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Abstract

We develop a stochastic description of small-field inflationary histories with a graceful

exit in a random potential whose Hessian is a Gaussian random matrix as a model of the

unstructured part of the string landscape. The dynamical evolution in such a random

potential from a small-field inflation region towards a viable late-time de Sitter (dS)

minimum maps to the dynamics of Dyson Brownian motion describing the relaxation of

non-equilibrium eigenvalue spectra in random matrix theory. We analytically compute

the relaxation probability in a saddle point approximation of the partition function of

the eigenvalue distribution of the Wigner ensemble describing the mass matrices of the

critical points. When applied to small-field inflation in the landscape, this leads to an

exponentially strong bias against small-field ranges and an upper bound N � 10 on

the number of light fields N participating during inflation from the non-observation of

negative spatial curvature.
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1 Introduction

Cosmological inflation is the main contender for the description of the very early universe

prior to the conventional hot big bang epoch. It has strong empirical support from various

cosmological probes such as e.g. the cosmic microwave background (CMB) precision data,

type Ia supernovae, and baryon acoustic oscillations (BAO). However, inflation in general is

more of a paradigm, as the detailed microscopic model of inflation is unknown, with the avail-

able cosmological data allowing for large classes of inflationary scalar potentials. Moreover,

at the theory level, inflation is sensitive to quantum gravity effects, and hence to the short

distance (UV) completion of quantum mechanics and general relativity [1]. It is this property

which motivates a study of UV completions of inflation in string theory as one of our best

candidates for a theory of quantum gravity.

String theory is described at the worldsheet level by a two-dimensional conformal field the-

ory (CFT). A large class of consistent effectively four-dimensional solutions to string theory,

called ‘string vacua’, arises by compactifying the six extra space dimensions arising from the

excess central charge of the worldsheet CFT. These string compactifications typically come

with a plethora of moduli scalar fields, parametrizing deformations of extra-dimensional man-

ifold, and axionic pseudo-scalar fields from higher-dimensional gauge potentials.
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Lacking observational evidence for their existence, these moduli are in need of stabilization

in order to acquire large masses. A combination of tree-level sources such as quantized p-form

field strengths (fluxes), perturbative string quantum effects, and non-perturbative effects such

as D-branes and instantons serve to stabilize the moduli in a large discretum of meta-stable

4D string vacua, some of which can be cosmologically viable de Sitter (dS) vacua [1].

Among the many fields of this high-dimensional scalar potential ‘landscape’, inflation can

arise either by the ‘accident’ via occurrence of a narrow slow-roll flat region in the scalar

potential, or as a long large-field valley due to underlying structures and/or symmetries of a

subsector of landscape. Examples for the latter large-field high-scale inflation models arise e.g.

from the approximate shift symmetry of axion inflation models, or the asymptotic exponential

series of certain volume moduli inflation models, for a recent review see [1].

In this paper we study the part of the landscape without long-range structures. In this

case we can approximate inflation as arising at random by local cancellations among terms

in a random potential thereby producing a narrow slow-roll flat region supporting small-field

inflation. One example for such sectors of the landscape is the scalar potential for the h2,1 � 1

complex structure moduli of a generic non-trivial Calabi-Yau compactification of string theory

(at least, away from the limit of large complex structure [2]).

Previous work [3, 4] has studied the probability of viable local dS minima in this context

using the fact that the statistics of critical points and the eigenvalue distribution of their mass

matrices (Hessians) in a random potential are well described by the statistics of sets of large

Gaussian random matrices. Moreover, random matrix theory (RMT) has been applied in [5]

in a reconstruction of a random potential along the path of steepest decent starting from a

local critical point with a given mass matrix. This local reconstruction of the random scalar

potential along the inflationary path rests on the description of the eigenvalue distribution

of Hessian of critical points in Gaussian random potentials and its stochastic variation along

random paths in field space by Dyson Brownian motion (DBM) [6, 7]. The eigenvalues of

an ensemble of Gaussian random matrices describing the critical point Hessians behave like

a 1D gas of electrically charged particles with logarithmic mutually repulsive potential in a

common quadratic confining potential. This picture allows for an intuitive understanding of

the behaviour of the eigenvalue spectrum of the Hessians along trajectories in field space,

including the effect of ‘eigenvalue repulsion’. Since eigenvalues tend to repel each other,

moving along such a path in field space tends to rapidly generate strongly tachyonic directions

in the Hessian. This is the reason why both local dS minima and inflationary small-field

critical points are exponentially rare in such structure-less sectors of the string landscape.

In this paper we apply the description of the evolution of the eigenvalue distribution of

critical point Hessians in a Gaussian random landscape via DBM to the question of finding a
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’graceful exit’ from the inflationary regime of random inflationary small-field critical points. A

’graceful exit’ from inflation describes the requirement of finding a local, cosmologically viable

dS minimum after rolling away from some inflationary critical point in the landscape. We

compute the corresponding probability of a graceful exit using the DBM process over multiple

correlation lengths of the underlying random potential. We do this first by numerically

integrating the discretized Dyson Brownian motion equations [5, 7].

Then we apply the description of the eigenvalue distribution via the 1D Dyson gas by

means of a path integral. For static eigenvalue configurations this was done by Dean and

Majumdar in [8]. We generalize and extend their derivation to include the relaxation dynamics

of DBM which adds a set of N linear potentials to the Hamiltonian describing the evolving

Dyson gas. Then, we perform an analytical saddle point evaluation of the path integral,

which allows us to derive the time-dependent average eigenvalue distribution, given an initial

fluctuated Hessian. ‘Time’ here denotes the field displacement along the path in field space.

Given this time-dependent eigenvalue distribution, we compute the saddle point action which

gives us the transition probability as a function of distance in field space.

These results are general for DBM in Gaussian random matrix theory, which itself has

widespread applications beyond inflationary cosmology, including in recent years in areas like

image analysis, genomics, epidemiology, engineering, economics and finance, for reviews see

e.g. [9,10]. Then, we specify our results to an ensemble of Hessians with an eigenvalue distri-

bution describing inflationary critical points (the lightest mass eigenvalues are very slightly

tachyonic to describe slow-roll). Computing the probability of a graceful exit from such a

random inflationary critical, we find our central result that the exit probability for small-

field inflation in the landscape is exponentially small. The suppression exponent increases

quadratically with number of light fields N .

We then compare this behaviour of small-field inflation in the landscape with large-field

models, whose underlying structure and/or symmetry usually guarantees the existence of

viable post-inflationary minimum. Taken at face value, this implies a strong exponential bias

against small-field inflation being the dominant regime in the landscape.

