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Abstract: We initiate the bootstrap program for N = 3 superconformal field theories (SCFTs) in

four dimensions. The problem is considered from two fronts: the protected subsector described by

a 2d chiral algebra, and crossing symmetry for half-BPS operators whose superconformal primaries

parametrize the Coulomb branch of N = 3 theories. With the goal of describing a protected subsector

of a family of N = 3 SCFTs, we propose a new 2d chiral algebra with super Virasoro symmetry that

depends on an arbitrary parameter, identified with the central charge of the theory. Turning to the

crossing equations, we work out the superconformal block expansion and apply standard numerical

bootstrap techniques in order to constrain the CFT data. We obtain bounds valid for any theory but

also, thanks to input from the chiral algebra results, we are able to exclude solutions with N = 4

supersymmetry, allowing us to zoom in on a specific N = 3 SCFT.

Keywords: conformal field theory, supersymmetry, conformal bootstrap

ar
X

iv
:1

61
2.

01
53

6v
2 

 [
he

p-
th

] 
 8

 F
eb

 2
01

7

mailto:madalena.lemos@desy.de
mailto:pedro.liendo@desy.de
mailto:cmeneghelli@scgp.stonybrook.edu
mailto:vmitev@uni-mainz.de


Contents

1 Introduction 1

2 N = 3 chiral algebras 3

2.1 Generalities of N = 3 chiral algebras 5

2.2 [3, 0] chiral algebras 8

2.3 Fixing OPE coefficients 11

3 Superblocks 13

3.1 Superspace 13

3.2 Superconformal Ward identities 15

3.3 Selection rules 16

3.4 Superconformal blocks 17

4 Crossing equations 21

4.1 From the chiral algebra to numerics 23

4.2 Fixing the chiral algebra contributions 25

4.3 Explicit form of the bootstrap equations for R = 2, 3 28

5 Numerical results 31

5.1 Numerical methods 31

5.2 The case R = 2 32

5.3 The case R = 3 33

6 Conclusions 41

A Unitary representations of the N = 3 superconformal algebra 43

A.1 Decomposition in N = 2 multiplets 43

B OPEs of the chiral algebra 46

C Conformal blocks and generalized free field theory 48

C.1 Conformal block conventions 48

C.2 Generalized free theory example 48

D Short contributions to crossing 49

D.1 Explicit expressions for F (0,±)
short 49

D.2 Summation for Hshort 50

1 Introduction

The study of superconformal symmetry has given invaluable insights into quantum field theory, and

in particular into the nature of strong-coupling dynamics. The presence of supersymmetry gives us

additional analytical tools and allows for computations that are otherwise hard to perform. A cursory



look at the superconformal literature in four dimensions shows a vast number of works on N = 2 and

N = 4 superconformal field theories (SCFTs), with the intermediate case of N = 3 almost absent.

The main reason for this is that, due to CPT invariance, the Lagrangian formulation of any N = 3

theory becomes automatically N = 4. By now, however, there is a significant amount of evidence that

superconformal theories are not restricted to just Lagrangian examples, and this has inspired recent

papers that revisit the status of N = 3 SCFTs.

Assuming these theories exist, the authors of [1] studied several of their properties. They found

in particular that the a and c anomaly coefficients are always the same, that pure N = 3 theories

(i.e., theories whose symmetry does not enhance to N = 4) have no marginal deformations and are

therefore always isolated, and also, in stark contrast with the most familiar N = 2 theories, that pure

N = 3 SCFTs cannot have a flavor symmetry that is not an R-symmetry. Moreover, since the only

possible free multiplet of an N = 3 SCFT is a vector multiplet, the low energy theory at a generic

point on the moduli space must involve vector multiplets, and the types of short multiplets whose

expectations values can parametrize such branches were analyzed in [1]. When an N = 3 vector

multiplet is decomposed in N = 2, it contains both an N = 2 vector and hyper multiplet, which

implies that the theories possess both N = 2 Higgs and Coulomb branches that are rotated by N = 3.

Shortly after [1], the authors of [2] presented the first evidence for N = 3 theories by studying

N D3-branes in the presence of an S-fold plane, which is a generalization of the standard orientifold

construction that also includes the S-duality group. The classification of different variants of N = 3

preserving S-folds was done in [3], leading to additionalN = 3 SCFTs. In [4] yet another generalization

was considered, in which in addition to including the S-duality group in the orientifold construction,

one also considers T-duality. This background is known as a U-fold, and the study of M5-branes on

this background leads to N = 3 theories associated with the exceptional (2, 0) theories.

The systematic study of rank one N = 2 SCFTs (i.e., with a one complex dimensional Coulomb

branch) through their Coulomb branch geometries [5–8] has recovered the known N = 3 SCFTs,

but also led to new ones [7, 9]. Some of these theories are obtained by starting from N = 4 SYM

with gauge group U(1) or SU(2) and gauging discrete symmetries, while others correspond to genuine

N = 3 SCFTs which are not obtained by discrete gauging. Note that, as emphasized in [3, 9], gauging

by a discrete symmetry does not change the local dynamics of the theory on R4, only the spectrum of

local and non-local operators. In particular, the central charges and correlation functions remain the

same.

Of the class of theories constructed in [3], labeled by the number N of D3-branes and by integers

k, ` associated to the S-fold, some have enhanced N = 4 supersymmetry, or arise as discretely gauged

versions of N = 4. The non-trivial N = 3 SCFT with the smallest central charge corresponds to the

theory labeled by N = 1 and ` = k = 3 in [3], with central charge given by 15
12 . This corresponds to

a rank one theory with Coulomb branch parameter of scaling dimension three. Since the Coulomb

branch operators of N = 3 theories must have integer dimensions [1], and since theories with a

Coulomb branch generator of dimension one or two enhance to N = 4, it follows that dimension three

is the smallest a genuine N = 3 theory with a Coulomb branch can have, and that this theory could

indeed correspond to the “minimal” N = 3 SCFT. By increasing the number of D3-branes, higher

rank versions of this minimal theory can be obtained . More generally, the rank N theories with k = `,

are not obtained from others by discrete gauging, and have an N dimensional Coulomb branch.

Since pure N = 3 SCFTs have no relevant or marginal deformations, they are hard to study

by standard field theoretical approaches. Apart from the aforementioned papers, recent progress in

understanding N = 3 theories includes [10–13]. The classification of all N = 3 SCFTs is not complete

yet, and one can wonder if there are theories not arising from the S-fold (and generalizations thereof)
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constructions. On the other hand, one would like to obtain more information on the spectrum of the

currently known theories. In this paper we take the superconformal bootstrap approach to address

these questions, and tackle N = 3 SCFTs by studying the operators that parametrize the Coulomb

branch. These operators sit in half-BPS multiplets of the N = 3 superconformal algebra, and when

decomposed in N = 2 language contain both Higgs and Coulomb branch operators. We will mostly

focus on the simplest case of Coulomb branch operators of dimension three.

The bootstrap approach does not rely on any Lagrangian or perturbative description of the theory.

It depends only on the existence of an associative local operator algebra and on the symmetries of

the theory in question, and is therefore very well suited to the study of N = 3 SCFTs. Since the

original work of [14] there have been many papers that study SCFTs through the lens of the numerical

bootstrap [15–29]. A basic requirement in any superconformal bootstrap analysis is the computation

of the superconformal blocks relevant for the theory in question, although correlation functions of half-

BPS operators in various dimensions have been studied [30–32], the case of N = 3 has not yet been

considered, and calculating the necessary blocks will be one of the goals of this paper. For literature

on superconformal blocks see [30–39].

Also relevant for our work is the information encoded in the 2d chiral algebras associated to 4d

SCFTs [40–54]. The original analysis of [40] implies that any four-dimensional N > 2 SCFT contains

a closed subsector of local operators isomorphic to a 2d chiral algebra. For N = 3 theories, part of the

extra supercharges, with respect to a pure N = 2 theory, make it to the chiral algebra and therefore

its symmetry enhances to N = 2 super Virasoro [10]. The authors of [10] constructed a family of

chiral algebras conjectured to describe the rank one N = 3 theories, generalizing these chiral algebras

in order to accommodate the higher-rank cases will be another subject of this work.

The paper is organized as follows. Section 2 studies the two-dimensional chiral algebras associated

with N = 3 SCFTs, determining the N = 3 superconformal multiplets they capture, and some of their

general properties. We then construct a candidate subalgebra of the chiral algebras for higher rank

` = k = 3 theories. In section 3 we use harmonic superspace techniques in order to obtain the

superconformal blocks that will allow us to derive the crossing equations for half-BPS operators of

section 4. We focus mostly on a dimension three operator, but also present the dimension two case as

a warm-up. Section 5 presents the results of the numerical bootstrap, both for generic N = 3 SCFTs

and also attempting to zoom in to the simplest known N = 3 theory by inputting data from the chiral

algebra analysis of section 2. We conclude with an overview of the paper and directions for future

research in section 6.

2 N = 3 chiral algebras

Every 4d N > 2 SCFT contains a protected sector that is isomorphic to a 2d chiral algebra, obtained

by passing to the cohomology of a nilpotent supercharge [40]. Because N = 3 is a special case of

N = 2, one can also study chiral algebras associated to N = 3 SCFTs. This program was started for

rank one theories in [10], and here we explore possible modifications such that one can describe higher-

rank cases as well. We will put particular emphasis on theories containing a Coulomb branch operator

with scaling dimension three, since these are the correlators we will study numerically in section 5. We

propose a set of generators that, under certain assumptions, describes a closed subalgebra of theories

with a dimension three Coulomb branch operator, and write down an associative chiral algebra for

them. Associativity fixes all OPE coefficients in terms of a single parameter: the central charge of the

theory.
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In order to do this we will need extensive use of the representation theory of the N = 3 super-

conformal algebra; this was studied in [1, 55–59] and is briefly reviewed in appendix A. We will also

leverage previous knowledge of chiral algebras for N = 2 SCFTs, and so it will be useful to view N = 3

theories from an N = 2 perspective. Therefore, we will pick an N = 2 subalgebra of N = 3, with the

SU(3)R × U(1)r R-symmetry of the latter decomposing in SU(2)RN=2
× U(1)rN=2

× U(1)f . The first

two factors make up the R-symmetry of the N = 2 superconformal algebra and the last corresponds

to a global symmetry. Therefore, from the N = 2 point of view, all N = 3 theories necessarily have a

U(1)f flavor symmetry arising from the extra R-symmetry currents. The additional supercharges and

the U(1)f flavor symmetry imply that the Virasoro symmetry expected in chiral algebras of N = 2

theories algebras will be enhanced to a super Virasoro symmetry in the N = 3 case [10].

Let us start reviewing the essentials of the chiral algebra construction (we refer the reader to [40]

for more details). The elements of the protected sector are given by the cohomology of a nilpotent

supercharge Q that is a linear combination of a Poincaré and a conformal supercharge,

Q = Q1
− + S̃2 −̇ . (2.1)

In order to be in the cohomology operators have to lie on a fixed plane R2 ⊂ R4. The global conformal

algebra on the plane sl(2)× s̄l(2) is a subalgebra of the four-dimensional conformal algebra. While the

generators of the sl(2) commute with (2.1), those of s̄l(2) do not, and an operator in the cohomology

at the origin will not remain in the cohomology if translated by the latter. However, it is possible to

introduce twisted translations obtained by the diagonal subalgebra of the s̄l(2) and a complexification,

sl(2)R, of the R-symmetry algebra su(2)R, such that the supercharge satisfies

[Q, sl(2)] = 0 , [Q, something] = diag(s̄l(2)× sl(2)R) . (2.2)

From these relations one can prove that Q-closed operators restricted to the plane have meromorphic

correlators. We call the operators that belong to the cohomology of Q “Schur” operators. The Schur

operators in N = 2 language are local conformal primary fields which obey the conditions

∆− (j + ̄)− 2RN=2 = 0 , ̄− j − rN=2 = 0 . (2.3)

The cohomology classes of the twisted translations of any such operator O corresponds to a 2d local

meromorphic operator

O(z) = [O(z, z̄)]
Q
. (2.4)

The two important Schur operators that we expect to have in anyN = 2 theory with a flavor symmetry

are1

• Ĉ0(0,0): The highest-weight component of the SU(2)RN=2
current (with charges ∆ = 3, j = ̄ =

1
2 , RN=2 = 1, rN=2 = 0) corresponding to the 2d stress tensor T (z).

• B̂1: The highest-weight component J11 of the moment map operator (∆ = 2, j = ̄ = 0, RN=2 =

1 and rN=2 = 0) that is mapped to the affine current J(z) of the flavor group.

These two Schur operators give rise to a Virasoro and an affine symmetry in the chiral algebra respec-

tively, with the two-dimensional central charges obtained in terms of their four-dimensional counter-

1We follow the conventions of [60] for N = 2 superconformal multiplets.

– 4 –



parts by

c2d = −12c4d , k2d = −k4d

2
. (2.5)

Note that, since we insist on having unitarity in the four-dimensional theory, the 2d chiral algebra will

be necessarily non-unitary.

The chiral algebra description of a protected subsector is extremely powerful. By performing

the twist of [40] on a four-dimensional correlation function of Schur operators, we are left with a

meromorphic 2d correlator that is completely determined by knowledge of its poles and residues. The

poles can be understood by taking various OPE limits, thus fixing the correlator in terms of a finite

number of parameters corresponding to OPE coefficients. In the cases we will study in this paper (see

for example subsection 4.2.1), the meromorphic piece can be fixed using crossing symmetry in terms

of a single parameter, which can be identified with the central charge of the theory. Let us emphasize

that this can be done without knowledge of which particular chiral algebra is relevant for the SCFT

at hand.

2.1 Generalities of N = 3 chiral algebras

Let us now study the N = 3 case in more detail. Any local N = 3 SCFT will necessarily contain a

stress tensor multiplet, which in table 8 corresponds to B̂[1,1]. After an N = 2 decomposition of this

multiplet (shown in (A.1)) one finds four terms, each contributing with a single representative to the

chiral algebra. These four multiplets are related by the action of the extra supercharges enhancing

N = 2 to N = 3, and four of these (Q3
+ and Q̃3 +̇ and their conjugates) commute with Q [10].

Therefore, acting on Schur operators with these supercharges produces new Schur operators, and the

representatives of the four multiplets will be related by these two supercharges. The multiplets and

their representatives are:

• A multiplet containing the U(1)f flavor currents (B̂1), whose moment map M IJ gives rise to a

two-dimensional current J(z) = [M(z, z̄)]
Q

of an U(1)f affine Kac-Moody (AKM) algebra,

• Two “extra” supercurrents, responsible for the enhancement to N = 3, contribute as operators

of holomorphic dimension 3
2 . These are obtained from the moment map by the action of the

supercharges G(z) =
[
Q3

+M(z, z̄)
]
Q

and G̃(z) =
[
Q̃3 +̇M(z, z̄)

]
Q

[10].2

• The stress-tensor multiplet (Ĉ0,(0,0)) which gives rise to the stress tensor of the chiral algebra

T (z) = 1
2

[[
Q3

+, Q̃3 +̇

]
M(z, z̄)

]
Q

[10].

The supercharges Q3
+ and Q̃3 +̇ have charges ±1 under the U(1)f flavor symmetry, where we follow

the U(1)f charge normalizations of [10]. Therefore the operators G(z) and G̃(z) have a J charge

of +1 and −1 respectively. This multiplet content is exactly the one we would expect from the

considerations in the beginning of this section, with the extra supercharges, that commute with Q,

producing a global d = 2, N = 2 superconformal symmetry.3 Moreover, the operator content we just

described corresponds precisely to the content of an N = 2 stress tensor superfield which we denote

by J , enhancing the Virasoro algebra to an N = 2 super Virasoro algebra [10].

2These arise from N = 2 multiplets D 1
2

(0,0)
and D 1

2
(0,0)

respectively in the notation of [60].

3The holomorphic sl(2) that commutes with the supercharge Q, more precisely the Q-cohomology of the superconformal
algebra, is enhanced to a sl(2|1).
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2.1.1 N = 3 superconformal multiplets containing Schur operators

Our next task is to understand which multiplets of the N = 3 superconformal algebra contribute to

the chiral algebra, aside from the already discussed case of the stress-tensor multiplet.
Instead of searching for superconformal multiplets that contain conformal primaries satisfying

(2.3), we will take advantage of the fact that this was already done in [40] for N = 2 multiplets, and
simply search for N = 3 multiplets that contain N = 2 Schur multiplets. To accomplish this, we
decompose N = 3 multiplets in N = 2 ones by performing the decomposition of the corresponding
characters. In appendix A we present a few examples of such decompositions. Going systematically
through the multiplets,4 we find the following list of N = 3 Schur multiplets:

Ĉ[R1,R2],(j,̄)|Schur =u
R2−R1+2(̄−j)
f

[
ĈR1+R2

2
,(j,̄)

⊕ u−1
f ĈR1+R2

2
,(j,̄+

1
2

)
⊕ uf ĈR1+R2

2
,(j+

1
2
,̄)

⊕ ĈR1+R2
2

,(j+
1
2
,̄+

1
2

)

]
, (2.6)

B̂[R1,R2]|Schur =uR2−R1
f

[
B̂R1+R2

2

⊕ u−1
f DR1+R2−1

2
,(0,0)

⊕ uf DR1+R2−1
2

,(0,0)

⊕ ĈR1+R2−2
2

,(0,0)

]
, for R1R2 6= 0 , (2.7)

B̂[R1,0]|Schur =u−R1
f

[
B̂R1

2

⊕ ufDR1−1
2

,(0,0)

]
, (2.8)

B̂[0,R2]|Schur =uR2
f

[
B̂R2

2

⊕ u−1
f DR2−1

2
,(0,0)

]
, (2.9)

D[R1,R2],̄|Schur = uR2−R1+2̄+2
f

[
DR1+R2

2
,(0,̄)

⊕ u−1
f DR1+R2

2
,(0,̄+

1
2

)
⊕ uf ĈR1+R2−1

2
,(0,̄)

⊕ ĈR1+R2−1
2

,(0,̄+
1
2

)

]
for R1 > 0 , (2.10)

D[R1,R2],j |Schur = uR2−R1−2j−2
f

[
DR1+R2

2
,(j,0)

⊕ u−1
f ĈR1+R2−1

2
,(j,0)

⊕ ufDR1+R2
2

,(j+
1
2
,0)

⊕ ĈR1+R2−1
2

,(j+
1
2
,0)

]
for R2 > 0 , (2.11)

D[0,R2],̄|Schur = uR2+2̄+2
f

[
DR2

2
,(0,̄)

⊕ u−1
f DR2

2
,(0,̄+

1
2

)

]
, (2.12)

D[R1,0],j |Schur = u−R1−2j−2
f

[
DR1

2
,(j,0)

⊕ ufDR1
2
,(j+

1
2
,0)

]
. (2.13)

Let us stress again that we are not showing the full decomposition in N = 2 multiplets, but only the

Schur multiplets. In performing the decompositions we kept the grading of the N = 2 multiplets with

respect to the U(1)f flavor symmetry, denoting the corresponding fugacity by uf .

