum of anomalous scaling dimensions is then encoded in the eigenstates
and eigenvalues of the dilatation generator, which are governed by the Beisert scattering matrix
among the set of excitations (scalars, fermions, and covariant derivatives) above the tr[ZJ ]
vacuum [6]. In particular, the scattering matrix is, up to its overall phase, completely constrained
by the psu(2|2)2 subalgebra of the superconformal symmetry that preserves the vacuum.

For higher-point functions, it is again desirable to consider operators that preserve as much
symmetry as possible. The familiar BPS operators tr[ZJ ] suggest themselves. But when
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considering more than two insertions of such operators, most of the symmetry is broken, because
the psu(2|2)2 symmetries of the individual insertions are not aligned. The situation can be
improved by considering slightly generalized BPS operators, which are related to tr[ZJ ] by an
internal rotation. Namely, consider tr[φJ ], where φ = X · Φ and X ∈ C6, X2 = 0 specifies a
complex, lightlike direction in the internal space of scalar fields ΦI , I = 1, . . . , 6. By judiciously
choosing the vector X as a function of the spacetime coordinate, a substantial part of the
superconformal symmetry can be preserved. This has been noted before [7,8]. Namely, after
choosing a vector X at the spacetime origin x = 0, define X(x) throughout spacetime via a
twisted translation generator P̌ ∼ P−R that is a combination of the conventional spacetime
translationP and an internal rotationR. This twisted translation is associated to a whole twisted
conformal symmetry algebra ŝo(2, 4), which is a diagonal combination of the original conformal
algebra so(2, 4) and the internal so(6) R-symmetry. The twisted fields were first considered in
the context of topological twistings of N = 4 super Yang–Mills theory [7]. Later, correlation
functions of single-trace operators of a single twisted complex scalar φ were considered [8], and
found to (i) have trivial spacetime dependence, and (ii) be protected from quantum corrections.
These properties make such operators good candidates for an integrability-based description in
terms of excitations on top of vacuum operators tr[φ . . . φ]. In fact, the hexagon form factor
proposal for three-point functions [4] relies on an excitation picture around vacuum operators of
this type.

In this paper, we consider four-point functions of twisted single-trace operators with few
excitations at the one-loop level. For the time being, the analysis is restricted to zero-momentum
excitations. While this means that the four operators are still half-BPS, their four-point functions
are not protected. We extract the one-loop correlation functions of such operators from [9],
and analyze their OPE decomposition. In the double-coincidence limit |x12|, |x34| � |x23|, the
one-loop correlator displays a logarithmic singularity, which is generated by the anomalous
dimensions of the internal states in the OPE. We show how this leading term is captured by
states with a minimal number of excitations on top of the twisted vacuum. For “extremal” OPE
contributions (which stem from internal states with the maximal R-charge compatible with the
external operators), it is known that there is a 1/N2

c mixing with double-trace operators. We
find that the contribution of double-trace operators can be neglected by simply projecting out
specific extremal states in the OPE.
Note: While this work was being completed, I learned of the very interesting parallel paper [10],
which also discusses the OPE of four BPS operators from an integrability perspective. While
this work considers operators of any charge, [10] focuses on operators with large charges and
the relation to the hexagon form factor approach.

2 Twisted States
We start by reviewing essential parts of [7], [8], and [11]. Consider a general complex linear
combination X · Φ = XIΦ

I of the six real scalar fields ΦI . The propagator for two such fields
equals (neglecting color factors)

〈
X1 · Φ(x1)X2 · Φ(x2)

〉
= X1 ·X2

(2π)2 x2
12
. (2.1)

Correlation functions of single-trace operators are difficult to compute in general, and have
a complicated dependence on the spacetime coordinates as well as the coupling constant,
unless they obey extra relations due to supersymmetry. A prominent case are half-BPS chiral
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primary operators tr[(X · Φ)J ] with X2 = 0. Every such operator preserves 24 supersymmetries.
Therefore any two such operators share 16 supersymmetries, and any three such operators
share 8 supersymmetries. This is the reason why two-point and three-point functions of such
half-BPS operators are protected from quantum corrections. The same is generically not true
for correlation functions of four or more such operators, which generically do not share any
supersymmetry. However, making the judicious, spacetime-dependent choice

X = Xφ(xµ) ≡
√

2
(
ixµ, 1

2(1 + x2), i2(1− x2)
)
, (2.2)

φ(x) ≡ Xφ(x) · Φ(x) (2.3)

has two important consequences. Firstly, Xφ(x1) ·Xφ(x2) = x2
12, therefore the free propagator

of two fields φ becomes constant,

〈φ(x1)φ(x2)〉 = 1
(2π)2 . (2.4)

Hence, in the free field theory, correlation functions of any number of operators

Q(x) ≡ tr[φ(x)J ] (2.5)

are completely spacetime-independent and just evaluate to constants. Secondly, all correlation
functions 〈

Q(x1) . . .Q(xn)
〉

(2.6)

are protected from quantum corrections, for any number of operators Q(x). The reason is that
all operators Q(x) share two universal supercharges Q±, and the perturbative action of N = 4
sYM is Q±-exact [7, 8]. We will refer to the operators (2.5) as vacuum operators.

The field φ(x) can be defined via a translation that is twisted with an appropriate R-symmetry
generator. In fact, the field (2.3) was first considered in the context of topological twists of
N = 4 sYM [7]. The twisted translation is associated with a whole twisted conformal symmetry
algebra ŝo(2, 4), which is a diagonal combination of the original conformal algebra so(2, 4) and
the internal so(6) R-symmetry. Denoting the generators of the original conformal symmetry by
{Pµ,Kµ,Lµν ,D}, the twisted conformal symmetry generators read1

P̂µ = Pµ + Rµ+ , L̂µν = Lµν + Rµν ,

K̂µ = Kµ + Rµ− , D̂ = D + R . (2.7)

Here, the R-symmetry algebra has been split into an so(4) with generators Rµν and a remainder
with generators Rµ± ≡ Rµ6 ± iRµ5, and R ≡ −iR56. Starting with φ(0) = (Φ5 + iΦ6)/

√
2 ≡ Z

at the origin, φ(x) throughout spacetime is obtained by

φ(x) ≡ exp(xµ(Pµ −Rµ+)) · Z(0) = exp(−xµRµ+) · Z(x) . (2.8)

The splitting is chosen such that Rµ− annihilates φ(0) = Z at the origin, and R measures the
R-charge along the direction of Z,

R · Z = −Z , R · Z̄ = +Z̄ , [R,Rµ±] = ±Rµ± . (2.9)
1A similar twisting was used in [12] to construct a chiral algebra of operators living in a two-dimensional

hyperplane of the four-dimensional Minkowski spacetime. The construction of [12] involves passing to the
cohomology of a suitable supercharge, upon which all operators transform trivially under a twisted conformal
algebra. On the contrary, here we study fully four-dimensional operators that transform non-trivially under the
twisted conformal symmetry.
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Together with φ, the remainder of the six scalars ΦI naturally organizes into a multiplet
{φ, Vµ, B} of the twisted conformal symmetry, with

Vµ ≡ XVµ · Φ , XVµ ≡ 1√
2(∂µXφ) = (ieµ, xµ,−ixµ) , (2.10)

B ≡ XB · Φ , XB ≡ 1
4
√

2(∂2Xφ) = (0, 0, 0, 0, 1,−i) . (2.11)

Just as φ(x), the fields Vµ(x) and B(x) throughout spacetime are obtained by the same twisted
translation (2.8) applied to Vµ(0) and B(0) at the origin. The latter reduce to

Vµ(0) = iΦµ , B(0) = Φ5 − iΦ6 =
√

2 Z̄ . (2.12)

The twisted translation is defined such that, when acting on the twisted fields φ, Vµ, and B, the
generators of the twisted conformal algebra ŝo(2, 4) take the standard realization

P̂µ = ∂µ ,

L̂µν = (xµ∂ν − xν∂µ) + Σ̂µν ,

D̂ = xµ∂µ + ∆̂ ,

K̂µ = 2xµx · ∂ − x2∂µ − 2xµ∆̂+ 2xνΣµν + κ̂µ , (2.13)

where the derivatives only act on the fields ΦI , and not on the explicit coordinates xµ in the
definition of the fields φ, Vµ, and B. The generators ∆̂, Σ̂µν and κ̂µ specify the transformation
properties of the fields at the origin,

[∆̂, φ] = 0 , [Σ̂µν , φ] = 0 , [κ̂µ, φ] = 0 ,
[∆̂, Vρ] = Vρ , [Σ̂µν , Vρ] = ηρµVν − ηρνVµ , [κ̂µ, Vρ] = −ηµρ

√
2φ ,

[∆̂, B] = 2B , [Σ̂µν , B] = 0 , [κ̂µ, B] = −2Vρ . (2.14)

That is φ is a scalar with dimension zero, Vµ is a vector with dimension one, and B is a scalar
with dimension two under the twisted conformal symmetry. More generally, by construction,
the twisted scaling dimension of any operator is the sum of the untwisted scaling dimenion and
the R-charge in the Z direction. What is nonstandard is that the special conformal generator K̂
acts non-trivially at the origin, even though the fields Vρ and B are not conformal descendants.2
Due to the non-trivial action of κ̂, the representation of the little group (with generators Σ̂µν ,
∆̂, and κ̂µ) is not further reducible, even though φ, Vµ, and B have different scaling dimensions.
This affects the conformal Ward identities for correlation functions, and hence correlators of
twisted fields generically do not have the standard form (that follows from the Ward identities
for κ̂µ = 0). In particular, operators with different twisted dimensions may have non-vanishing
two-point functions.

