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Abstract

The cosmological evolution of standard model Yukawa couplings may have major

implications for baryogenesis. In particular, as highlighted recently, the CKM matrix

alone could be the source of CP -violation during electroweak baryogenesis provided

that the Yukawa couplings were large and varied during the electroweak phase transi-

tion. We provide a natural realisation of this idea in the context of Randall-Sundrum

models and show that the geometrical warped approach to the fermion mass hierarchy

may naturally display the desired cosmological dynamics. The key ingredient is the

coupling of the Goldberger-Wise scalar, responsible for the IR brane stabilisation, to

the bulk fermions, which modifies the fermionic profiles. This also helps alleviating

the usually tight constraints from CP -violation in Randall-Sundrum scenarios. We

study how the Yukawa couplings vary during the stabilisation of the Randall-Sundrum

geometry and can thus induce large CP -violation during the electroweak phase tran-

sition. Using holography, we discuss the 4D interpretation of this dynamical interplay

between flavour and electroweak symmetry breaking.
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1 Introduction

The origin of the flavour structure is one of the major puzzles of the standard model (SM).

While many solutions have been proposed, the cosmological aspects of the corresponding

models have hardly been studied. On the other hand, in many cases Yukawa couplings are

dynamical and it is natural to investigate the possibility of their cosmological evolution,

and whether this could help addressing open problems, like baryogenesis. Such questions

were started to be addressed recently [1–3]. In particular, the CKM matrix can be the

unique source of CP -violation for electroweak baryogenesis if Yukawa couplings vary at the

same time as the Higgs is acquiring its vacuum expectation value (VEV) [4]. With these

motivations in mind, we are interested in studying natural realisations of Yukawa variation

at the electroweak (EW) scale.

In this paper, our aim is to investigate the possibility of varying Yukawas in Randall-

Sundrum (RS) models [5]. One of the very attractive features of the RS model is that in

addition to bringing a new solution to the Planck scale/weak scale hierarchy problem, it

offers a new tool to understand flavour and explain the hierarchy of fermion masses [6–8].

The setup is a slice of 5D Anti-de Sitter space (AdS5) which is bounded by two branes,

the UV (Planck) brane where the graviton is peaked, and the IR (TeV) brane hosting the

Higgs (which therefore does not feel the UV cutoff). Fermions and gauge bosons are free to

propagate in the bulk. In this framework, the effective 4D Yukawas of SM fermions are given

by the overlap of their 5D wavefunctions with the Higgs. Since the Higgs is localised towards

the IR brane to address the Planck scale/weak scale hierarchy, small Yukawas are achieved

if the fermions live towards the UV brane so that the overlap between the fermions and the

Higgs is suppressed. On the other hand, heavy fermions such as the top quark are localised

near the IR brane. This setup leads to a protection from large flavour and CP -violation via

the so-called RS-GIM mechanism.

The key feature for flavour physics is therefore the localisation of the fermions in the AdS5

slice, which determines the effective scale of higher-dimensional flavour-violating operators.

The profile of a fermion is determined by its 5D bulk mass. Because of the AdS5 geometry,

modifications of order one in the 5D bulk mass have a substantial impact on the fermionic

profile and therefore on the effective 4D Yukawa coupling. In fact, the 4D Yukawa couplings

depend exponentially on the bulk mass parameter. Randall-Sundrum models are holographic

duals of 4D strongly coupled theories. In this picture, the Higgs is part of the composite

sector. The size of the Yukawa couplings is then determined by the degree of compositeness

of the states that are identified with the SM fermions. Indeed fermions localised near the UV

brane are dual to mainly elementary states leading to small Yukawas while fermions localised

near the IR brane map to mainly composite states with correspondingly large Yukawas.

In the usual picture, the bulk mass parameter is assumed to be constant. On the other

hand, it is quite well motivated to consider that this bulk mass is dynamical and generated
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by coupling the fermions to a bulk scalar field which in turn obtains a VEV. We can then

expect a position-dependent bulk mass as this VEV is generically not constant along the

extra dimension. In fact, the simplest mechanism for radion stabilisation, due to Goldberger

and Wise [9], consists in introducing a bulk scalar field which obtains a VEV from potentials

on the two branes. The most minimal scenario to dynamically generate the bulk mass is then

to use this bulk scalar. Interestingly, during the process of radion stabilisation, the profile of

the Goldberger-Wise scalar VEV changes. When the latter is coupled to the fermions, this

induces a change in the bulk masses of the fermions which in turn affects their wavefunction

overlap with the Higgs on the IR brane and thus the Yukawa couplings. The RS model

with bulk fermions therefore naturally allows for a scenario of varying Yukawa couplings

during the EW phase transition. Our goal is to study the cosmological dynamics of Yukawa

couplings in this context.

The emergence of the EW scale in RS models comes during the stabilisation of the size

of the AdS5 slice. At high temperatures, the thermal plasma deforms the geometry and the

IR brane is replaced by a black hole horizon. Going to lower temperatures, eventually a

phase transition takes place and the IR brane re-emerges. This phase transition is typically

strongly first-order and proceeds via bubble nucleation. The walls of these bubbles then

interpolate between AdS5 with an IR brane at infinity and at a finite distance. In the dual

4D theory, this transition is described by the dilaton – which maps to the radion – acquiring

a VEV. To realise a model where the Yukawas are larger during the phase transition (as

needed if we want to use the SM Yukawas as the unique CP -violating source during EW

baryogenesis [1, 4]), we ask for the Yukawas to become larger when the IR brane is pushed

to infinity.

We will discuss two realisations of this. One way to induce varying Yukawas is to add

an operator on the IR brane that effectively changes the value of the Yukawa coupling

as the position of the IR brane changes. This mechanism enables variations of order one

for the Yukawas and can be relevant for CP -violation if applied to the top quark. We

discuss this option in sec. 6. The other possibility to implement large Yukawas during the

phase transition is to have a bulk mass for the fermions which decreases towards the IR.

Since smaller bulk masses make the wavefunctions grow faster towards the IR, this leads to

fermions which become increasingly IR-localized when the IR brane is pushed to infinity.

The wavefunction overlap with the Higgs near the IR brane and thus the Yukawas then grow

too. This mechanism can be relevant for CP -violation for all quarks and enables a large

variation of the Yukawa couplings, from values of order one to today’s small values of the

light quarks. This realisation will be described in sec. 7.

The plan of the paper is the following. The motivations for this study are reported in

sec. 2, where we summarise the key features of electroweak baryogenesis. The Goldberger-

Wise mechanism and the description of the EW phase transition in RS models are reviewed

in secs. 3 and 4 respectively. The derivation of 4D Yukawa couplings in RS models is reviewed
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in sec. 5. In sec. 6, we present a first possible mechanism for Yukawa coupling variation,

which relies on a new contribution to the Yukawa coupling on the IR brane. Sec. 7 discusses

a generic mechanism for modifying fermionic profiles. The main idea is presented through

a simple model in 7.1. Its realistic implementation is given in sec. 7.2. In sec. 8, we discuss

the implications of our constructions for flavour and CP -violating processes. Sec. 9 provides

the interpretation of the models in the dual CFT. We conclude in sec. 10.

2 Electroweak baryogenesis with varying Yukawa couplings

Electroweak baryogenesis is an appealing mechanism for explaining the baryon asymmetry

of the universe, which relies on electroweak scale physics only (see e.g. [10]). It occurs in

the framework of a first-order electroweak phase transition, in the vicinity of Higgs bubble

walls, separating the broken phase where baryon number is conserved from the symmetric

phase where sphaleron transitions are unsuppressed. Because of CP -violating interactions

in the bubble walls between particles in the plasma and the Higgs, a chiral asymmetry may

be generated and converted into a baryon asymmetry by sphalerons in front of the bubble

walls. Due to the wall motion, the baryon asymmetry diffuses into the broken phase, where

sphalerons are frozen, and the asymmetry is not washed out. All models of EW baryogenesis

postulate the existence of a new CP -violating source beyond the CKM phase, as needed to

explain the baryon asymmetry. This is typically strongly constrained by measurements of

electric dipole moments (EDMs), see e.g. [11]. However, as studied in depth in [4], if Yukawa

couplings vary across the bubble walls, this provides a source of CP -violation which is active

at early times only, and therefore not in tension with EDM experimental bounds. This source

scales like

S /CP ∝ Im[V †M †′′M V ]ii , (2.1)

where M is the fermion mass matrix, V is the matrix that diagonalizes M †M , the derivative

is with respect to the coordinate perpendicular to the bubble wall and only the diagonal

elements of the matrix in brackets are relevant. Such a term vanishes for the Yukawas in

the SM as they are constant across the bubble wall. On the other hand, it is conceivable

to use the CKM matrix as the CP -violating source for EW baryogenesis if the Yukawa

couplings vary at the same time as the Higgs is acquiring its VEV 〈H〉. In fact, the correct

amount of baryon asymmetry is naturally obtained if the Yukawa couplings varied from

values of order 1 in the symmetric phase (〈H〉 → 0) to their present value in the broken

phase (〈H〉 → vEW) [4]. This observation is the driving motivation for this study and we are

interested in providing a natural realisation of such Yukawa coupling variation during the

EW phase transition.

There are two ways to get enough CP -violation from the source term (2.1). It is possible

to rely on the top Yukawa coupling only, provided that its phase changes during the EW
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phase transition. Indeed, writing mt = |mt(z)| e−iθ(z), we have

Im[m∗t
′′mt] → [|mt|2θ′]′ . (2.2)

This can happen naturally in models where the top Yukawa coupling receives two contribu-

tions of order one,

Y (z) = yc + yv(z) eiθi , (2.3)

with yc being constant, while yv is varying across the bubble wall and θi is some arbitrary

initial complex phase. This setup generates an effectively varying phase θeff(z) = arg(Y (z)).

Using the profile of the Higgs VEV across the bubble wall, we can trade the coordinate z for

〈H〉. This thus leads to a phase which effectively varies as the Higgs field is rolling towards

the minimum of its potential:

θeff(〈H〉) = arg(Y (〈H〉)) . (2.4)

As shown in [4, 12, 13], if the top Yukawa coupling had such a varying phase during the

electroweak phase transition, this can explain the baryon asymmetry of the universe.

The other possibility is to have Yukawa couplings whose phases do not vary but whose

absolute values change. As follows from eq. (2.2) with θ = const., in this case the source

for one flavour vanishes and we thus need at least two flavours. These two situations are

studied in depth in [4]. Although the full calculation is presented in [4], it was shown that

the top-charm system gives the dominant contribution. Our two models I and II discussed

in sections 6 and 7 of this paper illustrate these two cases. To introduce these new findings,

we need first to review several basic features of the physics of Randall-Sundrum models.

3 Review of the Goldberger-Wise mechanism

We now review a key aspect of RS models known as the Goldberger-Wise mechanism [9].

