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Abstract: Gluon-induced processes such as Higgs production typically exhibit large

perturbative corrections. These partially arise from large virtual corrections to the gluon

form factor, which at timelike momentum transfer contains Sudakov logarithms evaluated

at negative arguments ln2(−1) = −π2. It has been observed that resumming these terms

in the timelike form factor leads to a much improved perturbative convergence for the total

cross section. We discuss how to consistently incorporate the resummed form factor into

the perturbative predictions for generic cross sections differential in the Born kinematics,

including in particular the Higgs rapidity spectrum. We verify that this indeed improves

the perturbative convergence, leading to smaller and more reliable perturbative uncertain-

ties, and that this is not affected by cancellations between resummed and unresummed

contributions. Combining both fixed-order and resummation uncertainties, the pertur-

bative uncertainty for the total section at N3LO+N3LL
′
ϕ is about a factor of two smaller

than at N3LO. The perturbative uncertainty of the rapidity spectrum at NNLO+NNLL′ϕ is

similarly reduced compared to NNLO. We also study the analogous resummation for quark-

induced processes, namely Higgs production through bottom quark annihilation and the

Drell-Yan rapidity spectrum. For the former the resummation leads to a small improve-

ment, while for the latter it confirms the already small uncertainties of the fixed-order

predictions.
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1 Introduction

After the discovery of the Higgs boson [1, 2], the LHC has entered an era of precision Higgs

measurements. One important goal is the precise determination of the Higgs couplings

in order to test the Standard Model and search for evidence of physics beyond it. Other

important color-singlet processes like Drell-Yan production serve as standard candles that

are used, for example, to constrain parton distribution functions (PDFs).

In order to match the ever increasing level of experimental precision, precise theoretical

predictions for the measured cross sections are needed. An important example is the
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dominant Higgs production via gluon fusion, which receives large perturbative corrections.

This has led to the calculation of the total production cross section up to N3LO [3–10],

and including the resummation of threshold logarithms up to N3LL′ [11–16]. However, due

to the limited detector acceptance the experimental measurements cannot measure the

cross section fully inclusively but only in a restricted kinematic range, in particular in a

restricted range of Higgs rapidities. The interpretation of the experimental measurements

thus fundamentally requires theoretical predictions differential in the Higgs kinematics.

The essential nontrivial ingredient is the Higgs rapidity spectrum (or equivalently the cross

section with a rapidity cut), which is so far known to NNLO [17–21].

A specific class of perturbative corrections to Drell-Yan-like color-singlet production

arises from the associated quark and gluon form factors, which contain Sudakov logarithms

ln2(−q2/µ2), where qµ is the transferred hard momentum. For spacelike momentum trans-

fer, q2 = −Q2 < 0 as in deep-inelastic scattering, these logarithms vanish with the standard

choice µ2 = Q2. For timelike production processes, the form factor enters the production

cross section evaluated at timelike momentum transfer q2 = Q2 > 0. With the ordinary

scale choice µ2 = Q2, the form factor contains leftover Sudakov logarithms ln2(−1) = −π2,

inducing large corrections at each order in the perturbative series. For simplicity, we will

henceforth refer to these as “timelike” logarithms or contributions, as they arise in the

ratio of the timelike and spacelike form factors.1 This effect was first observed long ago in

Drell-Yan production in ref. [22], where it was realized that the coefficients of these terms

are directly related to infrared (IR) singularities. Due to the universal structure of IR

singularities, these terms arise to all orders and their resummation is well known [23–26].

As discussed in ref. [27], the timelike logarithms are also present in the soft contributions

to the pion electromagnetic form factor providing an enhancement compared to the space-

like case in agreement with the measured enhancement. The resummation of the timelike

logarithms for gluon-fusion Higgs production was carried out in refs. [11, 28] in the context

of soft-gluon (threshold) resummation, where it was shown that it substantially reduces

the large perturbative corrections to the total gg → H cross section.

The resummation of the timelike logarithms originating in the form factors has since

been included in the resummation of various other exclusive color-singlet cross sections

(see e.g. refs. [29–37]), leading to improvements in the perturbative uncertainties. In these

contexts, the use of the resummed form factor is unambiguous, as it explicitly appears as

an ingredient in the corresponding factorized cross section.