The twisting is explained in detail in [7, 8]. Here, we only note that under the twisted
conformal symmetry, the fermion fields organize into vectors ψ(1)

µ , ψ̃(1)
µ , two-form fields χ±,(2)

µν ,
and scalars η(2), η̃(2), where the superscript numbers denote the twisted scaling dimensions. The
gauge fields are R-symmetry singlets and thus not affected by the twisting. The twisted matter
fields {φ, Vµ, B, ψµ, ψ̃µ, χ±µν , η, η̃} transform covariantly under fifteen combinations Qµ, Sµ, Qµν ,
and QD of the fermionic generators of psu(2, 2|4). Commuting the latter with the singlets Q±
that preserve the vacuum field φ yields the twisted conformal algebra,

[Q±,Qµ] = P̂µ , [Q±,Qµν ] = L̂µν ,

[Q±,Sµ] = K̂µ , [Q±,QD] = D̂ . (2.15)
2In the classification of representations of the conformal algebra by Mack and Salam [13], the representa-

tion (2.14) belongs to class Ib (κµ 6= 0 but nilpotent).
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The fermionic generators {Qµ,Sµ,Qµν ,QD} and their bosonic counterparts {P̂µ, K̂µ, L̂µν , D̂}
combine into the strange superalgebra q(4) [14].

Besides the vacuum operators Q, we will also consider operators with zero-momentum
excitations

QJµ = tr[VµφJ−1] , QJ(µν) =
J−2∑
j=1

tr[V(µφ
jVν)φ

J−2−j] , . . . , (2.16)

and two-magnon operators

OJp = 1√
J + 3

[
1
2

J∑
j=0

cos(p(j + 3/2)) tr[VµφjV µφJ−j] +
√

2 cos(p/2) tr[BφJ+1]
]
,

OJ,V Vp,(µν) = 1√
J + 3

J+2∑
j=0

cos(p(j + 1/2)) tr[V(µφ
jVν)φ

J+2−j] ,

OJ,∂∂p = 1√
J + 3

1
4

J+2∑
j=0

cos(p(j + 1/2)) tr[φ,µφjφ,µφJ+2−j] + . . . ,

OJ,∂∂p,(µν) = 1√
J + 3

[
1
2

J∑
j=0

cos(p(j + 3/2)) tr[φ,(µφjφ,ν)φ
J−j] + 1

2 cos(p/2) tr[φ,(µν)φ
J+1]

]
,

OJ,V ∂,1p,µν = −i√
J + 3

[
1√
2

J∑
j=0

cos(p(j + 3/2)) tr[Vµφjφ,νφJ−j] +
√

2 cos(p/2) tr[Vµ,νφJ+1] + . . .

]
,

OJ,V ∂,2p,µν = −i√
J + 3

1√
2

J+2∑
j=0

cos(p(j + 1/2)) tr[Vµφjφ,νφJ+2−j] + . . . . (2.17)

of charge J ≥ 0. Here, φ,µ = Xφ ·DµΦ and Vµ,ν = XVµ ·DνΦ are the twisted combinations of
covariant derivative fields DµΦ

I . These two-magnon states are simply twisted cousins of the
two-magnon states listed in Appendix B of [11]. They all belong to a superconformal multiplet
whose primary is the operator OJp . The two magnons carry opposite momenta p and −p, with

p ∈ 2πn
J + 3 , 1 ≤ n ≤ bJ+2

2 c . (2.18)

Since the twist amounts to a (position-dependent) R-symmetry rotation, and the one-loop
dilatation operator commutes with the R-symmetry, all eigenstates remain eigenstates, with
unmodified eigenvalues, and all states with different eigenvalues remain orthogonal.3 In other
words, the anomalous dimension is unaffected by the twisting. The two-magnon states therefore
have twisted dimensions

∆̂(p) = 2 + λ∆1(p) +O(λ2) , ∆1(p) = 1
π2 sin2(p/2) , (2.19)

with the familiar value ∆1 of the anomalous dimension. The ellipses in (2.17) stand for terms
with fermion fields and non-linear corrections which do not contribute to the free OPE coefficients.
Instead of the charge J , we will sometimes refer to the “length” L, which equals the number of
fields within a single-trace operator. For the two-magnon states above, the relation between
charge and length are:

OJp ,O
J,∂∂
p,(µν),O

J,V ∂,1
p,µν : L = J + 2 , OJ,V Vp,(µν),O

J,∂∂
p ,OJ,V ∂,2p,µν : L = J + 4 . (2.20)

3For states with identical anomalous dimension, orthogonality may not be preserved by the twisting. In fact,
states with scalar zero-momentum excitations Vµ or B, which we will consider below, are not orthogonal to the
vacuum operators Q, even though they are orthogonal before twisting.

5



3 Two-Point and Three-Point Correlators
In the following, we will compute two-point and three-point correlators of vacuum operators,
operators with zero-momentum excitations, and two-magnon operators, at leading order in the
Yang–Mills coupling gYM. The three-point correlators yield the structure constants that will
later be needed for the OPE analysis of four-point correlators. Here and in everything that
follows, we omit all gauge group factors as well as all factors of 1/(2π)2 from propagators (2.4).
Keeping this in mind, the classical contractions for the twisted fields are:

〈φ(x1)φ(x2)〉 = 1 , 〈Vµ(x1)Vν(x2)〉 = −ηµν
x2

12
, 〈B(x1)B(x2)〉 = 0 ,

〈φ(x1)Vµ(x2)〉 = −
√

2 x12,µ

x2
12

, 〈φ(x1)B(x2)〉 = −
√

2 1
x2

12
, 〈Vµ(x1)B(x2)〉 = 0 . (3.1)

The contractions for twisted fields with twisted versions of derivative fields similarly follow by
adding the twisting factor X1 ·X2 to the untwisted propagators, for instance〈

(X1 · Φ(x1)) (X2 ·DµΦ(x2))
〉

= 2x12,µ

x2
12

(X1 ·X2) . (3.2)

Two-Point Functions. For non-zero momenta, the two-magnon states (2.17) are annihilated
by the special conformal generator κ̂µ (2.14). They are thus proper conformal primaries of the
twisted conformal algebra. Hence their two-point functions take the standard form as dictated
by conformal symmetry:4 〈

OJp,1OJq,2
〉

=
〈
OJ,∂∂p,1 O

J,∂∂
q,2

〉
= δp,q
x4

12〈
OJ,V Vp,(µν),1O

J,V V
q,(ρσ),2

〉
=
〈
OJ,∂∂p,(µν),1O

J,∂∂
q,(ρσ),2

〉
= δp,q
x4

12
I12,ρ(µI12,ν)σ〈

OJ,V ∂,1p,µν,1 O
J,V ∂,1
q,ρσ,2

〉
=
〈
OJ,V ∂,2p,µν,1 O

J,V ∂,2
q,ρσ,2

〉
= δp,q
x4

12
I12,µρI12,νσ (3.3)

Here,
Iij,αβ ≡ Iαβ(xij) , Iαβ(x) = ηαβ −

2xαxβ
x2 (3.4)

is the inversion tensor, and parentheses denote traceless symmetrization with unit weight:

x(µν) ≡ 1
2xµν + 1

2xνµ − ηµνx
ρ
ρ . (3.5)

All other two-point functions among two-magnon states with non-zero momenta vanish.