The general construction we consider is based on a slice of AdS5 with metric

ds2 = e−2kyηµνdx
µdxν − dy2 (3.1)

and branes at y = 0 (UV/Planck brane) and y = y
IR

(IR/TeV brane). The theory could

be defined on an orbifold or an interval. In either case, we restrict the coordinate y to the

interval [0, y
IR

] here and below.1 We assume that the Higgs is localized on the IR brane,

whereas the fermions and gauge bosons live in the bulk. We also introduce a real scalar field

φ in the bulk with potentials on the branes. Its action reads

S ⊃
∫
d5x
√
g
(1

2
∂Aφ ∂

Aφ−
m2
φ

2
φ2 − δ(y)V

UV
− δ(y − y

IR
)V

IR

)
, (3.2)

V
UV

= λ
UV

(φ2 − v2
UV

)2 , V
IR

= λ
IR

(φ2 − v2
IR

)2 . (3.3)

1To calculate integrals over δ-functions on the boundaries, we first move the δ-functions ε away from the

brane into the interval, perform the integral and then send ε to 0 (e.g. lim
ε→0

∫ y
IR

0
f(y)δ(y − ε) dy).
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All dimensionful parameters (in particular the AdS curvature scale k) are expected to be of

order one in Planck units. The potentials cause the scalar to develop a VEV with a profile

along the extra dimension given by (see e.g. [9])

〈φ〉 = Ae(4+ε)ky + B e−εky , (3.4)

where

ε ≡
√

4 +m2
φ/k

2 − 2 . (3.5)

The constants A and B are determined by the boundary conditions which read

k
(
(4 + ε)A− εB

)
− 1

2

dV
UV

dφ

∣∣∣
0

= 0 , (3.6)

k
(
(4 + ε)σ−(4+ε)

IR
A− ε σε

IR
B
)

+
1

2

dV
IR

dφ

∣∣∣
y
IR

= 0 , (3.7)

where the warp factor at the IR brane,

σ
IR
≡ e−kyIR , (3.8)

defines the radion field. The aim is to stabilize the radion such that σ
IR
× k ∼ TeV,

which represents the effective cutoff scale on the IR brane (and therefore for the Higgs mass

parameter). In the limit of large couplings λ
IR

and λ
UV

, the last term in eqs. (3.6) and (3.7)

dominates and we get 〈φ〉(0) = v
UV

and 〈φ〉(y
IR

) = v
IR

. This in turn gives

A =
v

IR
− v

UV
σε

IR

σ
−(4+ε)
IR − σε

IR

' v
IR
σ4+ε

IR
− v

UV
σ4+2ε

IR
, (3.9)

B = v
UV
− A ' v

UV
, (3.10)

where we have assumed that v
IR

and v
UV

are of comparable size. The leading corrections to

this in λ
UV
, λ

IR
and to zeroth order in ε are given by [9]

δA ' − k

λ
IR
v2

IR

A , (3.11)

δB '
(

k

λ
UV
v2

UV

+
k

λ
IR
v2

IR

)
A . (3.12)

We see that δB is suppressed relative to B by powers of the warp factor σ
IR

and is thus

always negligible. Furthermore, δA can be neglected relative to A for λ
IR
v2

IR
� k which we

will assume in the following.

The contribution of the scalar VEV to the potential energy depends on the size of the

extra dimension. Integrating over the extra dimension, the resulting potential for the radion

σ
IR

is given by [9]

V (σ
IR

) = (4 + ε) kA2(σ−(4+2ε)
IR

− 1) + ε kB2(1−σ4+2ε
IR

) +V
UV

(
φ(0)

)
+σ4

IR
V

IR

(
φ(y

IR
)
)
. (3.13)
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In the limit of large λ
UV
, λ

IR
, the boundary conditions give 〈φ〉(0) = v

UV
and 〈φ〉(y

IR
) = v

IR

and the boundary potentials thus vanish. The corrections to this coming from eqs. (3.11)

and (3.12) for finite λ
UV
, λ

IR
are negligible for λ

IR
v2

IR
� k. Similarly, the corrections to

the A2- and B2-dependent terms in eq. (3.13) are then negligible too. The potential has a

minimum for ε > 0. Expanding in ε, we find

σmin
IR

=

(
v

IR

v
UV

)1/ε(
1 +

√
ε

4
+ O(ε)

)1/ε

. (3.14)

A large hierarchy can thus be generated from an O(1)-ratio v
IR
/v

UV
if ε� 1. Note that an

additional term δT
IR
σ4

IR
in the potential can allow for a minimum also for negative ε [14,15].

Such a term can arise from a detuned brane tension on the IR brane. However, we find

that in the two models that we consider negative ε causes the Yukawa couplings to become

nonperturbative when the IR brane is sent to infinity.2 We therefore focus on positive ε in

this paper.

Note that the bulk potential in eq. (3.2) only contains a mass term for φ. In principle

also higher-order terms in φ can appear. The leading such term, φ3, was included in the

analysis of refs. [16, 17]. The resulting profile for the Goldberger-Wise scalar was found to

have O(1)-corrections compared to the profile for a bulk potential with only a mass term.

Note that such a φ3-term is in principle expected in model II discussed later because of the

Yukawa coupling in the bulk, though it may be small. Nevertheless even if it is sizeable the

profile for positive ε will still decay by an O(1)-factor when going from the UV to the IR.

This is the crucial feature that we need for model II and we therefore expect this mechanism

to work also if the bulk potential contains higher-order terms in φ. It is less clear, on the

other hand, if the derivative of the Goldberger-Wise scalar at the IR brane is then still

suppressed when the radion is at the minimum of its potential. This is the crucial feature

which is needed for model I discussed later. However, as it has no bulk Yukawa coupling,

the φ3-term in model I can be forbidden by imposing a Z2-symmetry. We leave a detailed

study of our mechanism for this more general case to future work.

The non-constant piece of the potential (3.13) is of the dilaton type,

V (σ
IR

) ∼ σ4
IR
× f(σε

IR
) , (3.15)

where f is a very slowly-varying function since it depends on σε
IR

only. The cosmological

dynamics of this very shallow potential was summarized in ref. [18]. We discuss it next.

2For model I, this can be anticipated from eq. (6.3). The new contribution to the Yukawa coupling

remains proportional to σε
IR

for negative ε which causes it to diverge in the limit σ
IR
→ 0. Model II with

negative ε can give growing wavefunctions for decreasing σ
IR

if c̃ < 0 < c for the modified profile discussed

in sec. 7.2. For sufficiently small σIR , this results in the fermions being IR-localized. Using eq. (7.9), we see

from eq. (7.22) that the Yukawa coupling then is proportional to factors of
√

1− 2c− 2c̃σε
IR

for each of the

two fermions. Again this diverges in the limit σIR → 0.
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Figure 1: Schematic depiction of the phase transition: A bubble of the Randall-Sundrum phase

emerges from the surrounding AdS-Schwarzschild phase. In the transition region between the two

phases, one sees the black hole horizon receding to infinity and subsequently the IR brane coming

in from infinity.

4 The electroweak phase transition in Randall-Sundrum models

While there has been an extensive literature on the phenomenology of Randall-Sundrum

models, little has been established on its early cosmology. On the other hand, the attractivity

of this solution to the hierarchy problem also relies on whether it is cosmologically realistic.

One of the very first aspects to be checked was that the Friedmann equation could in fact be

recovered, as expected, since gravity is effectively 4-dimensional in this model, at energies

below the EW scale when the radion is stabilized [19,20].

On the other hand, the knowledge of what happened before radion stabilisation is less

under control. Nevertheless the phase transition leading to the stabilisation of the radion can

be understood as follows [14]: At high temperatures, the system is in an AdS-Schwarzschild

phase with a UV brane and a black hole horizon in the IR (whose Hawking temperature

matches the temperature of the system). In the dual picture, this corresponds to the strongly-

coupled theory being in the deconfined phase and the free energy scales like FAdS–S ∝ −T 4

as expected. Going to lower temperatures, eventually a phase transition happens and the

black hole horizon is replaced by the IR brane. This phase transition is typically strongly

first-order and proceeds via bubble nucleation. Both geometries – AdS-Schwarzschild and

the Randall-Sundrum geometry with two branes – have different topologies. They can be

smoothly connected, however, by sending respectively the horizon and the IR brane to infinity

which gives pure AdS5 (cutoff by the UV brane). It is therefore expected that the bubble

walls interpolate between the two phases as follows [14]: Going perpendicular to the bubble

wall from the AdS-Schwarzschild phase outside towards the Randall-Sundrum phase inside,

we first see the horizon receding until we arrive at pure AdS5. Further towards the inside,

the IR brane comes in from infinity until it arrives at its stabilized position as determined

by the Goldberger-Wise mechanism. This is depicted in fig. 1. The radion σ
IR

thus varies
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from 0 on the outside of the bubble wall to σmin
IR

inside the bubble. This behaviour will be

crucial for us as our models have Yukawa couplings which grow with decreasing σ
IR

and thus

grow across the bubble walls.

This phase transition to the Randall-Sundrum phase is special due to the nearly conformal

nature of the radion potential (3.13) whose cosmology is different from the one of usual

polynomial scalar potentials. The tunneling action can be calculated by determining the

bounce solution for the radion potential which was given in the previous section [14, 15, 18,

21,22]. One finds that in the calculable region of parameter space, the phase transition may

complete but is typically very strong and happens after significant amount of supercooling,

see [18] and [23] for a recent updated status summary.3 Indeed the nucleation temperature

can be parametrically much smaller than the scale associated with the minimum of the

potential. An interesting signature of this scenario is the typical large signal amplitude of

the stochastic gravity wave background peaked in the millihertz range inherited from the

time of the phase transition, and observable at LISA [15,23].

During the phase transition, also the electroweak symmetry gets broken. We assume that

the Higgs is localized on the IR brane. The action for the Higgs then reads

S ⊃
∫
d5x
√
g δ(y − y

IR
)

(
e2ky ηµνDµH̃

†DνH̃ − λ
(
|H̃|2 − v2

P

)2
)
, (4.1)

where vP ∼ MPl. In terms of the canonically normalised Higgs field H = σ
IR
H̃, the Higgs

potential reads

V (H) = λ
(
|H|2 − v2

P σ
2
IR

)2
. (4.2)

The Higgs VEV then scales like

〈H〉 = vEW ×
σ

IR

σmin
IR

, (4.3)

where vEW = vPσ
min
IR

= 174 GeV is the electroweak scale. In deriving eq. (4.3), we have

assumed that the Higgs is always at the minimum of its potential during the phase transition

to the Randall-Sundrum phase. This is an idealised situation, however, we can expect this

description to be physically sensible. To derive the exact relation between the Higgs VEV

and the radion VEV, one has to compute the bounce, something which we postpone to future

work. The special features in the RS case are i) a nearly conformal potential along the radion

direction, ii) no quadratic term for the Higgs if the radion vanishes. Therefore, electroweak

symmetry cannot be broken unless the radion has a VEV. If electroweak symmetry breaking

takes place only after the radion settled in its minimum, then there is no variation of the

Yukawa couplings during the electroweak phase transition. It is therefore crucial that they

both change at the same time, which is what we expect. Indeed, if the Higgs and the

3See however ref. [24] for an alternative solution changing this conclusion.
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Figure 2: Left: Sketch of possible paths in the dilaton-Higgs field space. The red solid line

reflects the linear relationship (4.3) between the two VEVs. Right: The corresponding profiles of

the fields along the bubble walls. The red solid line corresponds to the dilaton and Higgs bubble

walls precisely overlapping and thus the linear relationship (4.3). For the dotted and dashed lines,

the dilaton reaches its minimum before the Higgs does, which tends to attenuate the variation of

the Yukawa couplings during the EW phase transition.

radion were on equal footing, i.e. both having similar potentials, then the path in the two-

dimensional field space would be along the diagonal as both fields would follow the same

tendency if they have similar masses. On the other hand, if the radion is much heavier than

the Higgs, we expect the tunneling to proceed first along the radion direction and only then

along the Higgs direction. We illustrate this schematically in fig. 2. Therefore, the optimal

case will be for a relatively light radion. Determining the precise relation between the Higgs

and radion VEVs as a function of the radion mass will be an interesting task in itself.

The breaking of electroweak symmetry is thus tied to the radion cosmology.4 Since

the phase transition to the Randall-Sundrum phase is typically strongly first-order, the elec-

troweak phase transition is then first-order too. This motivates the possibility of electroweak

baryogenesis, provided that the bubble wall velocity is smaller than the sound speed (for

larger velocities the baryon asymmetry vanishes as there is no time for CP -violating diffusion

processes in front of the bubble walls where sphalerons are active). In fact, the danger for

electroweak baryogenesis in strong first-order phase transitions is that the friction exerted

by the plasma on the wall might not be sufficient to prevent the bubble wall from a run-

away behavior in which case the wall keeps accelerating, towards ultra-relativistic velocities.