Some noteworthy multiplets in this list are the stress-tensor multiplet B̂[1,1], already discussed

in the beginning of this subsection, as well as the half-BPS operators B̂[R1,0] (and their conjugates

B̂[0,R1]) which are connected to the Coulomb branch, as discussed in section 1. Due to their physical

significance we present their full decomposition in N = 2 multiplets in A.1 and A.2. As described in

4One can quickly see that in table 8 multiplets that obey no N = 3 shortening conditions on the one of the sides
also obey no N = 2 shortening condition on one of the sides, and these are known [40] not to contain Schur operators.
Therefore we must go only through the multiplets that obey shortening conditions on both sides.
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[58], there are no relevant Lorentz invariant supersymmetric deformations of N = 3 theories, while the

only such deformations that are exactly marginal are contained in the multiplet B̂[2,0] (and conjugate

B̂[0,2]). However, these multiplets also contain additional supersymmetry currents, as can be seen from

their N = 2 decomposition, that allow for the enhancement of N = 3 to N = 4, and thus pure N = 3

theories are not expected to have exactly marginal operators. Let us also recall that the multiplets

Ĉ[0,0],(j,̄) contain conserved currents of spin larger than two, and therefore are expected to be absent

in interacting theories [61, 62].

Quasi-primaries and Virasoro primaries

Each of the N = 2 multiplets listed above will contribute to the chiral algebra with exactly one

global conformal primary (also called quasi-primary), with holomorphic dimension as given in table 1

of [40] and with U(1)f charge f , under the J(z) current, as can be read off from the uf fugacity

in the above decompositions. These multiplets generically will not be Virasoro primaries. Only the

so-called Hall-Littlewood (HL) operators5 (B̂R, DR,(j,0) and DR,(0,̄)) are actually guaranteed to be

Virasoro primaries. The remaining multiplets will appear in the chiral algebras sometimes as Virasoro

primaries, sometimes only as quasi-primaries.

Super Virasoro primaries

Similarly, each N = 3 multiplet gives rise in the chiral algebra to a global supermultiplet consisting

of a global superprimary and its three global superdescendants obtained by the action of Q3
+ and

Q̃3 +̇.6 Generically however, these multiplets will not be super Virasoro primaries, even if the global

superprimary corresponds to a Virasoro primary. Recall that a super Virasoro primary must, in

addition to being a Virasoro primary, have at most a pole of order one in its OPE with both G(z)

and G̃(z), and have at most a singular term of order one in the OPE with J(z).7 This last condition

corresponds to being an AKM primary.

Let us consider the operators which have as a global superprimary a Virasoro primary. For the

case of B̂[R1,R2] multiplets, we see that its two (or one in case R1R2 = 0) level 1
2 descendants are

HL operators, and thus Virasoro primaries. The two-dimensional superconformal algebra then implies

that the global superprimary is not only a Virasoro primary, but that it is also annihilated by all

the modes G
n>+

1
2
, G̃

n>+
1
2

. However, this is not enough to make it a super Virasoro primary, as it

is not guaranteed that these operators are AKM primaries. An obvious example is the stress tensor

multiplet B̂[1,1], where the AKM current is clearly not an AKM primary. Similar considerations apply

to D[R1,R2],̄ multiplets, with the subtlety that even though one of its level 1
2 descendants is not a HL

operator, it is still a Virasoro primary [10].

In certain cases it is possible to show that the operators in question are actually super Virasoro

primaries, and concrete examples will be given below. For example, if one considers a B̂[R1,R2] generator

that is not the stress tensor multiplet, then the OPE selection rules for the N = 2 B̂R1+R2

2

multiplet

[63] imply it is also an AKM primary [42].

5Following [40] we refer to operators which are N = 1 chiral and satisfy the Schur condition as Hall-Littlewood
operators.

6Recall that the global superprimary is annihilated only by the G 1
2

, G̃ 1
2

, L1 modes of G(z), G̃(z), T (z), and global

super descendants are obtained by the action of G
− 1

2

and G̃
− 1

2
7These conditions translate into the following modes annihilating the superprimary state: Ln>0, G

n>+
1
2

, G̃
n>+

1
2

and Jn>0.
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Chiral and anti-chiral operators

Finally we note that the multiplets in (2.8) and (2.9) give rise, in two dimensions, to anti-chiral and

chiral operators: they are killed by Q̃3 +̇ and Q3
+ respectively. These two-dimensional superfields have

holomorphic dimension satisfying h = R2

2 = − f2 and h = R1

2 = f
2 respectively.

2.2 [3, 0] chiral algebras

We are now in a position to describe the general features of the chiral algebras associated to the

known N = 3 theories. We will describe the chiral algebra in terms of its generators, by which we

mean operators that cannot be expressed as normal-ordered products and/or (super)derivatives of

other operators. In what follows we assume the chiral algebra to be finitely generated. Although there

is yet no complete characterization of what should be the generators of the chiral algebra of a given

four-dimensional theory, it was shown in [40] that all generators of the HL chiral ring are generators

of the chiral algebra. Moreover, the stress tensor is always guaranteed to be present and, with the

exception of cases where a null relation identifies it with a composite operator, it must always be a

generator. However this is not necessarily the complete list, and indeed examples with more generators

than just the above have been given in [40, 42].8 The chiral algebras associated to 4d SCFTs do not

always correspond to known examples in the literature, and in such situations one must construct a

new associative two-dimensional chiral algebra. This problem can be bootstrapped by writing down

the most general OPEs for the expected set of generators and then imposing associativity by solving

the Jacobi identities. Chiral algebras are very rigid structures and in the cases so far considered

[10, 42], the Jacobi identities are powerful enough to completely fix all OPE coefficients, including the

central charges.

Rank one chiral algebras

In [10], the authors assumed that the only generators of the chiral algebras corresponding to the rank

one N = 3 SCFTs described in section 1 (with k = `, N = 1) were the stress tensor and the generators

of its Higgs branch:

B̂[1,1] , B̂[`,0] , B̂[0,`] , ` = 3, 4 . (2.14)

Recall the first multiplet gives rise, in two dimensions, to the stress tensor multiplet, and the last two

to anti-chiral and chiral operators respectively. With these assumptions they were able to write an

associative chiral algebra for the cases ` = 3, 4 only for a single central charge for the first case and a

finite set of values for the second. This set was further restricted to the correct value expected for the

known N = 3 theories

c4d = a4d =
2`− 1

4
, (2.15)

by imposing the expected Higgs branch chiral ring relation

B̂[`,0]B̂[0,`] ∼
(
B̂[1,1]

)`
, (2.16)

which appears as a null state in the chiral algebra. Note that above, by abuse of notation, we denoted

the Higgs branch chiral ring operator by the superconformal multiplet it belongs to. Associativity then

fixes all other OPE coefficients of the chiral algebra. The authors of [10] were also able to construct

an associative chiral algebra for ` = 5 and ` = 6 satisfying the Higgs branch relation if the central

8 One possible way to determine which generators a given chiral algebra should have is through a Schur index
[57, 64–66] analysis, as done in [40, 42].
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charge is given by (2.15). However, as they point out, ` = 5 does not correspond to an allowed value

for an N = 3 SCFTs, as five is not an allowed scaling dimension for the Coulomb branch of a rank one

theory, following from Kodaria’s classification of elliptic surfaces (see, e.g., [5, 10]). The case ` = 6 is

in principle allowed, however no such N = 3 theory was obtained in the S-fold constructions of [3].9

Higher rank theories

We now attempt to generalize the chiral algebras of [10] to the higher-rank case (with k = `, N > 1).

In particular, we focus on the theories whose lowest dimensional generator corresponds to a B̂[3,0] and

its conjugate, since these are the ones relevant for the following sections. To compute OPEs and Jacobi

identities we will make extensive use of the Mathematica package [67]. Following its conventions, we

use the two-dimensional N = 2 holomorphic superspace with bosonic coordinate z and fermionic

coordinates θ and θ̄, and define the superderivatives as

D = ∂θ − 1
2 θ̄∂z , D̄ = ∂θ̄ − 1

2θ∂z . (2.17)

We will denote the two-dimensional generators arising from the half-BPS Higgs branch generators

B̂[0,3] (B̂[3,0]) by W (W̄).10 Furthermore, we denote the two-dimensional superfield arising from the

stress tensor (B̂[1,1]) by J . The OPE of J with itself is fixed by superconformal symmetry,

J (Z1)J (Z2) ∼ c2d/3 + θ12θ̄12J
Z2

12

+
−θ12DJ + θ̄12D̄J + θ12θ̄12∂J

Z12
, (2.18)

where we defined

Zij = z1 − z2 + 1
2

(
θ1θ̄2 − θ2θ̄1

)
, θ12 = θ1 − θ2 , θ̄12 = θ̄1 − θ̄2 . (2.19)

The OPEs of J with W and W̄, given in (B.1), are fixed by demanding that these two operators be

super Virasoro primaries. As discussed in the previous subsection, W and W̄ could fail to be super

Virasoro primaries only if their global superprimary (arising from an N = 2 B̂3/2) failed to be an AKM

primary. However, since we are assuming the B̂3/2 multiplet to be a generator, and since the AKM

current comes from a B̂1 N = 2 multiplet, it is clear from the selection rules of N = 2 B̂R operators

[63] that these must be AKM primaries.

The self OPEs of the chiral (anti-chiral) W (W̄) superfields are regular, which is consistent with

the N = 3 OPE selection rules shown in 3.22. For WW̄ the most general OPE in terms of all of the

existing generators is [10]

W(Z1)W̄(Z2) ∼
2∑

h=0

1

Z3−h
12

(
3− h

2

θ12θ̄12

Z12
+ 1 + θ12D

)
λOhOh , (2.20)

where the sum runs over all uncharged operators, including composites and (super)derivatives.

The authors of [10] showed that, considering just these three fields as generators, one finds an

associative chiral algebra only if c2d = −15, which indeed corresponds to the correct value for the

simplest known non-trivial N = 3 SCFT (k = ` = 3 and N = 1 in the notation of [3]). However, there

9We emphasize that the existence of a two-dimensional chiral algebra does not imply that there exists a four-
dimensional theory that gives rise to it. In fact it is still not clear what are the sufficient conditions for a chiral algebra
to correspond to a physical four-dimensional theory.

10Note that in [67] what is called chiral primary is what we call anti-chiral primary, e.g., W̄ which obeys DW̄ = 0.
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are higher rank versions of this theory (k = ` = 3 and N > 1), that contain these half-BPS operators

plus higher-dimensional ones. The list of half-BPS operators is [3]

B̂[0,R] , B̂[R,0] , with R = 3, 6, . . . , 3N , (2.21)

giving rise in two dimensions to additional chiral and antichiral operators with charges f = ±6, . . .±6N ,

and holomorphic dimension h = |f |/2. One can quickly see that the extra generators never appear

in the OPEs of W, W̄,J , as the only OPE not fixed by symmetry is the WW̄, and U(1)f charge

conservation forbids any of the B̂[R,0] with R > 6 to appear. If the generators of the chiral algebras

of higher rank theories corresponded only to the half-BPS operators plus the stress tensor, then we

would reach a contradiction: W, W̄,J would form a closed subalgebra of the full chiral algebra, but

the central charge would be frozen at c2d = −15, which is not the correct value for rank greater than

one.

To resolve this contradiction we must allow for more generators in the higher-rank case, and at

least one of these must be exchanged in the WW̄ OPE. The only freedom in this OPE is to add an

uncharged dimension two generator. From the OPE selection rules shown in 3.21 one can see that

this operator must correspond to a B̂[2,2]. There is another possibility, namely a Ĉ[0,0],0 multiplet, but

in four dimensions it contains conserved currents of spin greater than two, which should be absent

[61, 62] in interacting theories such as the ones we are interested in. The minimal resolution is to

add the generator corresponding to B̂[2,2]. We then assume that the generators of the chiral algebra

associated with the ` = k = 3 theories with N > 1 are

• The stress tensor J ,

• (Anti-)chiral operators arising from the generators of the Coulomb branch operators B̂[0,R]

(B̂[R,0]) with R = 3, 6, . . . , 3N ,

• A generator corresponding to B̂[2,2] which we denote by U .

As before we denote by W and W̄ the generators arising from B̂[0,3] and its conjugate.11 Even though

examples are known where the number of generators not arising from generators of the HL ring grows

with the number of HL generators [42], the addition of a single operator U is the minimal modification

that unfreezes the value of the central charge.

We can now proceed to write down the most general OPEs, it is easy to check that in the ones

involving

J , W , W̄ , and U , (2.22)

the operators in (2.21) with R > 6 cannot be exchanged. Therefore, if our assumption above is correct,

the generators in (2.22) form a closed subalgebra.

In what follows we write down the most general ansatz for the OPEs of these operators which,

as explained above, are all super Virasoro primaries with the exception of J . The regularity of the

self OPEs of W and W̄ follows simply from OPE selection rules, while the OPE between W and W̄
is given by (2.20), allowing for the exchange of U as well. The OPEs involving U are quite long and

therefore we collect them in appendix B. Imposing Jacobi identities we were able to fix all the OPE

11The fact that we do not allow for any other operator of dimension one (or smaller) prevents the symmetry of the
chiral algebra from enhancing to the small N = 4 superconformal algebra one gets from 4d N = 4 theories, thereby
excluding N = 4 solutions from our analysis. And by not allowing for additional dimension 3/2 generators we also
exclude discretely gauged versions of N = 4.
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coefficients in terms of a single coefficient: the central charge. In our construction we did not need to

impose null states for closure of the algebra.

2.3 Fixing OPE coefficients

In the next sections we will study numerically the complete four-point function of two B̂[3,0] and two

B̂[0,3] operators, thanks to the chiral algebra we can compute the OPE coefficients of all operators ap-

pearing in the right hand side of theWW̄ OPE. However, we still need to identify the four-dimensional

superconformal multiplet that each two-dimensional operator corresponds to. Let us start by exam-

ining the low dimensional operators appearing in this OPE: we can write all possible operators with

a given dimension that can be made out of the generators by normal ordered products and (super)

derivatives. Furthermore, they must be uncharged, since the product WW̄ is. All in all we find the

following list:

dimension operators

0 Identity

1 J
2 U , JJ , DD̄J , J ′
3 WW̄, JDD̄J , J ′′, J ′J , JJJ , DD̄J ′, DJ D̄J , DD̄U , JU , U ′

. . . . . .

From these operators we are only interested in the combinations that are global superprimary fields, as

the contributions of descendants will be fixed from them.12 Note also that, if we are interested in the

four point function of 〈WW̄WW̄〉, we only see, for the exchange of an operator of a given dimension,

a sum of the contributions of all global primaries, and we cannot distinguish between individual fields.

At dimension h = 1 there is only one operator – the superprimary of the stress-tensor multiplet

– and its OPE coefficient squared can be computed to be (after normalizing the identity operator to

appear with coefficient one in the four-point function decomposition, and normalizing the J two-point

function to match the normalization for the blocks (g2d N=2, see (3.26)) that we use in the following

sections) ∣∣λWW̄J ∣∣2 = − 27

c2d
. (2.23)

This does not depend on the particular chiral algebra at hand, as the OPE coefficient with which the

the current J is exchanged, is totally fixed in terms of their charge f and the central charge. As

we will show in 4.2.1, the two-dimensional correlation function of the two W and two W̄, is fixed in

terms of one parameter which we take to be the OPE coefficient of J , and thus related to c2d. This

implies that, for the exchange of operators of dimension larger than one, any sum of OPE coefficients

corresponds to a universal function of c2d.

At dimension h = 2 we find two global superprimaries, one corresponding to U itself, and the

other containing JJ . From the four-dimensional OPE selection rules, shown in (3.21), it follows that

both superprimaries must correspond to B̂[2,2] supermultiplets in four dimensions, as the only other

option is Ĉ[0,0],0 which should be absent in interacting theories. This means that, even from the point

of view of the four-dimensional correlation function, these two operators are indistinguishable. Thus,

all we can fix is the sum of two OPE coefficients squared:∣∣λWW̄U ∣∣2 +
∣∣λWW̄(JJ )

∣∣2 = − 18

c2d
, (2.24)

12Note that this is only true because W and W̄ are chiral and anti-chiral, and therefore their three-point function
with an arbitrary superfield has a unique structure, being determined by a single number.
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where we used the same normalizations as before, and fixed an orthonormal basis for the operators.

This number is again independent of the particular details of the chiral algebra: it only requires the

existence of W, W̄ and J .

At dimension h = 3, we find four global superprimaries made out of the fields listed above, three of

which are Virasoro primaries. In this case, however, these three different operators must belong to two

different types of four-dimensional multiplets (once again we are excluding the multiplet containing

higher-spin currents). Namely, they must correspond to B̂[3,3] and Ĉ[1,1],0, and distinguishing them

from the point of view of the chiral algebra is hard. The two-dimensional operators arising from B̂[3,3]

are guaranteed to be Virasoro primaries, while those of Ĉ[1,1],0 could be or not. Assuming that all

Virasoro primaries come exclusively from B̂[3,3] we can compute the OPE coefficient with which this

multiplet is exchanged by summing the squared OPE coefficients of all Virasoro primaries

3∑
i=1

∣∣λJJViri, h=3

∣∣2 =
2(c2d(5c2d + 127) + 945)

5c2d(2c2d + 13)
. (2.25)

We can take the large c4d = − c2d12 limit, where the solution should correspond to generalized free

field theory. In this case we can find from the four-point function given in appendix C.2 that the

OPE coefficient above should go to 1, and indeed this is the case. We could also have assumed that

different subsets of the three Virasoro primaries correspond to B̂[3,3]. Not counting the possibility used

in (2.25), there is one possibility which does not have the correct behavior as c4d →∞, and two that

have:

2∑
i=1

∣∣λJJViri, h=3

∣∣2 =
351378− 10c2d(c2d(c2d(c2d + 22)− 260)− 8430)

(c2d − 1)c2d(2c2d + 13)(12− 5c2d)
, (2.26)

3∑
i=2

∣∣λJJViri, h=3

∣∣2 =
2(c2d + 15)(c2d(c2d(5c2d + 37) + 39) + 4482)

5(c2d − 1)c2d(c2d + 6)(2c2d − 3)
. (2.27)

We can now also compute for each of the above cases the OPE coefficient of the Ĉ[1,1],0 multiplet, and

we find that only (2.25) and (2.27) are compatible with 4d unitarity (the precise relation between 2d

and 4d OPE coefficients is given by (4.20)).

If we now go to higher dimension, the list of operators keeps on growing, and their four-dimensional

interpretation is always ambiguous. A dimension h global superprimary can either be a Ĉ[2,2],h−4 or a

Ĉ[1,1],h−3 four-dimensional multiplet, and in this case there does not seem to be an easy way to resolve

the ambiguity.13

Rank one case

Let us now comment on what happens for the case of the rank one theory, where c2d = −15 and the

extra generator U is absent. In this case we find a single (non-null) Virasoro primary at dimension

three.14 This implies that either there is no B̂[3,3] multiplet and that the OPE coefficient is zero, or,

which seems like a more natural option, that the Virasoro primary corresponds to this multiplet, with

OPE coefficient ∣∣λJJVirh=3

∣∣2 =
22

85
. (2.28)

13One possibility would be to find two sets of OPEs such that in each set, one of the above multiplets is forbidden to
appear by selection rules.

14There is another Virasoro primary, which is a composite operator that is null for this central charge. This null
corresponds precisely to the Higgs branch relation of the form WW̄ ∼ JJ 3 described in [10].
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G(+,0) G(0,+) G(0,0) G(−,0) G(0,−)

g ◦ (X+, V ) (X++bV , V ) (X+, V + b̄) (AX+, V )D−1 (X+, V +c̄X+) (X+, V )h̄

g ◦ (X−, V ) (X−, V + b) (X−−V b̄, V ) A(X−D−1, V ) h(X−, V ) (X−, V −X−c)

Table 1. We used the definitions h := (13 +V c̄)−1 and h̄ := (13 + cV )−1. The transformations corresponding
to G(+,+), G(−,−) are generated by the ones above. For convenience we give the explicit form of special super-
conformal transformations G(−,−): (X+, V ) 7→ (X+, V )(1 + CX+)−1 and (X−, V ) 7→ (1 +X−C)−1(X−, V ).