Two Vacua. By explicit computation, one finds that the three-point functions of two-magnon
states (with non-zero momentum) and two vacuum states of the same weight are:

〈
OJp,1Qk2Qk3

〉
=
〈
OJ,∂∂p,1 Qk2Qk3

〉
= CJp k2 x2

23
x2

12x
2
13
,〈

OJ,V Vp,(µν),1Q
k
2Qk3

〉
=
〈
OJ,∂∂p,(µν),1Q

k
2Qk3

〉
= CJp 2k2 Y(µ,12,13Yν),12,13 ,〈

OJ,V ∂,1p,µν,1 Qk2Qk3
〉

=
〈
OJ,V ∂,2p,µν,1 Qk2Qk3

〉
= CJp 2ik2 Yµ,12,13Yν,12,13 , (3.6)

4The two-point functions for the operators OJ,V ∂,1 and OJ,V ∂,2 get non-trivial contributions from fermion
terms not displayed in (2.17). For OJ,V ∂,1p , reducing to the bosonic terms gives

(
1/2 + (1 + cos(p))/(J + 3)

)
times

the full two-point function. For OJ,V ∂,2, reducing to the bosonic terms gives 1/2 of the full two-point function.
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with
Yα(x, y) = xα

x2 −
yα

y2 , Yα,ij,kl = Yα(xij, xkl) . (3.7)

In this case, all three operators are proper conformal primaries (they are annihilated by κ̂µ), and
hence these correlation functions are of the standard form as dictated by conformal symmetry.
Here, the coefficient depending on the charge and momentum is

CJp = 1√
J + 3

−e−ip/2

(1 + ei(J+2)p/2)2 . (3.8)

The two-magnon states (2.17) are all mutually orthogonal as well as orthogonal to the vacuum
states and all their descendants. Hence, the coefficients of the two-magnon states in the OPE of
two vacuum operators can simply be extracted from the three- and two-point functions,〈

O1(x1)O2(x2)O3(x3)
〉

x2→x3−−−−→ C1
23(x23)

〈
O1(x1)O1(x2)

〉
+ . . . , (3.9)

where the ellipsis stands for higher-order terms in x23 that stem from descendants of O1. The
resulting OPE coefficients for two vacuum operators read

CJ,p
k;k = CJ,p,∂∂

k;k = CJp k2x2
12 ,

C
J,p,V V,(µν)
k;k = C

J,p,∂∂,(µν)
k;k = CJp 2k2x

(µ
12x

ν)
12 ,

CJ,p,V ∂,1,µν
k;k = CJ,p,V ∂,2,µν

k;k = CJp 2ik2xµ12x
ν
12 . (3.10)

One Excitation. Zero-momentum one-excitation operators transform non-trivially under κ̂µ,
hence they are not proper conformal primaries, and their correlation functions will not be of the
familiar form as dictated by conformal symmetry. By direct computation, one finds the following
three-point functions of two-magnon states (with non-zero momentum), a one-excitation BPS
state Qkρ and a vacuum state Qk:

〈
OJp,1Qkρ,2Qk3

〉
= CJp

√
2k x2

23
x2

12x
2
13

(
1
2Y ρ,21,23 − Yρ,21,23

)
,

〈
OJ,V Vp,(µν),1Q

k
ρ,2Qk3

〉
= CJp

√
2k
(

Y ρ,21,23Y(µ,12,13Yν),12,13 −
2
x2

12
I12,ρ(µYν),12,13

)
,

〈
OJ,∂∂p,1 Qkρ,2Qk3

〉
= CJp

√
2k x2

23
x2

12x
2
13

1
2Y ρ,21,23 ,〈

OJ,∂∂p,(µν),1Q
k
ρ,2Qk3

〉
= CJp

√
2kY ρ,21,23Y(µ,12,13Yν),12,13 ,〈

OJ,V ∂,1p,µν,1 Qkρ,2Qk3
〉

= CJp
√

2ik
(

Y ρ,21,23Yµ,12,13Yν,12,13 −
1
x2

12
I12,ρµYν,12,13

)
,

〈
OJ,V ∂,2p,µν,1 Qkρ,2Qk3

〉
= CJp

√
2ik

(
Y ρ,21,23Yµ,12,13Yν,12,13 −

1
x2

12
I12,ρµYν,12,13

)
. (3.11)

Here,
Y ρ,ij,ik =

(
LYρ,ij,ik + 2kx

ρ
ik

x2
ik

)
. (3.12)

The resulting OPE coefficients are

CJ,p
k,ρ;k = CJp

√
2k(2k − L+ 2)1

2x12,ρ ,

C
J,p,V V,(µν)
k,ρ;k = CJp

√
2k
((2k − L)x(µ

12x
ν)
12x12,ρ

x2
12

+ 2x(µ
12η

ν)
ρ

)
,
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CJ,p,∂∂
k,ρ;k = CJp

√
2k(2k − L)1

2x12,ρ ,

C
J,p,∂∂,(µν)
k,ρ;k = CJp

√
2k(2k − L)x

(µ
12x

ν)
12x12,ρ

x2
12

,

CJ,p,V ∂,1,µν
k,ρ;k = CJp

√
2ikxν12

((2k − L)xµ12x12,ρ

x2
12

+ ηµρ

)
,

CJ,p,V ∂,2,µν
k,ρ;k = CJp

√
2ikxν12

((2k − L)xµ12x12,ρ

x2
12

+ ηµρ

)
. (3.13)

Two Excitations. The three-point functions of two-magnon states (with non-zero momentum)
and two one-excitation BPS states read:

〈
OJp,1Qkρ,2Qkσ,3

〉
= CJp

x2
23

x2
12x

2
13

[(
1
2Y ρ,21,23Y σ,31,32 −

2k − L
2x2

23
I23,ρσ

)

− Y ρ,21,23Yσ,31,32 − Yρ,21,23Y σ,31,32 −
I12,ρµI13

µ
σ

x2
23

]
,

〈
OJ,V Vp,(µν),1Q

k
ρ,2Qkσ,3

〉
= CJp

[(
Y ρ,21,23Y σ,31,32 −

2k − L
x2

23
I23,ρσ

)
Y(µ,12,13Yν),12,13

− Y ρ,21,23
2
x2

13
I13,σ(µYν),13,12 −

2
x2

12
I12,ρ(µYν),12,13Y σ,31,32 −

2I12,ρ(µI13,ν)σ

x2
12x

2
13

]
,

〈
OJ,∂∂p,1 Qkρ,2Qkσ,3

〉
= CJp

x2
23

x2
12x

2
13

(
1
2Y ρ,21,23Y σ,31,32 −

2k − L
2x2

23
I23,ρσ

)
,

〈
OJ,∂∂p,(µν),1Q

k
ρ,2Qkσ,3

〉
= CJp

(
Y ρ,21,23Y σ,31,32 −

2k − L
x2

23
I23,ρσ

)
Y(µ,12,13Yν),12,13 ,

〈
OJ,V ∂,1p,µν,1 Qkρ,2Qkσ,3

〉
= CJp i

[(
Y ρ,21,23Y σ,31,32 −

2k − L
x2

23
I23,ρσ

)
Yµ,12,13Yν,12,13

− Y ρ,21,23
1
x2

13
I13,σµYν,13,12 −

1
x2

12
I12,ρµYν,12,13Y σ,31,32

]
,

〈
OJ,V ∂,2p,µν,1 Qkρ,2Qkσ,3

〉
= CJp i

[(
Y ρ,21,23Y σ,31,32 −

2k − L
x2

23
I23,ρσ

)
Yµ,12,13Yν,12,13

− Y ρ,21,23
1
x2

13
I13,σµYν,13,12 −

1
x2

12
I12,ρµYν,12,13Y σ,31,32

]
. (3.14)

The resulting OPE coefficients are

CJ,p
k,ρ;k,σ = −CJp

(2k − L+ 2)
2

(
Iρσ,12 + 2x12,ρx12,σ

x2
12

)
,

C
J,p,V V,(µν)
k,ρ;k,σ = −CJp

(
(2k − L)x

(µ
12
x2

12

(
2
(
x12,ση

ν)
ρ + x12,ρη

ν)
σ

)
+ x

ν)
12Iρσ,12

)
+ 2η(µ

ρ η
ν)
σ

)
,

CJ,p,∂∂
k,ρ;k,σ = −CJp

(2k − L)
2 Iρσ,12 ,

C
J,p,∂∂,(µν)
k,ρ;k,σ = −CJp (2k − L)x

(µ
12x

ν)
12

x2
12

Iρσ,12 ,
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π/2 π
p

0

1

Figure 1: The two branches of the OPE coefficient function CJp , here displayed for
J = 42. On the lower branch, p is a multiple of 4π/(J+3), and therefore CJp ∼ (J+3)−1/2.
On the upper branch, CJp becomes large for small p, due to its small denominator. For
the smallest two values p = 2π{1, 3}/(J + 3) on the upper branch, the coefficient is off
the chart at CJp ≈ {30.6, 3.41}.