The determination of the bubble wall velocity is a non-trivial calculation. It depends on

the strength of the phase transition, i.e. the amount of latent heat released, as well as the

amount of friction between the particles in the plasma and the bubble wall [27]. Friction is

due to particles changing mass across the wall. In contrast with the SM or the MSSM, we

expect that a large number of degrees of freedom become very massive during the RS phase

transition. Since the precise theory in the CFT phase is unknown (in particular the number

4Implications for cold baryogenesis were studied in refs. [25, 26].
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of CFT degrees of freedom), the friction is left as a free parameter. But we can expect that

for a large number of CFT degrees of freedom, friction will be relevant. It is clear however

that it will be effective only for not too low nucleation temperatures. As the nucleation

temperature is typically smaller than the scale set by the radion VEV at the minimum of its

potential [18], conditions for EW baryogenesis may not be satisfied for a generic choice of

parameters. We leave the model-dependent detailed analysis of the EW phase transition for

future work. Therefore it should be clear that the possibility of EW baryogenesis is based on

the assumption that there exists a region in parameter space where the phase transition is

moderately strong and the bubble wall velocity can be subsonic. We then show that the RS

setup generically incorporates the variation of Yukawas during the EW phase transition and

therefore enables to realise EW baryogenesis with the CKM matrix as the only CP -violating

source.5

Note that even if the bubble wall velocity is supersonic, our discussion is relevant since

baryogenesis at the electroweak scale is still possible through a different mechanism, so-

called “cold baryogenesis”, which does not rely on a transport mechanism, and is especially

motivated in the context of the supercooled RS phase transition [25, 26]. The source of

CP -violation that we find from Yukawa variation could be used also in this context.

We thus want to generate Yukawa couplings between the Higgs and the fermions that

change in size when the IR brane is moved away from the minimum of the Goldberger-Wise

potential. To this end, we consider in sections 6 and 7 two realisations, first through a new

IR contribution from the Goldberger-Wise field to the Yukawa couplings and second through

the bulk coupling of the Goldberger-Wise field to the fermions. Before doing that, we review

how Yukawa couplings arise in RS models.

5 Review of fermions in Randall-Sundrum models

We now review fermions in RS models and how the fermion mass hierarchy arises. In this

paper, we are mainly interested in the Yukawa couplings of the up-type quarks. We denote

by Q and U the bulk fields that give rise to the left-handed quark doublet and the right-

handed up-type quarks, respectively. Including the kinetic term for completeness, the bulk

action for the left-handed quark doublets Q reads (see e.g. [29])

S ⊃
∫
d5x
√
g

(
EA
a

[
i

2
Q γa

(
∂A −

←−
∂A

)
Q +

ωbcA
8
Q{γa, σbc}Q

]
+ cQ kQQ

)
(5.1)

5Note that another paper, ref. [28], entertained the idea of varying Yukawas during the dynamics that

stabilize fermion profiles in (unwarped) extra-dimensional models, however, at a scale much above the

electroweak scale, and therefore for a baryogenesis mechanism requiring higher-dimensional B−L- violating

operators.
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and similarly for the right-handed up-type quarks U .6 EA
a is the inverse vielbein, ωbcA is the

spin connection and cQk with cQ ∼ O(1) is the bulk mass of the 5D fermion. For simplicity,

we have suppressed the flavour indices. Note that we can perform unitary transformations

such that the kinetic terms and the mass terms are diagonal in flavour space. We will use

this basis throughout this paper. The Yukawa coupling reads

S ⊃
∫
d5x
√
g δ(y − y

IR
)λu H̃Q̄ U + h.c. , (5.2)

where λu has dimension -1 and H̃ is the brane-localized Higgs (whose kinetic term and

potential are given in eq. (4.1)).

We decompose the bulk fermionsQ and U into left- and right-handed spinors and Kaluza-

Klein (KK) modes. This gives QL,R ≡ 1
2
(1∓ γ5)Q and

QL,R(x, y) =
√
k
∑
n

e2kyf
(n)
L,R(y)Q(n)

L,R(x) (5.3)

and similarly for U . The equations of motion for Q then read(
±∂y + cQ(y) k

)
f

(n)
L,R + m

(n)
Q ekyf

(n)
R,L = 0 , (5.4)

where m
(n)
Q are the KK masses. Notice that we have allowed for the possibility that cQ is a

function of y which will become important later. The wavefunctions fulfill the orthonormality

conditions7 ∫ y
IR

0

dy ekyk f
(m)
L,R f

(n)
L,R = δmn . (5.5)

In order to ensure that the boundary terms vanish after the variation of the action, we can

impose that either the left- or right-handed fermion is zero at the two branes (see e.g. [30]).

This leaves one chiral massless mode, m
(0)
Q = 0, which we identify with the SM fermion. We

then choose the boundary conditions such that Q has a left-handed massless mode, whereas

6On an orbifold cQ needs to be odd, cQ ∝ sgn(y), since Q̄Q is odd. Alternatively we can define the theory

on an interval and then impose the same boundary conditions as on the orbifold.
7For the general case of a position-dependent bulk-mass parameter c(y), the equations of motion for the

two chiralities can be combined and rewritten as

−∂y pL,R
∂y f̃

(n)
L,R = (m(n))2 e2ky p

L,R
f̃
(n)
L,R ,

where

f̃
(n)
L,R ≡ e±k

∫ y
0
dỹ c(ỹ)f

(n)
L,R and p

L,R
≡ e−kye∓2k

∫ y
0
dỹ c(ỹ) .

This has the form of a Sturm-Liouville equation (see e.g. eq. (13) in ref. [8]). The problem therefore has

a discrete set of real eigenvalues (m(n))2. The eigenfunctions f̃
(n)
L,R form a complete set and satisfy the

orthonormality relation ∫ y
IR

0

dy k e2ky p
L,R

f̃
(n)
L,R f̃

(m)
L,R = δnm

which gives eq. (5.5). This guarantees that the Lagrangian in terms of the KK modes is diagonal.
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the massless mode from U is right-handed. If the bulk masses cQk and cUk are constant,

as usually assumed in the literature, the wavefunctions for the left-handed massless modes

from Q then read

f
(0)
L (y) = N (0)

cQ
e−cQky , (5.6)

where

N (0)
cQ

=

√
1− 2cQ

σ
2cQ−1
IR − 1

(5.7)

is a normalization constant. For later convenience, we redefine c→ −c for the bulk fermions

U with right-handed massless modes. Their wavefunctions f
(0)
R (y) are then again given by

eqs. (5.6) and (5.7) with cQ replaced by cU . With this convention, both left- and right-handed

massless modes are UV (IR) localized for c > 1/2 (c < 1/2).

The effective 4D Yukawa coupling between the SM fermions and the Higgs is given by

S ⊃
∫
d4x yu(σIR

)H Q̄(0)
L U

(0)
R + h.c. , (5.8)

where H ≡ σ
IR
H̃ to obtain a canonically normalized kinetic term and

yu(σIR
) ≡ λu k

√
1− 2cQ

1− σ1−2cQ
IR

√
1− 2cU

1− σ1−2cU
IR

. (5.9)

For cQ, cU > 1/2, this becomes exponentially suppressed. This shows how large hierarchies

between the 4D Yukawa couplings can be obtained in RS starting from bulk mass parameters

and 5D Yukawa couplings of order one in units of the AdS scale k. Notice that already in

this setup the Yukawa couplings depend on the position σ
IR

of the IR brane. Since the light

quarks are all localized towards the UV brane, however, their Yukawa couplings decrease

when the IR brane is sent to infinity, σ
IR
→ 0. Correspondingly, they are small in a large

portion of the bubble wall during the phase transition and CP -violation is suppressed. We

will later see how modified fermion profiles can lead to increased Yukawa couplings during

the phase transition.

The parameters that determine yu need to be chosen such that the measured masses and

mixing parameters are reproduced. This still leaves a considerable freedom. For definiteness,

we will use a benchmark point for these parameters from ref. [31]. We need to adjust the

parameters, however, since for the benchmark point a hierarchy σmin
IR

= 10−16 was assumed,

whereas we choose σmin
IR

= 2.5 · 10−15 in this paper.8 In addition, we reduce the 5D Yukawa

couplings involving the left-handed top-bottom doublet by a factor 3/8 compared to those

of the benchmark point. This will ensure that the couplings do not become nonperturba-

tive in the limit σ
IR
→ 0 in the models that we consider later. After making these two

8For example for k ∼ M5 ∼ MPl, this would give an IR scale kσmin
IR
∼ 5 TeV. This would be consistent

with electroweak precision tests even without a custodial symmetry (though it requires a cancellation of

order 25% in the contributions to εK to be viable) [32,33].
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modifications, we adjust the bulk-mass parameters such that the 4D Yukawa couplings are

again reproduced. We will only list the parameters for the top-charm sector since it gives

the dominant effect for the models that we consider later. In a basis such that the couplings

in the Lagrangian are proportional to (Q̄2, Q̄3)λu(U2,U3)T , the 5D Yukawa couplings read

λu =
1

k

(
0.76 · e−1.46i 0.74 · e−2.13i

0.28 · e0.39i 0.93 · e−1.26i

)
(5.10)

and the bulk-mass parameters are

cQ2 = 0.521 cU2 = 0.565 cQ3 = 0.278 cU3 = −0.339 . (5.11)

Here and below indices on the fields Q and U denote the generation. The value for cQ3 can be

consistent with constraints from the Zbb-coupling [31]. Together with the other parameters

for the benchmark point, these parameter values reproduce the measured quark masses and

mixings when the running from an IR scale of 1.5 TeV to the electroweak scale is taken into

account. Note that we assume a slightly larger IR scale. However, we expect the required

adjustments in the parameters that we are interested in to be small and will neglect them

in the following. Note also that the Yukawa couplings in the plots are thus given at 1.5 TeV

and will change slightly when run down to the electroweak scale.

In the next sections, we will make some rather small but influential modifications to this

commonly used picture.

6 Model I: A new IR contribution to the Yukawa couplings

The first model that we present involves a higher-dimensional coupling of the Goldberger-

Wise scalar to the Yukawa operator H̃Q̄ U on the IR brane. This gives an additional contri-

bution to the Yukawa coupling. We then use the fact that the VEV of the Goldberger-Wise

scalar changes when the IR brane is moved, leading to a change in the Yukawa coupling.

The boundary potential keeps the VEV at the IR brane relatively constant, 〈φ〉(y
IR

) ' v
IR

.

A coupling φH̃Q̄ U therefore does not result in a sufficient change for our purposes. We

instead consider a derivative coupling which can for example arise due to a finite thickness

of the brane. For the up-type quarks, eq. (5.2) now becomes

S ⊃
∫
d5x
√
g δ(y − y

IR
)
(
λu H̃Q̄ U + κu ∂yφ H̃Q̄ U

)
+ h.c. . (6.1)

We have again suppressed the flavour indices for the fields and the coupling constants λu
and κu (which have dimensions −1 and −7/2, respectively). Similar couplings can exist for

the down-type quarks but it is enough to focus on the up-type couplings for our purposes.