Finally, we discuss the influence of the exp(−cN2) suppression of small-field inflation on

the probability of observing negative spatial curvature in a landscape where the various dS

vacua and inflationary critical points are populated via Coleman-De Luccia (CDL) tunnel-

ing transitions. Following the methodology of [11], the exponentially strong dependence on

the number N of light fields participating in a small-field inflationary critical point leads

exponentially strong posterior probability distribution function for N derived from the non-

observation of spatial negative curvature. This severely limits the effective number such light

fields to N � 10.
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2 The static ensemble

In this section we introduce the basic concepts from Random Matrix Theory which we will

apply to landscape statistics. The fundamental premise is that the scalar’s mass matrix

belongs to a classic ensemble in RMT, for which limiting eigenvalue distributions, fluctuation

probabilities and other useful properties are known. We review how RMT tools allow us to

determine the ratio between minima and flat inflection points in a toy-model landscape.

2.1 Basic concepts

In what follows we assume that the mass matrix in the string landscape belongs to a Gaussian

ensemble. Though this approximation is very restrictive and fails to incorporate some of

the rich structure of the string landscape [2, 3, 12–17], we argue that it still retains some

fundamental features that allow for a qualitative understanding of the landscape’s properties

while at the same time permitting the use of the very developed RMT machinery for this

class of ensembles [18–20].

The Gaussian ensembles are defined as sets of orthogonal, unitary or symplectic matrices

whose entries are independent and identically distributed (i.e.random) variables drawn from

some distribution Ω(µ, σ). The observed universality property of RMT implies that the

properties of the ensemble of matrices M are insensitive to Ω, provided its moments are

appropriately bounded.

The probability of observing a given matrix M with eigenvalues {λi} in a Gaussian en-

semble can be found by integrating the probability density function dP

dP = C exp

− β

2σ2

N∑
i=1

λ2
i + β

N∑
i<j

ln |λi − λj |

 N∏
i=1

dλi (2.1)

over the eigenvalues of M , such that

P (M) =

∫
dP, (2.2)

where C is a N -dependent constant that can be found by performing unconstrained integration

of the probability density function (2.1):

C−1 ≡
∫ +∞

−∞
dP. (2.3)

A more in depth derivation of Eq. (2.1) and associated concepts can be found in [21].

Equation (2.1) is identical to the partition function of a one dimensional gas of charged

particles executing Brownian motion under the influence of a quadratic self-interaction and

a repulsive logarithmic potential, a fact that was first noted by Dyson [22] and that allows
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for an intuitive understanding of the behaviour of the coupled system of eigenvalues. The

equilibrium eigenvalue density function, which gives the probability of finding an eigenvalue in

the interval [λ, λ+dλ], can be derived from Eq. (2.1) and is the well know Wigner semi-circle

ρ(λ) =
1

πNσ2

√
2Nσ2 − λ2, (2.4)

which has support in the interval λ ∈ [−σ
√

2N, σ
√

2N ]. In what follows we set σ2 = 2/N

in order to have a clear definition of the physically relevant spectra that is independent of

the dimensionality of the field space. This choice implies that the masses in the equilibrium

spectrum are distributed in the interval [−2, 2] MP . Formally Eq. (2.4) can be obtained by

finding the eigenvalue configuration that maximises Eq. (2.1) in the limit of large N , and is

a particular case of the computation presented in the next section.

The semi-circle distribution, centred around the origin implies that a typical point in the

Wigner landscape has on average half of the directions tachyonic, which is unsuitable to de-

scribe local minima and inflationary inflection points in the landscape. Such anthropically

relevant points in the landscape correspond therefore to fluctuations away from the equilib-

rium configuration, prompting the question of how frequently do these rare mass matrices

arise and what is their eigenvalue spectrum. Both these questions have been addressed in

the RMT literature, in particular Dean and Majumdar showed in [8] that spectra with all

eigenvalues larger than ζ follow the large N distribution law

ρζ(λ) =
1

6
√

3π

(
3λ− ζ +

√
12 + ζ2

)√−3λ+ ζ + 2
√

12 + ζ2

λ− ζ , (2.5)

which asymptotes to Eq. (2.4) in the limit ζ → −2, c.f. Fig. 1.

The probability of such fluctuations can be computed by integration of the probability

density function

P (∀λ > ζ) =

∫ +∞

ζ
dP, (2.6)

whose saddle point evaluation led the authors of [8] to the result

P (∀λ > ζ) = exp
(
−βN2Φ(ζ)

)
, (2.7)

where the rate function is given by

Φ(ζ) =
1

432

[
72ζ2 − ζ4 +

(
30ζ + ζ3

)√
12 + ζ2 + 108 ln 36− 216 ln

(
−ζ +

√
12 + ζ2

)]
.

(2.8)

We plot Φ(ζ) in Fig.2. Note the rapid growth of the rate function away from the edge of

the equilibrium distribution (ζ = −2), implying that spectra with all eigenvalues significantly
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Figure 1: Gaussian ensemble spectra: in blue: typical spectrum, following the semi-circle

law of Eq. (2.4). Yellow: fluctuated spectrum with all eigenvalues positive, following the

distribution law of Eq. (2.5) with ζ = 0.

greater than −2 are very rare events in the Wigner landscape. One therefore concludes that

both minima and flat inflection points do not abound.

2.2 Consequences for landscape statistics

The previous results can be used to assess the relative abundance of minima and inflationary

flat points in the Wigner landscape. This was the focus of [20], the results of which we now

review.

Let us start by defining the physically relevant spectra: minima and inflationary points.

Minima are defined as points in field space where all eigenvalues are positive and larger than

a reference value η. They occur with a probability given by

P (inf) = P (∀λ > η) = e−βN
2Φ(η). (2.9)

Inflationary spectra are taken to be those with at least one eigenvalue in the interval [−η, η]

and with all the remaining masses above η. The probability for such spectra is then given in

terms of the rate function as

P (inf) = P (∀λ > −η)− P (∀λ > η) = e−βN
2Φ(−η) − e−βN2Φ(η). (2.10)

From these we see that inflationary inflection points are more abundant than minima in the

Wigner landscape by a factor of

#saddle
av.−min(inf) ≡ P (inf)

P (min)
= e−βN

2{Φ(−η)−Φ(η)} − 1 . (2.11)
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Figure 2: Dean and Majumdar’s rate function Φ(ζ) defined in Eq. (2.8). The rapid growth

of Φ away from ζ = −2 implies an exponential suppression of the probability of occurrence

of such spectra in Gaussian ensembles.

Here we define #av.−min(inf) to be the number of inflationary saddle points per minimum, av-

eraged over all minima. This expression can be approximated by expanding the rate function

for small η as

#saddle
av.−min(inf) ∼ eβN2η∆ , where ∆ = 2

dΦ

dη

∣∣∣∣
η=0

=
4

3
√

3
+O(η). (2.12)

These considerations show that in this simple landscape there are exponentially more field

space regions where inflation can occur than local minima where it can end.