CJ,p,V ∂,1,µν
k,ρ;k,σ = −CJp i(2k − L)x

ν
12
x2

12

((
x12,ση

µ
ρ + x12,ρη

µ
σ

)
+ xµ12Iρσ,12

)
,

CJ,p,V ∂,2,µν
k,ρ;k,σ = −CJp i(2k − L)x

ν
12
x2

12

((
x12,ση

µ
ρ + x12,ρη

µ
σ

)
+ xµ12Iρσ,12

)
, (3.15)

where
Iρσ(x) ≡ Iρσ(x) + (2k − L)xρxσ

x2 . (3.16)

Even though this will not be needed in the subsequent analysis, we note that for two zero-
momentum excitations on one of the two external half-BPS states, the OPE coefficient of the
two-magnon operator OJp reads

CJ,p
k,(ρσ);k = CJp k(2k − L+ 2)(2k − L)x12,(ρx12,σ)

x2
12

. (3.17)

The Coefficient Function. Using the on-shell condition (2.18), the OPE coefficent func-
tion (3.8) can be rewritten as

CJp = −1
2
√
J + 3

(
cos(p/2) + eip(J+3)/2

) . (3.18)

It has a few interesting properties. First of all, because p is a multiple of 2π/(J + 3), the
term eip(J+3)/2 alternates between −1 and +1 when p is varied. The value +1 is assumed
when p is a multiple of 4π/(J + 3). For fixed J , the coefficient CJp therefore has two branches
(see Figure 1). Since p takes values between 0 and π, the coefficient is small on the “+” branch,
CJp,+ ≈ −1/4

√
J + 3. On the “−” branch, CJp becomes large when p is small, CJp,− ≈ 4/

√
J + 3 p2.

In fact, for large values of J , the smallest momentum p = 2π/(J + 3) is strongly dominating
(see Figure 2). The reason for the alternating behavior of CJp is that the coefficient of the “local”
two-excitation operator

tr[Vµ, φ, . . . , φ, Vν , φ, . . . , φ] (3.19)
in the OPE of two vacuum (or zero-momentum) operators has a part that is independent of
the distance between the two excitations, and a part that is proportional to that distance. In
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Figure 2: The coefficient function CJp . The plot on the left runs over all admissible
momenta p for J ≤ 42. Every dot stands for one two-magnon supermultiplet. The “−”
branch is plotted in red, the “+” branch is plotted in blue. For each J , the smallest
momentum p = 2π/(J+3) dominates. The plot on the right shows the two largest values
of the coefficient CJp on the dominant “−” branch (p = 2π/(J + 3) and p = 6π/(J + 3)),
for J ≤ 42.

the symmetric traceless two-magnon operator (2.17), the coefficients of these local operators (i)
sum to zero, and (ii) depending on the momentum p, alternate between (almost) odd and even
functions of the distance between the two excitations. Hence, the distance-independent part of
the OPE coefficient drops out, while the linear part is alternatingly enhanced/suppressed. The
same applies to the other types of two-magnon states.

4 Four-Point Correlators
The one-loop correlator of four chiral primary operators Pi = tr[(Xi · Φ)k](xi) of weight k, for
general orientations Xi with X2

i = 0, is given by [15,9]

〈P1P2P3P4〉one-loop = λ

8π2 I
(1)(s, t) k4R

∑
j,`,m≥0

j+`+m=k−2

X jY`Zm , (4.1)

where
X = X1·X2 X3·X4

x2
12 x

2
34

, Y = X1·X3 X2·X4

x2
13 x

2
24

, Z = X1·X4 X2·X3

x2
14 x

2
23

(4.2)

are the three possible combinations of propagator structures for four-points,

R = sX 2 + Y2 + tZ2 + (s− t− 1)YZ + (1− s− t)XZ + (t− s− 1)XY (4.3)

is a universal prefactor due to supersymmetry,

s = x2
12 x

2
34

x2
13 x

2
24
, t = x2

14 x
2
23

x2
13 x

2
24

(4.4)

are the conformally invariant cross-ratios, and

I(1)(s, t) = x2
13 x

2
24

2π2

∫ d4x5

x2
15 x

2
25 x

2
35 x

2
45

(4.5)
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is the conformal one-loop scalar box integral, which has been computed in [16] and is most
conveniently written as [17]

I(1)(s, t) = − 1
z − z̄

(
2
(
Li2(z)− Li2(z̄)

)
−
(
Li1(z)− Li1(z̄)

)
log s

)
, (4.6)

where the cross ratios are parametrized in the standard way

s = zz̄ , t = (1 + z)(1 + z̄) . (4.7)

We consider Euclidean signature, which means that z and z̄ are mutually complex conjugate.

4.1 Twisted Correlators
The vacuum operators Q are deliberately oriented such that Xi ·Xj = Xφ ·Xφ = x2

ij , which sets
X = Y = Z = 1, and therefore R = 0, in accordance with the fact that correlation functions of
vacuum operators are protected:

〈Q1Q2Q3Q4〉one-loop = 0 . (4.8)

Adding zero-momentum excitations Vµ on top of the vacuum φ can be achieved by setting
Xi = Xφ + εµiX

Vµ . To leading order in εi, the condition Xi ·Xi = 0 is still satisfied, and the
four-point correlator expands to

〈P1P2P3P4〉 = 〈Q1Q2Q3Q4〉+ εµ1k〈Qµ,1Q2Q3Q4〉+ · · ·+ εµ1ε
ν
2k

2〈Qµ,1Qν,2Q3Q4〉
+ · · ·+ εµ1ε

ν
2ε
ρ
3k

3〈Qµ,1Qν,2Qρ,3Q4〉+ · · ·+ εµ1ε
ν
2ε
ρ
3ε
σ
4k

4〈Qµ,1Qν,2Qρ,3Qσ,4〉+ . . . (4.9)

The dependence on εµi enters the correlator (4.1) only through the propagator structures X , Y ,
and Z, which expand to

X =
(

1 +
√

2(ε1 − ε2) · x12 − ε1 · ε2

x2
12

)(
1 +
√

2(ε3 − ε4) · x34 − ε3 · ε4

x2
34

)
,

Y =
(

1 +
√

2(ε1 − ε3) · x13 − ε1 · ε3

x2
13

)(
1 +
√

2(ε2 − ε4) · x24 − ε2 · ε4

x2
24

)
,

Z =
(

1 +
√

2(ε2 − ε3) · x23 − ε2 · ε3

x2
23

)(
1 +
√

2(ε1 − ε4) · x14 − ε1 · ε4

x2
14

)
. (4.10)

We will denote the expansion coefficients of the universal prefactor R by Ri,j,...:

R =
4∑

i,j=1
εiεjRi,j +

4∑
i,j,k=1

εiεjεkRi,j,k + ε1ε2ε3ε4R1,2,3,4 + . . . . (4.11)

The expansion only starts at quadratic order in the parameters εi, hence also correlators with a
single excitation are protected:

〈Qµ,1Q2Q3Q4〉one-loop = 0 . (4.12)

At quadratic order, all dependence on the parameters εi is absorbed by the prefactor R.
Therefore, the sum over X jY`Zm trivially evaluates to k(k − 1)/2, and one finds for the
correlators with two excitations:

〈Qµ,1Qν,2Q3Q4〉one-loop = λ

8π2 I
(1)(s, t) k

3(k − 1)
2 R1,2

µν , (4.13)

〈Qµ,1Q2Q3Qσ,4〉one-loop = λ

8π2 I
(1)(s, t) k

3(k − 1)
2 R1,4

µσ , etc. , (4.14)
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where

R1,2,µν = 4x
µ
13x

ν
24

x2
13x

2
24
− 4sx

µ
12x

ν
12

x4
12

+ 4tx
µ
14x

ν
23

x2
14x

2
23

+ 2(−1 + s+ t)
(
xν12x

µ
14

x2
12x

2
14
− xµ12x

ν
23

x2
12x

2
23

)