The nonvanishing derivative of the VEV (3.4) of the Goldberger-Wise scalar at the IR brane
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Figure 3: (a) VEV of the Goldberger-Wise scalar in eq. (3.4) along the extra dimension if the

radion is at the minimum of its potential, chosen as σmin
IR

= e−ky
min
IR = 2.5 · 10−15. (b) VEV for the

same parameters as in (a) but for the radion at σIR = 10−30.

gives an additional contribution to the 5D Yukawa coupling which depends on the position

of the IR brane:

S ⊃
∫
d5x
√
g δ(y − y

IR
) λ̃u(σIR

) H̃Q̄ U + h.c. , (6.2)

where

λ̃u(σIR
) '

[
λu + 4κuk vIR

[
1−

(
1 +

√
ε

4

)(
σ

IR

σmin
IR

)ε]]
. (6.3)

Note that the contribution from the derivative coupling is suppressed by a factor
√
ε if the

radion is at the minimum of its potential, σ
IR

= σmin
IR

. This can be understood as follows:

Both the bulk potential m2
φφ

2 and the kinetic term (∂yφ)2 of the Goldberger-Wise scalar

in eq. (3.2) contribute to the radion potential. Since m2
φ ' 4k2ε, the former is suppressed

by ε. The minimum of the potential then occurs at a radion VEV for which the latter is

suppressed by ε too. This leads to

∂y〈φ〉 ∝
√
ε (6.4)

near the stable position of the IR brane. This suppression can be seen in fig. 3(a), where we

plot the VEV of the Goldberger-Wise scalar along the extra dimension if the radion is at the

minimum of its potential (we choose σmin
IR

= 2.5·10−15 and ε = 1/20). The suppression is lifted

when the IR brane is moved to infinity, σ
IR
→ 0, and the Yukawa coupling correspondingly

grows. This is visible in fig. 3(b) which shows the VEV for the same parameters as in fig. 3(a)

but with the radion at σ
IR

= 10−30.

The resulting 4D Yukawa coupling is obtained from eq. (5.9) with the replacement λu →
λ̃u. The new contribution to the effective 5D Yukawa coupling λ̃u grows by a factor

√
4/ε

when σ
IR

is changed from σmin
IR

to 0. Accordingly, this model enables variations in the Yukawa

couplings of order one only. The Yukawa coupling receives two contributions like in eq. (2.3),

on the other hand, and we can therefore still use it for the top quark as discussed in sec. 2.

Note that since the top is localized in the IR, the prefactor from the wavefunction overlaps
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in eq. (5.9) depends only very weakly on σ
IR

(for the bulk mass parameters in eq. (5.11), it

changes by about 6% when σ
IR

is varied from 10−16 to 10−32). The dominant variation in

the Yukawa coupling then arises from λ̃u.

In order to reproduce the observed quark masses and mixings, we need to match the

effective 5D Yukawa coupling λ̃(σ
IR

) evaluated at the minimum of the Goldberger-Wise

potential σmin
IR

with the values in eq. (5.10). This fixes the combination λuk − 2
√
ε κuk

2 v
IR

.

In order to estimate the size of the remaining, free combination of λu and κu, we use naive

dimensional analysis (NDA) [34, 35]. Assuming that all loop processes become strong at a

cutoff scale Λ, we write

L =
√
g

{
Λ5

`5

Lbulk + δ(y − yIR)
Λ4

`4

Lbrane

}
, (6.5)

where `D = 2DπD/2Γ(D/2) is the D-dimensional loop factor and Lbulk and Lbrane are func-

tions of the dimensionless ratios ∂A/Λ, Q/Λ2, U/Λ2 , φ/Λ3/2 and H̃/Λ. After canonical nor-

malisation of the fields, this gives

λuk = dλ
`

2/3
5

`
1/2
4

k

M5

, κuk
2v

IR
= dκ

`
1/3
5

`
1/2
4

k2v
IR

M
7/2
5

, (6.6)

where we have used that Λ ∼ M5`
1/3
5 from NDA and the coefficients dλ and dκ are of

order one. We next need to estimate the allowed sizes of k/M5 and v
IR
/M

3/2
5 . The AdS

curvature scale k is limited by the requirement that higher-curvature terms in the action

can be neglected so that the solution to the Einstein equation can be trusted. Using NDA,

this gives k/M5 . (3π3)1/3/51/2 [36]. Similarly, the VEV v
IR

at the IR brane is limited

by demanding that the backreaction of the Goldberger-Wise scalar on the geometry can be

neglected. Since we want to ensure this also away from the minimum of the Goldberger-

Wise potential, the resulting condition is somewhat more stringent than usual. Indeed,

for σ
IR
� σmin

IR
the VEV is well approximated by 〈φ〉 ≈ v

IR
σ4+ε

IR
e(4+ε)ky in the IR. The

contribution to the energy-momentum tensor from the kinetic term is then not suppressed

by ε (contrary to the case σ
IR

= σmin
IR

). In particular, near the IR brane we have

TMN
φ,IR

≈ 8 k2v2
IR
gMN . (6.7)

Demanding that this is negligible compared to the contribution from the bulk cosmological

constant, TMN
c.c. = −24M3

5k
2gMN , gives v

IR
/M

3/2
5 .

√
3.

For definiteness, we set k/M5 = 1/2 and v
IR
/M

3/2
5 = 1. We then fix dλ for given dκ and

ε by the requirement that the 5D Yukawa coupling for the top in eq. (5.10) is reproduced.

We also trade the radion VEV for the Higgs VEV via the relation in eq. (4.3). In fig. 4,

we plot the top Yukawa coupling as a function of the Higgs VEV for ε = 1/20 and different

values of dκ (for all these values |dλ| ∼ 0.3). As one can see, the coupling varies with
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Figure 4: The top Yukawa coupling eq. (5.9) with λu → λ̃u given by eq. (6.3), as a function of

the Higgs VEV for ε = 1/20 and different values of dκ.

decreasing Higgs VEV. This corresponds to the fact that the derivative of the Goldberger-

Wise scalar at the IR brane and its contribution to the Yukawa coupling changes when the

IR brane is sent to infinity. In the limit {σ
IR
, 〈H〉} → 0, the top Yukawa coupling becomes

|yu|33 ' 0.5, 1.1, 0.3, 1.5, 0.7, 2.2 for dκ = 1
2
eiπ/2, 1

2
e3iπ/2, eiπ/2, e3iπ/2, 2eiπ/2, 2e3iπ/2 which is

still in the perturbative regime.

In summary, this simple construction allows for Yukawa coupling variation of order one

during the EW phase transition. When applied to the top quark, it can therefore provide

sufficient CP -violation for EW baryogenesis. As discussed in sec. 8, implications of this

model for flavour and CP -violating observables are rather minor. We next move to what we

consider to be the most interesting aspects of our study.

7 Model II: Large Yukawa couplings from modified fermion pro-

files

As reviewed in sec. 5, the massless modes of bulk fermions with constant mass terms have

profiles along the extra dimension which are localized towards either the UV or IR brane.

For our second model, we consider a Yukawa coupling of the Goldberger-Wise scalar to the

bulk fermions, giving rise to position-dependent mass terms for the fermions. These modify

the profiles of the massless modes and allow for profiles which are localized in the UV and

thus decay towards the IR but then ‘turn around’ at some point along the extra dimension

and start growing again towards the IR. Fermions which are UV-localized if the IR brane is

at the minimum of the Goldberger-Wise potential can then become IR-localized when the

IR brane is moved to infinity. This increases the Yukawa couplings to the Higgs on the IR

brane.

The fermionic action in the bulk is the same as eq. (5.1) except for the last term which
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we replace by

cQ kQQ → ρQ φQQ , (7.1)

where ρQ has dimension −1/2. We consider a similar coupling for the right-handed up-type

quarks U . Note that we can again perform unitary transformations such that the kinetic

terms and the new Yukawa couplings are diagonal in flavour space. The calculations will

be performed in this basis here and below. Furthermore, note that we have assumed that

any constant contributions ck to the bulk masses are negligible. We expect that, even

if they are sizeable, our picture does not change qualitatively. Indeed below we study a

Goldberger-Wise scalar with a constant contribution to the VEV. The more general case

with separate constant and y-dependent contributions to the bulk mass would require a

y-dependent diagonalization of the action. But we expect that the resulting diagonal bulk

masses would then give similar wavefunctions as for the Goldberger-Wise scalar with the

constant and y-dependent contributions to the VEV. Nevertheless we leave a detailed study

of the more general case to future work. In sec. 7.1, we work out the consequences of the

above coupling for a Goldberger-Wise scalar with a profile as discussed in sec. 3. In sec. 7.2,

we then consider a modified profile for the Goldberger-Wise scalar with the aforementioned

constant contribution which leads to faster growing Yukawa couplings to the Higgs.

7.1 Using the Goldberger-Wise scalar

The profile of the Goldberger-Wise scalar in eq. (3.4) has two pieces, Ae(4+ε)ky and B e−εky.

As can be seen in fig. 3, the first piece becomes important only close to the IR brane. In

order to simplify the calculation, we therefore approximate the profile by the second piece:9

〈φ〉 ' v
UV
e−εky . (7.2)

Later we will check explicitly that this gives an excellent approximation to using the exact

profile in eq. (3.4). The bulk equation of motion for Q is given by eq. (5.4) with

cQ(y) = cloc
Q (y) ≡ ρQ〈φ〉/k = c̃Q e

−εky , (7.3)

where the constants

c̃Q ≡ ρQvUV
/k (7.4)

are dimensionless. The wavefunctions of the left-handed massless modes of Q then are

f
(0)
L (y) = N (0)

c̃Q
e
c̃Q
ε
e−εky , (7.5)

9This profile also arises for a vanishing potential on the IR brane, λ
IR

= 0 (though such a scalar no

longer stabilizes the extra dimension). Indeed the boundary conditions eqs. (3.6) and (3.7) in this case give

A ' ε
4vUV

σ4+2ε
IR

and B ' v
UV

in the limit of large λ
UV

. Comparing the resulting sizes of the two contributions

to the profile, Ae(4+ε)ky and B e−εky, we find that it is everywhere well approximated by eq. (7.2).
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Figure 5: From left to right, the IR brane is being pushed away from the UV brane with the

hierarchies σIR = 2.5 × 10−15, 10−25 and 10−50 respectively. Upper panel: The normalized wave-

function of the right-handed charm along the extra dimension. The solid curve is the wavefunction

for the position-dependent bulk mass in eq. (7.3), whereas the dashed curve is for the usual case

with constant bulk mass. Lower panel: The bulk-mass parameter cloc of the right-handed charm

along the extra dimension. The solid curve is again for the position-dependent case in eq. (7.3) and

the dashed curve for the usual constant case. The red curve marks the value cloc = 1/2 for which

the wavefunction changes from decaying to growing towards the IR.

with the modified normalisation constant

N (0)
c̃Q

=
√
ε

[
σ−1

IR
E1+ 1

ε

(−2 c̃Q σ
ε
IR

ε

)
− E1+ 1

ε

(−2 c̃Q
ε

)]−1/2

(7.6)

and En(x) is the exponential integral function. For the bulk fermions U with right-handed

massless modes, we redefine c̃ → −c̃. Their wavefunctions are then given by eqs. (7.5) and

(7.6) with c̃Q replaced by c̃U ≡ ρUvUV
/k.

In order to fix the parameters c̃, we again use the benchmark point from ref. [31]. By

demanding that the wavefunction overlap with the IR brane of our fermion profiles agree

with that for the fermion profiles with constant bulk mass terms, we can translate their

values for c to values for our c̃. Choosing ε = 1/20 and the hierarchy in the minimum of the

radion potential as σmin
IR

= 2.5× 10−15, we find for the top-charm sector:

c̃Q2 = 1.17 c̃U2 = 1.24 c̃Q3 = 1.01 c̃U3 = −1.77 . (7.7)

In the upper panel of fig. 5, we show the resulting wavefunction of the right-handed

charm along the extra dimension (mulitplied by eky/2 as this gives the function whose square

is normalized to one, cf. eq. (5.5)). The three figures correspond to the hierarchies σ
IR

=

2.5 × 10−15, 10−25 and 10−50 so the sequence from left to right can be understood as going
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along the bubble wall profile where the IR brane is moved to infinity. As one can see, the

wavefunction initially decays when going from the UV to the IR but then starts to grow

again. This can be understood as follows: As reviewed in sec. 5, for a fermion with constant

bulk mass ck, the massless mode is UV (IR) localized for c > 1/2 (c < 1/2). In our

setup, the bulk mass is ρ〈φ〉 = clock and depends on the position along the extra dimension.