The above corresponds to setting c2d = −15 in both (2.25) and (2.26), as expected since for this value

the extra generator is not needed and decouples. The possibility that there is no B̂[3,3] multiplet in the

rank one theory and thus that the OPE coefficient is zero corresponds to the c2d = −15 case of (2.27).

If this last possibility were true, then we would have that the operator WW̄ ∼ J 3 is not in the Higgs

branch, since Higgs branch operators correspond to B̂R multiplets in N = 2 language. Hence, there

would be a relation setting J 3 = 0 in the Higgs branch, which does not seem plausible. In any case,

we will allow for (2.27) for generic values of the central charge. It might be possible to select among

the two options ((2.25) and (2.27)) by making use of the considerations in [68] about recovering the

Higgs branch out of the chiral algebra, but we leave this for future work.

3 Superblocks

In this section we will use harmonic superspace techniques in order to study correlation functions

of half-BPS operators. We will follow closely [39, 69], where a similar approach was used to study

correlation functions in several superconformal setups.

3.1 Superspace

We introduce the superspace M as a coset M ' SL(4|3)
/
G≤0. Here, the factor G≤0 corresponds

to lower triangular block matrices with respect to the decomposition given in (3.1) below. We take

E(p) ∈ G>0 as coset representative explicitly given by

E(p) := exp

0(2|1) V X

0 0 V

0 0 0(2|1)

 =

1(2|1) V X+

0 1 V

0 0 1(2|1)

 , (3.1)

where

X =

(
xαα̇ λα

πα̇ y

)
, V =

(
θα

v

)
, V =

(
θ̄α̇ v̄

)
. (3.2)

In the above, α ∈ {1, 2}, α̇ ∈ {1, 2} are the familiar Lorentz indices and the coordinates {λα, πα̇, θα, θ̄α̇}
are fermionic, while the y, v, v̄ are bosonic R-symmetry coordinates. The action of SL(4|3) on this

superspace follows from the coset construction and is summarized in table 1. Notice that SL(4|3) acts

invariantly within the superspaces M+, M− with coordinates {X+, V }, {X−, V } respectively, where

we have defined X± = X ± 1
2V V . The basic covariant objects extracted from the invariant product

E(p2)−1E(p1) are

X1̄2 := X+,1 −X−,2 − V2V 1 , V12 := V1 − V2 , V 12 := V 1 − V 2 . (3.3)
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We also define X21̄ := −X1̄2.

Superfields for superconformal multiplets

The supermultiplets B̂[R1,R2] correspond to “scalar” superfields on M . Among them, as discussed in

the previous section, the ones with R1R2 = 0 are special in the sense that they satisfy certain chirality

conditions. We call chiral (anti-chiral) a superfield that depends only on the coordinates {X−, V }
({X+, V }).15 Within this terminology, the operators B̂[0,R] are chiral while the B̂[R,0] are antichiral.

More general supermultiplets can be described as superfields on M with SL(2|1) × SL(2|1) indices

which extend the familiar Lorentz indices. We will not need to develop the dictionary between N = 3

superconformal representations and SL(2|1)×SL(2|1)×GL(1)×GL(1) induced representations in this

work and thus leave it for the future.

Remark 1. The subspace MN=2 corresponding to setting V = V = 0 is acted upon by the N =

2 superconformal group SL(4|2). The corresponding superspace is well known, see e.g. [37]. The

superfields corresponding to the N = 3 supermultiplets B̂[R1,R2] reduce to the N = 2 supermultiplet

B̂ 1
2 (R1+R2) when restricted to the superspace MN=2. The other operators in the decomposition of

B̂[R1,R2] in N = 2 supermultiplets, see (A.1), (A.2), roughly corresponds to the expansion of the

superfield in V and V . There is also an N = 1 subspace MN=1 , which is not a subspace of MN=2,

defined by setting λα, πα̇, v, v̄ to zero. An SL(4|1) × SL(2) subgroup of SL(4|3) acts on MN=1. This

observation will be useful in the derivation of the superconformal blocks in section 3.4.

Examples of two- and three-point functions

We denote superfields and supermultiplets in the same way. Let us list some relevant examples of two-

and three-point functions of B̂-operators of increasing complexity:

〈B̂[R1,R2](1)B̂[R3,R4](2)〉 = δR1,R4δR2,R3(2̄1)R1 (1̄2)R2 , (3.4)

〈B̂[0,R](1)B̂[R,0](2)B̂[S,S](3)〉 = (2̄1)R−S ((2̄3)(3̄1))
S
, (3.5)

〈B̂[0,R](1)B̂[0,R](2)B̂[R1,R2](3)〉 = δR1,2R δR2,0 ((3̄1)(2̄1))
R
, (3.6)

〈B̂[R,R](1)B̂[R,R](2)B̂[R,R](3)〉 = ((2̄1)(3̄2)(1̄3))
R
PR(C) , (3.7)

where we have defined

(1̄2) :=
1

sdet(X1̄2)
, C :=

(3̄1)(1̄2)(2̄3)

(2̄1)(3̄2)(1̄3)
. (3.8)

In (3.5) superspace analyticity implies that S ≤ R and that the correlation function vanishes otherwise.

Similarly, in (3.7), C is a superconformal invariant and superspace analyticity implies that PR(C) is

a polynomial of degree R in C. Since the three operators are identical, one further imposes Bose

symmetry which translates to PR(x) = xRPR(x−1). Equation (3.7) specialized to the case R = 1

corresponds to the three-point function of the stress-tensor supermultiplet B̂[1,1] and the argument

above implies that P1(x) = const × (1 + x). This provides a quick proof of the fact that for N = 3

superconformal theories one has the relation a = c as first derived in [1].

Let us consider the three-point functions relevant for the non-chiral OPE B̂[R,0]×B̂[0,R]. A simple

superspace analysis reveals that the three-point function of a chiral and an anti-chiral operator with

15 This is not the standard terminology for chiral superfields in N -extended superspace. We hope this will not cause
any confusion to the reader.
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a generic operator takes the form

〈B̂[0,R](X−,1, V1)B̂[R,0](X+,2, V 2)O(X3, V3, V 3)〉 = (2̄1)RρO
(
X3̄1X

−1
2̄1
X2̄3

)
. (3.9)

The quantity ρO is determined uniquely up to a multiplicative constant by the requirement that (3.9)

is superconformally covariant. It is not hard to verify that one can set the coordinates V1, V 2, V3, V 3

to zero by an SL(4|3) transformation which is not part of the N = 2 superconformal group SL(4|2)

(with the embedding specified in the remark 1 above). This means that (3.9) is zero if its N = 2

reduction (i.e., the result obtained after setting Vi = V i = 0) is zero, as confirmed by the selection

rules result (3.21) that we derive later in section 3.3.

Turning to the three-point functions relevant for the chiral OPE B̂[R,0] × B̂[R,0], it is not hard to

convince oneself that they take the form

〈B̂[0,R](X−,1, V1)B̂[0,R](X−,2, V2)Õ(X3, V3, V 3)〉 = ((3̄1)(3̄2))
R
ρ̃Õ
(
X̂, V̂

)
, (3.10)

where

X̂ =
(
X−1

23̄
−X−1

13̄

)−1
, V̂ = X−1

23̄
V23 −X−1

13̄
V13 , (3.11)

and ρ̃Õ is fixed by requiring superconformal covariance of (3.10). It is important to remark that, as

opposed to (3.9), in this case one cannot set the coordinates V1, V2, V3, V 3 to zero using superconformal

transformations. However, they can be set to the values

{(X−,1, V1), (X−,2, V2), (X−,3, V3, V 3)} 7→ {(∞, 0), X̂(1, V̂ ), (0, 0, 0)} . (3.12)

The combinations X̂ and V̂ carry non trivial superconformal weights only with respect to the third

point corresponding to the operator Õ.

3.2 Superconformal Ward identities

We will now derive, along the same lines as [31, 39, 69], the superconformal Ward identities for the

four-point correlation function 〈B̂[0,R]B̂[R,0]B̂[0,R]B̂[R,0]〉. Let us first introduce super cross-ratios for

this four point function. The eigenvalues of the graded matrix

Z := X12̄X
−1
32̄

X34̄X
−1
14̄

, (3.13)

are invariant and will be denoted by x1, x2, y. This can be seen from the fact that all fermionic

coordinates in this four-point function can be set to zero by a superconformal transformation. It

follows that

〈B̂[0,R](1)B̂[R,0](2̄)B̂[0,R](3)B̂[R,0](4̄)〉 = (12̄)R (34̄)RGR(x1, x2, y) , (3.14)

where GR(x1, x2, y) = GR(x2, x1, y). The form of GR(x1, x2, y) is strongly restricted by the require-

ment of superspace analyticity. Firstly, after setting all fermionic variables to zero

Z|ferm=0 =

(
x12 x

−1
32 x34 x

−1
14 0

0 y12̄y34̄

y32̄y14̄

)
, yı̄j := yi − yj − vj v̄i , (3.15)

polynomiality in the R-symmetry variables implies that GR(x1, x2, y) is a polynomial of degree R

in y−1. Secondly, one has to make sure that the fermionic coordinates can be turned on without

introducing extra singularities in the R-symmetry variables. By looking at the expansion of the
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eigenvalues of (3.13) in fermions, one concludes that the absence of spurious singularities is equivalent

to the conditions

(∂x1
+ ∂y)GR(x1, x2, y)

∣∣
x1=y

= 0 , (∂x2
+ ∂y)GR(x1, x2, y)

∣∣
x2=y

= 0 . (3.16)

These equations imply in particular that GR(x, x2, x) = fR(x2) and GR(x1, x, x) = fR(x1). This is

a consequence of the protected subsector discussed in section 2, where setting x1 = x (or x2 = x)

follows from the twisted translations (2.2), as originally discussed in [40]. The chiral algebra further

tells us that fR(x1) is a meromorphic function of x1, corresponding to a two-dimensional correlation

function of the twisted-translated Schur operators, with each B̂[0,R] (B̂[R,0]) multiplet giving rise to a

two-dimensional N = 2 chiral (anti-chiral) operator, as discussed in 2.1.1.

The general solution of the Ward identities can be parametrized as

GR(x1, x2, y) =
(x−1

1 − y−1)fR(x1)− (x−1
2 − y−1)fR(x2)

x−1
1 − x

−1
2

+
(
x−1

1 − y−1
) (
x−1

2 − y−1
)
HR(x1, x2, y) ,

(3.17)

where HR(x1, x2, y) is a polynomial of degree R− 2 in y−1. In particular, it is zero for the case R = 1

corresponding to a free theory. For the following analysis it is useful to introduce the variables z, z̄, w

as

x1 =
z

z − 1
, x2 =

z̄

z̄ − 1
, y =

w

w − 1
. (3.18)

This change of variable is an involution in the sense that z = x1

x1−1 and so on. They are related to the

more familiar cross-ratios as

u =
x2

12x
2
34

x2
13x

2
24

= zz̄|ferm=0 , v =
x2

14x
2
23

x2
13x

2
24

= (1− z)(1− z̄)|ferm=0 . (3.19)

Notice that the WI (3.16) take the same form in the new variables and that moreover

(z−1 − w−1)(z̄−1 − w−1) = (x−1
1 − y−1)(x−1

2 − y−1) , (3.20a)

(x−1
1 − y−1)f(x1)− (x−1

2 − y−1)f(x2)

x−1
1 − x

−1
2

=
(z−1 − w−1)f(x1)− (z̄−1 − w−1)f(x2)

z−1 − z̄−1
, (3.20b)

for any function f(x).

3.3 Selection rules

In this subsection we analyze the possible multiplets allowed by superconformal symmetry in the non-

chiral and chiral OPEs. This is a crucial ingredient for the crossing equations and are usually called

the OPE selection rules.

Non-chiral channel

The OPE in the non-chiral channel B̂[R,0] × B̂[0,R] can be obtained by using the superconformal Ward

identities just derived, together with the fact that the three-point function 〈B̂[R,0]B̂[0,R]O〉, where O
is a generic operator, is non-zero only if the three-point function of the corresponding superprimary

states is non-zero by conformal and R-symmetry. The latter condition can be derived by recalling

that the fermionic coordinates in this three-point function can be set to zero by a superconformal

– 16 –



transformation. A simple analysis shows that

B̂[R,0] × B̂[0,R] = I +

R∑
a=1

B̂[a,a] +

∞∑
`=0

[
R−1∑
a=0

Ĉ[a,a],` +

R−2∑
a=0

A∆
[a,a],r=0,`

]
. (3.21)

Notice that these relations are remarkably similar to the B̂R/2 × B̂R/2 OPE in the N = 2 case, see

[63]. The three upper bounds on the finite summations R,R− 1, R− 2 could be derived by imposing

that the three-point function 〈B̂[R,0]B̂[0,R]O〉 is free of superspace singularities. Equivalently, it can be

derived by requiring that the associated superconformal block takes the form (3.17). We followed the

latter strategy as it seemed more economical.

Chiral channel

The chiral channel selection rules are obtained by requiring that a given multiplet can only contribute

if it contains an operator annihilated by all the supercharges that annihilate the highest weight of

B̂[R,0], and if said operator transforms in one of the representations appearing in the tensor product of

the R-symmetry representations [R, 0] × [R, 0], and with the appropriate spin to appear in the OPE

of the external scalars. We have performed this calculation for R = 2, 3 and based on it we propose

that the expression for general R is

B̂[R,0] × B̂[R,0] = B̂[2R,0] +

R∑
a=2

B[2(R−a),a],r=4R,0 +

+

∞∑
`=0

[
Ĉ[2R−2,0],( `+1

2 , `2 ) +

R∑
a=2

(
C r=4R−1

[2(R−a),a−1],( `+1
2 , `2 ) +A∆,r=4R−2

[2(R−a),a−2],( `2 ,
`
2 )

)]
. (3.22)

We have checked the above in several cases for R > 3 and superspace arguments suggest it is indeed

the correct selection rule. Note that in (3.22) the B-type multiplets have r = 4R, the C-type multiplets

r = 4R − 1, and the A-type multiplets r = 4R − 2. Moreover, if we are considering identical B̂[R,0],

then Bose symmetry further constraints the spin of the operators appearing on the right-hand-side

according to their SU(3)R representation.

3.4 Superconformal blocks

We will now derive the superconformal blocks relevant for the expansion of the four-point function

(3.14). The superconformal Ward identities alone turn out not to be sufficient to uniquely determine

all the superblocks. We resolve the leftover ambiguity by requiring that they are linear combinations

of SL(4|1) × SU(2) (N = 1) superblocks. There are two types of blocks corresponding to the two

channels: non-chiral (3.21) and chiral (3.22). The two kinds of blocks are closely connected to N =

2 superconformal blocks relevant for the four-point function of B̂-type operators and are collected

in tables 2 and 3. When the kinematics is restricted to (z, z̄, w) = (z, w,w), only superconformal

blocks corresponding to the exchange of Schur operators, defined in section 2.1.1, are non-vanishing.

Moreover, they reduce to 2d (global) superblocks for the N = 2 superconformal algebra sl(2|1) '
osp(2|2) in the appropriate channel.

3.4.1 Superconformal blocks for the non-chiral channel.

On general grounds, the N = 3 superconformal blocks contributing to the four-point function (3.14) in

the non-chiral channel can be written as an expansion in terms of conformal times SU(3) R-symmetry
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blocks:

Gχ(z, z̄, w) =
∑
α∈Sχ

cα(χ) g∆α,`α(z, z̄)h[Rα,Rα](w) . (3.23)

The explicit form of the conformal blocks g∆,` is given in Appendix C. The SU(3) R-symmetry blocks

take the form

h[a,a](w) =

(
2a+ 1

a+ 1

)−1

2F1(−a, a+ 2, 1, y−1) , y =
w

w − 1
. (3.24)

The normalization in (3.24) is chosen so that h[a,a](w) = w−a+. . . for w → 0. The set Sχ is determined

by considering the decomposition of the N = 3 representation being exchanged into representations

of the bosonic subalgebra (this can be done using superconformal characters). The normalization can

be fixed by taking for instance cα(χ) = 1 for the label α corresponding to the minimum value of ∆α

in the supermultiplet.

Consider the superblocks corresponding to the non-chiral OPE channel of (3.21). Concerning

the superblocks for the B̂[a,a] exchange, it turns out that they are uniquely fixed by imposing the

superconformal WI on (3.23). The superblocks corresponding to the exchange of a Ĉ[a,a],` on the

other hand are not uniquely fixed by the this procedure. The remaining ambiguity can be resolved by

requiring that they reduce to osp(2|2) (this is the global part of the chiral half of the d = 2,N = 2

super Virasoro algebra) superblocks when restricted to (z, z̄, w) = (z, w,w). Recall that this restriction

reduces the correlator to that of 2d N = 2 chiral and anti-chiral operators, and thus the exchange of

an operator in the non-chiral channel is captured by the osp(2|2) superblocks of [34]. Specifically, this

amounts to requiring

fĈ[a,a],`
(z) = GĈ[a,a],`

(z, w,w) = (−1)`+1g2d N=2
a+`+2 ( z

z−1 ) , (3.25)

where the osp(2|2) superblock is [34]

g2d N=2
h (x) = xh 2F1(h, h, 2h+ 1, x) , (3.26)

and f(z) corresponds to the parametrization (3.17).16 The superblocks for the exchange of long

operators A∆
[a,a],r=0,` are not uniquely determined by the two conditions given above. The leftover

ambiguity can be resolved by studying the Casimir equations. However, we will take a shortcut and

use the knowledge of N = 1 superblocks. The relevant superblocks, which were derived in [15, 34],

are given by

GN=1
∆,` (z, z̄) = (zz̄)−

1
2 g∆12=∆34=1

∆+1,` (z, z̄) . (3.27)

It follows from the remark 1, that the N = 3 superblocks can be expanded in N = 1 times SU(2)

“flavor symmetry” blocks as

GN=3
A∆

[a,a],r=0,`
(z, z̄, w) = d̃

(0,0)
∆,` (w)GN=1

∆,` (z, z̄) + d̃
(1,1)
∆,` (w)GN=1

∆+1,`+1(z, z̄) + · · ·+ d̃
(4,0)
∆,` (w)GN=1

∆+4,`(z, z̄) .

(3.28)

On the right hand side, the sum runs over the terms

(∆, `) , (∆ + 1, `± 1) , (∆ + 2, `± 2) , (∆ + 2, `) , (∆ + 3, `± 1) , (∆ + 4, `) . (3.29)

Imposing that the form (3.23), subject to the WI, can be expanded as in (3.28), fixes the leftover am-

16To each superblock Gχ corresponds a function fχ and a function Hχ by using the parametrization (3.17).
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χ fχ Hχ

identity 1 0

B̂[a,a] g2d N=2
a (−1)a

∑a−2
k=0 GN=1

a+k+2,a−k−2 h[k,k]

Ĉ[a,a],` (−1)`+1 g2d N=2
a+`+2 (−1)a+1

∑a−1
k=0 GN=1

a+`+k+4,a+`−k h[k,k]

A∆
[a,a],` 0 (−1)aGN=1

∆+2,` h[a,a]

Table 2. Superconformal blocks contributing to (3.21) in the parametrization (3.17). These expressions
are consistent with the decompositions of superblocks at unitarity bounds, see (3.31). We recall that the
explicit expressions for the blocks entering the table are given in (3.24), (3.26), and (3.27). Notice that for

the stress-tensor supermultiplets B̂[1,1], the function HB̂[1,1]
is zero.

biguity in the N = 3 superblocks and the coefficient functions d̃
(a,b)
∆,` (w) up to an overall normalization.