The formalism employed in this discussion allows us to count relative abundance of certain

mass spectra, however it is unable to tell us the likelihood of connecting an inflationary

trajectory with a post-inflationary minimum, for that one needs to go beyond the static

ensemble and consider its ’time’ dependent generalisation: Dyson Brownian motion. We

perform the analytical computation of DBM in the next section, generalising the method

of [8, 23] to the time dependent Coulomb gas. The reader interested only in the physical

implications may safely skip to section 4.1 where we use the results of section 3 to determine

the exit probability in a Wigner landscape and discuss the consequences of our results.

3 Dyson Brownian motion: the computation

In the formalism of the previous section different eigenvalue configurations correspond to

distinct equilibrium states for the Coulomb gas. There is no notion of time evolution or

dynamics, the velocities of the point charges play no role in the physics of the gas. In
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his seminal work [7] Dyson introduced “time” evolution in this context by postulating that

the point particles/eigenvalues were undergoing stochastic Brownian motion (rather than

deterministic Newtonian evolution). In Dyson’s approach “time” is not necessarily related

to physical time, in fact for the applications we are interested in it is to be identified with

field space distance [5]. In this picture, which became known as Dyson Brownian motion, the

entries of a matrix M , belonging to one of the Gaussian ensembles defined earlier, evolve in

“time”, s, according to Mij(s+ δs) = Mij(s) + δMij , where fluctuations display the following

statistical properties

〈δMij〉 = −Mij
δs

σ2f
, (3.1)

〈(δMij)
2〉 = (1 + δij)

δs

βf
. (3.2)

This implies that the Mij are undergoing simple uncoupled Brownian motion, interacting

only with themselves and the medium in which they move. Note that Eq. (3.1) parametrises

the drift and Eq. (3.2) the diffusion of the matrix Brownian motion. It is useful to note that

Eqs. (3.1) and (3.2) allow us to write the infinitesimal shift in each matrix component as

δMij = Aij −Mij(s)
δs

σ2f
, (3.3)

where Aij are zero mean stochastic variables, describing the interaction between the matrix

elements Mij and the medium in which they propagate and the last term is a restoring force.

Equation (3.3) will be useful in the implementation of the numerical evolution of the matrix

DBM performed in Sec. 4.1 as a means of checking the analytic results we are about to derive.

The Brownian motion of matrix elements Mij was shown to be in one-to-one correspondence

with the Brownian motion of the eigenvalues λi of M [7].

The time evolution described by Eqs. (3.1) and (3.2) can equivalently be formulated in

terms of a probability density function dP (Mij , s)
1 which is the solution to the Smoluchowski

equation [6]

f
∂ dP

∂s
=

N∑
i,j=1

{
β

2
(1 + δij)

∂2 dP

∂Mij
2 +

1

σ2

∂

∂Mij
(MijdP )

}
. (3.4)

The transition probability between an initial mass matrix M0 and a final configuration M ,

over a distance s in field space is therefore given by

P (M(s),M0) =

∫
dP , (3.5)

1A note on notation: In contrast to the classical references [6, 7, 21] where the probability density function

is denoted by P , we choose to denote it by dP , reserving P for the actual probability, obtained by integration

of the density function dP .
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where the joint probability density function is the solution to Eq. (3.4) [6]

dP = C exp

{
− β

2σ2(1− q2)
Tr[(M − qM0)2]

}
dMij , (3.6)

with q = exp(−s/(σ2f)) being the field space distance measured in units of the correlation

length Λh ≡ σ2f . For the moment we set σ2 = a/N but will ultimately choose to normalise

the mass spectra as in Sec. 2 by setting a = 2. The overall factor C is a q-dependent function

ensuring the correct normalisation of the fluctuation probabilities:

C−1 ≡
∫ +∞

−∞
dP . (3.7)

Computation of transition probabilities between a given pair (M0,M(s)) can therefore

be obtained via integration of Eq. (3.6). While numerical methods can be readily applied

(though not without inherent limitations like the need to work at relatively small N), one can

also use analytical methods in the large N limit and approximate the integral by its saddle

point.

We start by analysing Eq. (3.6) from the perspective of the ”time” dependent Coulomb

gas. Expanding the trace in the joint pdf one finds

Tr[(M − qM0)2] =Tr[M2]− 2q Tr[MM0] + q2 Tr[M2
0 ]

=
N∑
i=1

(λMi )2 − 2qλMi M
ii
0 + q2(λM0

i )2 ,
(3.8)

where M ii
0 denotes the i-th diagonal element of the initial matrix M0. Note that the last term

on the r.h.s. is independent of the integration measure and therefore gives rise to an irrelevant

overall constant in the partition function, which we will ignore in the ensuing discussion. One

then sees that in the time-dependent Coulomb gas picture, the charged particles are subject to

a quadratic self attraction and to a linear potential. Note that in the static ensemble only the

quadratic term was present and also that in the DBM context both are ”time” dependent.

Furthermore the memory of the initial conditions enters only through the strength of the

linear potential and decreases with “time” or equivalently as we move away from the initial

field space position.

The Hamiltonian for the ”time” dependent Coulomb gas is then given by

H(λ) = −β
2

N∑
i=1

{
λ2
i

σ2(1− q2)
− 2qλiM

ii
0

σ2(1− q2)

}
+
β

2

∑
i 6=j

ln |λi − λj | , (3.9)

where the logarithmic interaction arises from the Jabobian of the coordinate change dMij →
dλi [21]. In Eq. (3.9) each eigenvalue is subject to a different linear potential, whose strength

is set by the diagonal entries of the initial state matrix M0. Given that the eigenbasis of
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M and M0 are in general not alligned, the diagonal entries of M0 do not correspond to its

eigenvalues, but instead one has

M0 = U diag(λ1
M0
, ..., λNM0

) U† , (3.10)

where U is the matrix that diagonalises M0, such that

M ii
0 =

N∑
j=1

U ijU†jiλjM0
. (3.11)

In order to proceed one must assume that all eigenvalues are subject to the same linear force.