In the lower panel of fig. 5, we plot the bulk-mass parameter cloc for the right-handed

charm along the extra dimension. The three figures again correspond to the hierarchies

σ
IR

= 2.5 × 10−15, 10−25 and 10−50. Notice that cloc > 1/2 near the UV brane and the

wavefunction thus decays towards the IR in that region. This changes to cloc < 1/2 near the

IR brane, on the other hand, leading to a growing wavefunction towards the IR. Since cloc

is always smaller than 1/2 sufficiently deep in the IR, we see that in our model all fermions

eventually become IR-localized if the IR brane is moved to infinity. This is visible in the

upper right plot in fig. 5. In fig. 6(a), we show all the wavefunctions from the charm-top sector

for the case that the radion is at the minimum of its potential, σ
IR

= σmin
IR

= 2.5 × 10−15.

Note that for the right-handed top, cloc < 1/2 everywhere and the wavefunction is thus

completely localized towards the IR.

As before, we assume that the Higgs is localized on the IR brane. In order to simplify

the discussion, we do not couple the Goldberger-Wise scalar to the Yukawa operator on the

IR brane as in sec. 6. Both effects – from the coupling in the bulk and on the IR brane –

could of course be present simultaneously and would then give even stronger CP -violation

during the phase transition. The 5D Yukawa coupling of the bulk fermions Q and U to the

Higgs H̃ on the IR brane is then given by eq. (5.2), leading to the 4D Yukawa coupling in

eq. (5.8) with

yu(σIR
) = λuk N (0)

c̃Q
N (0)
c̃U
σ−1

IR
e

(c̃Q+c̃U )σε
IR

ε . (7.8)

Let us study the above expression in some limits. Since ε � 1, the exponential integral

functions in the normalization constants are well approximated by the leading term in the

expansion

En(x) =
e−x

x+ n

(
1 +

n

(n+ x)2
+ . . .

)
(7.9)

for large argument n [37]. The expression for the 4D Yukawa coupling then simplifies to

yu(σIR
) ≈ λuk

√
1− 2c̃QσεIR√

1− 1−2c̃QσεIR
1−2c̃Q

σ
IR
e2c̃Q(1−σε

IR
)/ε

√
1− 2c̃UσεIR√

1− 1−2c̃UσεIR
1−2c̃U

σ
IR
e2c̃U (1−σε

IR
)/ε
. (7.10)

From this we see immediately that in the limit σ
IR
→ 0 we have

yu(σIR
) ≈
σ

IR
→ 0

λuk . (7.11)

This just reflects the fact that all fermions become IR-localized for σ
IR
→ 0 as noted above

so that there is no wavefunction suppression of the Yukawa coupling any more. In the limit
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Figure 6: (a) Profile along the extra dimension of the left- and right-handed charm (blue and

yellow), and the left- and right-handed top (green and red) for the approximation (7.2) to the

Goldberger-Wise profile. (b) Yukawa couplings |yu|22 of the charm (blue), |yu|33 of the top (yellow)

and the off-diagonal Yukawa couplings |yu|23 (green) and |yu|32 (red). The solid curves were gener-

ated using the approximation (7.2) to the Goldberger-Wise profile, whereas for the dashed curves

the exact expression (3.4) was used.

ε→ 0 we find

yu(σIR
) =
ε→0

λuk

√
1− 2c̃Q

1− σ1−2c̃Q
IR

√
1− 2c̃U

1− σ1−2c̃U
IR

. (7.12)

This agrees with the expression in eq. (5.9) for the 4D Yukawa coupling for fermions with

constant bulk masses, as is expected since cloc becomes constant for ε → 0. Similarly, the

profile of the massless mode (7.5) agrees with the profile (5.6) for the case of constant bulk

masses in that limit.

For a fermion that is localized towards the UV brane, the normalization constant (7.6)

depends only weakly on the position σ
IR

of the IR brane. We can then neglect the corre-

sponding part in the expression. If both Q and U are UV-localized, this gives

yu(σIR
) ≈

UV loc.
λuk

√
2c̃Q − 1

√
2c̃U − 1σ−1

IR
e−

(c̃Q+c̃U )(1−σε
IR

)

ε . (7.13)

We see that for c̃Q + c̃U > 0, the exponential decreases if σ
IR

becomes smaller. For a certain

range of σ
IR

, this can offset the increase due to the factor of σ−1
IR

. However, eventually

the latter effect starts to dominate and the Yukawa coupling keeps growing with decreasing

σ
IR

. This change happens near a position of the IR brane σ
IR

where the wavefunctions turn

from decaying to growing towards the IR. For very small σ
IR

, the approximation leading to

eq. (7.13) then eventually breaks down because the fields become localized in the IR and the

Yukawa coupling is better approximated by eq. (7.11).

In fig. 6(b), we plot the Yukawa couplings for the top-charm sector using the parameters

for the benchmark point in eqs. (5.10) and (7.7). We again trade the radion VEV for the

Higgs VEV via the relation in eq. (4.3). We see that the Yukawa couplings grow with
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decreasing Higgs VEV (or radion VEV). In particular, the charm coupling |yu|22 and the

charm-top coupling |yu|23 become of order 1 for Higgs VEVs less than about 10−2 GeV.

On the other hand, the top coupling |yu|33 remains almost constant. This is due to the

fact that the right-handed top is highly localized in the IR for any position of the IR brane

(cf. fig. 6(a)).

So far we have approximated the Goldberger-Wise scalar by the simplified profile in

eq. (7.2). Let us now consider the exact profile in eq. (3.4). For the left-handed massless

modes of Q, the equation of motion (5.4) is then solved by

f
(0)
L (y) = N (0)

c̃Q
e
c̃Q
ε
e−εky− c̃Q σ̃

4+ε
e(4+ε)ky

, (7.14)

where again c̃Q ≡ ρQ vUV
/k and σ̃ ≡ σ4+2ε

IR
((σmin

IR
/σ

IR
)ε − 1). The normalization constant

N (0)
c̃Q

does not allow for an analytic expression and needs to be evaluated numerically from

the orthonormality condition (5.5). As before, we redefine c̃ → −c̃ for the bulk fermions U
with right-handed massless modes so that their wavefunctions are given by eq. (7.14) with

c̃Q → c̃U .

In fig. 6(b), we plot the resulting Yukawa couplings for the benchmark point in eqs. (5.10)

and (7.7) as dashed lines using the same colour code as for the approximate profile (7.2). As

one can see, the difference between using the exact and approximate profiles is marginal (the

charm coupling |yu|22 and the top-charm coupling |yu|32 differ by about 5% at 10−5 GeV and

it is even less for the other couplings). This can be understood as follows: At the minimum of

the Goldberger-Wise potential, for σ
IR

= σmin
IR

, we have A ' −
√
ε/4 v

UV
(σmin

IR
)4+2ε as follows

from eqs. (3.9) and (3.14). The profile of the Goldberger-Wise scalar is then everywhere

well approximated by the simple profile in eq. (7.2). For σ
IR
� σmin

IR
, on the other hand, we

have A ' v
UV
σ4+ε

IR
(σmin

IR
)ε and the contribution Ae(4+ε)ky to the profile becomes potentially

important. Comparing with B e−εky, we see that the former dominates over the latter in the

region

σ
IR
≤ e−ky . σ

IR

(
σmin

IR

σ
IR

) ε
4+2ε

. (7.15)

Even for σ
IR
∼ 10−100, this is a relatively small region σ

IR
≤ e−ky . 10σ

IR
near the IR brane

and the difference between using the exact and the approximate profiles is correspondingly

small.

7.2 Using the Goldberger-Wise scalar with a modified profile

In the last section, we have seen that position-dependent bulk masses for the fermions from

the Goldberger-Wise scalar naturally allow for Yukawa couplings which grow when the IR

brane is moved to infinity. However, the Yukawa couplings involving the charm become of

order 1 only for relatively small radion or Higgs VEVs as can be seen in fig. 6(b). This means

that the coupling and the resulting CP -violation is large only in a small fraction of the bubble
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wall during the phase transition which suppresses the produced baryon asymmetry. In order

to improve on this, notice that the local bulk-mass parameter cloc in eq. (7.3) cannot become

negative if it is positive near the UV brane (as is necessary for UV-localized fermions).

Since the fermion wavefunctions are more IR-localized the smaller c is, having cloc become

negative leads to faster growing wavefunctions and thus Yukawa couplings. On the other

hand, in order to allow for UV-localized fermions when the radion is at the minimum of the

Goldberger-Wise potential, we need positive cloc near the UV brane. Both requirements can

be satisfied if the scalar VEV that gives rise to the bulk masses changes sign between the

UV and IR brane. We will now discuss how the Goldberger-Wise scalar can obtain such a

VEV using a small modification to the original proposal. To this end, we consider the action

S ⊃
∫
d5x
√
g

(
1

2
∂Aφ ∂

Aφ−
m2
φ

2
(φ+ β)2 − δ(y)λ

UV
Ṽ

UV
(φ)− δ(y − y

IR
)λ

IR
Ṽ

IR
(φ)

)
,

(7.16)

where β is a constant. We choose the boundary potentials Ṽ
UV

(φ) and Ṽ
IR

(φ) to have minima

at respectively 〈φ〉 = v
UV

and 〈φ〉 = −v
IR

(with definitive signs, as opposed to the boundary

potentials in eq. (3.3) which are degenerate for field values with positive and negative signs).

Note also that, up to a constant, a bulk potential with a mass term and a tadpole can

always be written in the above form. The tadpole just shifts the VEV by a constant. Indeed

defining the shifted field φ̃ ≡ φ + β, the tadpole disappears from the action for φ̃ and the

bulk potential only contains a mass term. The VEV 〈φ̃〉 therefore again has the form in

eq. (3.4). Going back to the original field, we see that

〈φ〉 = −β + Ae(4+ε)ky + B e−εky , (7.17)

where as before ε =
√

4 +m2
φ/k

2 − 2. The integration constants A and B are determined

by the boundary potentials. In terms of the shifted field φ̃, the minima of the latter are at

ṽ
UV
≡ β + v

UV
and ṽ

IR
≡ β − v

IR
. In the limit of large couplings λ

UV
, λ

IR
, the integration

constants are therefore given by eqs. (3.9) and (3.10) with v
UV
, v

IR
replaced by ṽ

UV
, ṽ

IR
.