The solution can then be rewritten in the compact form

GN=3
A∆

[a,a],r=0,`
(z, z̄, w) = (−1)a(z−1 − w−1)(z̄−1 − w−1)GN=1

∆+2,`(z, z̄)h[a,a](w) . (3.30)

The simplicity of this expression will be justified in remark 2 below. This concludes the derivation of

superconformal blocks relevant for the non-chiral channel, the results are summarized in table 2.

Before turning to the discussion of the superblocks relevant for the chiral channel, we perform a

consistency check on the blocks just derived. As can be seen in table 2, short blocks can be obtained

from the long ones (3.30) at the unitarity bounds by using

GA∆=`+2+2a
[a,a],r=0,`

= GĈ[a,a],`
+ GĈ[a+1,a+1],`−1

, (3.31)

where we identify Ĉ[a,a],−1 ≡ B̂[a+1,a+1]. This is consistent with the multiplet decomposition at the

unitarity bound: A∆=`+2+2a
[a,a],r=0,` → Ĉ[a,a],` ⊕ Ĉ[a+1,a+1],`−1 ⊕ “extra”, where “extra” does not contribute

to the block.

3.4.2 Superconformal blocks for the chiral channel.

We denote the superconformal blocks contributing to this channel as G̃χ(z, z̄, w), where χ labels the

representations being exchanged from the list (3.22). As in the case of the non-chiral channel, we start

with an expansion of the superblocks in conformal times SU(3) blocks and impose the superconformal

Ward identities, (3.16). Specifically we take

G̃χ(z, z̄, w) =
∑
α∈ S̃χ

c̃α(χ) g∆α,`α(z, z̄) h̃[2(R−nα),nα](w) . (3.32)

It appears, perhaps not too surprisingly, that the SU(3) R-symmetry blocks h̃[2m,n](w) in this channel

coincide with SU(2) blocks, where here and in the following we take m = 2(R − n). They take the

form17

h̃[2m,n](w) = hSU(2)
m (w) = (−1)m

(
2m

m

)−1

2F1(−m,m+ 1, 1, w−1) , (3.33)

17 One can recognize the appearance of Legendre polynomials as (−1)m2F1(−m,m+ 1, 1, w−1) = Pm( 2
w
− 1).
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χ f̃χ H̃χ

B̂[2R,0] g2d
R

∑R−2
k=0 gR+k+2,R−k−2 h

SU(2)
k

Ĉ[2R−2,0],( `+1
2 , `2 ) g2d

R+`+2

∑R−2
k=0 gR+`+k+4,R+`−k h

SU(2)
k

Br=4R

[2(R−a),a],0 0 g2R+2,0 h
SU(2)
R−a

Cr=4R−1

[2(R−a),a−1],( `+1
2 , `2 ) 0 g2R+`+3,`+1 h

SU(2)
R−a

A∆,r=4R−2

[2(R−a),a−2],( `2 ,
`
2 ) 0 g∆+3,` h

SU(2)
R−a

Table 3. Superconformal blocks contributing to (3.22) in the parametrization (3.17), with f and H replaced

by f̃ and H̃ to indicate they correspond to the chiral channel blocks. These expressions are consistent with
the decompositions of superblocks at unitarity bounds, see (3.37). We recall that the explicit expression of
the sl(2) and R-symmetry blocks is given in (3.36) and (3.33) respectively.

where the normalization is chosen so that h̃[2m,n](w) ∼ wm for w ∼ 0, and we omit the label n since

it is related to m. The set S̃χ is determined by looking at the content of the representation χ using

characters. Using this information, all the coefficients c̃α(χ) are then fixed by the requirement that

(3.32) satisfies the superconformal WI (3.16).

With a little inspection on the solutions, one recognizes that the superblocks in this channel are

the N = 2 superconformal blocks that contribute to the four-point function of B̂N=2 supermultiplets

[30–32]. The identification is given by

G̃N=3
χ (z, z̄, w) = GN=2

p(χ) (z, z̄, w) , (3.34)

where p maps the N = 3 representations being exchanged in the chiral channel, see (3.22), to an

N = 2 representations as follows

p



B̂[2R,0]

Ĉ[2(R−1),0],( `+1
2 , `2 )

Br=4R

[2(R−a),a],0

Cr=4R−1

[2(R−a),a−1],( `+1
2 , `2 )

A∆,r=4R−2

[2(R−a),a−2],( `2 ,
`
2 )

 =


B̂R

ĈR−1,`+1

A2R
R−a,0

A2R+`+1
R−a,`+1

A∆+1
R−a,`

 . (3.35)

The equality (3.34) is not accidental, we will comment on its origin in the remark below.

The resulting superblocks in the parametrization (3.17) are given in table 3. Once again note that

the meromorphic function f̃(z) has a decomposition in 2d blocks, in this case sl(2) blocks

g2d
h (z) = zh 2F1(h, h, 2h, z) . (3.36)

These are the blocks relevant for the decomposition of the chiral algebra correlators in the chiral

channel, since each 2d N = 2 multiplet contributes with a single sl(2) primary to the OPE of two 2d

N = 2 chiral operators.
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The unitarity bound relevant for the chiral channel is

A∆,r=4R−2

[2(R−a),a−2],( `2 ,
`
2 )

∆=`+2R−1
−−−−−−→ Cr=4R−2

[2(R−a),a−2],( `2 ,
`
2 ) ⊕ C

r=4R−1

[2(R−a),a−1],( `2 ,
`−1

2 ) , (3.37)

where Cr=4R−1

[2(R−a),a−1],(0,− 1
2 ) = Br=4R−1

[2(R−a),a],0. Only the underlined term contributes to the superblocks G̃,

as can be seen in table 3.

Remark 2. In [37], the authors derived superconformal blocks for scalar four-point functions on

a super Grassmannian space Gr(m|n, 2m|2n). It is an interesting problem to generalize the analy-

sis of [37] to the more general case of Gr(m|n,M |N). The example we just studied corresponds to

Gr(2|1, 4|3). The example of chiral superfields (in the traditional sense) for N -extended supersym-

metry corresponds to the super Grassmannian Gr(2|0, 4|N ) and the corresponding superblocks were

given in [34]. The simplicity of the results (3.30) and (3.34) and the one presented in [34] suggests a

simple unified picture.

4 Crossing equations

Equipped with the superconformal blocks relevant for the four-point function of half-BPS operators

we are finally ready to write the crossing equations. Most of this section treats the case of arbitrary

external dimension R, and in the final section we focus on the cases of a dimension two and three

operator. Crossing symmetry can be written in terms of the functions fR(x) and HR(x1, x2, y) used

to parametrize the solution of the Ward identities (3.17). As expected, the chiral algebra correlator

fR(x) satisfies a crossing equation on its own, that we solve analytically. This amounts to input about

the exchange of Schur operators, that we feed into the full set of crossing equations for HR(x1, x2, y).

These give rise to a system of (three) six equations of the two bosonic cross-ratios, for (R = 2) R = 3,

which are the subject of the numerical analysis of section 5.

First equation

Consider the four-point function (3.14), where we take pairwise identical operators. Imposing that it

is invariant upon the exchange of points 1↔ 3 implies the crossing equation

GR(x1, x2, y) =

(
x1x2

y

)R
GR(x−1

1 , x−1
2 , y−1) . (4.1)

This is due to the fact that the matrix Z, given in (3.13), transforms to its inverse, up to a similarity

transform, if points 1 and 3 are exchanged. In terms of the solution of the WI (3.17), equation (4.1)

implies that the single variable function fR(x) satisfies a crossing equation on its own:

fR(x) = xR fR(x−1) . (4.2)

Note that the above is a specialization of (4.1) to (x1, x2, y) = (x, y, y), and thus corresponds to the

crossing equation for the two-dimensional correlator of a dimension R
2 operator. The function fR(x)

is easily argued to be a polynomial of degree R in x as we shall show in section 4.2.1. Imposing (4.2),

together with the normalization fR(0) = 1, implies this function is fixed in terms of R
2 (respectively

R−1
2 ) independent parameters for R even (respectively odd).
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The remaining constraints from crossing symmetry (4.1) translate into the following equation

(x1x2)R+1

yR−2
HR(x−1

1 , x−1
2 , y−1)−HR(x1, x2, y) =

y2−R

x−1
1 − x

−1
2

(x2AR(x2, y) fR(x1)− x1 ↔ x2) , (4.3)

where we have made use of (4.2), and defined

AR(x, y) :=
xR−1 − yR−1

x − y
, (4.4)

which is a polynomial in its arguments. Recall that HR(x1, x2, y) is a polynomial of degree R − 2 in

y−1 and thus, with the exception of R = 2, (4.3) encodes a system of crossing equations.

Second equation

In the channel where one takes the OPE of the two chiral operators it is convenient to relabel the

points in (3.14) to obtain

〈B̂[R,0](1)B̂[R,0](2)B̂[0,R](3̄)B̂[0,R](4̄)〉 =

[
(13̄) (24̄)

(
w̃

z̃ ˜̄z

)]R
G̃R(z̃, ˜̄z, w̃)

= (23̄)R (14̄)RGR(ẑ1, ẑ2, ŷ) ,

(4.5)

where we have defined

Ẑ := X23̄X
−1
13̄

X14̄X
−1
24̄
∼ diag(ẑ1, ẑ2, ŷ) , (4.6)

and (z̃, ˜̄z, w̃) := (1− ẑ1, 1− ẑ2, 1− ŷ1). If the superspace coordinates are V = V = 0, the cross-ratios

above are related to the ones entering (3.14) as (z̃, ˜̄z, w̃) = (z, z̄, w) and (ẑ1, ẑ2, ŷ) = ((1− x1)−1, (1−
x2)−1, (1 − y)−1). The first equality in (4.5) is to be understood as defining the function G̃R.18 The

second one is a rewriting of (3.14), relating the chiral channel to the non-chiral channel. The function

G̃R satisfies the same superconformal Ward identities as GR. We thus parametrize it as in (3.17), with

the functions fR and HR replaced by f̃R and H̃R, and the variables x1, x2, y replaced by z̃, ˜̄z, w̃. An

immediate consequence of (4.5) is the relation

G̃R(z, z̄, w) =

(
( z

1−z )( z̄
1−z̄ )

( w
1−w )

)R
GR(1− z, 1− z̄, 1− w) . (4.7)

Note that z̃, ˜̄z, w̃ are the usual cross-ratios for the correlator (4.5), and so we rename them as (z̃, ˜̄z, w̃)→
(z, z̄, w). The relation (4.7) implies a relation for the single variable function f̃R:

f̃R(z) =

(
z

1− z

)R
fR(1− z) , (4.8)

which again follows from the fact that the single variable functions are capturing a two-dimensional

correlator. For the H̃ function we get from (4.7) that

(−1)R
(x1x2)R+1

yR−2
HR(1− z, 1− z̄, 1− w)− H̃R(z, z̄, w) =

xR−1
1 AR(x1, y) f̃R(z̄)− (z ↔ z̄)

z−1 − z̄−1
, (4.9)

18 The strange prefactor is the natural supersymmetric completion of (x2
12x

2
34)−R.
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where AR(x, y) was defined in (4.4) and we remind that in (3.18) we set (x1, x2, y) = ( z
z−1 ,

z̄
z̄−1 ,

w
w−1 ).

As in the first crossing equation (4.3), the dependence on w disappears from (4.9) for R = 2.

Third equation

Since we consider the case of identical B̂[R,0] operators, Bose symmetry under the exchange 1↔ 2 in

(4.5) requires

G̃R(z, z̄, w) = (−1)RG̃R( z
z−1 ,

z̄
z̄−1 ,

w
w−1 ) . (4.10)

Plugging in the solution of the WI and using (3.20), the above equation translates into

f̃R(z) = (−1)Rf̃R( z
z−1 ) , H̃R(z, z̄, w) = (−1)RH̃R( z

z−1 ,
z̄
z̄−1 ,

w
w−1 ) , (4.11)

with the first equation again following from Bose symmetry in the chiral algebra.

4.1 From the chiral algebra to numerics

In the following subsections we turn the crossing equations (4.3), (4.9), (4.11) into a system ready for

the numerical analysis, by fixing all the chiral algebra data. To do so we proceed as follows:

• The first step, undertaken in subsection 4.2.1, is to analytically solve the chiral algebra crossing

equations for fR(x) and f̃R(x).

• Decomposing these functions in the blocks of tables 2 and 3 allows us to fix an infinite number

of Schur operator OPE coefficients. We recall these operators are the ones in the OPEs (3.21)

and (3.22) that contribute to the chiral algebra, see (2.6) and the following.

• From the block decomposition of HR, H̃R, also given in tables 2 and 3, we see that they receive

contributions from some of the multiplets contributing to fR(x) and f̃R(x).

• Therefore we split the expansion into a sum over the exchange of Schur operators

B̂[a,a] , Ĉ[a,a],` , B̂[2R,0] , Ĉ
[2R−2,0](

`+1
2 ,

`
2 )
, (4.12)

and a sum of the remaining operators.19

• The final step is to sum the contribution of Schur operators to the HR and H̃R functions, denoted

as HR,short and H̃R,short in the following. (We sometimes omit the index R and write just Hshort

and H̃short.) We deal with these functions in section 4.2 and our final results are given in (4.24)

and (4.29).

In general, knowledge of the function fR(x) alone is not sufficient to determine HR,short unambiguously,

in contrast with the chiral channel function H̃R,short, which is fixed in terms of f̃R(x). This is because

different N = 3 supermultiplets give the same contribution, in the sense of 2d blocks, to the functions

fR(x) and f̃R(x). As we will see in section 4.2, assuming the absence of supermultiplets containing

conserved currents of spin greater than two, the function H̃R,short and the component of HR,short in

the R-symmetry singlet channel can be extracted unambiguously from the knowledge of fR(x).

19 This split does not coincide in general with the separation between long and short operators, as can be seen in the
chiral channel.
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Summary of the result

Following the procedure that we just outlined one arrives at the following system of crossing equations:

∑
χ∈ B̂[R,0]×B̂[0,R]|A

|λχ|2
 Fχ

+Fb
−,χ

−Fb
+,χ

 +
∑′

χ∈ B̂[R,0]×B̂[R,0]|A,C,B

|λ̃χ|2

 0

F̃−,χ
F̃+,χ

 =

F
(0)
short

F (−)
short

F (+)
short

 . (4.13)

We now have to make several remarks in order to explain our notation.

a) We have defined the functions

Fχ =
[(1− z)(1− z̄)]R+1

(1− w)R−2
Hχ(z, z̄, w)− (−1)R

[
(z, z̄, w)↔ (1− z, 1− z̄, 1− w)

]
, (4.14)

Fb
±,χ =

[(1− z)(1− z̄)]R+1

(1− w)R−2
Hχ( z

z−1 ,
z̄
z̄−1 ,

w
w−1 )±

[
(z, z̄, w)↔ (1− z, 1− z̄, 1− w)

]
, (4.15)

F̃±,χ =
[(1− z)(1− z̄)]R+1

(1− w)R−2
H̃χ(z, z̄, w)±

[
(z, z̄, w)↔ (1− z, 1− z̄, 1− w)

]
. (4.16)

The explicit form of the functions Hχ, H̃χ is given in tables 2 and 3 for each representation χ.

Note that the above functions still have a dependence on the R-symmetry cross-ratio, and thus

each equation in (4.13) will give several equations, once this dependence is expanded out.

b) The functions F (0,±)
short receive contributions from two sources. The first one comes from the right

hand side of (4.3), (4.9) and contains the function fR explicitly. The second one corresponds to

the contribution of Schur operators to the left hand side of (4.3), (4.9). Specifically, we have

F (0,±)
short = F (0,±)

short [f ]−F (0,±)
short [Hshort, H̃short] , (4.17)

with the explicit form of F (0,±)
short [f ] and F (0,±)

short [Hshort, H̃short] given in appendix D.1.

c) The precise range of summation in (4.13) is specified by the selection rules (3.21) and (3.22),

where we only take the operators that are not of Schur type, i.e., A in the non-chiral channel

and A,B, C in the chiral one. The prime in the second sum
∑′

indicates that the parity of

the spin label ` of the exchanged operator is fixed in terms of its R-symmetry representation.

Specifically, only even spins appear for irreps in the sym([R, 0] ⊗ [R, 0]), while for irreps in

antisym([R, 0]⊗[R, 0]) only odd spins appear. This follows from (4.11) and the braiding relations

(C.3) of individual blocks.

d) The second and third equations in (4.13) are obtained respectively from the antisymmetrization

and symmetrization of the superconformal block expansion of (4.9) with respect to the exchange

(z, z̄, w)↔ (1−z, 1− z̄, 1−w). An important remark, relevant for the numerical implementation,

is that the arguments of four dimensional superconformal and R-symmetry blocks entering (4.15),

namely ( z
z−1 ,

z̄
z̄−1 ,

w
w−1 ) and their inverses, can be traded for (z, z̄, w) and (1 − z, 1 − z̄, 1 − w)

using the braiding properties of the conformal blocks (C.3). This fact justifies the use of the

suffix b to denote “braided” in (4.15).

e) Finally, as customary, the identification |λχ|2 =
∑
O|χ(O)=χ |λO|2 is understood. By χ(O) we

mean the representation χ in which the operator O transforms.
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4.2 Fixing the chiral algebra contributions

We have defined above the functions HR,short and H̃R,short as the contribution from the exchange of

Schur operators to the HR and H̃R functions, entering (4.3) and (4.9). We will now discuss to which

extent these contributions can be extracted from the knowledge of fR(x), or more generally, from the

knowledge of the chiral algebra.

4.2.1 Determination of the function fR(x)

The cohomological reduction of the correlator (3.14), which in superspace corresponds to a specializa-

tion of the superspace coordinates in (3.2) to X = diag(z, y, y), V = (θ, 0, 0)T and V = (θ̄, 0, 0), gives

the holomorphic correlator

〈W(z−,1, θ1)W̄(z+,2, θ̄2)W(z−,3, θ3)W̄(z+,4, θ̄4)〉 =
fR(x)

(z12̄z34̄)R
, x =

z12̄z34̄

z32̄z14̄

, (4.18)

where z± = z ± 1
2θθ̄ and z12̄ = z1,− − z2,+ + θ1θ̄2. For the following discussion we set the fermionic

coordinates θ = θ̄ = 0. We can view the correlator above as a meromorphic function of z1, whose poles

correspond to singular terms in the OPE of W(1) with the remaining operators. The chiral OPE is

non-singular, so there is no pole when z1 ∼ z3 (corresponding to x ∼ 1). The singularity for z1 ∼ z2

(corresponding to x ∼ 0), on the other hand, is already taken care of by the prefactor in the right

hand side of (4.18). Finally, for z1 ∼ z4 (corresponding to x ∼ ∞) we have fR(x) ∼ xR. There is

no other singularity and so fR(x) is a polynomial of degree R in x, that we normalize as fR(0) = 1,

subject to the crossing relation (4.2). It is thus fixed in terms of
⌊
R
2

⌋
constants. If follows from the

exchange of the two-dimensional stress tensor that the small x expansion of the correlator takes the

form fR(x) = 1 + R2

4c4d
x+ . . . , where c4d ≡ c is the central charge of the four-dimensional theory, thus

fixing one of the
⌊
R
2

⌋
constants.20 For R = 1 the crossing relation (4.2) implies that f1(x) = 1 + x,

forcing the central charge to take the value c4d = 1
4 , which corresponds to N = 4 SYM with gauge

group U(1).