This corresponds to setting M ii
0 = m, i.e., approximate the N diagonal entries of the initial

matrix by a single variable m. A natural choice is to take m to be the average of the M ii
0 . In

doing so one sees that the average force is given by the mean eigenvalue of M0 since

m ≡ 1

N

N∑
i=1

M ii
0 =

1

N
Tr[M0] ≡ 〈λM0〉. (3.12)

One can therefore compute m by taking the first moment of Eq. (2.5)

m =

∫
dλ λρM0(λ) , (3.13)

where ρM0 denotes the density function corresponding to the initial state matrix M0. This

simplification allows one to rewrite H(λ) in terms of two variables only: m and the empirical

eigenvalue distribution

ρ(λ) =
1

N

N∑
i=1

δ(λ− λi) , (3.14)

obeying
∫
ρ(λ)dλ = 1. We then find that the Hamiltonian becomes a functional of ρ, satisfying

H[ρ] = −βN2E [ρ] . (3.15)

The ”energy” functional in Eq. (3.15) is defined by

E [ρ] =
1

2ã

∫
λ2 ρ(λ) dλ+

b

2ã

∫
λ ρ(λ) dλ− 1

2

∫
ln |λ− λ̃|ρ(λ)ρ(λ̃) dλ dλ̃+O

(
1

N

)
. (3.16)

For the sake of shorter formulae we have defined ã ≡ a(1−q2) and b ≡ −2qm and omitted the

O
(

1
N

)
term coming from the subtraction of the self-energy in the logarithmic interactions in

going from (3.9) to (3.15) [23]. Probabilities are now computed via the functional integral

P (M(s),M0) = C
∫
d[ρ] J [ρ] exp

{
−βN2E [ρ]

}
, (3.17)

where J [ρ] denotes the Jacobian from changing from an integral over the eigenvalues λi to a

functional integral over density fields ρ(λ) and implies [23]

P (M(s),M0) = C
∫
d[ρ]δ

(∫
dλρ(λ)− 1

)
exp

{
−N

∫
dλ ρ(λ) ln ρ(λ)− βN2E [ρ]

}
. (3.18)

10



Making use of a Lagrange multiplier α to enforce the correct normalisation of the eigenvalue

distribution, one finally arrives to the ”energy” functional

Σ[ρ] ≡ E [ρ] + α

{∫
dλ ρ(λ)− 1

}
, (3.19)

that must be minimised in order to have a large N approximation of the transition probability.

The problem is now to determine the eigenvalue density function ρc(λ) corresponding to the

constrained spectrum ∀λ > ζ that minimises Σ[ρ], i.e.

dΣ

dρ

∣∣∣
ρ=ρc

= 0 ⇔ λ2

2ã
+
bλ

2ã
−
∫ ∞
ζ

ln |λ− λ̃| ρc(λ̃) dλ̃ = 0 . (3.20)

Differentiating Eq. (3.20) with respect to λ one finds

λ

ã
+

b

2ã
= P

∫ ∞
ζ

dλ̃
ρc(λ̃)

λ− λ̃
, (3.21)

where P stands for Cauchi’s principal value of the otherwise ill defined integral. By performing

a trivial shift of variables x = λ− ζ, x̃ = λ̃− ζ, Eq. (3.21) can be recast in a form that allows

for direct application of Tricomi’s theorem [24] to determine the critical eigenvalue density

function:
x+ ζ

ã
+

b

2ã
= P

∫ L

0
dx̃

ρc(x̃)

x− x̃ . (3.22)

Note that in going from Eq. (3.21) to Eq. (3.22) we have assumed that ρc(x) is only non-

zero in the compact interval [0, L], an assumption that must be checked a posteriori. As a

consequence of Tricomi’s theorem, one finds

ρc(x) = − 1

π2
√
x(L− x)

{
P

∫ L

0
dx′
√
x′(L− x′) x

′ + ζ + b/2

ã

1

x− x′ + C ′
}
, (3.23)

with the constant C ′ being determined by requiring the vanishing of shifted eigenvalue density

function at L : ρc(x = L) = 0:

ρc(x) =
1

2πã

√
L− x
x

[L+ 2(x+ ζ + b/2)] , x ∈ [0, L] . (3.24)

By imposing that ρc(x) integrates to unity over the interval [0, L], one finds

L =
2

3

[
−(ζ + b/2) +

√
6ã+ (ζ + b/2)2

]
. (3.25)

The interpretation of ρc(x) as the eigenvalue density function requires it to be positive definite

everywhere. Imposing ρc(x = 0) > 0 one finds that consistency requires ζ > ζedge with

ζedge ≡ −
√

2ã− b

2
, (3.26)
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that is the fluctuation probabilities computed here are applicable only when ∀ λ > ζ > ζedge.

For ∀ λ > ζ < ζedge the probability is of order unity, since the system is free to evolve to its

equilibrium configuration.

The minimal energy of the eigenvalue system, corresponding to the configuration ρc, is

therefore given by

Σ[ρc] =
ζ2 + b ζ

4ã2
+

1

4ã

∫
λ2 ρc(λ) dλ+

b

4ã

∫
ρc(λ) λ dλ− 1

2

∫
dλ̃ ln |ζ − λ̃| ρc(λ̃) . (3.27)

Performing the integrals one finds

Σ[ρc] =
1

216ã2

{
−2ζ̃4 + (30aζ̃ + 2ζ̃3)

√
6ã+ ζ̃2 + 9ã(−3b2 + 8ζ̃2 + 9ã)+

+27ã2

[
ln 1296− 4 ln(−ζ̃ +

√
6ã+ ζ̃2)

]}
,

(3.28)

where we have defined ζ̃ ≡ ζ + b/2.

In order to compute the correctly normalised probability we note that the function C in

Eq. (3.6) admits the following saddle point approximation

C ' exp
{
−βN2Σ[−∞]

}
= exp

{
−βN2Σ[ζedge]

}
, (3.29)

where we abbreviated Σ[ρc(ζ)] = Σ[ζ] and used ρc(−∞) = ρc(ζedge) ⇒ Σ(−∞) = Σ(ζedge).

The normalised transition probability then becomes

P (M(s),M0) = exp
{
−βN2(Σ[ζ]− Σ[ζedge])

}
. (3.30)

The rate function is defined as Ψ(ζ) ≡ Σ(ζ)−Σ(ζedge), which using Eq. (3.28) can be shown

to reduce to

Ψ(ζ̃) =
1

108ã2

{
36ãζ̃2 − ζ̃4 + (15ãζ̃ + ζ̃3)

√
6ã+ ζ̃2 + 27ã2

[
ln(72ã)− 2 ln(2(

√
6ã− ζ̃ − ζ̃))

]}
.

(3.31)

This is the main result of the present paper. It allows us to estimate the transition probability

between a matrix M0 characterised by the average size of its diagonal entries m and a matrix

M(s) whose eigenvalues are larger than ζ as a function of the field space distance s:

P (M(s),M0) = exp
[
−βN2Ψ(ζ) +O(N)

]
. (3.32)

As a sanity check, note that in the limit of infinite separation in field space s� Λh ⇔ q → 0,

we recover the rate function of the static ensemble, Eq. (2.8), as Ψ(ζ)→ Φ(ζ).

12



3.1 Examples

Let us now test the validity of Eqs. (3.31) and (3.32) by comparing their estimates for the

transition probabilities for the orthogonal, unitary and symplectic ensembles, with numerical

integration results. We assume two different initial states: one with ∀ λ > 1 and another

with ∀ λ > −1, and in both cases look for fluctuations towards spectra with ∀ λ > 0. One

can use the one dimensional gas interpretation of the system to get some intuition as to how

it should behave. For the first type of transition, we expect the probability to be of order

unity within the first correlation length, since this corresponds to relaxation of the system

towards its most probable configuration. For fluctuations of the second type we expect the

probability to drop rapidly at large q as these transitions go against the natural flow of the

system. In both regimes as q decreases and memory of the initial conditions becomes fainter,

the probability should drop, approaching the result of Eq. (2.8) for the static ensemble at

q = 0.