+ 2(1 + s− t)
(
xν12x

µ
13

x2
12x

2
13
− xµ12x

ν
24

x2
12x

2
24

)
+ 2(−1 + s− t)

(
xµ13x

ν
23

x2
13x

2
23

+ xµ14x
ν
24

x2
14x

2
24

)
, (4.15)

and all other Ri,j are given by similar expressions (see Appendix A).
The correlators 〈Qµ,1Qν,2Q3Qσ,4〉 and 〈Qµ,1Qν,2Qρ,3Qσ,4〉 with three or four excitations are

a bit more complicated to obtain than the previous examples. Upon inserting (4.10) into the
general formula (4.1), we need to extract the coefficients of cubic and quartic monomials in
the parameters εi. Since the universal prefactor R starts at quadratic order, we also need
to expand the sum over propagator structures to quadratic order. Below, we will consider
the double-coincidence limit |x12|, |x34| � |x23|. In that limit, the expansion of the sum of
propagator structures reads:

∑
j,`,m≥0

j+`+m=k−2

X jY`Zm = k(k − 1)
2 + k(k − 1)(k − 2)

6

√2
(

(ε1 − ε2) · x12

x2
12

+ (ε3 − ε4) · x34

x2
34

)

+ k − 1
2

(
(ε1 − ε2) · x12

x2
12

+ (ε3 − ε4) · x34

x2
34

)2

− ε1 · I(x12) · ε2

x2
12

− ε3 · I(x34) · ε4

x2
34


+O(ε2

i ) +O(εiεjεk) . (4.16)

Combining the relevant terms with the coefficients of the prefactor R, we find for the one-loop
correlator with three excitations, in the double-coincidence limit:

〈Qµ,1Qν,2Q3Qσ,4〉one-loop = λ

8π2 I
(1)(s, t) k

2(k − 1)
2 ·

·
(
R1,2,4
µνσ +

√
2(k − 2)

3

(
x12,µ

x2
12
R2,4
νσ −

x12,ν

x2
12
R1,4
µσ + x34,σ

x2
34
R1,2
µν

))
, (4.17)

and for the one-loop correlator with four excitations:

〈Qµ,1Qν,2Qρ,3Qσ,4〉one-loop = λ

8π2 I
(1)(s, t) k(k − 1)

2 ·

·

R1,2,3,4
µνρσ + (k − 2)

3

√2
(
x12,µ

x2
12
R2,3,4
νρσ −

x12,ν

x2
12
R1,3,4
µρσ + x34,σ

x2
34
R1,2,3
µνρ

)

+ (k − 1)
(
−x12,µx12,ν

x4
12

R3,4
ρσ + x12,µx34,ρ

x2
12x

2
34
R2,4
νσ −

x12,µx34,σ

x2
12x

2
34
R2,3
νρ −

x12,νx34,ρ

x2
12x

2
34
R1,4
µσ

+ x12,νx34,σ

x2
12x

2
34
R1,3
µρ −

x34,ρx34,σ

x4
12

R1,2
µν

)
− I12,µν

x2
12
R3,4
ρσ −

I34,ρσ

x2
34
R1,2
µν

 . (4.18)

The lenghthier expressions for the coefficients Ri,j,k and R1,2,3,4 are provided in Appendix A.

5 OPE Analysis
We want to compute the leading contribution to the OPE expansion of various one-loop four-point
correlators. That is, we consider the double coincidence limit (OPE limit) |x12|, |x34| � |x23|, or
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equivalently s→ 0, t→ 1. In terms of the variables z, z̄, the limit is attained for |z| → 0, upon
which the one-loop box integral (4.6) expands to

I(1)(s, t) = log(s)− 2 +O(
√
s) . (5.1)

In the following, we will focus on the leading term log(s) only. In the OPE decomposition, this
term is completely captured by the anomalous dimensions of the internal operators: For an
operator with scaling dimension

∆ = ∆0 + λ∆1 +O(λ2) , (5.2)

the two-point function expands to

1
x2∆ = 1

x2∆0
(1− 2λ∆1 log |x|) +O(λ2) . (5.3)

Considering the OPE sum of any four-point correlator,〈
O1(x1)O2(x2)O3(x3)O4(x4)

〉
=
∑
M

CM
12 (x12) 〈OM(x2)OM(x3)〉CM

34 (x34) , (5.4)

it is clear that, at one-loop order, every operator OM with a non-vanishing anomalous dimension
will contribute a log |x23| term. Now, the double coincidence limit is equivalent to letting
|x23| → ∞, which implies the identification

log(s) = −4 log |x23| . (5.5)

Moreover, since 〈OM (x2)OM (x3)〉 ∼ |x23|−∆0 , the leading term in the OPE sum in the |x23| → ∞
limit stems from operators OM with lowest classical dimension ∆0. Combining (5.3), (5.4),
and (5.5), one finds that the leading log(s) part of any one-loop four-point correlator is given by
〈
O1(x1)O2(x2)O3(x3)O4(x4)

〉one−loop
=

λ

2 log(s)
∑
M

∆M,1
(
CM

12 (x12) 〈OM(x2)OM(x3)〉CM
34 (x34)

)class.
+ . . . , (5.6)

where the sum runs over operators OM of the smallest classical dimension ∆0 that have a
non-vanishing anomalous dimension ∆1, “class.” stands for the classical part, and the ellipsis
stands for terms that are power-suppressed in s or log(s).

Specializing to operators made of the twisted fields φ(x), Vµ(x), and B(x), the operators
with lowest twisted scaling dimension and non-vanishing anomalous dimension are exactly the
two-magnon states (2.17), and therefore the sum in (5.6) runs over exactly those states. Below,
we will compute the OPE sum for several cases.

The full two-magnon supermultiplet comprises 13 types of states [11]. Four of those have
only fermionic excitations, and since we will only consider bosonic excitations on the external
states, their classical OPE coefficients will always vanish. Hence we can neglect these types of
states. Another three types of states are antisymmetric under exchange of their two excitations.
Since we will not consider antisymmetric excitations on the external states, these types of
operators can also be neglected. What remains are the six types of operators with bosonic
excitations listed in (2.17).

In the OPE expansion of four scalar operators of length k, generically all states with
lengths L = {2, . . . , 2k} contribute. Of the six types of operators in the two-magnon super-
multiplet (2.17), three types have length L = J + 2, while the other three types have length
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Correlator & Correlator Match with full Remainder Tensor structure
OPE channel expression supermultiplets from half SM from single SM

1

2 3

4
0 X 0 X

1

2 3

4
0 X (5.9) X

1

2 3

4
(4.13) X (5.14) X

1

2 3

4
(4.14) X (5.18) X

1

2 3

4
(4.17) X (5.20) X

1

2 3

4
(4.18) X (5.22) X

Table 1: Overview of results of the OPE analysis for the various four-point correlators.
Black dots stand for vacuum operators Q, white dots stand for excited operators Qµ.
Column 3 indicates the matching of the OPE sum over full two-magnon multiplets
(with 0 ≤ J ≤ 2k − 4) with the OPE limit of the known one-loop correlator (column 2).
Column 4 lists references to the spurious remainders from extremal multiplets (with
J = 2k−2). The last column indicates whether the OPE sum over a single supermultiplet
already produces the right tensor structure of the correlator.

L = J + 4. At a given length L, six types of operators contribute; they belong to two different
supermultiplets with J = L− 2 and J = L− 4. Generically, complete multiplets contribute to
the OPE. The exception is the extremal case L = 2k, where only one half of the multiplet with
J = L− 2 contributes.

In the following, we will compute the OPE sum of the right-hand side of (5.6) for several
example correlators, using the OPE coefficients obtained in Section 3. An overview of the
results is shown in Table 1. In all cases, we find that the double-coincidence limit of the
known four-point correlators (Section 4) is correctly reproduced by the OPE sum over complete
two-magnon supermultiplets. The operators of the extremal half-multiplet at J = 2k−2 = L−2
produce a spurious contribution that has to be canceled by double-trace states, on which we
comment in Section 5.7. Unless the whole four-point correlator vanishes, the spurious terms are
suppressed in the limit of large weight k.