Non-chiral channel

Consider the expansion of the function fR(x) in holomorphic N = 2 (global osp(2|2)) blocks as

fR(x) = 1 +

∞∑
h=1

b
(R)
h g2d N=2

h (x) . (4.19)

Using the result given in table 2, and the selection rules (3.21), it is clear that in general one cannot

reconstruct the four-dimensional OPE coefficients corresponding to Schur operators (4.12) from the

knowledge of the expansion (4.19). This is best illustrated by looking at the following examples

R = 1 : b
(1)
1 = |λB̂1 |2 , b

(1)
h>1 = (−1)h+1|λĈ0,h−2|2 ,

R = 2 : b
(2)
1 = |λB̂1 |2 , b

(2)
2 = |λB̂2 |2 , b

(2)
h>2 = (−1)h|λĈ1,h−3|2 , (4.20)

R = 3 : b
(3)
1 = |λB̂1 |2 , b

(3)
2 = |λB̂2 |2 , b

(3)
3 = |λB̂3 |2 − |λĈ1,0|2 , b

(3)
h>3 = (−1)h(|λĈ1,h−3|2 − |λĈ2,h−4|2) ,

and so on. Above we used the compact notation λB̂a ≡ λ
(R)

B̂[a,a]
and λĈa,` ≡ λ

(R)

Ĉ[a,a],`
. Of course, λ’s from

different rows (i.e., for external operators with different values of R) in (4.20) are not the same, even

20If the subscript is omitted, it is understood that c is the four-dimensional central charge.
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though this is not captured by the notation. The general pattern is quite simple and one finds

b
(R)
1≤h≤R = |λB̂h |2 −

h−2∑
a=1

(−1)h−a |λĈa,h−a−2|2 , b
(R)
h>R = −

R−1∑
a=1

(−1)h−a |λĈa,h−a−2|2 . (4.21)

Note that compared to the results that can be obtained from table 2 and the selection rules (3.21),

we omitted by hand the supermultiplets Ĉ[0,0],` for external fields with R ≥ 2, because they are the

supermultiplets that contain higher spin conserved currents. They are included only in the free field

case R = 1. For R ≥ 2, while allowed by the selection rules (3.21), we want to demand that they are

absent in order to focus on interacting theories. We remark further that the OPE coefficient

b
(R)
1 = |λ(R)

B̂[1,1]
|2 =

R2

4c4d
, (4.22)

corresponding to the exchange of the stress-tensor supermultiplet B̂[1,1] can be extracted unambigu-

ously.

It follows from the above considerations that also |λB̂2 |2 can be extracted without ambiguity.

However, in general, the four-dimensional OPE coefficients cannot be extracted uniquely from the

expansion (4.19). As discussed in section 2.3 and section 5.3.2 using the knowledge of the chiral

algebra and some extra assumptions one can find, in the case R = 3, only two allowed values for λ
(3)

B̂[3,3]

and λ
(3)

Ĉ[1,1],0
.

Let us now investigate the structure of HR,short. By definition, we have

HR,short :=

R∑
a=2

|λB̂[a,a]
|2HB̂[a,a]

+

R−1∑
a=1

∞∑
`=0

|λĈ[a,a],`
|2HĈ[a,a],`

, (4.23)

which we can express in terms of the blocks h[a,a](w) and GN=1
∆,` (z, z̄) given in (3.24), (3.27) as

HR,short(x1, x2, y) =

∞∑
h=2

(−1)h b
(R)
h GN=1

h+2,h−2(z, z̄)

−


−h[0,0](w)

∑∞
n=0 |λ

(R)

Ĉ[0,0],n
|2GN=1

n+4,n , R = 2

h[1,1](w)
∑∞
n=0 |λ

(R)

Ĉ[2,2],n−1
|2 GN=1

n+6,n(z, z̄)− h[0,0](w)
∑∞
n=0 |λ

(R)

Ĉ[0,0],n
|2GN=1

n+4,n , R = 3∑R−2
t=0 h[t,t](w)C

(R)
t (z, z̄) , general R

.

(4.24)

In (4.23) the first summation starts from h = 2, since HB̂[1,1]
= 0. In writing this equation we allowed

for higher-spin currents to have a non-vanishing OPE coefficient, such that it becomes clear how they

would contribute to the crossing equations. Looking at table 2 we see that if higher-spin currents

are present they contribute exactly the same way as the R-symmetry singlet long multiplet at the

unitarity bound ∆ = ` + 2. After setting them zero |λ(R)

Ĉ[0,0],n
|2 = 0, only the part of HR,short in the

R-symmetry singlet channel is completely fixed in terms of the function fR(x). The explicit expression

for the function C
(R)
t (z, z̄) is easily worked out, but will not be relevant here. We finally remark that

the summation of the first term in (4.24) can be done explicitly for any R. See appendix D.2 for

details.
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Example: For R = 2, we find

f2(x) = 1 + c−1x+ x2 = 1 +

∞∑
h=1

b
(2)
h g2d N=2

h (x) , (4.25)

where from (4.20) we take, |λB̂[1,1]
|2 = b

(2)
1 = c−1, |λB̂[2,2]

|2 = b
(2)
2 = 1− 1

3c and

|λĈ[1,1],`
|2 = (−1)`+1b

(2)
`+3 =

(`+ 2)(4)`+1

22`+2
(

5
2

)
`+1

− Γ(`+ 4)

22`+5
(

1
2

)
`+3

c−1 . (4.26)

Note that if higher-spin currents are present the above identification of OPE coefficients with bh cannot

be made for h > 1.

Chiral channel

Now we expand the function f̃R, related to fR by (4.8), in N = 2 holomorphic blocks, which in this

channel coincide with ordinary sl(2) blocks, see (3.36). Specifically

f̃R(z) =

∞∑
h=R

h+R even

b̃
(R)
h g2d

h (z) , (4.27)

where we note that the sum starts from h = R, which is due to the fact that the relevant OPE is

non-singular. Moreover, the index h has the same parity as R as follows from the braiding relations

of individual blocks (C.5) together with (4.11). By looking at the selection rules given in (3.22), and

after a quick look at table 3, one concludes that

b̃
(R)
R =

∣∣λ̃B̂[2R,0]

∣∣2 , b̃
(R)
R+1 = 0 , b̃

(R)
`+R+2 =

∣∣λ̃Ĉ[2R−2,0],((`+1)/2,`/2)

∣∣2 , (4.28)

where ` ≥ 0. Note that in this channel we can reconstruct the four-dimensional OPE coefficients of

Schur operator completely in terms of the OPE coefficients of the cohomologically reduced problem.

We can thus uniquely determine the contribution of these operators to H̃R:

H̃R,short = b̃
(R)
R H̃B̂[2R,0]

+

∞∑
n=0

b̃
(R)
R+2n+2 H̃Ĉ

[2(R−1),0],(n+ 1
2
,n)
. (4.29)

The summation of this expression is straightforward and similar to the one done in appendix D.2. The

final result is given by

H̃R,short(z, z̄, w) =
f̃R(z̄) γR(z, w)− (z ↔ z̄)

z−1 − z̄−1
, (4.30)

where we have defined the kinematic factor

γR(z, w) =

R−2∑
a=0

k2a+2(z)hSU(2)
a (w) , (4.31)

with kβ(z) and h
SU(2)
a (w) given in (C.2) and (3.33) respectively.

We have now obtained explicit expressions forHR,short and H̃R,short, and can compute the functions

F (0,±)
short entering the crossing equations (4.13). See appendix D.1 for more details.
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4.3 Explicit form of the bootstrap equations for R = 2, 3

We will now show the explicit form of (4.13) in the cases R = 2, 3. In order to do so, it is convenient

to define the combinations of conformal blocks (compare to (4.14), (4.15), (4.16))

F±,∆,` := [(1− z)(1− z̄)]R+1
(zz̄)−

1
2 g1,1

∆+3,`(z, z̄)± [(z, z̄)↔ (1− z, 1− z̄)] ,

Fb
±,∆,` := (−1)` [(1− z)(1− z̄)]R+2

(zz̄)−
1
2 g−1,1

∆+3,`(z, z̄)± [(z, z̄)↔ (1− z, 1− z̄)] ,

F̃±,∆,` := [(1− z)(1− z̄)]R+1
g0,0

∆+3,`(z, z̄)± [(z, z̄)↔ (1− z, 1− z̄)] .

(4.32)

As before, we suppressed the index R from the notation, its value should be clear from the context.

Multiplet χ fχ(x) Hχ(z, z̄)

Identity g2d N=2
0 (x) = 1 0

B̂[1,1] g2d N=2
1 (x) 0

Ĉ[0,0],` (−1)`+1g2d N=2
`+2 (x) 0

B̂[2,2] g2d N=2
2 (x) GN=1

4,0 = (zz̄)−
1
2 g1,1

5,0(z, z̄)

Ĉ[1,1],` (−1)`+1g2d N=2
`+3 (x) GN=1

`+5,`+1 = (zz̄)−
1
2 g1,1
`+6,`+1(z, z̄)

A∆>`+2
[0,0],` 0 GN=1

∆+2,` = (zz̄)−
1
2 g1,1

∆+3,`(z, z̄)

Table 4. Contributions of the various N = 3 multiplets appearing in the non-chiral OPE (3.21), for R = 2,

to the functions fχ(x1) and Hχ(z, z̄). The multiplets Ĉ[0,0],` contain conserved currents of spin larger than

two, and must be set to zero for an interacting theory [61, 62]. We recall that B̂[1,1] is the stress-tensor

multiplet. When the long multiplet A∆>`+2
[0,0],` hits the unitarity bound ∆ = `+ 2 it decomposes in a Ĉ[0,0],` and

a Ĉ[1,1],`−1, where Ĉ[1,1],−1 = B̂[2,2]. Note that while long multiplets arbitrarily close to the unitarity bound
mimic higher-spin conserved currents, they do not mimic the stress tensor.

The case R = 2

The bootstrap equations (4.13) in this case are independent of the R-symmetry variables w. Using

the R = 2 specializations of the tables 2 and 3, namely table 4 and 5, we obtain

∑
∆>`+2

|λ∆,`|2

 F−,∆,`
+Fb
−,∆,`

−Fb
+,∆,`

+
∑

∆>`+3
` even

|λ̃∆,`|2

 0

F̃−,∆,`
F̃+,∆,`

 =

F
(0)
short

F
(−)
short

F
(+)
short

 . (4.33)

Here λ∆,` and λ̃∆,` denote the OPE coefficients of the longs multiplets with dimension ∆ and spin `

appearing in the non-chiral and chiral channels respectively, and F
(0,±)
short := F (0,±)

short , see appendix D.1 .

The case R = 3

For R = 3 we unpack the superconformal blocks given in tables tables 2 and 3 in tables 6 and 7.

To write down the crossing equations (4.13) in components we need to fix a basis in the space of
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Multiplet χ f̃χ(z) H̃χ(z, z̄)

B̂[4,0] g2d
2 (z) g4,0(z, z̄)

Ĉ
[2,0],(

`+1
2 ,

`
2 )

g2d
4+`(z) g`+6,`+2(z, z̄)

B̄[0,2],r=8,(0,0) 0 g6,0(z, z̄)

C̄
[0,1],r=7,(

`+1
2 ,

`
2 )

0 g`+7,`+1(z, z̄)

A∆>3+`
[0,0],r=6,` 0 g∆+2,`(z, z̄)

Table 5. Contributions of the various N = 3 multiplets appearing in the chiral OPE (3.22), for R = 2, to

the functions f̃χ(z) and H̃χ(z, z̄). Note that at the unitarity bound (see (3.37)) of the long multiplet we find
two types (for ` = 0 and ` 6= 0) of short multiplets which do not contribute to the chiral algebra, namely
B̄[0,2],r=8,(0,0) and C̄

[0,1],r=7,(
`+1

2
,
`
2

)
. When considering identical B̂[2,0] operators Bose symmetry requires ` to

be even for A∆>3+`
[0,0],r=6,` and odd for C̄

[0,1],r=7,(
`+1

2
,
`
2

)
.

R-symmetry polynomials. There is a natural choice which follows by noticing that

(1− w)FA∆,r=0
[0,0],`

= + 1
2 (1− y−1)F+,∆,` + 1

2 (1 + y−1)F−,∆,` ,

(1− w)FA∆,r=0
[1,1],`

= − 2
3 (1− y−1)F+,∆,` + 1

3 (1 + y−1)F−,∆,` ,

Fb
±,A∆,r=0

[0,0],`

= + 1
2

(
1

1−w + 1
w

)
Fb
±,∆,` + 1

2

(
1

1−w −
1
w

)
Fb
∓,∆,` ,

Fb
±,A∆,r=0

[1,1],`

= + 5
6

(
1

1−w + 1
w

)
Fb
±,∆,` − 1

6

(
1

1−w −
1
w

)
Fb
∓,∆,` ,

F̃±,A∆,r=10
[0,1],`

= + 1
2

(
1

1−w + 1
w

)
F̃±,∆,` + 1

2

(
1

1−w −
1
w

)
F̃∓,∆,` ,

F̃±,A∆,r=10
[2,0],`

= + 3
4

(
1

1−w + 1
w

)
F̃±,∆,` − 1

4

(
1

1−w −
1
w

)
F̃∓,∆,` .

(4.34)

The equations for B and C in the chiral channel follow from the last two entries in (4.34) at the unitarity

bound, as can be seen from table 7. Let us go back to the bootstrap equations (4.13) specialized to

the case R = 3. Using the relations (4.34), the equations (4.13) are easily recognized to be equivalent
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to

∑
∆>`+2

|λ0,∆,`|2



+ 1
2 F−,∆,`

+ 1
2 F+,∆,`

+ 1
2 Fb
−,∆,`

+ 1
2 Fb

+,∆,`

− 1
2 Fb

+,∆,`

− 1
2 Fb
−,∆,`


+

∑
∆>`+4

|λ1,∆,`|2



+ 1
3 F−,∆,`
− 2

3 F+,∆,`

+ 5
6 Fb
−,∆,`

− 1
6 Fb

+,∆,`

− 5
6 Fb

+,∆,`

+ 1
6 Fb
−,∆,`



+
∑

∆>`+5
` even

|λ̃0,∆,`|2



0

0

+ 1
2 F̃−,∆,`

+ 1
2 F̃+,∆,`

+ 1
2 F̃+,∆,`

+ 1
2 F̃−,∆,`


+

∑
∆>`+5
` odd

|λ̃1,∆,`|2



0

0

+ 3
4 F̃−,∆,`
− 1

4 F̃+,∆,`

+ 3
4 F̃+,∆,`

− 1
4 F̃−,∆,`


= ~Fshort .

(4.35)

More explicitly, we extract the coefficients of (1 − w)−1(1 ± y−1) of the first line of (4.13) and the

coefficients of
(

1
1−w ±

1
w

)
of the second and third line of (4.13). The expression for ~Fshort follows

from the expansion of F (0,±)
short given in appendix D.1 in this basis. In the above equation λa,∆,` and

λ̃a,∆,` denote the OPE coefficients of the longs multiplets A∆
[a,a],` and A∆,r=10

[2(1−a),a],` respectively. As a

consistency check, we verified that the bootstrap equations above are satisfied with positive coefficients

for the cases of free U(1) N = 4 SYM (considered a special N = 3 theory) and for the generalized free

theory discussed in appendix C.2.

Multiplet χ fχ(x) Hχ(z, z̄, w)

Identity g2d N=2
0 (z) = 1 0

B̂[1,1] g2d N=2
1 (z) 0

B̂[2,2] g2d N=2
2 (z) GN=1

4,0 (z, z̄)

B̂[3,3] g2d N=2
3 (z) −GN=1

5,1 (z, z̄)− GN=1
4,0 (z, z̄)h[1,1](w)

Ĉ[0,0],` (−1)`+1g2d N=2
`+2 (z) 0

Ĉ[1,1],` (−1)`+1g2d N=2
`+3 (z) GN=1

`+5,`+1(z, z̄)

Ĉ[2,2],` (−1)`+1g2d N=2
`+4 (z) −GN=1

`+6,`+2(z, z̄)−GN=1
`+7,`+1(z, z̄)h[1,1](w)

A∆>`+2
[0,0],` 0 GN=1

∆+2,`(z, z̄)

A∆>`+4
[1,1],` 0 −GN=1

∆+2,`(z, z̄)h[1,1](w)

Table 6. Contributions of the various N = 3 multiplets appearing in the non-chiral OPE (3.21), for R = 3,

to the functions fχ(x) and Hχ(z, z̄, w). Note that we can make the identification Ĉ[k,k],`=−1 = B̂[k+1,k+1], and
in the text we take the latter to be a special case of the former.
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Multiplet χ f̃χ(z) H̃χ(z, z̄, w)

B̂[6,0] g2d
3 (z) g5,1(z, z̄) + g6,0(z, z̄)h

SU(2)
1 (w)

Ĉ
[4,0],(

`+1
2 ,

`
2 )

g2d
`+5(z) g`+7,`+3(z, z̄) + g8+`,2+`(z, z̄)h

SU(2)
1 (w)

Br=12

[2,2],0 0 g8,0(z, z̄)h
SU(2)
1 (w)

Br=12

[0,3],0 0 g8,0(z, z̄)

Cr=11

[2,1],(
`+1

2 ,
`
2 ) 0 g`+9,`+1(z, z̄)h

SU(2)
1 (w)

Cr=11

[0,2],(
`+1

2 ,
`
2 ) 0 g`+9,`+1(z, z̄)

A∆>`+5,r=10
[2,0],` 0 g∆+3,`(z, z̄)h

SU(2)
1 (w)

A∆>`+5,r=10
[0,1],` 0 g∆+3,`(z, z̄)

Table 7. Contributions of the various N = 3 multiplets appearing in the chiral OPE (3.22), for R = 3, to

the functions f̃χ(z) and H̃χ(z, z̄, w). Since we are interested in the correlation functions of identical operators,

Bose symmetry under the exchange of the two identical operators forbids the multiplet Br=12
[0,3],0 from appearing

and restricts the ` to be even for Ar=10
[2,0],`, C

r=11

[0,2],(
`+1

2
,
`
2

)
and Ĉ

[4,0],(
`+1

2
,
`
2

)
, and odd for Ar=10

[0,1],` and Cr=11

[2,1],(
`+1

2
,
`
2

)
.

5 Numerical results

We are finally ready to apply the numerical bootstrap machinery to our crossing equations. Our goal

is to chart out the allowed parameter space of N = 3 theories, but also to “zoom in” to particular

solutions of the crossing equations that correspond to individual N = 3 SCFTs.

After a short review of numerical methods we start by considering the multiplet containing a

Coulomb branch operator of dimension two, which we recall also contains extra supercharges. This

is a warm-up example that will allow us to check the consistency of our setup. In the remainder of

the section we then focus on a Coulomb branch operator of dimension three for various values of the

central charge. In general it is hard to exclude solutions that have enhanced N = 4 symmetry, and

also to impose that the Coulomb branch operator is a generator.21 In order to avoid N = 4 solutions,

at the end of this section we input knowledge of the specific chiral algebra [10] that is conjectured to

correspond to the simplest known N = 3 SCFT .

5.1 Numerical methods

The crossing equations written in (4.13) are too complicated to study exactly, beyond focusing on

special limits, or protected subsectors, as done in section 2. Therefore we proceed to analyze these

equations using the numerical techniques pioneered in [14] (see e.g. [70, 71] for reviews).