We compare the different estimates for the transition probabilities in Figure 3 for N = 7.

Fluctuations from spectra with ∀ λ > 1 (m = 1.52) are presented in the left column, while

the right column gathers the results for initial states with ∀ λ > −1, (m = 0.22). We

compare the numerical integration data with the saddle point approximation of Eqs. (3.31)

and (3.32). We see that our leading O(N2) approximation captures the behaviour of the

numerical integration for both fluctuations for all ensembles. Closer inspection reveals that

Eqs. (3.31) and (3.32) overestimate the transition probability for the orthogonal ensemble

while they underestimate the probability for the symplectic ensemble. Keeping in mind that

for large N these discrepancies become irrelevant, we note nonetheless that they are due to

the fact that in Eq. (3.31) we neglected O(N) corrections of the form [23]

δH = −N
(

1− β

2

)∫
dλ ρ(λ) ln(ρ(λ)). (3.33)

These terms originate from the subtraction of the divergent electrostatic self-interaction in

going from Eq. (3.9) to (3.16) and from the Jacobian J [ρ] in Eq. (3.17). Note that this O(N)

correction vanishes exactly for the unitary ensemble (β = 2), for which our O(N2) approx-

imation tracks the numerical integration data, c.f. Fig. 3. For the other ensembles, when

one includes these subleading terms, assuming that they do not alter shape of the limiting

eigenvalue density function ρc, one finds that the semi-analytic saddle point (dashed lines in

Fig. 3) estimate falls within the error bars of the numerical integration data.

The results presented above clearly demonstrate that the saddle point method is a good

approximation to the integration of the PDF, once we make the the assumption of univer-

sality for the linear potential in Eq. (3.9). In order to fully understand the validity of our

13
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Figure 3: Fluctuation probabilities for the orthogonal (top), unitary (middle) and symplectic

(bottom) ensembles. The plots on the left correspond to fluctuation from spectra with ∀ λ > 1

to spectra with ∀ λ > 0. The plots on the right correspond to fluctuation from spectra with

∀ λ > −1 to spectra with ∀ λ > 0. The points with error bars are obtained by numerical

integration of the pdf, the blue/continuous line denotes the leading N2 approximation, the

yellow/dashed line includes the subleading O(N) corrections to the Hamiltonian. The blue

circles represent the Dean and Majumdar’s result for the static ensembles. We set a = 2 for

all cases.

method for the computation of transition probabilities, one must test the robustness of this

universality simplification. This can be easily done, for small N , by comparing the results of

Eqs. (3.31) and (3.32) with actual random walks generated via Eqs. (3.1)-(3.3) for different

14



initial and final conditions. In order to better assess the validity of our approximations we

choose to work with the unitary ensemble β = 2, since in this case the subleading O(N) cor-

rections are absent and any deviation between the saddle point estimate and the numerical

DBM has to be attributed to the limitations of the universal linear potential approximation.

We choose initial spectra M0 : ∀ λ > 0 2 and look for fluctuations to spectra M(s) : ∀ λ > ζ,

with ζ = {−1,−0.75,−0.5,−0.25, 0}. Computational time constraints force us to work with

N = 5. The results are presented in Fig. 4, where one can see that the analytic estimate

tracks the Brownian motion results for the various initial conditions, once enough ”time” has

passed. Typically after 1/2 correlation length, q < 0.6, the analytical estimate is within a

factor of a few of the numerical result, as can be seen in the left panel of Fig. 4.

Figure 4: Left: Transition probability as a function of ”time” q, starting with a positive

definite matrix and ending in various final states, see main text for more details. Dots

correspond to the Brownian motion result whereas the lines represent the analytical estimate

whose validity we are evaluating. Right: Ratio between the analytic estimate of the transition

probability and the Brownian motion result.

Beyond this clear numerical evidence, we will now provide analytical arguments justifying

of the single linear-potential approximation and the universal Ψ(q) = Ψ(0) − O(q) , q . e−1

behaviour of the rate function. For this, we will use results of the saddle point computation,

the time-dependent fluctuated eigenvalue density Eq. (3.24) and the time-dependent rate

function Eq. (3.31).

2There are two ways in which one can choose the M0 that constitute the initial conditions for the Brownian

motion: one can generate a large number of matrices of the desired ensemble, choose the ones that have the

desired spectrum and perform the time evolution on each of those matrices. Alternatively one can compute

the average eigenvalues of the matrices that have the right spectrum and thus build a unique initial condition

on which to run the Brownian motion. We choose the latter procedure and stress that the distinction between

the two should vanish in the large N limit.
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We will perform our analysis perturbatively, by pushing the system away from its equilib-

rium configuration and then looking at the behaviour of the rate function for different slightly

perturbed initial spectra, while selecting final states which are small departures from the

equilibrium configuration. In such a regime, spectra with eigenvalues larger than ζi = −2 + ε

describe the initial conditions. Correspondingly we choose final spectra which have all eigen-

values larger than ζf = −2 + δ.

Next, we expand the rate function in small ε, δ at small q, finding Ψ = δ3

12

(
1 + 3

2q
2
)
−

1
16 δ

2ε2q to leading order. The constant piece reproduces the result of Dean and Majumdar

for the static ensemble [8,23]. Furthermore, we observe that the dominant q-dependent piece

at small q is linear in q. Its coefficient is uniquely determined by the edges of the fluctuated

initial and final condition choices.

Hence, for sufficiently small q the rate function becomes linear in q. This explains the

numerically observed universal behaviour at late times. Moreover, we recognize, that Ψ

becomes linear in q typically within one correlation length. The exception to this case arises

when we ask for the final conditions to be given by spectra more unlikely than the initial

conditions, that is δ > ε. Once in such a regime, we see that the q2 term in Ψ will give way

to the linear term only at successively smaller values of q. Comparing the analytic behaviour

of Ψ and the DBM result in Fig. 4 around values of q ' e−1 for the lowest set of curves

where both initial and final conditions are given by all eigenvalues larger than ζi = ζf = 0,

we clearly observe the onset of the quadratic behaviour towards larger q.

We now proceed to consider the relaxation process of DBM in more detail. It is a basic

feature of DBM that, whatever the initial conditions, relaxation drives the eigenvalue spectra

to approach their static equilibrium configuration for q → 0 at a rate estimated in [5]. Now

we conduct a gedanken experiment: assume that we stop the relaxation process momentarily

at some small but otherwise arbitrary value q = q̃ � 1. The eigenvalue spectrum of a large

set of matrices there is already close to the static equilibrium configuration. Thus, at q = q̃ we

will find, with probability close to unity, only eigenvalue spectra of slightly fluctuated Wigner

ensembles with a lower edge close to the semi-circle value ζ(q̃) = −2+ε(q̃), where ε(q̃) depends

on the spectrum at q = 1. This slightly fluctuated Wigner ensemble thus forms the DBM-

produced most probable local initial conditions for relaxing towards further decreasing q < q̃.