5.1 Four Vacua
We start with the correlator of four vacuum states. It is easy to see from the two-point
functions (3.3) and OPE coefficients (3.10) that the contributions of the operators OJp , O

J,∂∂
p,(µν),

and OJ,V ∂,1p,µν as well as the contributions of the operators OJ,∂∂p , OJ,V Vp,(µν), and OJ,V ∂,2p,µν separately
sum up to zero. Hence the OPE limit vanishes at one-loop order. This is expected, since the
vacuum correlator 〈Q1Q2Q3Q4〉 is protected.

5.2 One Excitation
Next, consider the four-point correlator of one single-excitation operator with three vacuum
operators, 〈Qµ,1Q2Q3Q4〉. For every J and p, using the two-point functions (3.3) and the OPE
coefficients (3.10, 3.13), one finds that the OPE expansion can be split into a part proportional
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to (2k − L) and a remainder. All pieces proportional to (2k − L) cancel among states with
L = J + 2, and similarly among states with L = J + 4 within a single multiplet. The remaining
terms also cancel within a single multiplet, but in combinations of terms with L = J + 2
and L = J + 4. As a result, each full supermultiplet contributes zero. This is the expected
result, since the full one-excitation correlator is protected (4.12). But the extremal case L = 2k
produces a remainder, from the half-multiplet with J = L− 2 = 2k − 2. The contribution of
this remainder to the classical OPE reads∑

p

(C2k−2
p )2 23/2k3xα12

(
−I23,µβI23,αγ + 1

2ηµαηβγ
)
x−4

23 x
β
34x

γ
34 . (5.7)

Adding the one-loop anomalous dimension (2.19), the sum over momenta gives

∑
p

(C2k−2
p )2∆1(p) = L

8π2 = J + 2
8π2 = k

4π2 . (5.8)

Hence, the contributions of the extremal half-multiplets sum to

λ

2 log(s) k4
√

2π2
xα12

(
−I23,µβI23,αγ + 1

2ηµαηβγ
)
x−4

23 x
β
34x

γ
34 . (5.9)

Since the one-excitation correlator vanishes (4.12), this result needs to be canceled by another
contribution. At leading order in 1/|x23|, the supermultiplets (2.17) exhaust the single-trace
contributions, but it is well-known that extremal states with L = 2k mix with double-trace
operators. Adding the contribution of those operators should cancel the term (5.9). See the
discussion in Section 5.7 below.

5.3 Two Excitations on One Side
Combining the OPE coefficients (3.13) and (3.15) with the two-point functions (3.3), one finds
that the contributions of individual operators to the OPE of the correlator 〈Qµ,1Qν,2Q3Q4〉 are
quadratic in (2k − L). The sum of contributions within each half-multiplet (with L = J + 2
or L = J + 4) is only linear in (2k − L), the quadratic piece cancels. In the sum over each
full supermultiplet, all dependence on (2k − L) cancels (except for overall factor (CJp )2k2). The
contribution of all full supermultiplets to the OPE reads

2k−4∑
J=0
J even

∑
p

−(CJp )22k2
(
I12,µγI23

γ
αI23,νβ + x12,µx12,ν

x2
12

ηαβ + (µ↔ ν)
)
x−4

23 x
α
34x

β
34 . (5.10)

Adding the anomalous dimension, the sum over multiplets (momenta p and weights J) gives

2k−4∑
J=0
J even

∑
p

(CJp )2∆1(p) = k(k − 1)
8π2 . (5.11)

Hence the contributions of all complete two-magnon supermultiplets to the one-loop four-point
correlator sum to

λ

2 log(s)k
3(k − 1)

8π2

[
−2
(
I12,µγI23

γ
αI23,νβ + x12,µx12,ν

x2
12

ηαβ + (µ↔ ν)
)
x−4

23 x
α
34x

β
34

]
. (5.12)
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The term in the square brackets exactly equals the prefactorR1,2
µν (A.12) in the double-coincidence

limit |x12|, |x34| � |x23|. Comparing with (4.13), we therefore find that (5.12) reproduces the
limit of the known four-point correlator.

However, there is also the extremal half supermultiplet at L = 2k = J + 2, which gives the
following non-trivial contribution to the classical OPE:

∑
p

−(C2k−2
p )2k2ηµνx

2
34

x4
23

. (5.13)

Adding the anomalous dimension ∆1(p) and summing over momenta (5.8) results in the following
extra contribution:

λ

2 log(s)
(
− k3

4π2
ηµνx

2
34

x4
23

)
. (5.14)

Again, this should be canceled by contributions from the relevant double-trace operators.

5.4 One Excitation on Each Side
Next, consider the correlator 〈Qµ,1Q2Q3Qσ,4〉. The analysis parallels the previous case. Again,
each individual operator contribution to the OPE is quadratic in (2k − L), the contribution
of each half-multiplet is linear in (2k − L), and the contribution of each full supermultiplet is
independent of (2k − L). The contributions from full supermultiplets to the classical OPE give

2k−4∑
J=0
J even

∑
p

−(CJp )24k2xα12

(
1
2I23,αβ

(
I12,µγI23

γ
σ+I23,µγI34

γ
σ−2I23,µσ

)
+I23,µβI23,σα+ηµαησβ

)
x−4

23 x
β
34 .

(5.15)
Inserting the one-loop anomalous dimension and performing the state sums yields

λ

2 log(s)k
3(k − 1)

8π2

[
−4xα12

(
1
2I23,αβ

(
I12,µγI23

γ
σ + I23,µγI34

γ
σ − 2I23,µσ

)
+ I23,µβI23,σα + ηµαησβ

)
x−4

23 x
β
34

]
(5.16)

for the one-loop OPE. The expression in the square brackets equals the leading part ofR1,4
µσ (A.15)

in the double-coincidence limit |x12|, |x34| � |x23|, and hence (5.16) equals the leading part of
the known correlator (4.14) in that limit.

Again, there is an extremal half-multiplet at 2k = L = J + 2, which produces the following
contribution to the classical OPE:∑

p

(C2k−2
p )22k2xα12

(
I23,µσI23,αβ − ηµαησβ

)
x−4

23 x
β
34 . (5.17)

Via (5.8), this gives rise to the spurious contribution

λ

2 log(s) k
3

2π2x
α
12

(
I23,µσI23,αβ − ηµαησβ

)
x−4

23 x
β
34 (5.18)

to the one-loop OPE. Again, this should be canceled by the relevant double-trace contributions.
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5.5 Three Excitations
In the case of the three-excitation correlator 〈Qµ,1Qν,2Q3Qσ,4〉, summing over all contributions
of a single supermultiplet yields a lengthy expression. In the contributions of full supermultiplets
to the classical OPE

2k−4∑
J=0
J even

∑
p

(CJp )2k2
(
. . .
)

(5.19)

the term in parantheses can be constructed from the OPE coefficients (3.13, 3.15) and two-point
functions (3.3). It is a long expression that depends both on k (quadratically) and J (linearly).
Nonetheless, inserting the one-loop anomalous dimension ∆1 and performing the sums over
momenta p and charges J exactly yields the expected expression (4.17).

As in the previous cases, the extremal half supermultiplet contributes a spurious remainder,
which takes the surprisingly simple form

λ

2 log(s)
∑
p

(C2k−2
p )2∆1(p)

(
. . .
)

= λ

2 log(s) k2

23/2π2
ηµνx34,σ

x4
23

, (5.20)

and wich should be canceled by the relevant double-trace contributions.

5.6 Four Excitations
The contributions to the OPE of the four-excitation correlator 〈Qµ,1Qν,2Qρ,3Qσ,4〉 are yet more
complicated functions. In the sum over full supermultiplets

2k−4∑
J=0
J even

∑
p

(CJp )2k
(
. . .
)

(5.21)

the term in parentheses is again a long expression (constructed from (3.15, 3.3)) that depends
quadratically on both k and J . Yet, performing the sums yields exactly the wanted result (4.18).
Also in this case, the spurious term from the extremal half supermultiplet at J = 2k − 2 is
remarkably simple:

λ

2 log(s)
∑
p

(C2k−2
p )2∆1(p)

(
. . .
)

= λ

2 log(s) k

4π2
ηµνηρσ
x4

23
. (5.22)

Again, this term should be canceled by contributions from double-trace operators.