Similarly, the radion potential is again given by eq. (3.13). Choosing ṽ
UV
, ṽ

IR
> 0, to leading

order in ε the radion is then stabilized at

σmin
IR
≡
(
ṽ

IR

ṽ
UV

)1/ε

. (7.18)

As before, we drop the contribution Ae(4+ε)ky to the scalar profile since it gives only a

negligible correction to the wavefunctions and couplings. The bulk equations of motion for

Q are then given by eq. (5.4) with

cloc
Q (y) ≡ ρQ〈φ〉/k ' cQ + c̃Q e

−εky , (7.19)

where cQ ≡ −βρQ/k and c̃Q ≡ ṽ
UV
ρQ/k and similarly for U . For the left-handed massless

modes of Q, this yields

f
(0)
L (y) = N (0)

c̃Q,cQ
e−cQ ky+

c̃Q
ε
e−εky (7.20)
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Figure 7: (a) Profile along the extra dimension of the left- and right-handed charm (blue and

yellow), and the left- and right-handed top (green and red). (b) Yukawa couplings |yu|22 of the

charm (blue), |yu|33 of the top (yellow) and the off-diagonal Yukawa couplings |yu|23 (green) and

|yu|32 (red).

with

N (0)
c̃Q,cQ

=
√
ε

[
σ2cQ−1

IR
E

1+
1−2cQ

ε

(−2 c̃Q σ
ε
IR

ε

)
− E

1+
1−2cQ

ε

(−2 c̃Q
ε

)]−1/2

. (7.21)

We redefine c, c̃→ −c,−c̃ for the bulk fermions U with right-handed massless modes so that

their wavefunctions are given by the above expression with cQ, c̃Q → cU , c̃U . The 4D Yukawa

couplings for the up-type quarks are then given by eq. (5.8) with

yu(σIR
) = λuk N (0)

c̃Q,cQ
N (0)
c̃U ,cU

σcQ+cU−1
IR

e
(c̃Q+c̃U )σε

IR
ε . (7.22)

Choosing c < 0 < c̃ and c + c̃ > 0, the bulk-mass parameter cloc is positive near the

UV brane but can become negative in the IR. For definiteness, we set the parameters that

determine the Goldberger-Wise potential as10 β = 1.5 k3/2, ṽ
UV

= 4 k3/2 and as before

ε = 1/20 and σmin
IR

= 2.5 · 10−15. We can then choose the couplings ρQ and ρU to achieve

different localizations for the zero-mode wavefunctions. Let us again consider the benchmark

point from ref. [31] for which the relevant parameters are given in eqs. (5.10) and (5.11).

We then demand that the overlaps with the IR brane of our zero-mode wavefunctions at the

minimum of the radion potential, σ
IR

= σmin
IR

, reproduce those for the benchmark point. For

the top and charm this gives

ρQ2 = 1.35 k−1/2 ρU2 = 1.43 k−1/2 ρQ3 = 1.22 k−1/2 ρU3 = 1.15 k−1/2 . (7.23)

In fig. 7(a), we plot the resulting profiles along the extra dimension. Notice that, compared

with the case shown in fig. 6(a), the wavefunctions initially decay much faster towards the

10Together this fixes ṽ
IR
' (σmin

IR
)εṽ

UV
' 0.74 k3/2 which in turn requires v

IR
= β − ṽ

IR
' 0.76 k3/2, while

vUV = ṽUV − β = 2.5k3/2.
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Figure 8: The most important, new contribution to (a) CP -violation in K-K-mixing and (b) the

neutron EDM. Double lines denote KK modes.

IR and then similarly grow much faster beyond the turning point. Correspondingly, we

expect that the Yukawa couplings increase more quickly if we move the IR brane to infinity.

Trading the radion VEV for the Higgs VEV via the relation in eq. (4.3), we plot the Yukawa

couplings as a function of the latter in fig. 7(b). Comparing with fig. 6(b), we see that

indeed the Yukawa couplings grow much faster. In particular, the charm coupling |yu|22 and

the charm-top coupling |yu|23 become of order one already for Higgs VEVs around 20 GeV

(compared to 10−2 GeV in the other case).

Such a variation of the Yukawa couplings during the EW phase transition is shown to

provide a sufficient source of CP -violation to obtain the correct amount of baryon asymmetry

during EW baryogenesis, see ref. [4].

8 Constraints from flavour- and CP -violation

We will now discuss how flavour- and CP -violating processes are modified in our two models

compared to the usual scenario in which couplings of the Goldberger-Wise scalar to the bulk

fermions are neglected. We remind that in order to obtain sufficient CP -violation during

the electroweak phase transition it is sufficient to couple the Goldberger-Wise scalar to the

top quark in model I or to the top-charm sector in model II. However, to be conservative,

we will here assume that such couplings exist for all flavours.

We focus on the dominant constraints on the KK scale which arise from CP -violation in

K-K-mixing [38] and from the neutron EDM [39]. In secs. 8.1 and 8.2, we first review the

usual contributions to these quantities from SM particles and their higher KK modes. We

then discuss modifications that arise in model II due to the position-dependent bulk masses

for the fermions. In particular, these lead to decreased overlap integrals of the SM particles

with KK gluons and thereby alleviate the contraint from CP -violation in K-K-mixing. Since

the fermions have the usual constant bulk masses in model I, on the other hand, no such

modifications arise in this case. In secs. 8.3, we then consider processes mediated by the

Goldberger-Wise scalar which are relevant for both models.
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8.1 Constraints from the tree-level contribution of KK gluons to εK

An important constraint arises from εK which measures CP -violation in K-K-mixing. The

most important, new contribution to this quantity is mediated by the first KK mode of the

gluon, K → G(1)
µ → K [38]. The corresponding Feynman diagram is shown in fig. 8(a). The

relevant coupling of the bulk gluon GA to the left-handed quark doublets Q reads

S ⊃
∫
d5x
√
g i gs5 GAEA

a Q γaQ , (8.1)

where gs5 is the 5D gauge coupling of QCD. The couplings to the right-handed up-type quarks

U and down-type quarks D are similar. Expanding the gluon as

Gµ(x, y) =
√
k
∑
n

G(n)
µ (x)f

(n)
G (y) (8.2)

and integrating over the extra dimension, the coupling of the first KK mode of GA to the

zero-modes of Q reads

S ⊃
∫
d4x iG(1)

µ Q
(0)

L g̃QLσ
µQ(0)

L , (8.3)

where g̃QL involves an overlap integral over the fermion and gluon wavefunctions. Similar

couplings exist for the right-handed quarks. After electroweak symmetry breaking, we rotate

the fields U (0)
R → U

Ru
uR etc. in order to obtain diagonal mass matrices. The unitary rotation

matrices are hierarchical, with elements

|U
Lu
|ij ∼ |ULd|ij ∼

fQi
fQj

, |U
Ru
|ij ∼

fUi
fUj

, |U
Rd
|ij ∼

fDi
fDj

(8.4)

for i ≤ j, where fQi ≡ ekyIR
/2f

(0)
QiL(y

IR
) are the wavefunction overlaps of the zero-modes with

the IR brane with fQ3 > fQ2 > fQ1 and similarly for U and D. In terms of the fields with

diagonal mass matrices, we then have

S ⊃
∫
d4x iG(1)

µ uLĝQLσ
µ uL , (8.5)

where

ĝQL ∼ gs5k
1/2

α + f 2
Q1

(γQ1
+ γQ2

+ γQ3
) fQ1fQ2 (γQ2

+ γQ3
) fQ1fQ3 γQ3

. α + f 2
Q2

(γQ2
+ γQ3

) fQ2fQ3 γQ3

. . α + f 2
Q3
γQ3

 (8.6)

is a symmetric matrix and uL a vector in flavour space. Furthermore, α ' 1/ log(m
(1)
G /k)

with m
(1)
G being the mass of the first gluon KK mode and

γQi ≡
√

2 k

∫ y
IR

0

dy e2k(y−y
IR

)
J1

(
m

(1)
G
k
eky
)

J1(m
(1)
G /mIR

)

(
f

(0)
QiL(y)

f
(0)
QiL(y

IR
)

)2

, (8.7)
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where m
IR
≡ σ

IR
k is the warped-down AdS scale. The couplings to the other quarks dL, uR

and dR are given by analogous expressions.

The most important constraint on CP -violation in K-K-mixing arises from the effective

operator

L ⊃ −C4
K dRsLdLsR , (8.8)

where the first and the second pair form color singlets (and dL,R is now the down quark, not a

vector in flavour space). This leads to (see e.g. table 2 in ref. [38]) ImC4
K < (1.6 ·105 TeV)−2.

Integrating out the first gluon KK mode, we can estimate the Wilson coefficient as

C4
K ∼

mdms

v2
EW λ2

∗

[
gs5
]2
k[

m
(1)
G
]2 (γQ2

+ γQ3
) (γD2

+ γD3
) , (8.9)

where md ∼ λ∗fQ1fD1vEW and ms ∼ λ∗fQ2fD2vEW are the masses of the up and strange

quark, respectively, and the dimensionless λ∗ measures the typical size of the 5D Yukawa

couplings in units of k−1. For the case of constant fermion mass terms, the resulting limit

on the mass of the first gluon KK mode is m
(1)
G & (3/λ∗)(22 ± 6) TeV [38] (the error arises

from the uncertainty in the down and strange quark masses). Using that the masses of

the gluon KK modes are determined by J0(m
(n)
G /m

IR
) ' 0, this translates to the limit

m
IR

& (3/λ∗)(9± 3) TeV on the IR scale.

Such a bound on m
IR

introduces a little hierarchy problem. Numerous solutions have

been proposed to solve it. Most of them introduce a new (partially gauged) flavour symmetry

in the bulk, e.g. [40–42] (see [43, 44] for reviews of the current status). In all these works,

the bulk mass of the fermions is assumed to be dominated by a constant.11 In contrast, the

bulk mass in model II is given by the VEV of the Goldberger-Wise field, and this affects

the fermionic profiles. Since the fermion wavefunctions are then suppressed in a large part

of the bulk compared to the case of constant bulk masses (cf. fig. 5), the overlap integral

with the gluon wavefunction is decreased. Accordingly, we expect C4
K to be smaller and the

constraint on the KK gluon mass to be weakened. Indeed, matching the parameters ρ for

the relevant flavours to the benchmark point from ref. [31] (cf. sec. 6), we find

[C4
K ]cloc

[C4
K ]c=const.

∼
[
(γQ2

+ γQ3
) (γD2

+ γD3
)
]
cloc[

(γQ2
+ γQ3

) (γD2
+ γD3

)
]
c=const.

∼ 1

10
. (8.10)

The limit then becomes m
(1)
G & (3/λ∗) (7 ± 2) TeV or m

IR
& (3/λ∗)(3 ± 1) TeV in model

II. For λ∗ ∼ 3, this is in the same ballpark as the constraint m
IR

& 1.9 TeV that arises

from electroweak precision tests if a custodial symmetry is assumed [32, 33]. The modified

fermion wavefunctions thus mitigate the RS-CP -problem that stems from CP -violation in

11The potential flavon-radion interplay and the possibility to use the Goldberger-Wise field as a flavon

were discussed in ref. [45], however in a context where extra flavour symmetries in the bulk remain the key

features and the effect on fermionic profiles was not alluded to.
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K-K-mixing in a very minimal way. This clearly deserves further investigation given the

potentially important implications for the little hierarchy problem in RS. Let us emphasize

that this effect of coupling suppression between SM fermions and KK gluons works as long

as the Higgs lives very near the IR brane. If the Higgs is delocalized into the bulk and

as delocalised as the KK gluon, on the other hand, there will be no effect. The effect of

weakening the bound on the KK scale from εK is thus maximal when the Higgs lives exactly

on the IR brane.

8.2 Constraints from one-loop contributions to the neutron EDM

Another important constraint arises from the neutron EDM. The most important, new

contribution to this quantity arises at one-loop and is mediated by fermionic KK modes

and the Higgs or the longitudinal components of the Z [39]. The corresponding Feynman

diagram is shown in fig. 8(b). This gives rise to the effective operator

L ⊃ −Cdn dLσµνdR Fµν , (8.11)

where again dL,R is the down quark. We can estimate the Wilson coefficient as

Cdn ∼
λ2
∗ e

16 π2

md[
m

(1)
ψ

]2 , (8.12)

where md ∼ λ∗fQ1fD1vEW is the mass of the down quark and m
(1)
ψ denotes the mass scale

of the (lowest lying) fermionic KK modes in the loop. The EDM is proportional to the

imaginary part of this Wilson coefficient. It can be shown that this imaginary part is

unsuppressed and cannot be removed by field redefinitions, so that ImCdn ∼ |Cdn| [39].