Very schematically, we have a system of crossing equations (three (4.33) and six (4.34) for the

B̂[2,0] and B̂[3,0] respectively) of the form∑
Oi

|λOi |2~VOi(z, z̄) = ~Vfixed(z, z̄) , (5.1)

21One could imagine setting up a mixed correlator system where the multiplets containing the extra supercharges, or
the candidate generators for which our operator could be a composite are exchanged.
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where ~Vfixed(z, z̄) collects the part of ~Fshort that is completely fixed from the chiral algebra, with

the remainder of ~Fshort moved to the left-hand side. We use the SDPB solver of [72], and rule out

assumptions on the spectrum {Oi} of local operators and their OPE coefficients |λOi |2 (CFT data),

by considering linear functionals

~Φ =

n+m6Λ∑
n,m=0

~Φm,n∂
m
z ∂

n
z̄ |z=z̄= 1

2
, (5.2)

acting on the crossing equations. In the crossing equation (4.33) and (4.34) we will be taking derivatives

∂mz ∂
n
z̄ of F±,F

b
±, F̃± and from their symmetry properties under z → 1− z, z̄ → 1− z̄ we see that only

even (odd) derivatives of F+,F
b
+, F̃+ (Fb

−,F
b
−, F̃−) survive.22

The numerical bounds will be obtained for different values of the cutoff Λ, which effectively

means we are considering a truncation of the Taylor series expansion of the crossing equations around

z = z̄ = 1
2 . We rule out assumptions on the CFT data by proving that they are inconsistent with the

truncated system of crossing equations at order Λ . Therefore, for each cutoff we find valid bounds,

that will improve as we send Λ→∞. We refer the reader to the by now extensive literature on these

numerical techniques, e.g. [16, 72], for all the other technical details and approximations needed for

the numerical bootstrap.

5.2 The case R = 2

As a warm-up, let us consider external operators B̂[2,0], B̂[0,2], which contain the extra supercharges

allowing for an enhancement to N = 4. For this case we will only bound the minimal allowed central

charge c. We recall that the OPE selection rules in this case are given by

B̂[2,0] × B̂[0,2] = I + B̂[1,1] + B̂[2,2] +

∞∑
`=0

[
Ĉ[0,0],` + Ĉ[1,1],` +A∆

[0,0],r=0,`

]
, (5.3)

B̂[2,0] × B̂[2,0] = B̂[4,0] + B[0,2],r=8,0 +

∞∑
`=0

[
Ĉ[2,0],( `+1

2 , `2 ) + C r=7

[0,1],( `+1
2 , `2 ) +A∆,r=6

[0,0],( `2 ,
`
2 )

]
, (5.4)

with each multiplet contributing with a superblock as given in tables 4 and 5, with a positive OPE

coefficient squared, and the crossing equations are given in (4.33). To obtain central charge bounds,

we allow for all operators consistent with unitarity that have not been fixed by the chiral algebra.

In the chiral channel this amounts to allowing all long operators consistent with unitarity, together

with the short multiplets which sit at the long unitarity bound (which are not Schur operators). In

the non-chiral channel the OPE coefficient of B̂[1,1] is fixed unambiguously from the chiral algebra in

terms of the central charge. For the remaining Schur operators the chiral algebra is not constraining

enough and we are left with some ambiguities. As shown in equation (4.24) we can fix universally the

OPE coefficients of Ĉ[1,1],` and B̂[2,2] in terms of those of the Ĉ[0,0],` multiplets. These last multiplets

contain higher-spin currents and should be absent thereby resolving the ambiguity. Nevertheless, as

is also clear from (4.24) and table 4, the contribution of the Ĉ[0,0],` multiplets is identical to that of

long multiplets at the unitarity bound, and thus, by allowing for long multiplets to have a dimension

arbitrarily close to the unitarity bound, we allow for these currents to appear with arbitrary coefficient.

Therefore, we do not truly exclude free theories in the bootstrap, and we should expect to recover the

solution corresponding to U(1) N = 4 SYM theory.

22As usual, the equations are antisymmetric in z ↔ z̄ and so we only need derivatives with m < n.
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Figure 1. Numerically minimum allowed central charge for the B̂[2,0], B̂[0,2] four-point function as a function
of the inverse of the number of derivatives Λ. The dashed horizontal line marks the central charge of the U(1)
N = 4 SYM theory. The middle orange line shows a linear fit to all the data points, while the top and bottom
blue lines show fits to different subsets of the points.

The numerical lower c bound is shown in figure 1 as a function of Λ−1, where Λ is the cutoff on

the number of derivatives taken of the crossing equation, as defined in (5.2). The solid yellow and

blue lines correspond to various linear fits to subsets of points, and attempt to give a rough estimate

of the Λ =∞ bound. It seems plausible that the bound is converging to c = 3
12 which corresponds to

the central charge of U(1) N = 4 SYM. Recall that for this value of the central charge the coefficient

b
(2)
2 = 1 − 1

3c in (4.25) is negative, which means that it cannot be interpreted as arising only from a

B̂[2,2] multiplet, and that the conserved current multiplet Ĉ[0,0],0 has to be present. But this is exactly

what our crossing equations are allowing for, as when we solve for the OPE coefficient of B̂[2,2] in terms

of b2 and let the OPE coefficient of Ĉ[0,0],0 be arbitrary we find it contributes just as a long at the

unitarity bound. Naturally, if one wanted to obtain dimension bounds on the long operators for c = 3
12

we would have to allow for the multiplet Ĉ[0,0],0 to be present by adding their explicit contribution,

but if no gap is imposed, then allowing for long multiplets of arbitrary dimension automatically allows

for these currents.

5.3 The case R = 3

We now turn our attention to the correlation function of B̂[3,0], B̂[0,3] multiplets, whose crossing

equations are given in equation (4.35). We recall that in the chiral channel the OPE coefficients of all

of the Schur multiplets Ĉ
[4,0],(

`+1
2 ,

`
2 )

and B̂[6,0] were fixed universally from the chiral algebra correlation

function. Therefore, the undetermined CFT data in this channel amounts to

• Scaling dimensions and OPE coefficients of long multiplets A∆>`+5
[2,0],10,` and A∆>`+5

[0,1],10,`,

• OPE coefficients of short multiplets Br=12

[2,2],0, Cr=11

[2,1],(
`+1

2 ,
`
2 )

and Cr=11

[0,2],(
`+1

2 ,
`
2 )

,

where the last multiplets contribute the same way as the longs at the unitarity bound as seen in (3.37)

and table 7.

In the non-chiral channel, various Schur multiplets were indistinguishable at the level of the chiral

algebra, as manifest in table 6. Using the chiral algebra correlator we solved for the OPE coefficients
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of Ĉ[1,1],` and B̂[2,2] in terms of the remaining ones in (4.24), such that we were left with the following

unfixed CFT data

• Scaling dimensions and OPE coefficients of long multiplets A∆>`+2
[0,0],` and A∆>`+4

[1,1],` ,

• OPE coefficients of the Schur multiplets Ĉ[2,2],`, B̂[3,3], and Ĉ[0,0],`.

The Schur multiplets in the last line end up contributing to the crossing equations in the same way

as the long multiplets in the line above at the unitarity bound (see (4.24) and table 6), following

from the long decomposition at the unitarity bound (3.31). This implies that, unless we impose a gap

in the spectrum of the corresponding long multiplets, we can never truly fix the OPE coefficients of

these Schur operators. As usual, the multiplets Ĉ[0,0],` should be set to zero for interacting theories.

However this is not enough to resolve all the ambiguities, and we must resort to numerics in order

to study the OPE coefficient of the remaining operators. In the last part of this section we will see

how these ambiguities turn out to be useful to exclude N = 4 solutions to the crossing equations by

inputting the OPE coefficient of B̂[3,3] computed from the chiral algebra of an N = 3 SCFT.

5.3.1 Central charge bounds

Let us start by placing a lower bound on c, allowing again for the presence of all operators consistent

with unitarity. We recall once again that long multiplets A∆
[0,0],` of arbitrary dimension allow for

conserved currents of spin larger than two, and thus not excluding free theories from the analysis.

Naturally then, the U(1) N = 4 SYM theory is also a solution to the crossing equations we study.

Therefore, the strongest bound one could possibly hope to find corresponds to the central charge of

U(1) N = 4 SYM. This value is smaller than the smallest central charge of all known, nontrivial,

N = 3 theories, which is c = 15
12 .23
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Figure 2. Minimum allowed central charge from the correlation function of B̂[3,0] and its conjugate, as a
function of the inverse of the number of derivatives Λ. The dashed horizontal line marks the central charge of
the U(1) N = 4 SYM theory. The two blue lines show linear fits to different subsets of points, in order to give
very rough idea of where the bound is converging to with Λ→∞.

23By nontrivial we mean it cannot be obtained by N = 4 SYM by a discrete gauging which does not change the
correlation functions.
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In figure 2 we show the minimal allowed central charge as a function of Λ−1, the inverse of

the number of derivatives. Extrapolation for infinitely many derivatives this time does not seem to

converge to the value of the U(1) N = 4, which is c = 1
4 = 0.25.24 Since the value of the minimal

allowed central charge is smaller than that of the free N = 4 theory one might suspect the solution

to this set of crossing equations that saturates the central charge bound does not correspond to a

physical SCFT, and could imagine a mixed correlator system, e.g., adding the stress tensor multiplet,

would improve on this.

5.3.2 Bounding OPE coefficients

Apart from the central charge, there are other OPE coefficients of physical interest, which were not

fixed analytically and can be bounded numerically. Let us emphasize that the N = 3 stress-tensor

multiplet B̂[1,1] cannot recombine to form a long multiplet, unlike the N = 2 stress-tensor multiplet.

This has the important consequence that, when we add the stress tensor multiplet with a particular

coefficient, we are truly fixing the central charge to a particular value. In comparison, in N = 2

theories this was only accomplished when one imposed a gap in a particular channel, preventing those

long multiplets to hit the unitarity bound and mimic the stress tensor. Therefore, we will bound the

OPE coefficients as a function of the central charge for the range 1
4 6 c 6 ∞. The lower end of the

interval corresponds to the central charge of U(1) N = 4 SYM, although interacting theories should

have higher central charges. In particular there is an analytic lower bound for interacting N > 2

SCFTs of c > 11
30 ≈ 0.37 [46]. Furthermore it can be shown, by considering the N = 3 stress tensor

four-point function in the chiral algebra, that any interacting N > 3 SCFT must obey c > 13
24 ≈ 0.54

[74]. These two bounds will be depicted as vertical dashed lines in all the numerical results. In the

limit c → ∞ the stress tensor decouples and we expect that the numerical bounds converge to the

values of generalized free field theory (see appendix C.2).

The Schur operator B̂[3,3]

A particularly interesting operator to consider is the B̂[3,3] appearing in the non-chiral channel. De-

spite being captured by the two-dimensional chiral algebra, is not possible to fix its OPE coefficient

universally from the chiral algebra four-point function, due to the ambiguities described in 4.2. Making

assumptions about what particular chiral algebra corresponds to a given 4d theory, one can try to

resolve this ambiguity, as done in section 2.3, which gave two seemingly consistent possibilities. How-

ever, we will first take an agnostic viewpoint, and ask what numerical constraints crossing symmetry

and unitarity place on the squared OPE coefficient of this operator (|λB̂[3,3]
|2). These are shown in

figure 3 as a function of the inverse of the central charge.

Since this operator is protected, we can compare the value of the bound to the well known N = 4

solutions. We extracted the OPE coefficient of this multiplet from the four-point function of half-BPS

operators in the [0, 3, 0] representation of SU(4)R given in [37], after projecting the N = 4 multiplets

to the particular N = 3 multiplet we are considering. It turns out to have a constant value of one,

irrespective of the central charge of the theory. We depicted this as a red line in figure 3 and, to give

an idea of where the physical N = 4 theories sit, we also added red dots in the positions corresponding

to the central charge of N = 4 SYM with gauge group SU(n) (c = n2−1
4 ) for n ∈ {3, 4, . . .}.

The value expected from the block decomposition of both the U(1) N = 4 SYM (c = 1
4 ) and the

generalized free field theory (c = ∞, given in appendix C.2) is also one, and is marked by red dots

as well. A rough extrapolation of our results for infinite central charge and for c = 1
4 suggests the

numerical bounds could converge to the values expected for these theories.

24Similar results were also observed in the case of chiral correlators in N = 2 theories [19, 73].
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Figure 3. Upper bound on the OPE coefficient squared of B̂[3,3] versus the inverse central charge 1/c. The
shaded region is excluded and the number of derivatives is increased from 10 to 24 in steps of two. The
two green curves show the possible value of the OPE coefficient computed by the chiral algebra in section
2.3, while the green dot shows the expected value for the N = 3 theory of 1/c = 0.8, extracted from the
chiral algebra of [10]. The red line and dots corresponds to the solution of N = 4 SYM theories. The two
dashed lines correspond to the minimum central charges for an interacting N = 2 [46] and N = 3 SCFTs [74]
(c−1 = 30

11
≈ 2.73 and c−1 = 24

13
≈ 1.84 respectively).

Finally, we compare the numerical bounds with the results that can be extracted from a particular

chiral algebra. Let us first consider the chiral algebra of [10] that is conjectured to correspond to the

simplest known N = 3 SCFT with c = 15
12 (in their notation this corresponds to ` = 3, where of course

this ` has no relation to the spin). As discussed in section 2.3 we can construct candidate operators,

in the chiral algebra, to correspond to a B̂[3,3]. In this case there is only one candidate, and if one

assumes it to be in fact a B̂[3,3] we find

∣∣λB̂[3,3]

∣∣2 =
22

85
, (5.5)

which is shown as a green dot in figure 3.25 Note that this value lies well inside the numerical bounds,

and in particular it is also smaller than the continuation to arbitrary c of the value corresponding

to SU(N) N = 4 SYM. Since the N = 4 SYM correlation function of [37] which we decomposed in

blocks is a solution of the crossing equations for any value of c, the best numerical bound one can

hope to obtain is
∣∣λB̂[3,3]

∣∣2 ≤ 1. In fact, our numerical results appear consistent with the upper bound

converging to one for c = 15
12 . Therefore, to be able to reach the known nontrivial N = 3 SCFT

with c = 15
12 we must go inside these bounds, and fix the OPE coefficient of B̂[3,3] to a value that

is incompatible with the N = 4 solution to the crossing equation; we will do this at the end of this

section.

We now turn to the chiral algebra constructed in 2.2, with the goal of understanding the higher

rank versions of the aforementioned theory. Recall that we assumed the chiral algebra of the higher

25The other possibility, that the B̂[3,3] multiplet is absent in the chiral algebra, does not appear plausible from a Higgs
branch perspective.
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rank theories to be generated solely by the Higgs branch generators, the stress tensor, and an additional

dimension three operator. Under this assumption, we were able to construct a closed subalgebra of

all of these chiral algebras, which is associative for generic values of c. In that setting we can attempt

to compute |λB̂[3,3]
|2, and there were two options consistent with the large central charge behavior of

the generalized free field theory and unitarity, given in (2.25) and (2.27), which are plotted as green

curves in figure 3. Equation (2.27) is the one that does not go through the expected value for c = 15
12 ,

but that we kept for arbitrary values of c. If our assumptions are correct, then we see that the value

of |λB̂[3,3]
|2 lies well inside the numerical bounds, and is weaker than that of N = 4 SYM. This is not

necessarily a downside, as one of our goals must be to determine ways to exclude the N = 4 solutions

to our crossing equations, and this provides such a way. By imposing the value of the OPE coefficient

corresponding to (2.25) or (2.27) we are sure to exclude N = 4 from our analysis. We will come back

to this point at the end of this section.

Note that both (2.25) and (2.27) diverge at c = 13
24 , which corresponds to the analytic central

charge bound obtained in [74], following from the fact that the norm of one of the candidate B̂[3,3]

operators is going to zero. We note that the chiral algebra in 2.2 was constructed with a generic

central charge in mind and care was not given to possible null states arising at specific values of c. It

is not clear that the solution we have is consistent for c = 13
24 , as null states are expected to decouple.

It is also worth noting the interesting interplay between analytical and numerical results. The

analytical OPE coefficient is only consistent with the (current) numerical bounds for 1/c . 1.33−1.36

depending on which curve one takes. This provides a lower bound c & 0.74−0.75 on the central charge

of any N = 3 SCFT with a dimension three Coulomb branch operator (B̂[3,0]) of which the chiral

algebra presented in 2.2 is a closed subalgebra, improving over the analytical bound c > 13
24 ≈ 0.54

of [74]. On the other hand, this bound is lower than the one obtained using the sum-rule of [75, 76]

for a rank one theory with a generator of dimension three, namely c > 15
12 . Although there are known

cases where this sum rule does not hold (see [3, 9]), they correspond to theories obtained by gauging

discrete symmetries, so this bound could be valid for theories which are not of this type.26

The multiplets B̄[2,2] and C̄
[0,2],(

1
2 ,0)

Next we turn our attention to the short multiplets in the chiral OPE that sit at the unitarity bound

of the long multiplets, and are not captured by the chiral algebra. As representatives, we show the

upper bounds on the OPE coefficients squared of the multiplets B̄[2,2] and C̄
[0,2],(

1
2 ,0)

in figure 4. Again

we focus on the region of central charges larger than that of U(1) N = 4 SYM.

We show in figure 4 the value of these OPE coefficients in the case of the generalized free field

theory, and of the U(1) N = 4 SYM as the two red dots at c−1 = 0 and c−1 = 4 respectively. The

convergence of our numerical results is rather slow and one cannot conclude if they will converge for

these central charges to the known solutions, although they are not incompatible with this possibility.

The green lines in the plots mark the central charge of the “minimal” N = 3 SCFT (c = 15
12 ) with the

green dot providing a valid upper bound for the OPE coefficients of this theory.

Finally, to better understand what is failing in the crossing symmetry equations if one tries to go

below the minimal numerically allowed central charge (cmin in figure 2), it is instructive to look at

the OPE coefficient bounds near those central charges. One finds (not shown), that while the bounds

on the squared OPE coefficients of both B̂[3,3] and B̄[2,2] have a very sharp drop near cmin, the upper

bound on the squared C̄
[0,2],(

1
2 ,0)

OPE coefficient has as smooth drop and becomes negative right after

26See [9] for a proposed correction of this formula to hold also in the case of discretely gauged theories.
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Figure 4. Upper bound on the OPE coefficient squared of B̄[2,2] (|λ̃B̄[2,2]
|2, depicted on the left) and of

C̄
[0,2],(

1
2
,0)

(|λ̃C̄
[0,2],(

1
2
,0)

|2, shown on the right) versus the inverse central charge 1/c. The first vertical dashed

line marks c = 13
24

and the second c = 11
30

(the minimal central charges for N = 3 and N = 2 interacting
theories respectively [46, 74]). The number of derivatives Λ is increased from 10 to 24 in steps of two. The red
dots mark the value of this OPE coefficient for generalized free field theory and U(1) N = 4 SYM, while the
green line marks the central charge c = 15

12
of the simplest known N = 3 SCFT, with the green dot providing

an upper bound for the OPE coefficients of this theory.

cmin, which is inconsistent with unitarity. This suggests it is this last multiplet that is responsible for

the lower bound on the central charge, and that the solution at cmin would have the other two short

operators present. Note that both B̄[2,2] and C̄
[0,2],(

1
2 ,0)

have zero OPE coefficient for the U(1) N = 4

SYM theory.

5.3.3 Dimension bounds

Next we turn to the dimensions of the lowest lying scalar long operators in the various channels. In

doing so we must worry about the short multiplets whose OPE coefficients we bootstrapped in the

previous subsection, as they all sit at the unitarity bound of the different long multiplets we study (see

the tables 6 and 7). By allowing for long multiplets with arbitrary dimension, these short multiplets

can appear with any coefficient. Even if we were to explicitly add by hand the short multiplets with a

given OPE coefficient, the long multiplet at the bound would mimic those shorts, and in practice we

would only be imposing the OPE coefficient of the short multiplets to be greater or equal to a given

value. However, once we impose a gap in the spectrum of the long operator, then we can truly fix the

OPE coefficient of the corresponding short multiplet.