5.7 Note on Double-Trace Operators
In all examples above, we have seen that the leading term in the double-coincidence limit
of the one-loop correlator is correctly reproduced by summing over complete two-magnon
supermultiplets in the OPE channel, neglecting the extremal half-supermultiplet with charge
J = 2k−2. Including the extremal half-multiplet in the OPE sum leads to a spurious contribution
that needs to be canceled by further operators. Since the two-magnon operators (2.17) exhaust
the single-trace spectrum at ∆̂0 = 2 and ∆1 6= 0, those further states have to be multi-trace
states. In fact, it is well-known that single-trace and double-trace operators mix at subleading
order in 1/Nc [18–20]. That is, single-trace operators obtain double-trace corrections that are
suppressed by a factor of 1/Nc. In extremal three-point functions, each trace of the double-
trace operator can separately contract with the two other external operators. Such terms
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are enhanced by a factor Nc that cancels the 1/Nc suppression. Hence they affect extremal
three-point functions at leading order in 1/Nc. The double-trace corrections to our two-magnon
states (2.17) carry two excitations as well. There are three cases to distinguish:
(i) both excitations sit on the same trace factor, with a non-zero momentum,

(ii) both excitations sit on the same trace factor, with zero momentum,

(iii) each of the two trace factors carries one of the two excitations.
In the first case, the excited trace factor is itself one of the two-magnon states (2.17). In case (ii)
and (iii), each of the excited trace factors is a descendant of the vacuum operator. Two-magnon
states with non-zero momentum contract to zero with the external operators considered above,
hence corrections of type (i) do not contribute to the OPE. We are thus looking for a double-trace
correction of type (ii) or (iii) to a two-magnon state (2.17). Such corrections do indeed exist:
For example, the singlet state OJp gets a correction of type (iii) (see equation (3.27) in [19]).

There are further contributions to the OPE due to double-trace operators: While double-
trace operators of type (ii) and (iii) have vanishing anomalous dimension at leading order in
the planar limit, they acquire single-trace corrections at subleading order in 1/Nc, which can
lead to 1/N2

c corrections to their anomalous dimensions. Combined with the Nc enhancement
of extremal three-point functions with double-trace operators, also these corrections can affect
the four-point OPE at leading order in 1/Nc. Indeed, double-trace operators of type (iii) get
corrected by two-magnon states with non-zero momenta (see equation (3.16) in [19]), which
shows that this effect indeed occurs.

Our results show that the contributions from extremal states at charge J = 2k − 2 need to
be canceled by double-trace contributions of the type described above. On a technical level,
computing all such double-trace contributions explicitly is not entirely straightforward, because
the orthogonalization procedure for zero-momentum states is non-trivial already in the untwisted
case [19], and is further complicated by the twisting. Nonetheless, it would be desirable to
compute the double-trace contributions in order to confirm their cancellation. Here, we take the
standpoint that the extremal contributions (5.9, 5.14, 5.18, 5.20, 5.22) provide predictions for the
sum of all double-trace contributions to the various OPEs.

6 Conclusions
We have considered four-point correlators of single-trace scalar operators that are organized in
an excitation picture around specific vacuum operators. Both the vacuum operators and the
excitations are related to the familiar psu(2, 2|4) spin chain picture via a twisting procedure
that ties the orientation of the vacuum in the internal SO(5) to the spacetime location. The
motivation for this choice of operators is that any number of such operators is preserved by two
common supercharges Q±, and that all other operators arrange themselves in terms of excitations
on top of the vacuum operators that fall in representations of a common q(4) symmetry algebra.
These properties make the twisted operators promising candidates for an integrability-based
treatment of higher-point correlation functions.

In this study, we have barely scratched the surface of these correlation functions: We
have only considered zero-momentum excitations, and in the OPE decomposition, we have
restricted ourselves to the leading non-trivial terms. Nevertheless, we can make a few non-trivial
observations:

For every correlator with up to two excitations that we considered, we find that each
complete two-magnon supermultiplet separately contributes the correct tensor structure to the
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one-loop correlator in the double-coincident limit. In particular, for protected correlators, the
contributions from each two-magnon supermultiplet separately sum up to zero. This appears
to be a non-trivial fact. It could as well have been that the correct tensor structure is only
obtained after summing over multiplets.

For every correlator that we considered, performing the sum over complete two-magnon
multiplets (momenta p and charges J ≤ 2k − 4) exactly reproduces the OPE limits of the
known four-point correlators. In particular, this sum over complete supermultiplets does not
include states from the multiplet at “extremal” charge J = 2k − 2, even though these states
do contribute non-trivially to the OPE. The fact that those states need to be discarded in
order to recover the known correlators shows that their contributions need to be canceled by
further states. Since the two-magnon states we considered are the only single-trace states that
can contribute at leading order in the double-coincidence limit, those further states have to be
double-trace states. These are known to undergo a 1/Nc mixing with single-trace operators in
extremal OPE coefficients (three-point functions), and thus do contribute to the OPE at leading
order in 1/Nc. Even though we have not computed the double-trace contributions, our results
show that they have to cancel the contributions of the extremal single-trace supermultiplet at
J = 2k − 2. Turning the logic around, our results constitute predictions for the double-trace
contributions to the various OPEs.

In general, four- and higher-point functions have an intricate spacetime dependence, both
through complicated tensor structures and through non-trivial functional dependence on confor-
mally invariant cross ratios. Perhaps one of the strongest advantages of the twisted correlators
is that all spacetime dependence is directly coupled to the magnons (excitations) on the external
operators. It can be seen directly from the contraction rules (3.1) that inserting excitations on
top of the vacuum operators injects spacetime factors into the free-field contractions. Corre-
spondingly, the respective spacetime factors emerge from the general formula (4.1) for half-BPS
operators, as in the examples (4.13), (4.14), (4.17), and (4.18).

The OPE of vacuum operators tr[φ . . . φ] alone already is an interesting object. The set
of vacuum operators is not closed under the OPE, as exemplified by the non-trivial OPE
coefficients (3.10) with two-magnon states considered here. Since all correlation functions of
vacuum operators are protected, and evaluate to constants, this implies non-trivial cancellations
among all operators that flow in the OPE.

Outlook
We have only taken the very first steps in the study of higher-point correlation functions of
twisted operators, which leaves a lot of room for further explorations. The possibilities include:
It would be very interesting to see whether extremal and double-trace contributions continue to
cancel out also for more general operators (with non-zero-momentum excitations), and beyond
leading order in the double-coincidence limit. If this holds, it would mean that one could entirely
avoid to resolve the mixing with double-trace operators. To this end, it would be interesting to
compute the double-trace contributions explicitly for some examples.

It would be very desirable to promote the heuristic results presented here to a more systematic
description of four-point (and perhaps higher-point) functions, based on the excitation picture
over twisted vacua. The only ingredients should be the magnon rapidities and flavors of the
excitations on the four external operators, the two-magnon S-matrix, as well as general symmetry
principles. In particular, also the spacetime dependence should be captured completely; since it
is directly tied to the external magnons, it can perhaps be absorbed in a redefined two-body
S-matrix.
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In order to understand the above points, one should obviously extend the present analysis
beyond half-BPS operators by including excitations with non-zero momenta on the external
states.

Excitations on top of the vacuum operators tr[φ . . . φ] organize in representations of a common
q(4) symmetry algebra. It would be very interesting to study the consequences of this symmetry.

We have used the lowest-lying non-protected states to reconstruct the leading logarithmic
term of the one-loop correlators in the double-coincidence limit. It would be interesting to see
to what extent this procedure could be generated to higher orders, both in kinematics and in
the coupling. Assuming that a given correlator can be expanded in a suitable integral basis,
such a procedure could produce constraints on the expansion coefficients. In the expansion
of four-point correlators around the double-coincidence limit, the leading term will always be
given by the two-magnon operators (2.17), since these are the states with lowest classical twisted
dimension among all operators with non-trivial anomalous dimension. Discerning contributions
from different basis integrals at higher loops will require to include terms at subleading order,
which are provided by internal operators with more than two excitations (and thus higher
twisted dimension).

In order to construct the one-loop OPE, we had to compute three-point functions of the
twisted two-magnon states with zero-momentum operators. The former are twisted versions
of the two-magnon operators of [11], while the latter are twisted versions of R-symmetry
descendants of the BMN vacuum tr[ZJ ]. Due to the twisting, the three operators span the whole
scalar SO(6) sector. It would be interesting to study these higher-rank three-point functions
more thoroughly, and to compare them with the formulation in terms of hexagon form factors [4].
In particular, due to the uncommon representation of the zero-momentum operators under the
twisted conformal symmetry (2.14), correlators involving such operators have a non-standard
spacetime dependence. More generally, it would be interesting to work out the implications
for correlation functions (Ward identities) of operators that transform non-trivially under the
twisted special conformal generator κ̂µ.