The bound dn ≤ 3 · 10−26 e cm [46] on the neutron EDM then translates to m
(1)
ψ & (λ∗/3) ·

26 TeV. For a fermion with constant bulk mass ck, the KK spectrum is determined by

J|c−1/2|(m
(n)
ψ /m

IR
) ' 0 [6]. For c ∼ 1/2, this gives the limit m

IR
& (λ∗/3) 11 TeV on the IR

scale.

The above estimates are modified in model II since the masses of the fermionic KK

modes in the loop and their wavefunction overlaps with the IR brane (which are relevant

for the vertices involving the Higgs) differ from the case of constant bulk masses. We have

numerically determined these quantities for the first fermionic KK modes using the ρ-values

that correspond to the benchmark point from ref. [38]. In table 9, we list the masses for the

case of y-dependent and constant bulk masses. As one can see, the former are (75 − 80)%

heavier than the latter (except for the left-handed top-bottom doublet and the right-handed

top for which the mass increase is smaller). This can be understood as follows: The local

bulk-mass parameter in eq. (7.19) is approximately constant near the IR brane, cloc ≈ −βρ/k.

Since the light KK modes are localized in that region, we expect that their masses depend

similarly on cloc as for the case of constant bulk masses. The mass quantization condition
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m
(1)
Qi/mIR

m
(1)
Ui /mIR

m
(1)
Di /mIR

i=1 4.56 (2.54) 4.91 (2.81) 4.84 (2.76)

i=2 4.44 (2.46) 4.52 (2.51) 4.74 (2.68)

i=3 4.34 (2.74) 4.28 (3.61) 4.51 (2.50)

Figure 9: Masses of the first fermionic KK modes in model II using the ρ-values that corre-

spond to the benchmark point from ref. [38] and, in brackets, for the case of constant bulk

masses.

for the latter case given above leads to masses which grow with |c − 1/2|. For β = 1.5k3/2

and the ρ-values that correspond to the benchmark point from ref. [38], cloc near the IR

brane is in the range −1.7 ... −2.8. This is thus much larger than the corresponding c-values

for the case of constant bulk masses for the fermions (cf. eq. (5.11)) and leads to larger

masses for the KK modes. We find that the wavefunction overlaps with the IR brane, on

the other hand, change only by (1− 2)%. Since the contribution to the neutron EDM scales

like
[
m

(1)
ψ

]−2
, we expect that the limit on the IR scale m

IR
is reduced in model II. However,

to quantify this requires a more detailed study of the relative importance of the different

fermionic KK modes in the loop. We leave this for future work. Nevertheless, it is clear that

the modified fermion wavefunctions in model II also ease the RS-CP -problem that stems

from the neutron EDM.

8.3 Constraints from processes mediated by the Goldberger-Wise scalar

Next we consider processes mediated by the Goldberger-Wise scalar. We focus on the case

that the radion is parametrically lighter than the KK modes of the Goldberger-Wise scalar.

Then the mixing between the former and the latter can be neglected [17]. Similarly, modi-

fications of the radion couplings due to the new couplings of the Goldberger-Wise scalar to

the bulk fermions are suppressed [17]. Flavour- and CP -violating processes mediated by the

radion are thus as usual (see e.g. [47,48]).

Let us first consider model II. We expand the Goldberger-Wise scalar around its VEV,

φ = 〈φ〉 + δφ, and decompose it as δφ =
√
k
∑

n φ
(n)f

(n)
φ (see the appendix A for more

details). We again work in the basis in which the Yukawa coupling in eq. (7.1) for the bulk

fermions is diagonal in flavour space. The coupling among the lightest KK modes of the

Goldberger-Wise scalar and the fermions is then given by

S ⊃ −
∫
d4xφ(1)

(
Q(1)

R ρ̃QQ(0)
L + h.c.

)
, (8.13)

where ρ̃Q is a diagonal matrix in flavour space with elements

[ρ̃Q]ij = δij ρQi k
3/2

∫ y
IR

0

dy f
(1)
φ f

(1)
QiR f

(0)
QiL . (8.14)
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Similar couplings exist for the right-handed quarks. After electroweak symmetry breaking,

we rotate the quarks U (0)
R → U

Ru
uR etc. in order to obtain diagonal mass matrices. The

coupling in eq. (8.13) then induces flavour- and CP -violating processes. In particular, the

Goldberger-Wise scalar contributes to the neutron EDM via processes of the type shown in

fig. 8(b), where it replaces the Higgs. Since the KK modes are localized in the IR whereas

the down quark lives towards the UV brane, the overlap integral in eq. (8.14) leads to a

suppression factor of order fQ1fD1 in the amplitude similar to the process mediated by the

Higgs. In addition we have some freedom in choosing the size of the couplings ρQi etc. and

the KK modes of the Goldberger-Wise scalar can be relatively heavy which can further

suppress the contribution of the Goldberger-Wise scalar to the neutron EDM. We therefore

expect that the latter can be subdominant compared to the contribution mediated by the

Higgs. However, we leave a more detailed study to future work.

Let us next consider model I. In this case the fermion wavefunctions are not modified but

the coupling of the Goldberger-Wise scalar to the Yukawa operator on the IR brane results in

new flavour- and CP -violating processes. Using the expression involving down-type quarks

which corresponds to eq. (6.1) for the up-type quarks, we find for the coupling of the first

Goldberger-Wise mode to the fermionic zero-modes and the Higgs

S ⊃
∫
d4x

φ(1)

m
IR

HQ(0)

L κ̃dD(0)
R + h.c. , (8.15)

where κ̃d is a matrix in flavour space with elements

[κ̃d]ij = fQi fDj (κd)ij k
7/2B . (8.16)

As before, fQi ≡ ekyIR
/2f

(0)
QiL(y

IR
) etc. are the wavefunction overlaps of the zero-modes with

the IR brane and

B ≡
∂yf

(1)
φ

∣∣
y
IR

kek yIR
=

−2 b
IR
N (1)
φ ek yIR

πm
(1)
φ Y1+ε

(
m

(1)
φ /m

IR

)
/m

IR
+ π (b

IR
− ε)Y2+ε

(
m

(1)
φ /m

IR

) . (8.17)

The normalization constant N (1)
φ is given in eq. (A.7) and b

IR
is defined in eq. (A.3). For

example for ε = 1/20 and b
IR

= 10, we find B = −5.32. Rotating the quarks D(0)
R → U

Rd
dR

etc. after electroweak symmetry breaking in order to obtain diagonal mass matrices, this

gives

S ⊃
∫
d4xφ(1) dL κ̂d dR + h.c. , (8.18)

where the elements of the matrix κ̂d are

[κ̂d]ij ∼ fQi fDj
v

EW

m
IR

(κd)ij k
7/2B ∼ fQi fDj B

v
EW

m
IR

`
1/3
5

`
1/2
4

(
k

M5

)7/2

. (8.19)
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In the last step, we have used the estimate (6.6) from naive dimensional analysis. Notice

that the unitary rotation matrices U
Rd

etc. do not change the dependence on fQifDj in κ̂d
versus κ̃d. Due to this coupling, the Goldberger-Wise scalar can in particular contribute

to εK via tree-level exchange similar to the gluon in fig. 8(a). Integrating out the first KK

mode of the Goldberger-Wise scalar, we can estimate the Wilson coefficient of the operator

in eq. (8.8) as

C4
K ∼

mdms

m2
IR
λ2
∗

B2[
m

(1)
φ

]2 `2/3
5

`4

(
k

M5

)7

. (8.20)

We see that this is suppressed compared to the Wilson coefficient in eq. (8.9) that arises

from gluon exchange by factors (vEW/mIR
)2 and (k/M5)7. We therefore again expect that

constraints on flavour- and CP -violation due to the Goldberger-Wise scalar can be readily

fulfilled but leave a more detailed study to future work.

9 Interpretation of the models in the dual CFT

The Randall-Sundrum model has a dual description in terms of a strongly-coupled CFT

via the AdS/CFT correspondence [49]. The presence of the UV brane corresponds to the

CFT being coupled to gravity [50] while the IR brane is dual to the spontaneous breaking

of conformal invariance in the IR [51,52].

Stabilizing the extra dimension by the Goldberger-Wise mechanism is dual to deforming

the CFT at the cutoff scale Λ
UV
∼ k by an almost marginal operator Oφ of dimension 4 + ε,

L = LCFT +
B

Λ
3/2+ε
UV

Oφ , (9.1)

where ε and B are the parameters that determine the VEV of the Goldberger-Wise scalar

in eq. (3.4). This operator runs slowly when going towards lower energies until it eventually

triggers the breaking of conformal invariance at a scale

Λmin
IR
∼ k σmin

IR
. (9.2)

Moving the radion VEV away from its value σmin
IR

at the minimum of the Goldberger-Wise

potential to some value σ
IR

then corresponds to changing the confinement scale of the theory12

from Λmin
IR

to Λ
IR
∼ k σ

IR
. Furthermore, the parameter A in eq. (3.4) is dual to the VEV of

the operator,

〈Oφ〉 = Λ5/2+ε
UV

A . (9.3)

12The groundstate of this theory differs from that for a confinement scale Λmin
IR

and is obtained by minimiz-

ing the energy 〈ρ|HCFT|ρ〉 over all states |ρ〉 that keep 〈Oφ〉 = 〈ρ|Oφ|ρ〉 fixed at the value given in eq. (9.16)

below [51].
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A fermion with a constant mass term ck > −k/2 in the bulk of a Randall-Sundrum

model is dual to the system [53]

L ⊃ LCFT + iZ ψ̄Lγµ∂µψL +
ω

Λ
∆−5/2
UV

(
ψ̄LOR + h.c.

)
, (9.4)

where ψL is a left-handed, massless fermion, OR is a fermionic CFT operator with dimension

∆ = 3/2 + |c+ 1/2| (9.5)

and Z and ω are dimensionless constants.13 Let us focus on a bulk fermion with boundary

conditions leading to a left-handed massless zero-mode. According to the dictionary from

ref. [53], the dual theory in this case has no massless composite states once conformal in-

variance is broken. The spectrum therefore contains exactly one massless fermion which

generically is an admixture of ψL with the composite states generated by the operator OR.

This state is dual to the zero-mode of the bulk fermion. If ∆ > 5/2, the operator in eq. (9.4)

which mixes ψL and the composite states is irrelevant and the massless state therefore con-

sists dominantly of ψL. In the opposite case ∆ < 5/2, the mixing operator is relevant and

the massless state has a significant composite contribution. On the Randall-Sundrum side,

this corresponds to c > 1/2 and a UV-localized zero-mode and c < 1/2 and an IR-localized

zero-mode, respectively.

In model II, the bulk fermions instead have position-dependent masses kcloc(y). Since

the position along the extra dimension corresponds to the RG scale of the dual theory,

e−ky ⇔ µ/Λ
UV

, we expect that the dual description is again given by eq. (9.4) but with a

large anomalous dimension

∆(µ) =
3

2
+

∣∣∣∣cloc
(1

k
log

Λ
UV

µ

)
+

1

2

∣∣∣∣ . (9.6)

We will now show that this reproduces the Yukawa couplings that we have found in the 5D

description. To this end, we will focus on the simple profile for the Goldberger-Wise scalar

in eq. (7.2) but the derivation can be extended to the other profiles considered in this paper

too. Using eq. (7.3), the anomalous dimension then reads

∆(µ) = 2 + c̃

(
µ

Λ
UV

)ε
(9.7)

for c̃ > −1/2. We define the dimensionless parameter

ξ(µ) ≡ ω(µ)√
Z(µ)

( µ

Λ
UV

)∆(µ)−5/2

(9.8)

which measures the mixing between ψL and the CFT (or the composite states once conformal

invariance is broken). It satisfies the RG equation [53]

µ
dξ

dµ
=
(

∆ − 5

2

)
ξ +

η N

16π2
ξ3 , (9.9)

13An alternative description involves a right-handed instead of the left-handed fermion [53].
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Figure 10: Origin of the Yukawa couplings to SM fermions in the dual CFT.

where N is the number of colors of the CFT, η = O(1) and the second term arises from the

CFT contribution to the wavefunction renormalization Z of ψL.