Now we unfreeze our system – let the relaxation process resume and focus on the simplest

case N = 2 for extracting analytical results. The relaxation from 1 to q̃ � 1 has produced a

spectrum of matrices Mq̃ which is given by a slightly fluctuated Wigner ensemble with edge

at ζ(q̃) = −2 + ε(q̃). Upon unfreezing our system at q̃, this ensemble Mq̃ forms the q = q̃

initial conditions for further relaxation. Hence, these q = q̃ initial conditions given by the

Mq̃-ensemble will relax further at q < q̃ driven by two linear potentials, and their average
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linear potential acting on Mq̃.

Next, we determine the two linear potentials and their variances acting on Mq̃ at q = q̃ �
1. They are given in terms of the spectrum of the Mq̃-ensemble describing the q = q̃ initial

conditions. Hence, we compute 〈λiMq̃
〉 ≡ 〈M ii

q̃ 〉 governing their strength, and their respective

variances 〈(M ii
q̃ − 〈λiMq̃

〉)2〉. These quantities are the estimators of the two linear potentials

and their variances, respectively.

As we have seen in section 3, the Hamiltonian contains N linear potentials given by the

N diagonal entries M ii
q . We want to determine the estimators above at q = q̃ � 1. Hence,

we can approximate the ensemble Mq̃ by the static fluctuated eigenvalue density ρ(µ, q = 0)

with edge ζ(q̃) = −2 + ε(q̃). So, for N = 2 we compute the estimators of two linear potentials

by estimating 〈M ii
q 〉 from the static fluctuated eigenvalue density ρc(µ, q = 0) of Eq. (3.24)

as follows

〈λ1
Mq
〉 =

ε2/8∫
−2+ε

dµ
(
µρc(µ, q = 0)

)
+O(q)

〈λ2
Mq
〉 =

2+ε2/16∫
ε2/8

dµ
(
µρc(µ, q = 0)

)
+O(q) .

(3.34)

Here, matching to Mq̃ implies ε ≡ ε(q̃). Then, the upper integration boundaries are deter-

mined to leading order in the lower edge shift ε by demanding equal probability for the left

and right half-bands of the eigenvalue density
∫ ε2/8
−2+ε dµρc(µ, q = 0) =

∫ 2+ε2/16
ε2/8

dµρc(µ, q =

0) = 1/2 +O(ε3).

Using this prescription we get that 〈λ1/2
M0
〉 = ± 8

3π + O(ε2) such that the total average

eigenvalue is 〈λM0〉 = O(ε2). Similarly, we can compute the variances of both 〈λM0〉 and

〈λiM0
〉. As in the case of the average eigenvalue, the variances deviate from their unfluctuated

semi-circle values only at O(ε2). This behaviour is consistent with the earlier result that the

O(q)-term in the rate function describing the dominant linear potential term arises at O(ε2).

Let us pause to review what we obtained. Our results show that the estimators for the

eigenvalues giving the two linear potentials, 〈λiM0
〉, as well as their variances deviate from the

values for the unfluctuated semi-circle at O(ε2). This is an order lower in ε than the deviation

of the edge of the eigenvalue spectrum at small q which is ζ(q)−ζ(semi−circle) = ζ(q)+2 =

O(ε). Moreover, in the limit of the exact semicircle the mean of the two equal-size linear

potentials vanishes. This implies that the effect of their equal-size variances of the semicircle

distribution on the effective average linear potential must cancel out as well. Hence, the total

values of the N linear potentials and their variances do not determine the averaged linear

potential. Instead, for small deviations from the semicircle it is the shift of each of them

driven by the O(ε) shift of the spectral edge ζ which enters the averaged linear potential.
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We thus conclude that, at small q, the effects of having two linear potentials are given by

just the average overall linear potential given by 〈λM0〉 = 1/2
∑

i=1,2〈λiM0
〉 up to and including

the second moments of the individual linear potentials at O(ε2). This result is important

because it establishes that at small enough q the single linear potential approximation becomes

a good description, which a posteriori justifies the use of this approximation.

4 Dyson Brownian motion: applications

4.1 The exit probability and exit-conditioned frequency count of random

small-field inflation

Having solved the time dependent Coulomb gas in the previous section, we are now in a

position to estimate the probability of connecting an inflationary point and a minimum in

our simplified landscape. We adopt the definitions of Sec. 2.2 for minima and inflationary

patches, namely

minima : ∀ λ > η ,

inflation : ∀ λ > −η ∧ ∃ λ ∈ [−η, η] .
(4.1)

Note that these definitions involve only properties of the mass matrix, and ignore the be-

haviour of the gradient and of the vev of the scalar potential, both of which play a role in

the dynamics of the system. This simplification implies that our estimates for landscape

transition probability are, strictly speaking, upper limits on that quantity: once we take the

gradients and vevs into account, via the iterative process proposed in [5], the actual transition

probability will surely be smaller than the values quoted here.

In what follows we use the same normalisation of the mass spectrum as in the static

case, setting a = 2 and for concreteness choose η = 0.1. The definition of inflationary patches

through Eq. (4.1) implies that the mean linear potential acting on the eigenvalues is m = 0.70.

In Fig. 5 we plot the exit probability for the orthogonal ensemble with N = 5.

In order to have the correct picture of how likely a Universe that underwent a period of in-

flation ending in a minimum is, one has to take into account not only the transition probability

discussed above but also the probability of having the correct starting point. The probability

for the initial mass spectra, P (inf), follows from the discussion of the static ensemble of Sec.

2, in particular Eq. (2.10). The likelihood of fluctuating to a minimum, having started with

an inflationary spectrum can be estimated by recalling that the conditional probability of the

two events is given by

P (min|inf) =
P (min ∩ inf)

P (inf)
. (4.2)
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Figure 5: Exit probability for the orthogonal ensemble (β = 1) with N = 5. Small circles

denote the fluctuation probability estimated by performing a matrix random walk with 106

matrices, the grey points with error bars correspond to numerical integration of the pdf, the

blue/continuous line denotes the leading N2 approximation, the yellow/dashed line includes

the subleading O(N) corrections to the Hamiltonian. The large blue circle at q = 0 represents

the Dean and Majumdar’s result for the static ensemble.