In the non-chiral channel, we focus on the dimension of the first scalar long of each type

A∆>2
[0,0],0 and A∆>4

[1,1],0 , (5.6)

while in the chiral channel we focus on the first scalar long multiplet27

A∆>5
[2,0],10,0 . (5.7)

27Table 7 contains also long multiplets A∆>5+`
[0,1],10,`

but for those the spin ` must be odd by Bose symmetry.
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Non-chiral channel

The upper bounds on the dimensions ∆[0,0] and ∆[1,1], of the first long multiplets A∆>2
[0,0],0 and A∆>4

[1,1],0

respectively, as functions of the inverse central charge are depicted in figure 5. Once again red dots

mark the dimension of the lowest dimensional operator in the generalized free field theory and the

U(1) N = 4 SYM solutions. In both cases the green vertical line ending on a dot marks the central

charge of the simplest known nontrivial N = 3 SCFT, and provides an upper bound for the dimension

of these two operators in this theory. We will improve on the latter bound at the end of this section.
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Figure 5. Upper bound on the dimensions of long multiplets A∆>2
[0,0],0 (left) and A∆>4

[1,1],0 (right) for different
values of the inverse of the central charge c. The maximum number of derivatives is Λ = 24, and the weaker
bounds correspond to decreasing the number of derivatives by two. The red dots mark the dimension of the
first long operators for generalized free field theory and U(1) N = 4 SYM, while the green line marks the
central charge c = 15

12
of the simplest known N = 3 SCFT, with the green dot providing an upper bound for

this theory. The two dashed lines correspond to the minimum central charges for an interacting N = 2 [46]
and N = 3 SCFTs [74].

At the unitarity bound, the long multiplet of type A∆>2
[0,0],0 mimics a higher spin conserved current

multiplet (Ĉ[0,0]`=0), expected to be absent in an interacting theory, and therefore when obtaining the

bound on the left side of 5 we do not allow for such a multiplet to be present. This explains why

the upper bound is presumably converging to the unitarity bound ∆ = 2 for c−1 = 4, since such

currents should be present in the U(1) N = 4 solution, as indicated by the red dot. For larger central

charges the upper bound is far away from unitarity, and thus theories saturating the upper bound do

not contain the Ĉ[0,0]`=0 multiplet, although they could have the higher spin versions of this multiplet

which also contain higher-spin conserved currents.

On the other hand, the multiplet that sits at the unitarity bound of A∆>4
[1,1],0 is the B̂[3,3] discussed

in the previous subsection, and in obtaining the bounds for ∆[1,1] we allowed the short multiplet to be

present with arbitrary OPE coefficient. We can obtain a stronger bound for specific N = 3 SCFTs by

fixing the short OPE coefficient according to section 2.3, as we shall do later in figure 7 for the case

of c = 15
12 ⇒ c−1 = 0.8.

Chiral channel

Turing to the scalar long operator appearing in the chiral OPE, we obtain an upper bound for the first

A∆>5
[2,0],10,0 multiplet. In imposing a gap in this channel we must decide on whether the short multiplet

B̄[2,2] is present or not. Recall that, unlike the shorts at the unitarity bound of long operators appearing
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in the non-chiral channel, this short is not captured by the chiral algebra and thus we have no reason

to expect it to be present or absent. Therefore, we show a bound on the dimension ∆[2,0] of this long

multiplet both allowing for (left plot in 6) and disallowing for (right plot in 6) the presence of B̄[2,2].

Once again the red dots depict the value of these dimensions expected for the U(1) N = 4 SYM and

generalized free field theories. We observe that for c→∞, the right hand side of figure 6 comes close
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Figure 6. Upper bound on the dimensions of the long multiplet A∆>5
[2,0],10,0, allowing for (left) and disallowing

for (right) the short multiplet B̄[2,2]. The strongest bound corresponds to 24 derivatives, and they are reduced
in steps of two. The red dots mark the dimension of the first long operators for generalized free field theory
and U(1) N = 4 SYM, in the right plot the red dot of generalized free field theory is at the unitarity bound,
meaning that the short multiplet is present in this solution. The green line marks the central charge c = 15

12

of the simplest known N = 3 SCFT, with the green dot providing an upper bound for this theory. The two
dashed lines correspond to the minimum central charges for an interacting N = 2 [46] and N = 3 SCFTs [74].

to the unitarity bound ∆ = 5. In fact, a simple extrapolation seems to suggest that for Λ → ∞ the

bound will converge to around 5. This is consistent with the fact that this multiplet is present in

the generalized free theory solution (see appendix C.2), i.e. the bounds force the long multiplet to

“become short” for c→∞. (Said multiplet is absent in the U(1) N = 4 SYM solution.) For values of

c around the value relevant for the “minimal” N = 3 SCFT, marked as green lines in the plots, there

seems to be a solution of the crossing equations with this multiplet absent.

Carving out solutions inside the bounds

As the final point of this section we come back to the issue of distinguishing N = 4 solutions to the

crossing equations from pure N = 3 ones. One possibility is to extract the spectrum of the extremal

solution [77] saturating each of the above bounds and check if it is consistent or inconsistent with

N = 4 supersymmetry. However, we would like to do better, and to be able to exclude the N = 4

solution altogether. Our explorations in the first part of this section provide such a way, namely by

fixing the OPE coefficient of B̂[3,3] to the value expected to correspond to the N = 3 theories of interest

(see section 2.3). This value is smaller than the one of SU(N) N = 4 SYM and in its derivation in

the chiral algebra we did not allow for the currents enhancing the supersymmetry to N = 4. As

usual, because a long multiplet at the unitarity bound (A∆=4
[1,1],0) mimics the contribution of this short

multiplet to the crossing equations, we cannot really fix its OPE coefficient unless we impose a gap.

This is what is done when bounding the lowest dimensional A∆>4
[1,1],0, and so we repeat the analysis

leading to the right side of figure 5, but now fixing the OPE coefficient of B̂[3,3]. The result is shown

in figure 7, where we plot the upper bound on the dimension as a function of the OPE coefficient for
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Figure 7. Upper bound on the dimension of the long A∆>4
[1,1],0 as a function of the OPE coefficient squared of

B̂[3,3] for c−1 = 0.8. For each cutoff Λ the bounds end abruptly at the value corresponding to the maximum
value |λB̂[3,3]

|2 can have, as read off from figure 3 at c−1 = 0.8. The green line marks the expected value for

the OPE coefficient for the c−1 = 0.8 N = 3 SCFT (5.5) with the green dot providing an upper bound for
this OPE coefficient, while the red line marks the value for N = 4 SYM. The strongest bound corresponds to
24 derivatives, and they are reduced in steps of two.

fixed c = 15
12 . The red line marks the value of the OPE coefficient for the N = 4 solution with this

particular value of c. While the green line marks the value of the OPE coefficient expected for the

N = 3 SCFT we are interested in (5.5), and provides an upper bound for the dimension ∆[1,1] in this

theory, which improves significantly on the one obtained from figure 4. This shows that, at least in

figure 4, the theory saturating the bound does not correspond to the N = 3 SCFT we were after, and

thus, to zoom in to this specific theory we must carve further inside the bounds as done here. This

however does not guarantee the theory now sits at the bound.28

Similarly, we can repeat this analysis for the central charges of the higher rank theories and we find

that, at fixed |λB̂[3,3]
|2, if the central charge is (increased) decreased the bound seems to get (stronger)

weaker (not shown). Due to the dependence of (2.25) and (2.27) on c the upper bound on ∆[1,1] does

not change significantly.

6 Conclusions

In this paper we have initiated the N = 3 superconformal bootstrap program with two goals in mind.

First, to constrain the space of four-dimensional N = 3 SCFTs, and second, to focus on specific

examples of N = 3 theories with the hope of obtaining information about their spectrum. In order to

zoom in on the known N = 3 SCFTs we relied on a combination of numerical bootstrap results and

28We seem to observe a small bump for |λB̂[3,3]
|2 ≈ 0.33, and preliminary functional analysis suggest this is correlated

to the fact that to the left of the bump a conserved current Ĉ[0,0]`=0 is allowed, and to the right disallowed. This does

not necessarily imply that the conserved currents are present for the c = 15
12

extremal solution, but could mean that to

get closer to an interacting N = 3 SCFT we should simultaneously impose a gap in the A∆>2
[0,0],0

long channel.
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analytical results from two-dimensional chiral algebras, with particular emphasis on the “minimal”

N = 3 SCFT, and its higher-rank versions. We approached these theories from the point of view of

the Coulomb branch, focusing mostly on a half-BPS operator of dimension three, which is the only

Coulomb branch generator of the “minimal” N = 3 SCFT, and which is also present in its higher-rank

versions.

A basic requirement for any bootstrap study is the conformal block expansion of the four-point

function. In section 3 we showed that for N = 3 half-BPS operators there are no nilpotent invariants,

allowing us to concentrate on superconformal primaries without any loss of information. Demanding

the absence of singularities when turning on the fermionic coordinates places strong restrictions on

the form of the four-point function, giving rise to the Ward identities. In the case at hand, these

identities were not enough to completely fix the superblock (unlike the cases of N = 2 and N = 4

half-BPS superblocks [31, 32]). For superblocks associated to short multiplets, we used information

coming from the 2d chiral algebra, while for long blocks we leveraged knowledge of N = 1 blocks. In

the end, we packaged our solution in an elegant way in terms of a single N = 1 conformal block with

shifted arguments.

The existence of a protected subsector captured by the 2d chiral algebra allowed us to solve the

crossing equations exactly within the subsector. Which in turn fixed the OPE coefficients of certain

short operators universally, i.e., without needing to specify a particular four-dimensional theory. How-

ever, some operators appear indistinguishable at the level of the chiral algebra, leading to ambiguities

in fixing the corresponding OPE coefficients. Some of these ambiguities can be resolved by knowledge

of the specific chiral algebra associated to the N = 3 theory in question, but this is not always the

case.

An important question is the defining characteristics of the chiral algebra associated to N = 3

SCFTs. To that end, we determined which N = 3 superconformal multiplets are captured by the

2d chiral algebra, and some of their general properties, which could allow distinguishing between the

aforementioned operators. Taking advantage of the chiral algebra conjectured to correspond to the

“minimal” SCFT [10], we were able to compute the OPE coefficient |λB̂[3,3]
|2. Moreover, we proposed,

under certain assumptions, a closed subsector for the higher-rank versions of this theory, and used it

to compute |λB̂[3,3]
|2 in this case.

To go beyond the protected subsector, or even to distinguish between operators appearing iden-

tically in the chiral algebra, one needs numerical bootstrap techniques. These provided constraints

on the spectrum of unprotected long operators, and on the OPE coefficients of various short oper-

ators. For the particular OPE coefficient |λB̂[3,3]
|2 that we were able to fix from the chiral algebra,

we compared the general numerical results valid for any N = 3 SCFT, with the ones of the specific

theories captured by the chiral algebra that we constructed. This comparison provided a numerical

lower bound on the central charge for theories captured by our chiral algebra.

A natural limitation of any N = 3 bootstrap program, as it was also for the N = 2 bootstrap,

is that theories with more supersymmetry will generically be solutions of the crossing equations we

consider. In order to restrict to pure N = 3 SCFTs, one would have to exclude the presence of

superconformal multiplets containing the currents allowing for this enhancement. However, the mul-

tiplets that are physically relevant for the study of these theories (for example the ones considered in

[19, 46, 73] in theN = 2 case) usually do not allow for the multiplets containing the extra supercurrents

to be exchanged in their OPEs, and therefore we cannot set them to zero. To overcome this limitation

we input into the numerical bootstrap information arising from the chiral algebras of pure N = 3

SCFTs, namely, the OPE coefficient |λB̂[3,3]
|2. This allowed us explore inside the numerical bounds,

and zoom in on the N = 3 solutions with this particular value of the OPE coefficient. By fixing the
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central charge to that of the “minimal” N = 3 theory, and fixing the OPE coefficient accordingly, it

is plausible that this theory sits at the bound of figure 7, although currently there is no evidence this

has to be the case, and we would have to provide more information (such as adding stress tensors as

external operators). Nevertheless, the ambiguity in fixing OPE coefficients turned out to be crucial

in excluding the N = 4 solution to the crossing equations. For the higher rank versions, one would

have to also consider the four-point functions of the additional Coulomb branch operator, which is a

natural next step in the N = 3 bootstrap, along with the study of stress tensor four-point functions.
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A Unitary representations of the N = 3 superconformal algebra

We summarize the unitary representations of the four-dimensional N = 3 superconformal algebra,

which fall in the classification of [55–57] and which were recently discussed with emphasis on N = 3

theories in [1, 58, 59]. We list the possible representations in table 8. The first column lists the

name we give to the representation, inspired by the conventions of [60], while the second one uses the

notation of [58]. The third column list the quantum numbers of the superconformal primary, denoted

by (j, ̄)∆
[R1,R2],r, where (j, ̄) ∈ N0

2 ×
N0

2 are the double of the left/right spins,29 ∆ ∈ R is the conformal

dimension, (R1, R2) ∈ N0 × N0 are the Dynkin labels of SU(3)R and r ∈ R is the U(1)r R-charge.

We follow the N = 3 R-charge conventions of [58], while for the N = 2 R-charges we follow the

conventions of Dolan and Osborn [60]. Lastly, we make two remarks:

• When dealing with symmetric-traceless representations, we shall label the spins by j = ̄ = `
2 ,

and by an abuse of notation we will replace the two spin labels (j, ̄) by ` in these cases. For

example, we have A∆
[R1,R2],r,` ≡ A

∆

[R1,R2],r,(
`
2 ,
`
2 )

.

• If the r label is zero, we will often omit it. Furthermore, in order to keep some equations compact,

we will freely write it up or down, e.g. A∆
[R1,R2],r,` ≡ A

∆,r
[R1,R2],`.

A.1 Decomposition in N = 2 multiplets

Since N = 3 representations are probably less familiar to most readers than N = 2 representations,

we give a few examples of how N = 3 multiplets decompose in N = 2 multiplets. In doing so we

pick an N = 2 subalgebra of the N = 3, and therefore the SU(3)R × U(1)r R-symmetry of the latter

29An irreducible representation of label (j, ̄) has dimension (2j + 1)(2̄+ 1).
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Name Name in [58] Superconformal primary Conditions

A∆
[R1,R2],r,(j,̄) LL̄ (j, ̄)∆

[R1,R2],r

∆ > 2 + 2j + 2
3

(2R1 +R2)− r
6

∆ > 2 + 2̄+ 2
3

(R1 + 2R2) + r
6

B[R1,R2],r,̄ B1L̄ (0, ̄)
2
3 (2R1+R2)− r6
[R1,R2],r −6̄+ 2(R1 −R2)− 6 > r

B̄[R1,R2],r,j LB̄1 (j, 0)
2
3 (R1+2R2)+ r

6

[R1,R2],r 6j + 2(R1 −R2) + 6 < r

B̂[R1,R2] B1B̄1 (0, 0)R1+R2

[R1,R2],2(R1−R2)

C[R1,R2],r,(j,̄) A1L̄ (j, ̄)
2+2j+ 2

3 (2R1+R2)− r6
[R1,R2],r 6(j − ̄) + 2(R1 −R2) > r

C[R1,R2],r,(j,̄) LĀ1 (j, ̄)
2+2̄+ 2

3 (R1+2R2)+ r
6

[R1,R2],r 6(j − ̄) + 2(R1 −R2) < r

Ĉ[R1,R2],(j,̄) A1Ā1 (j, ̄)2+j+̄+R1+R2

[R1,R2],6(j−̄)+2(R1−R2)

D[R1,R2],̄ B1Ā1 (0, ̄)1+̄+R1+R2

[R1,R2],2(R1−R2)−6−6̄

D[R1,R2],j A1B̄1 (j, 0)1+j+R1+R2

[R1,R2],2(R1−R2)+6+6j

Table 8. We list here the unitary representations of N = 3 with the name that we give them in the present
work accompanied by the one that they have in [58], which was based on the type of shortening condition that
they obey. The third column shows the charges of the superconformal primary in the representation, while
the fourth one lists the conditions that the charges have to obey. The A2, respectively Ā2 shortening cases are
obtained by putting j = 0, respectively ̄ = 0. This changes the null states drastically, but not our labels.

decomposes in SU(2)RN=2
× U(1)rN=2

× U(1)f , where the first two factors are the R-symmetry of

the N = 2 superconformal algebra, and the last corresponds, from the N = 2 point of view, to a

global symmetry. Therefore when viewed as N = 2 theories, all N = 3 theories have a U(1)f flavor

symmetry, and we will keep this flavor grading when decomposing N = 3 representations in N = 2.

We follow the conventions of [10] for the definition of the flavor charges. We note that we follow the

naming conventions of Dolan and Osborn [60] for the representations of N = 2, which are summarized

for instance in Appendix A of [19]. While the interpretation of most of these multiplets might be

obscure, the following have a natural physical interpretation30

• Ĉ0,(0,0) is the stress tensor multiplet of an N = 2 SCFT, containing in addition to the stress

tensor, the SU(2)RN=2
and U(1)rN=2

currents,

• BR are closely related to the Higgs branch of the theory, in particular the B̂1 multiplet contains

conserved currents of spin one, associated to flavor currents of the theory,

• Er,(0,0) are N = 2 chiral operators, and are related to the Coulomb branch of the theory,

• D 1
2 ,(0,0) (and conjugate) which are additional supercurrent multiplets,

• Ĉ0,(j>0,̄>0) contain conserved currents of spin greater than two, which signal free theories [61, 62].

In addition, the multiplets dubbed “Schur” operators in [40], that is, the ones captured by the two-

dimensional chiral algebra reviewed in section 2, also play an important role. These are B̂R, DR(0,̄),

DR(j,0) and ĈR(j,̄), giving rise to two-dimensional sl(2) primaries of scaling dimension R, R + ̄ + 1,

R + j + 1 and R + j + ̄ + 2 respectively. The N = 3 multiplets that contain such operators are

30For a more detailed description see, e.g., section 2 of [19]
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listed in equations (2.6)-(2.13), together with their decomposition in N = 2, but where we omitted all

N = 2 multiplets not containing Schur operators. Below we present a few examples of the complete

N = 2 decomposition. These decompositions are obtained by computing the characters of the N = 3

multiplets of table 8, following the method described in appendix C of [78], and re-writing it in terms

of characters of N = 2 representations, which can be obtained from the tables of [60].

The stress-tensor multiplet decomposes in the expected way, containing only Schur multiplets

B̂[1,1] = B̂1 ⊕ u−1
f D 1

2 ,(0,0)
⊕ ufD 1

2 ,(0,0)
⊕ Ĉ0,(0,0) . (A.1)

Also of particular importance are the half-BPS multiplets, related to the Coulomb branch of N = 3

theories. Their full decomposition is given by

B̂[R1,0] = u−R1

f B̂R1
2
⊕ u−R1+1

f DR1−1
2 ,(0,0)

⊕

(
R1−2⊕
a=1

u−R1+a+1
f BR1−a−1

2 ,−a−1,(0,0)

)
⊕ E−R1,(0,0) , (A.2)

and similarly for the conjugate multiplet. An interesting question to ask is, apart from the above

B̂[R1,0] and conjugate, which N = 3 multiplets contain N = 2 Coulomb branch operators. An obvious

place to look would be to consider N = 3 chiral operators, which decompose as

B[0,0],r,0 =

2⊕
a=0

u
a− r3
f E− 1

2 (a+ r
3 ),( 1

2a(2−a),0) , (A.3)

and their conjugates. Note that the above decomposition contains “exotic” N = 2 Er,(j,0) operators

with spin j > 0, which do not seem to occur in known N = 2 SCFTs (see [79] for a discussion).