It would also be interesting to study the correlators of twisted operators at strong coupling.
Using embedding coordinates Y I , I = 1, . . . , 6 for AdS5, the boundary Minkowski space,
parametrized by xµ, is mapped to the lightcone

Y = (xµ, 1
2(1 + x2), 1

2(1− x2)) . (6.1)

This shows that for the vacuum operators tr[φJ ], the internal coordinate X (2.2) is identified
with the spacetime coordinate Y (up to factors of i due to the different signatures, and the overall
normalization). This is a direct consequence of the definition via the twisted translation (2.8).
In the dual sigma model on AdS5 × S5, setting X = Y amounts to equating the coordinates
on the sphere with the AdS coordinates. It would be interesting to study solutions of this
“reduced” sigma model. Perhaps classical solutions corresponding to three-point or higher-point
correlators can be found.
While this work was being completed, two very interesting papers [21,22] proposed a decom-
position of twisted correlators (exactly of the type studied here) in terms of the hexagon
form factors constructed earlier in the context of three-point functions [4]. In particular, the
work [22] provides a systematic description of four-point functions (including the spacetime
dependence) in terms of integrability data, without reference to the OPE. Interestingly, Fleury
and Komatsu [22] observe that they need to exclude certain “one-edge reducible” graphs from
their sum over propagator structures in order to reproduce the correct perturbative results. It
appears plausible that this observation is related to our finding that certain extremal and all
double-trace operators cancel out in the OPE sum.
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Finally, let us end on a note about the fate of N = 4 sYM integrability beyond the planar
limit. Higher-point correlation functions are inherently suppressed by powers of 1/Nc compared
to two-point functions: Counting powers of 1/Nc, four-point functions on the sphere are of the
same order as two-point functions on the torus. In fact, the two are related by a complete
state sum on the side of the four-point function. If indeed planar four-point functions can
be computed with integrability, tackling non-planar processes by integrability techniques may
finally come within reach.
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A Details on Tensors
Useful Identities.

Iαγ(x)Iγβ(x) = ηαβ (A.1)

Yµ(xij, xik)Y µ(xij, xik) =
x2
jk

x2
ijx

2
ik

(A.2)

Iρ
σ(xij)Yσ(xij, xik) =

x2
jk

x2
ik

Yρ(xji, xjk) (A.3)

Coefficients of the Universal Prefactor. Using the shorthand notation

x̌ = x

x2 , (A.4)

the coefficient R1,2 (4.15) reads

R1,2,µν = 4x̌µ13x̌
ν
24 − 4sx̌µ12x̌

ν
12 + 4tx̌µ14x̌

ν
23 + 2(−1 + s+ t) (x̌ν12x̌

µ
14 − x̌

µ
12x̌

ν
23)

+ 2(1 + s− t) (x̌ν12x̌
µ
13 − x̌

µ
12x̌

ν
24) + 2(−1 + s− t) (x̌µ13x̌

ν
23 + x̌µ14x̌

ν
24) . (A.5)

Similarly,

R1,4,µσ = −4x̌µ13x̌
σ
24 − 4sx̌µ12x̌

σ
34 − 4tx̌µ14x̌

σ
14 + 2(−1 + s+ t) (x̌µ12x̌

σ
14 + x̌µ14x̌

σ
34)

+ 2(1 + s− t) (x̌µ12x̌
σ
24 + x̌µ13x̌

σ
34)− 2(−1 + s− t) (x̌µ13x̌

σ
14 + x̌µ14x̌

σ
24) . (A.6)

In fact, all Ri,j can be obtained from R1,2 by applying the following replacements:

R1,3,µρ : x̌ν12 → −x̌
ρ
34, x̌

ν
23 → −x̌

ρ
23, x̌

ν
24 → −x̌

ρ
13 (A.7)

R1,4,µσ : x̌ν12 → +x̌σ34, x̌
ν
23 → −x̌σ14, x̌

ν
24 → −x̌σ24 (A.8)

R2,3,νρ : x̌µ12 → +x̌ρ34, x̌
µ
13 → −x̌

ρ
13, x̌

µ
14 → −x̌

ρ
23 (A.9)

R2,4,νσ : x̌µ12 → −x̌σ34, x̌
µ
13 → −x̌σ24, x̌

µ
14 → −x̌σ14 (A.10)

R3,4,ρσ : combinations of replacements for R1,3,µρ and R2,4,νσ

(or combinations of replacements for R1,4,µσ and R2,3,νρ.) (A.11)
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In the double-coincidence limit |x12||x34| � |x23|, the coefficients Ri,j become

R1,2
µν = −2

(
I12,µγI23

γ
αI23,νβ + x12,µx̌12,νηαβ + (µ↔ ν)

)
x−4

23 x
α
34x

β
34 , (A.12)

R3,4
µν = −2

(
I34,µγI23

γ
αI23,νβ + x34,µx̌34,νηαβ + (µ↔ ν)

)
x−4

23 x
α
12x

β
12 , (A.13)

R1,3
µρ = 4xα12

(
1
2I23,αβ

(
I12,µγI23

γ
ρ + I23,µγI34

γ
ρ − 2I23,µρ

)
+ I23,µβI23,ρα + ηµαηρβ

)
x−4

23 x
β
34 , (A.14)

R1,4
µσ = R2,3

µσ = −R2,4
µσ = −R1,3

µσ . (A.15)

Next, the coefficients with three indices:

R1,2,3,µνρ =
√

2
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(A.16)

The coefficient R1,2,4,µνρ is obtained from R1,2,3,νµρ (note the permuted indices) by the replace-
ments:

x̌13 ↔ x̌24 , x̌14 ↔ x̌23 , x34 → −x34 , x12 → −x12 ,
ηρµ
x2

13
→ ηρµ

x2
24
,

ηρν
x2

23
→ ηρν

x2
14
. (A.17)

The coefficient R1,3,4,µρσ is obtained from R1,2,3,ρσµ (note the permuted indices) by the replace-
ments:

x̌12 ↔ x̌34 , x̌14 ↔ −x̌23 , x24 → −x24 , x13 → −x13 ,
ηρσ
x2

12
→ ηρσ

x2
34
,

ηµσ
x2

23
→ ηµσ

x2
14
.

(A.18)
The coefficient R2,3,4,νρσ is obtained from R1,2,3,σρν (note the permuted indices) by the replace-
ments:

x̌12 ↔ −x̌34 , x̌13 ↔ −x̌24 , x14 → −x24 , x23 → −x23 ,
ηνσ
x2

13
→ ηνσ

x2
24
,

ηρσ
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12
→ ηρσ

x2
34
.

(A.19)
In the double-coincidence limit |x12||x34| � |x23|, the coefficients Ri,j,k become

R1,2,3,µνρ =
√

2
x4
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−xρ34
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R1,2,4,µνρ = −R1,2,3,µνρ , (A.21)

R1,3,4,ρµν =
√
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−xρ12
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R2,3,4,ρµν = −R1,3,4,ρµν . (A.23)
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Finally,
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ρ
34

)
ηµν/x2

12

]
+ s

[
16x̌µ12x̌

ν
12x̌

σ
34x̌

ρ
34 + 8x̌σ34x̌

ρ
34η

µν/x2
12 + 2ησρ

(
4x̌µ12x̌

ν
12 + ηµν/x2

12

)
/x2

34

]
+ t

[
16x̌σ14x̌

µ
14x̌

ρ
23x̌

ν
23 + 8x̌σ14x̌

µ
14η

ρν/x2
23 + 2ησµ

(
4x̌ρ23x̌

ν
23 + ηρν/x2

23

)
/x2

14

]
. (A.24)

In the double-coincidence limit, this becomes

R1,2,3,4,µνρσ = 1
x4

23

(
−2x12 · I23 · x34

(
x̌µ12 I

ν
23 · x̌34 η

ρσ + ηµν x̌12 · Iρ23 x̌
σ
34 + 2x̌µ12I

νρ
23 x̌

σ
34

)
+ Iµρ23 I

νσ
23 +

(
Iµν12 − 2ηµν

)(
Iρσ34 − 2ηρσ

)
− 1

2η
µνηρσ

)
+ (µ↔ ν) + (ρ↔ σ) (A.25)
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