Identifying the transition probability computed in the previous section with P (min|inf) one

finds that the probability of having field space trajectories connecting inflationary patches

with exit minima is given by

P (min ∩ inf) = P (inf) P (min|inf), (4.3)

where P (inf) is given by the static ensemble result of Eq. (2.10) and

P (min|inf) ' exp

[
−βN2

{
ln 3

4
+

2

3
√

3
(η −mq)

}]
, (4.4)

where we performed an expansion of the time dependent rate function of Eq. (3.31) to linear

order in η and q. Note that the linear approximation in q is very accurate whenever mini-

mum and the inflationary patches are sufficiently separated in field space, that is when q is

sufficiently small, as can be seen in Fig. 5.

The probability of having field space trajectories connecting inflationary patches with exit

minima is approximately expression given by

P (min ∩ inf) ' exp

[
−βN2

(
ln 3

2
− 2mq

3
√

3

)
+ . . .

]
, (4.5)
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Figure 6: The number of inflationary regions per minimum with (blue/continuous line) and

without (yellow/dashed line) conditioning on a graceful exit, averaged over all minima.

where ... denotes subleading terms in the N , η and q expansions.

Recalling our discussion in Sec. 2.2, it is instructive to study the analog of #saddle
av.−min(inf)

given by #saddle
av.−min(inf ∩min) which is the number of inflationary regions per minimum which

have a graceful exit, again averaged over all minima:

#saddle
av.−min(min ∩ inf) ≡ P (min ∩ inf)

P (min)

=
P (inf)

P (min)
P (min|inf) = #saddle

av.−min(inf)P (min|inf) . (4.6)

Using the above results we can write this as

#saddle
av.−min(min ∩ inf) ' exp

[
−βN2

{
ln 3

4
− 2

3
√

3
(η +mq)

}]
, (4.7)

which we compare with

#saddle
av.−min(inf) ' exp

(
βN2 4

3
√

3
η

)
. (4.8)

We see that unless η & 3
√

3 ln 3
8 ∼ 0.7, the probability of finding a graceful exit after inflation

exponentially suppresses the average number of inflationary saddle points per minimum which

do have a good exit into a minimum. Fig. 6 displays this behaviour for an example where

η = 0.1.

Observational constraints, e.g. spatial 3-curvature |Ωk| . 10−3, coupled to the standard

assumptions about the post-inflationary history 3, force the total number of e-folds to be

3For well motivated exceptions in the context of string cosmology see e.g. [25] and [26].
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Ne & 60. It is easy to see that this implies η . 0.1 for inflationary saddle points with a

sub-Planckian field range. For such saddle points we can write the scalar potential in the

vicinity of the critical point (either V ′ = 0 – saddle, or V ′′ = 0 – inflection point) in a series

expansion as

V = V0 ×


(

1−√2ε0φ− 1
p∆φpφ

p + . . .
)

(
1− η0

2 φ
2 − 1

p∆φpφ
p + . . .

) , (4.9)

where φ denotes the direction in field space along the solution to the background equations

of motion. Hence, an inflationary critical point is determined by the slow-roll parameters ε0

and η0 at the critical point (φ = 0) and the width ∆φ of the flat region around the critical

point, beyond which the potential gets steep quickly. A sufficiently long slow-roll phase

requires ε0, η0 � 1, while inflation ends at φe . ∆φ where ε = 1. Hence, typical small-field

saddle/inflection points have φ0 �MP. The expression for the first slow roll parameter ε

√
2ε '


√

2ε0 − φp−1

∆φp

η0φ− φp−1

∆φp

(4.10)

implies that the number of e-foldinds Ne =
∫

1/
√

2ε dφ scales like

Ne(φ) ∼ ∆φp

φp−2
. (4.11)

Hence, we get an approximate expression for the size of η at Ne e-folds before the end of

inflation

η(Ne) ' η0 − (p− 1)
φp−2

∆φp
∼ 1

Ne
(4.12)

as long as η0 . 1/Ne. Therefore, due to the observational requirement Ne & 60 the be-

haviour shown in Fig. 6 for η = 0.1 is representative for the strong exponential suppression

of the frequency of observationally viable inflationary saddle points with viable exit relative

to minima.

The root cause of the this suppression is the extreme improbability of finding sustained

large deviations of the eigenvalue spectrum of a random landscape from the equilibrium

distribution. We therefore expect that any inflationary mechanism, which avoids having to

reach a minimum at random starting from a given inflationary region of the scalar potential,

but instead guarantees the existence of minimum together with inflationary potential patch

by construction, will likely dominate the landscape of inflationary models. One rather obvious

class of examples are axionic large-field models of inflation 4. In such cases the origin and

4For recent application of RMT techniques to such systems see [27].
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structure of the weakly broken axion shift symmetry essentially guarantees analyticity of the

axion potential around the points with vanishing axion potential together with a large-field

slow-roll region of the scalar potential. This links the existence of a minimum for a graceful

exit from inflation together with the existence of the inflationary region itself, resulting in

P (min|inf) = 1 for large-field models.

The property of getting P (min|inf) . 1 for large-field inflation is visible even in the DBM

model of relaxing away from an inflationary critical point. The requirement of an approximate

symmetry protecting the large-field shape of the scalar potential along the inflaton direction

effectively boils down to the statement in the DBM picture, that the correlation length of the

scalar potential along the inflation trajectory is significantly larger than the field displacement

∆φ. Hence, large-field inflation can be crudely modeled in DBM by staying in the regime

∆φ � Λh which implies that q = exp(−∆φ/Λh) ' 1 stays close to unity. In this regime the

rate function is close to zero, automatically implying P (min|inf) . 1 for large-field models

even using the DBM description itself5.

Evaluating the ’Drake equations’ for inflation in the landscape for random small-field

saddles vs axionic large-field models discussed in [20,28] using the above results yields

#saddle
av.−min(min ∩ inf)

#large−field
av.−min (min ∩ inf)

=
#saddle
av.−min(inf)

#large−field
av.−min (inf)

P saddle(inf|min)

P large−field(inf|min)

=
P saddle(min ∩ inf)

#large−field
av.−min (inf)

∼ e−β
ln 3
2
N2

#large−field
av.−min (inf)

(4.13)

� 1

#large−field
av.−min (inf)

.

The number of axionic large-field regions per minimum #large−field
av.−min (inf) is roughly governed by

the dimension of the axionic field space of string compactifications modulo e.g. topological

and orientifold existence requirements [28, 29]. Unless these requirements lead to strong

exponentially suppression #large−field
av.−min (inf)� 1, we expect therefore a preponderance of large-

field inflation compared to random small-field models in the landscape.