First we consider the case that ∆ > 5/2 at the cutoff scale Λ
UV

(corresponding to c̃ > 1/2).

The first term in the RG equation then reduces the coupling when going to lower energies

and both terms become comparable at some scale µ̃. The mixing parameter at that scale is

ξ(µ̃) ≈ 4π
√

(∆(µ̃)− 5/2)/(ηN) (9.10)

and we expect that µ̃ ≈ Λ
UV

. Assuming that ∆ > 5/2 over a sufficiently large range of

energies, we can neglect the second term over the remaining RG evolution and integrate the

RG equation in closed form. At the scale Λ
IR

this gives:

ξ(Λ
IR

) ≈ 4π

√
c̃− 1

2

ηN

√
Λ

UV

Λ
IR

e−
c̃
ε e

c̃
ε

(
Λ

IR
Λ

UV

)ε
. (9.11)

The above approximations are in particular valid for the case of small mixing, ξ(Λ
IR

)� 1.

Next we consider the opposite case of strong mixing ξ(Λ
IR

) & 1. This can occur if ∆ < 5/2

over a sufficiently large range of energies during the RG evolution. Then the second term in

the RG equation can no longer be neglected. Assuming that |c̃(µ/Λ
UV

)ε| � 1/2 at energies

somewhat above Λ
IR

so that ∆(µ) − 5/2 ≈ −1/2, we can again integrate the RG equation

in closed form. We then find that the mixing parameter runs to the fixed point

ξ =

√
8π2

Nη
. (9.12)

So far we have only discussed the dual description of bulk fermions with left-handed zero-

modes. Similarly, bulk fermions with right-handed zero-modes are described by eq. (9.4)

with a right-handed, massless fermion ψR which mixes with an operator OL. We identify the

massless states which arise from the combined Lagrangian with the left- and right-handed

fields of the SM. Each has its own mixing parameter ξL or ξR. The Higgs on the IR brane

is dual to a composite state and will generically have large couplings to other composite

states. The size of the Yukawa couplings to SM fermions is then controlled by the degree of

compositeness of the massless states in the dual theory and thus by the mixing parameters
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ξL and ξR. In particular for ξL, ξR � 1, the massless states consist dominantly of ψL and

ψR and the Yukawa couplings are suppressed by the small mixing parameters:

y(Λ
IR

) ∝ ξL(Λ
IR

)× ξR(Λ
IR

) . (9.13)

The corresponding Feynman diagram is shown in fig. 10. Assuming that the dual theory is

a gauge theory with large number of colors N (as is implied by full string-theory examples

of the AdS/CFT correspondence), we can determine the prefactor in the above relation.

In this case, the overlap between an operator O and composite fermions ψcomp. is given by

〈0|O ψcomp.|0〉 ∼
√
N/4π [54]. Furthermore, the vertex between three composite states is

Γ3 ∼ 4π/
√
N [54]. Using eq. (9.11) for the left- and right-handed state, the resulting Yukawa

couplings are

y(Λ
IR

) ≈
√
c̃
L
− 1

2

√
c̃
R
− 1

2

4π√
Nη

Λ
UV

Λ
IR

e
−
c̃
L

+c̃
R

ε

(
1−
(

Λ
IR

Λ
UV

)ε)
. (9.14)

The limit of small mixing, ξL, ξR � 1, corresponds to fermions which are localized towards

the UV brane. The Yukawa coupling from the 5D description is then well approximated by

eq. (7.13). Identifying η = 1/2 and λk = 4π/
√
N , where λ is the 5D Yukawa coupling, we

see that eq. (9.14) reproduces the Yukawa coupling from the 5D description.

Similarly in the case of strong mixing, using eq. (9.12) for the left- and right-handed state

gives

y(Λ
IR

) ≈ 1

2η

4π√
N
. (9.15)

The case of strong mixing corresponds to fermions which are localized towards the IR brane.

The Yukawa coupling from the 5D description is then well approximated by eq. (7.11). Again

identifying η = 1/2 and λk = 4π/
√
N , we see that eq. (9.15) reproduces the Yukawa coupling

from the 5D description.

We found that the coupling of KK gluons to SM fermions can be reduced when taking

the fermionic bulk masses to be y-dependent (while keeping the 4D Yukawa couplings of the

SM fermions fixed). In the CFT language, this means that the coupling of SM fermions to

composite gluons is reduced when changing the scaling dimensions of the fermionic operators

while keeping the amount of compositeness of the SM fermions fixed.

We can also apply the AdS/CFT dictionary to model I. Using eqs. (3.9), (3.14) and

(9.3), we see that moving the radion VEV away from the minimum of the Goldberger-Wise

potential changes the VEV of the operator,

〈Oφ〉 ∼ Λ4+2ε
IR

B

Λ
3/2+ε
UV

((
Λmin

IR

Λ
IR

)ε(
1−

√
ε

4

)
− 1

)
. (9.16)

When Λ
IR

= Λmin
IR

, this VEV is suppressed as 〈Oφ〉 ∝
√
ε. It increases when moving away

from the minimum. The new contribution from the derivative coupling in eq. (6.1) to the
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Yukawa coupling for the top quark can be written as

[δyu]33 ∼
∂y〈φ〉
k5/2

∣∣∣∣
y=yIR

∼ 4 〈Oφ〉
Λ4+ε

IR

− εB Λε
IR

Λ
3/2+ε
UV

, (9.17)

where we have used eqs. (3.4) and (9.3) and set κu ∼ k−7/2. Note that for the UV-localized

flavours, the Yukawa couplings are suppressed compared to eq. (9.17) due to the small

overlap of their wavefunctions with the IR brane (cf. eq. (5.9)). This is dual to small mixing

ξL, ξR � 1 between the fundamental fermions and the composite states of the broken CFT

as discussed above. We thus see that in the dual description, the top Yukawa coupling gets

a contribution proportional to 〈Oφ〉 via the first term in eq. (9.17). Notice also that at the

scale Λmin
IR

the second term is suppressed by
√
ε/4 relative to the first term and becomes

even less important as Λ
IR

decreases. The change in the Yukawa coupling when the IR brane

is moved then dominantly arises from the change in 〈Oφ〉 when the dual broken CFT is in

states with different confinement scales Λ
IR

. In this description, it is also clear that in model

I (in contrast with model II) we cannot get contributions δy of order one for species other

than the top quark since at initial times, 〈Oφ〉 is small and then evolves to values of order

Λ4+ε
IR

.

10 Conclusions

We have shown how the Randall-Sundrum model with Goldberger-Wise stabilisation offers

a natural display of the cosmological emergence of the flavour structure in the standard

model. Our main new results are contained in secs. 6, 7 and 8. In particular, we have

shown how coupling the Goldberger-Wise scalar to the standard model fermions on the IR

brane or in the bulk can lead to an effective 4D Yukawa coupling which increases across the

bubble walls during the electroweak phase transition. This then provides a new source of

CP -violation which allows for electroweak baryogenesis from the CKM matrix, and may also

be relevant for cold baryogenesis. It will be interesting to study this mechanism further and

to understand whether certain 4D flavour models could fall into this category. In particular,

because Randall-Sundrum models are holographic duals of 4D strongly coupled theories, our

findings may be useful for the investigation of flavour cosmology in composite Higgs models.

We now compare our findings with the results of another analysis of Yukawa variation

during the electroweak phase transition, in Froggatt-Nielsen models [3]. In this context, it

was found that a very light flavon (i.e. below the electroweak scale) is necessary in order

to affect the values of the Yukawa couplings during the eletroweak phase transition. The

main reason for this is the assumed structure of the polynomial two-field (Higgs and flavon)

scalar potential. Such a light flavon, however, is in tension with experimental constraints.

In Randall-Sundrum models, both the dependence of the Yukawa couplings on the radion

and the interplay between Higgs and radion are of a very different nature. It is possible to
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have a large variation of the Yukawa couplings during the electroweak phase transition for

radion masses around or above the electroweak scale. The key point is that the Higgs mass

parameter is controlled by the radion VEV while in the Froggatt-Nielsen implementation

of ref. [3], it is a constant like in the standard model. We can therefore expect to build

successful models of Yukawa coupling variation during the electroweak phase transition in

models where the Higgs mass parameter is dynamical as well and controlled by parametrically

slightly heavier, O(TeV) scale new physics, similar to what happens in the Randall-Sundrum

construction.

Finally and interestingly, in our construction in which the 5D fermionic mass terms

are not constant but result from the coupling to the Goldberger-Wise scalar, the fermionic

profiles are suppressed in much of the bulk compared to the case of constant mass terms.

This suppresses their overlap with KK modes, and thereby weakens the constraints from

CP -violating processes in Randall-Sundrum constructions.
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A Appendix: KK expansion of the Goldberger-Wise scalar

Our discussion applies to the Goldberger-Wise scalar with both the potentials considered in

the original paper and discussed in sec. 3 and the modified potentials considered in sec. 7.2.

We assume that the radion is parametrically lighter than the IR scale. Then the mixing

between the radion and the KK modes of the Goldberger-Wise scalar is suppressed by the

ratio of their masses and can be neglected to a good approximation (see appendix A in [17]).

We expand the Goldberger-Wise scalar around its VEV, φ = 〈φ〉+ δφ, and decompose it as

δφ =
√
k
∑

n φ
(n)f

(n)
φ . The bulk equation of motion and the boundary conditions read(

∂2
y − 4k ∂y − m2

φ + e2ky(m
(n)
φ )2

)
f

(n)
φ = 0 (A.1)

(∂y − k bUV
) f

(n)
φ

∣∣
y=0

= 0 (∂y + k b
IR

) f
(n)
φ

∣∣
y=πR

= 0 , (A.2)

where

b
UV,IR ≡

1

2k

∂2V
UV,IR

∂φ2

∣∣
φ=〈φ〉 . (A.3)

This is solved by

f
(n)
φ (y) = N (n)

φ e2ky
(
J2+ε

(
m

(n)
φ eky/k

)
+ bn

(
m

(n)
φ /k, b

UV

)
Y2+ε

(
m

(n)
φ eky/k

))
(A.4)

with

bn (r, b) ≡ −r J1+ε (r) − (b+ ε)J2+ε (r)

r Y1+ε (r) − (b+ ε)Y2+ε (r)
. (A.5)
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Away from the UV brane this is well approximated by

f
(n)
φ (y) ' N (n)

φ e2kyJ2+ε

(
m

(n)
φ eky/k

)
. (A.6)

The normalization constant of the wavefunction is given by(
N (n)
φ

)−2
=

∫ y
IR

0

dy k e2ky
(
J2+ε

(
m

(n)
φ eky/k

)
+ bn

(
m

(n)
φ /k, b

UV

)
Y2+ε

(
m

(n)
φ eky/k

))2

' 1

2
e2ky

IR

(
J2+ε

(
m

(n)
φ /m

IR

))2

[
1 +

m2
IR

(m
(n)
φ )2

(
(4 + 2 ε) b

IR
+ b2

IR

)]
.

(A.7)

The mass quantization condition is given by bn
(
m

(n)
φ /k, b

UV

)
= bn

(
m

(n)
φ /m

IR
,−b

IR

)
. Expand-

ing this for m
(n)
φ � k, the condition simplifies to

m
(n)
φ

m
IR

J1+ε

(
m

(n)
φ /m

IR

)
+ b

IR
J2+ε

(
m

(n)
φ /m

IR

)
' 0 . (A.8)
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