Similarly in [1] the question of whichN = 3 operators could contain operators whose vevs parametrized

the Coulomb branch was addressed. The authors of [1] argue that the only type of such multiplets are

B̂[R1,0] and conjugates, since the B[0,0],r,0 multiplet would not be consistent with the three different

N = 2 subalgebras N = 3 contains.

We finish this appendix with the example of the decomposition of a generic long N = 3 multiplet.

Considering a multiplet whose highest weight transforms in the symmetric traceless representation for

simplicity, A∆
[R1,R2],r,`, there appears to be a simple prescription for the decomposition into N = 2

multiplets, which we have checked in a variety of cases. Namely, we first decompose the SU(3)R×U(1)r
representation ([R1, R2], r) of the superconformal primary of the N = 3 multiplet in representations

of SU(2)RN=2
× U(1)rN=2

× U(1)f . Let {(R′, r′, F )} be the list of representations appearing in that

decomposition. To each such representation we associate an N = 2 multiplet A∆
R′,r′,`, graded by the

corresponding U(1)f charge (uf )F . Finally, in the decomposition of the N = 3 multiplet, each of these

N = 2 multiplets will be accompanied by the following list of long multiplets:

(uf )F
(
A∆+1
R′,r′−1,( `2 ,

`
2 )
u2
f + u−2

f A
∆+1
R′,r′+1,( `2 ,

`
2 )

+ u−1
f A

∆+ 1
2

R′,r′+ 1
2 ,(

`
2 ,
`+1

2 )
+ u−1

f A
∆+ 1

2

R′,r′+ 1
2 ,(

`
2 ,
`−1

2 )

+ u−1
f A

∆+ 3
2

R′,r′+ 1
2 ,(

`+1
2 , `2 )

+ u−1
f A

∆+ 3
2

R′,r′+ 1
2 ,(

`−1
2 , `2 )

+A∆+ 3
2

R′,r′− 1
2 ,(

`
2 ,
`+1

2 )
uf +A∆+ 3

2

R′,r′− 1
2 ,(

`
2 ,
`−1

2 )
uf

+A∆+ 1
2

R′,r′− 1
2 ,(

`+1
2 , `2 )

uf +A∆+ 1
2

R′,r′− 1
2 ,(

`−1
2 , `2 )

uf +A∆+2
R′,r′,( `2 ,

`
2 )

+A∆+1

R′,r′,( `+1
2 , `+1

2 )
+A∆+1

R′,r′,( `+1
2 , `−1

2 )

+A∆+1

R′,r′,( `−1
2 , `+1

2 )
+A∆+1

R′,r′,( `−1
2 , `−1

2 )

)
.

(A.4)
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B OPEs of the chiral algebra

In this appendix we collect the OPEs corresponding to the chiral algebra constructed in section 2.2,

with generators given by (2.22). Here we show all the OPE coefficients already fixed to the values

dictated by the Jacobi identities. These computations were performed using the Mathematica package

SOPEN2defs of [67] and we follow their conventions. In what follows we take a product of operators

O1O2 · · · On−1On to mean the normal ordered product (O1(O2(· · · (On−1On)))).

Since all generators, with the exception of the stress-tensor multiplet, are super Virasoro primaries,

the OPE of a generator O of dimension ∆O and U(1)f charge fO with the stress-tensor current J is

fixed to be

J (Z1)O(Z2) ∼ ∆Oθ12θ̄12O
Z2

12

+
−fOO − θ12DO + θ̄12D̄O + θ12θ̄12∂O

Z12
. (B.1)

The stress-tensor multiplet has the standard self-OPE given in (2.18), while the OPEs W(Z1)W(Z2)

and W̄(Z1)W̄(Z2) are regular. The W(Z1)W̄(Z2) OPE is given in a general form in (2.20) where the

sum is taken to run over all uncharged generators, composites and/or (super)derivatives thereof. The

coefficients λOh in (2.20) are completely fixed by the Jacobi identities to

λ1 = −c2d
9
, λJ = 1 , λJJ = − 4

c2d − 1
, λDD̄J =

c2d − 9

6(c2d − 1)
, λJ ′ =

1

2
,

λU = − 4(5c2d + 27)

β(c2d − 9)(c2d − 1)
,

(B.2)

where β is related to the norm of U . The remaining non-trivial OPEs were found to be

W(Z1)U(Z2) ∼ −β(c2d − 9)(c2d + 15)θ12θ̄12W
2(5c2d + 27)Z3

12

+
β(c2d + 15)

12(5c2d + 27)

18θ12θ̄12JW − 2(c2d − 9)θ12DW − (c2d − 27)θ12θ̄12W ′ − 6(c2d − 9)W
Z2

12

+
β

12(5c2d + 27)

6(c2d + 63)θ12JDW + 54(c2d − 1)θ12WDJ − (c2d − 9)(c2d + 39)θ12DW ′

Z12

+
β(c2d + 15)

6(5c2d + 27)

18JW − (c2d − 27)W ′

Z12
, (B.3)

and

W̄(Z1)U(Z2) ∼ β(c2d − 9)(c2d + 15)

2(5c2d + 27)

θ12θ̄12W̄
Z3

12

+
β(c2d + 15)

12(5c2d + 27)

18θ12θ̄12J W̄ − 2(c2d − 9)θ̄12D̄W̄ + (c2d − 27)θ12θ̄12W̄ ′ − 6(c2d − 9)W̄
Z2

12

− β

12(5c2d + 27)

6(c2d + 63)θ̄12J D̄W̄ + 54(c2d − 1)θ̄12W̄D̄J (c2d − 9)(c2d + 39)θ̄12D̄W̄ ′

Z12

− β(c2d + 15)

6(5c2d + 27)

18J W̄ + (c2d − 27)W̄ ′

Z12
, (B.4)

with the most complicated one being

U(Z1)U(Z2) ∼ − (c2d − 9)2(c2d − 1)(c2d + 15)β2

72(5c2d + 27)2

c2d + 6J θ12θ̄12

Z4
12
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+
β2(c2d − 9)2(c2d − 1)(c2d + 15)

12(5c2d + 27)2

−θ̄12D̄J + θ12DJ − θ12θ̄12J ′

Z3
12

+
1

Z2
12

(
β2DD̄J ′θ12θ̄12(c2d − 9)3

8(5c2d + 27)2
+
c2d(c2d + 15)β2DD̄J (c2d − 9)2

36(5c2d + 27)2
+

(c2d + 15)β2JJ (c2d − 9)2

12(5c2d + 27)2

+
(c2d + 15)(2c2d − 3)β2DJ ′θ12(c2d − 9)2

36(5c2d + 27)2
+

(c2d + 15)β2JDJ θ12(c2d − 9)2

12(5c2d + 27)2
+

(c2d + 15)β2J D̄J θ̄12(c2d − 9)2

12(5c2d + 27)2

+
(c2d − 21)β2JDD̄J θ12θ̄12(c2d − 9)2

6(5c2d + 27)2
− β2DJ D̄J θ12θ̄12(c2d − 9)2

8(5c2d + 27)
− (c2d + 15)(2c2d − 3)β2D̄J ′θ̄12(c2d − 9)2

36(5c2d + 27)2

+
(c2d + 63)β2JJJ θ12θ̄12(c2d − 9)

2(5c2d + 27)2
− 27(c2d − 1)β2JJ ′θ12θ̄12(c2d − 9)

2(5c2d + 27)2
− 27(c2d − 1)2β2WW̄θ12θ̄12(c2d − 9)

8(5c2d + 27)2

−
(
c32d − 11c22d − 105c2d + 243

)
β2θ12θ̄12J ′′(c2d − 9)

24(5c2d + 27)2
− 1

6
(c2d + 3)Uβ − 1

12
(c2d + 3)βDUθ12

+

(
c22d − 8c2d + 135

)
βDD̄Uθ12θ̄12

8(5c2d + 27)
− (7c2d − 135)βJUθ12θ̄12

2(5c2d + 27)
− 27(c2d − 1)βθ12θ̄12U ′

4(5c2d + 27)
− 1

12
(c2d + 3)βD̄U θ̄12

)

+
1

Z12

(
β2J ′DD̄J θ12θ̄12(c2d − 9)3

6(5c2d + 27)2
+
c2d(c2d + 15)β2DD̄J ′(c2d − 9)2

72(5c2d + 27)2
+

(c2d + 15)β2JJ ′(c2d − 9)2

12(5c2d + 27)2

+
(c2d − 33)β2JDJ ′θ12(c2d − 9)2

24(5c2d + 27)2
+

(c2d − 33)β2J D̄J ′θ̄12(c2d − 9)2

24(5c2d + 27)2
+

3(c2d − 1)β2D̄JDD̄J θ̄12(c2d − 9)2

16(5c2d + 27)2

+
(c2d − 33)β2JDD̄J ′θ12θ̄12(c2d − 9)2

12(5c2d + 27)2
+
β2D̄J ′DJ θ12θ̄12(c2d − 9)2

12(5c2d + 27)

+
(c2d − 1)(2c2d + 15)β2θ12 (DJ ′)′ (c2d − 9)2

96(5c2d + 27)2
− β2DJ ′D̄J θ12θ̄12(c2d − 9)2

12(5c2d + 27)

− 3(c2d − 1)β2DJDD̄J θ12(c2d − 9)2

16(5c2d + 27)2
−

(c2d − 1)(2c2d + 15)β2θ̄12

(
D̄J ′

)′
(c2d − 9)2

96(5c2d + 27)2

+
9(c2d − 1)2β2W̄DWθ12(c2d − 9)

8(5c2d + 27)2
+

(c2d − 81)(c2d − 1)β2J ′DJ θ12(c2d − 9)

16(5c2d + 27)2

+
(c2d + 63)β2JJ D̄J θ̄12(c2d − 9)

2(5c2d + 27)2
+

(c2d − 81)(c2d − 1)β2J ′D̄J θ̄12(c2d − 9)

16(5c2d + 27)2

+
(c2d + 63)β2JJJ ′θ12θ̄12(c2d − 9)

(5c2d + 27)2
− 4βUJ ′θ12θ̄12(c2d − 9)

5c2d + 27

− (c2d + 63)β2JJDJ θ12(c2d − 9)

2(5c2d + 27)2
− 9(c2d − 1)2β2WW̄ ′θ12θ̄12(c2d − 9)

4(5c2d + 27)2

− 9(c2d − 1)2β2W̄W ′θ12θ̄12(c2d − 9)

4(5c2d + 27)2
− 9(c2d − 1)2β2WD̄W̄ θ̄12(c2d − 9)

8(5c2d + 27)2

−
(c2d + 3)

(
c22d − 41c2d + 72

)
β2θ12θ̄12J (3)(c2d − 9)

72(5c2d + 27)2
+

9(c2d − 1)βUDJ θ12

2(5c2d + 27)

+
(c2d + 63)βJ D̄U θ̄12

2(5c2d + 27)
+

(
c22d − 3c2d + 162

)
βDD̄U ′θ12θ̄12

12(5c2d + 27)
− (c2d − 1)(c2d + 27)βD̄U ′θ̄12

4(5c2d + 27)

− 1

2
βDJ D̄Uθ12θ̄12 +

1

2
βDUD̄J θ12θ̄12 −

1

12
(c2d + 3)βU ′ − 1

4
βθ12θ̄12U ′′ −

(c2d + 63)βJDUθ12

2(5c2d + 27)

− 9(c2d − 1)βUD̄J θ̄12

2(5c2d + 27)
− 3(c2d − 33)βJU ′θ12θ̄12

2(5c2d + 27)
− (c2d − 1)(c2d + 27)βDU ′θ12

4(5c2d + 27)

)
. (B.5)
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C Conformal blocks and generalized free field theory

C.1 Conformal block conventions

We adopt the following conventions for the four-dimensional bosonic conformal blocks,

g∆12,∆34

∆,` (z, z̄) =
zz̄

z − z̄

(
k∆12,∆34

∆+` (z) k∆12,∆34

∆−`−2 (z̄)− (z ↔ z̄)
)
, (C.1)

ka,bβ (x) = x
β
2 2F1(β−a2 , β+b

2 , β, x) . (C.2)

We also set kβ(x) := k0,0
β (x) and g∆,`(z, z̄) := g0,0

∆,`(z, z̄).

Braiding

Here we collect useful identities between the blocks needed for the crossing symmetry discussion in

section 4, namely their transformation under braiding, i.e., the exchange of points one and two. The

4d bosonic blocks transform as

((1− z)(1− z̄))−
∆34

2 g−∆12,∆34

∆,`

(
z
z−1 ,

z̄
z̄−1

)
= (−1)`g∆12,∆34

∆,` (z, z̄) , (C.3)

and the SU(2) R-symmetry ones as

hSU(2)
m (w) = (−1)m hSU(2)

m ( w
w−1 ) . (C.4)

In particular (C.3) implies that g∆,`

(
z
z−1 ,

z̄
z̄−1

)
= (−1)`g∆,`(z, z̄). Finally, the 2d bosonic blocks (3.36)

satisfy

g2d
h (z) = (−1)h g2d

h ( z
z−1 ) . (C.5)

C.2 Generalized free theory example

In this appendix we present a solution to the Ward identities (3.16) and to the crossing equations of

section 4. It corresponds to the solution of generalized free theory, for which the four-point function

factorizes as a product of two-point functions. It reads

Ggft
R (x1, x2, y) = 1 +

(
x1x2

y

)R
, (C.6)

from which we can obtain, by setting x2 = y, the chiral algebra correlator fgft
R (x) = 1 + xR. Using

the parametrization of the WI solution (3.17), we extract

Hgft
R (x1, x2, y) =

x1x2

[
xR1 x

R
2 y

2−R(x1 − x2)− yxR1 x2(x1 − y) + yx1x
R
2 (x2 − y)

]
(x1 − x2)(x1 − y)(x2 − y)

. (C.7)

In particular, we have for small R the expressions

Hgft
2 (x1, x2, y) = (x1x2)2 ,

Hgft
3 (x1, x2, y) = (x1x2)2(x1 + x2) +

(x1x2)3

y

= (x1x2)2
[
(x1 + x2 + 1

3x1x2)− x1x2 h[1,1](w)
]
,

(C.8)
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with h[1,1](w) given in (3.24). The block expansion of the two-dimensional correlator fgft
R (x) (i.e., in

the non-chiral channel) is explicitly given by

fgft
R (x) = 1 +

∞∑
h=R

bgft
R,h g

2d N=2
h (x) , bgft

R,h = (−1)h+14R−h
(2R)h−R(1− h)R−1

Γ(R)(R+ 1
2 )h−R

. (C.9)

Note (and compare with the discussion around (4.20)) that in the generalized free theory example we

have b
(R)
h<R = 0. In particular, there is no stress tensor being exchanged. Similarly, we can decompose

the two-dimensional correlator in the chiral channel to find

f̃gft
R (z) =

∞∑
h=R

h+R even

b̃gft
R,h g

2d
h (z) , b̃gft

R,h = −
21+2R−2hΓ

(
h+R

2

)
(1− h)R−1

(
2R−1

2

)
h−R

2

Γ(R)2
(

2R−1
4

)
h−R

2

(
2R+1

4

)
h−R

2

. (C.10)

D Short contributions to crossing

Here collect some bulky equations used in the crossing equations (4.13) and summarize the computation

used in section 4.2 for the function HR,short.

D.1 Explicit expressions for F (0,±)
short

Here we collect the expressions for F (0,±)
short that we need in the crossing equations (4.13). Using the

definition (4.4) for the function AR, we write

F (0)
short[f ] = − [(1− z)(1− z̄)]R+1

(1− w)R−2

y2−R

x−1
1 − x

−1
2

(x2AR(x2, y) fR(x1)− x1 ↔ x2) ,

F (0)
short[Hshort, H̃short] =

[(1− z)(1− z̄)]R+1

(1− w)R−2
HR,short(z, z̄, w)

− (−1)R
[
(z, z̄, w)↔ (1− z, 1− z̄, 1− w)

]
,

(D.1)

for F (0)
short and

F (±)
short[f ] = −

{
[(z − 1)(z̄ − 1)]

R+1

(w − 1)R−2

xR−1
1 AR(x1, y) f̃R(z̄)− (z ↔ z̄)

z−1 − z̄−1

±
[
(z, z̄, w)↔ (1− z, 1− z̄, 1− w)

]}
,

F (±)
short[Hshort, H̃short] = (−1)R

{
[(1− z)(1− z̄)]R+1

(1− w)R−2
H̃R,short(z, z̄, w)

±
[
(z, z̄, w)↔ (1− z, 1− z̄, 1− w)

]}

∓

{
[(1− z)(1− z̄)]R+1

(1− w)R−2
HR,short(

z
z−1 ,

z̄
z̄−1 ,

w
w−1 )

±
[
(z, z̄, w)↔ (1− z, 1− z̄, 1− w)

]}
,

(D.2)
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for F (±)
short.

D.2 Summation for Hshort

Given the function fR(x) in the parametrization (3.17) of a four point function (3.14), one can associate

a contribution to the function H, called Hshort[f ], corresponding to the exchange of the short operators

which survive the cohomological truncation. The goal of this appendix is to explicitly perform the

summations in the first term in (4.24). This can be done for two reasons:

1. The coefficients b
(R)
h in the expansion (4.19) can be easily determined in terms of a finite number

of parameters. This follows from the fact that fR(x) is a polynomial of degree R that satisfy the

crossing property fR(x) = xRfR(x−1).

2. Each block entering the first sum in (4.24) has the form

Gd=4,N=1
h+4,h =

th(z)s(z̄)− th(z̄)s(z)

z − z̄
, s(t) = −2(t+ log(1− t)) , (D.3)

where th(z) = th+3
2F1(h+ 2, h+ 3, 2h+ 5, t).

Each monomial term in fR(x), except for x0 = 1, can be expanded in superblocks as

xn =

∞∑
h=n

b̂n,h g
2d N=2
h ( x

x−1 ) , b̂n,h = −4n−hh
(2n)h−n(1− h)n−1

Γ(n+ 1)(n+ 1
2 )h−n

. (D.4)

It follows that the part of HR,short in the R-symmetry singlet channel, compare to the first term in

(4.24), is

Hsinglet
R,short[x

n] :=

∞∑
h=n

b̂n,h Gd=4,N=1
h+4,h (z, z̄) =

zn+1s(z̄)− z̄n+1s(z)

z − z̄
, n ≥ 0 , (D.5)

and Hsinglet
R,short[1] = 0. Above Hsinglet

R,short is considered as a linear map acting on polynomials in the

variable x. Such maps are characterized by their actions on monomials given in (D.5). In the cases

relevant for R = 2, 3 (recall that HR=1 = 0), the only solution of the crossing symmetry condition

fR(x) = xRfR(x−1) are

f2(x) = 1 + c−1x+ x2 , f3(x) = (1 + x)(1 + γ(c)x+ x2)

= 1 + (1 + γ(c))x+ (1 + γ(c))x2 + x3 ,
(D.6)

with 1 + γ(c) = 9
4c4d

and c = c4d . It follows from (D.5) that

Hsinglet
R,short(z, z̄) =

t̂(R)(x1)ŝ(x2)− t̂(R)(x2)ŝ(x1)

x1 − x2
,

t̂(R)(x) = x(fR(x)− 1) , ŝ( z
z−1 ) =

s(z)

1− z
,

(D.7)

with a now familiar identification (x1, x2) = ( z
z−1 ,

z̄
z̄−1 ).
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