Note, that this bias against accidental small-field inflation in the landscape arises inde-

pendently from any other bias which cosmological population dynamics may introduce. If

Coleman-De Luccia (CDL) tunneling is the dominant process responsible for vacuum transi-

tions in the landscape, then [28] has shown that the tunneling dynamics treats small-field and

large-field inflation on an even footing, giving rise to a roughly flat prior probability factor

over field range from the tunneling dynamics. However, as discussed recently in [30] the CDL

bubble domain walls directly connecting different dS vacua may produce instabilities due to

5We thank Jonathan Frazer for bringing this point to our attention.
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moduli runaway from ’over-uplifting’ inside the bubble walls. This may prevent the use of the

direct CDL process for populating a given sector of the dS landscape. In this case there are

Farhi-Guth-Guven-instanton based ’double bubble’ configurations which can mediate dS-dS

vacuum transitions even in the absence of moduli stablilization preserving CDL bubble do-

main walls. The tunneling probability for these transitions is then argued in [30] to produce

a strong exponential bias towards high-scale and thus large-field inflation. We note, that in

such situations the tunneling dynamics thus produces an independent exponential bias favor-

ing large-field inflation over accidental small-field inflation in the ’landscape Drake equations’

of [28]. While being more model-dependent in relying on an assumption about the dominant

mode of dS-dS tunneling, this possible tunneling bias for large-field inflation acts in addition

to the exit probability driven exponential suppression of accidental small-field inflation in the

landscape we found above.

4.2 Implications for the duration of inflation

If we look at the expression for the relative small-field saddle point count per minimum,

Eq. (4.8), and our generic expectation for η in Eq. (4.12), we see that this furnishes us with

an intrinsic probability factor

Ffreq.(η,N) ∼ #saddle
av.−min(inf) ' exp

(
β∆N2η

)
(4.14)

weighting both the curvature η of the saddle points at Ne efolds before the end of inflation and

the number of fields N participating in the random small-field saddle point inflation. Beyond

that, the structure of the saddle point potential provides relations given in the previous

subsection between η and the number of efolds Ne, as well as between the amount of density

perturbations δρ/ρ generated during inflation and the scale of the inflaton potential V0, the

width ∆φ, and the potential curvature η atNe efolds before the end of inflation. Following

the analysis of [11] and assuming a smooth probability distribution F (V0,∆φ, η) for the

’microscopic’ parameters V0,∆φ, η with range [0, 1], we can compute a measure for the amount

of efolds Ne

P (Ne) ∼
1∫

0

dV0 d∆φdη δ

(
Ne −

1

η

)
δ

(
δρ

ρ
−

√
V0

η
p−1
p−2 ∆φ

p
p−2

)
×Ffreq.(η,N)F (V0,∆φ, η) (4.15)

=
2(δρ/ρ)

N
4+ 2

p−2
e

Ffreq.(1/Ne, N)

1∫
0

d∆φ∆φ
2p
p−2 F

δρ2

ρ2

∆φ
2p
p−2

N
2 p−1
p−2

e

,∆φ,
1

Ne

 . (4.16)
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For simplicity, now let us assume one possible variant of neutrality for the prior measure

F (V0,∆φ, η) on the microscopic parameter space by choosing a flat prior F = 1. To argue

this, all we need to assume is that F (µi) is a bounded function on the interval of natural

values −1 . µi . 1 where the parameters µi take their values. Then F (µi) ' const. for

|µi| � 1 ∀ i.
Imposing thus F = 1 the final integral yields

P (Ne) ∼
2(δρ/ρ)

N
4+ 2

p−2
e

Ffreq.(1/Ne, N) ∼ 2(δρ/ρ)

N
4+ 2

p−2
e

eO(1) N2

Ne . (4.17)

While we find this way that the absolute probability to get more efolds than required

by observations Ne > 62 is very small, we can now ask for the anthropically conditioned

probability that we get Ne > 62 conditioned on having at least Ne > 59.5 efolds for structure

formation to avoid disruption by too strong negative spatial curvature Ωk. This conditional

probability evaluates to be

P (Ne > 62|Ne > 59.5) =

∞∫
62

dNeP (Ne)

∞∫
59.5

dNeP (Ne)

& 0.9 ⇔ N . 10 . (4.18)

Hence, the probability that Ne is large enough to give observationally viable Ωk, provided

that structure formation was successful (Ne > 59.5), is about 90 % if the number of fields

participating in inflation is small N . 10. Turning this around, the non-observation of

sizable negative spatial curvature implies that multi-small-field saddle point inflation models

arising at random in the string landscape with more than N ∼ 10 fields are strongly disfavored

by the current bounds on Ωk. Hence, observationally viable random small-field inflation even

in a high-dimensional landscape is driven by just N ∼ a few fields, which limits the use of

robust large-N regime for small-field models in string theory.

5 Discussion

In this paper we try to quantify the probability of a graceful exit in the string landscape

through the use of random matrix theory techniques. We model the landscape by a Gaussian

ensemble, a choice that is simple enough to be solvable and yet whose structure is rich enough

to provide the necessary features for a qualitative description of the string landscape. The

problem in hand consists in the determination of the probability of connecting a patch in field

space where the mass spectrum is slightly tachyonic with another where it is positive definite

via a solution to the equations of motion. A typical string theory example for such sectors of
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the landscape without long-range structures is the scalar potential for the h2,1 � 1 complex

structure moduli of a generic non-trivial Calabi-Yau compactification of string theory.

With that particular problem in mind we develop a new method for estimating the tran-

sition probabilities in Dyson Brownian motion. It relies on the saddle point evaluation of the

partition function and allows for the analytical estimation of transition probabilities between

different eigenvalue spectra. The proposed method is exact whenever the initial state matrix

is well characterised by a single variable, typically its average eigenvalue, and gives the cor-

rect scaling of the transition probability over long ”time” scales or equivalently beyond one

correlation length. The method is particularly useful whenever one is dealing with transitions

to highly unlikely eigenvalue spectra, cases which are computationally very intensive with the

traditional techniques. It is clear that this method is not limited to the particular problem we

are interested in and therefore we believe that it may find applications in other fields where

RMT plays a role.

In order to apply the method to the string landscape we first set the initial conditions to

be given by an ensemble of Hessians with an eigenvalue distribution describing slow-roll flat

inflationary critical points. We have calculated the probability of a graceful exit from such

a random inflationary critical point by applying the saddle point computation results. This

led to our central result that the exit probability for small-field inflation in the landscape is

exponentially small. The suppression exponent increases quadratically with number of light

fields N .

We compared this behaviour of small-field inflation in the landscape with large-field mod-

els which usually have a viable graceful exit minimum built-in by virtue of the underlying

structure and/or symmetry. Taken at face value, this exponentially disfavours small-field

inflation in the landscape.

Finally, we analyzed the influence of the exp(−cN2) suppression of small-field inflation on

the probability of observing negative spatial curvature in a landscape where the various dS

vacua and inflationary critical points are populated via Coleman-De Luccia (CDL) tunnelling

transitions. The exponentially strong dependence on the number of light fieldsN participating

in a small-field inflationary critical point leads to an exponentially strong posterior probability

distribution function for N derived from the non-observation of spatial negative curvature.

Evaluating this bound for the observed bounds on negative curvature, we found a severe limit

on the effective number such light fields N � 10.
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