In this paper, we study in detail the utility of using the resummed timelike form factors

for predictions of inclusive color-singlet production cross sections. In case of inclusive cross

sections the benefit of the resummation is a priori not obvious, and its applicability has

occasionally been called into question. For this reason, we discuss in some detail the

arguments for it and its consistent application, as well as the potential pitfalls one might

worry about. For our numerical analysis, we consider both gluon-induced and quark-

1Since the resummed logarithms ln2n(−1) happen to give factors of (−π2)n, this has been referred to

as “π2-resummation”. Since factors of π2 from other (unrelated) sources are typical to appear in the

perturbative coefficients as well, we will always refer to the resummed logarithms as “timelike logarithms”,

to avoid any possible confusion as to what is being resummed.
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induced processes. The cases we consider include a generic scalar resonance gg → X as

a function of mX , gg → H as a function of the Higgs rapidity, bb̄ → H, and Drell-Yan

qq̄ → Z as a function of the Z rapidity.

We find that in all cases the resummation of the timelike logarithms leads to stable

perturbative predictions. For the gluon-induced cases it leads to a significantly improved

convergence compared to the fixed-order predictions, as first pointed out in refs. [11, 28].

This results in perturbative uncertainties that are both smaller and more reliable. In

addition to the total cross section studied previously, we show how the resummation can

be easily and consistently applied to generic inclusive cross sections differential in the Born

kinematics. This allows us in particular to obtain the currently most precise predictions

for the Higgs rapidity spectrum, or equivalently the inclusive cross section with a rapidity

cut, with perturbative uncertainties that are reduced by almost a factor of two compared

to NNLO. For the quark-induced processes, the improvement is not as dramatic. Here,

the resummed and fixed-order results have a similar stability. With an optimal choice of

µF the resummation still provides some improvement in the perturbative convergence and

uncertainties. This demonstrates that using the resummed form factor is also viable for

quark-induced processes and provides additional confidence in the estimated perturbative

uncertainties.

The remainder of the paper is structured as follows: The basic setup how to consistently

incorporate the resummed form factors into the inclusive cross section is discussed in sec. 2.

The application to gluon-fusion processes is then discussed in sec. 3, to Higgs production

through bottom quark annihilation in sec. 4.1, and to Drell-Yan production in sec. 4.2. We

conclude in sec. 5. For completeness all required perturbative ingredients for the resummed

form factors are collected in appendix A.

2 Calculational Setup

2.1 Resummation framework

We consider the hadronic production gg → L or qq̄ → L of a color-singlet final state L

with total invariant mass Q2 = q2 > 0. The hard virtual corrections to these processes

are described by the corresponding QCD form factors. The full form factors contain in-

frared divergences, which when combined into the full cross section cancel against the

infrared divergences in the real corrections. Hence, what enters in the final cross section

are the IR-finite parts of the form factor. In the context of soft-collinear effective theory

(SCET) [38–41], these are equivalent to the Wilson coefficients from matching the QCD

currents defining the form factors onto the corresponding SCET currents [42–44]. For the

cases we consider, these are the gluon, quark vector, and quark scalar form factors. The

corresponding matching conditions read schematically

GµνG
µν → Cgg Q

2Bn⊥Bn̄⊥ ,
q̄γµq → CVqq̄ χ̄nγ

µχn̄ ,

q̄q → CSqq̄ χ̄nχn̄ , (2.1)
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where the Bn⊥ and χn are collinear gluon and quark fields in SCET. (The exact matching

conditions for the currents can be found e.g. in refs. [30, 45].) The IR divergences in the

full QCD form factors, given by the quark and gluon matrix elements of the left-hand side,

are exactly reproduced by the corresponding matrix elements of the SCET operators on

the right-hand side, such that the hard Wilson coefficients Cij are given in terms of the

IR-finite parts of the form factors.

The relevant object entering the cross section is the hard function given by the square

of the Wilson coefficient, which we write as

H(q2, µ) = |C(q2, µ)|2 = 1 +H(1)(q2, µ) +H(2)(q2, µ) + · · · , (2.2)

where by default we normalize H to unity at leading order, and H(n) denotes the O(αns )

term. To all orders in perturbation theory, C and H depend on the hard momentum

transfer qµ through logarithms L ≡ ln[(−q2− i0)/µ2]. For spacelike processes, q2 = −Q2 <

0 such that L = ln(Q2/µ2) = 2 ln(Q/µ), while for timelike processes q2 = Q2 > 0 such that

L = 2 ln(−iQ/µ).

The Wilson coefficients in SCET obey the renormalization group equation (RGE)

µ
dC(q2, µ)

dµ
= γH(q2, µ)C(q2, µ) ,

γH(q2, µ) = Γcusp[αs(µ)] ln
−q2 − i0

µ2
+ γH [αs(µ)] , (2.3)

where Γcusp(αs) is the cusp anomalous dimension and γH(αs) the noncusp term. Integrating

eq. (2.3) yields the solution

H(q2, µ) = H(q2, µH)UH(µH , µ) , (2.4)

UH(µH , µ) =

∣∣∣∣exp

[∫ µ

µH

dµ′

µ′
γH(q2, µ′)

]∣∣∣∣2 . (2.5)

The explicit result for the evolution kernel UH is given in appendix A.4. By choosing the

imaginary-valued scale µH = −iQ, the hard function H(Q,µH) is free of logarithms and

can be calculated in fixed-order perturbation theory, while the evolution kernel UH resums

all logarithms ln(µH/µ) = ln(−iQ/µ).

The hard function explicitly appears in calculations of exclusive cross sections as

dσ

dT
= σB ×H(Q2, µT )× SC(T , µT )× [1 +O(T /Q)] . (2.6)

Here T denotes a resolution variable, which resolves additional emissions, such that in the

limit T � Q the cross section is restricted to the soft-collinear regime. In this limit it is

dominated by hard virtual corrections contained in H, and soft and collinear contributions

(both real and virtual) at lower scales µT ∼ T contained in SC, while hard real emissions

are forbidden. At the partonic level, an example for T is the partonic threshold variable

(1− z)Q. More physical examples of T are beam thrust or the pT of the leading jet. The

precise form of the soft-collinear contribution SC depends on the definition of T but is
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irrelevant for our discussion. For a given process always the same hard function appears

independently of the precise choice of T . The factorization in eq. (2.6) implies that in the

T � Q limit H appears as a well-defined perturbative object (namely as a hard matching

coefficient), which is fully factorized from the rest of the cross section. In particular, the

only dependence on the hard timelike momentum transfer Q2 resides in H, while SC only

depends on parametrically smaller soft and collinear scales proportional to T . In practice,

eq. (2.6) can be used to perform the resummation of logarithms of T in dσ/dT , which

involves using eq. (2.4) to evolve H from its natural scale µH = −iQ to the relevant lower

scale µT ∼ T .

We want to apply the resummed form factor to the inclusive cross section for color-

singlet production. Here, inclusive refers to the fact that the cross section is fully integrated

over any additional QCD emissions, but it can still be differential in or contain cuts on any

kinematic variables that are present at Born level and describe the produced color-singlet

system, such as its total rapidity Y or total invariant mass Q. To do so, we can factor out

the hard function from the inclusive cross section

σ(X) = H(Q2, µFO)×R(X,µFO) , (2.7)

which defines the remainder R(X,µFO). Here, X denotes any dependence on Born variables

or cuts. By definition, H only depends on the Born kinematics via Q, while the remainder

R can depend on X.

We write the perturbative expansion of the remainder as

R(X,µFO) = σ(0)(X,µFO)
[
1 +R(1)(X,µFO) +R(2)(X,µFO) + · · ·

]
, (2.8)

where for convenience we pulled out the leading-order cross section σ(0)(X,µFO). The

dependence on the factorization scale µF related to the PDFs entirely cancels within R,

and we will mostly suppress it. The µFO scale in eqs. (2.7) and (2.8) is equivalent to

the renormalization scale µR in the fixed-order prediction, and its dependence explicitly

cancels between H and R. The R(n) coefficients depend primarily only on the total color-

singlet invariant mass and rapidity, while any dependence on additional Born kinematics

or cuts resides primarily in σ(0). (This becomes exact for a scalar resonance in the narrow-

width approximation like the Higgs.) In the following we will for simplicity suppress the

dependence on X and Q2.

We also define the K factor

K(µ) =
σ

σ(0)(µ)
= 1 +K(1)(µ) +K(2)(µ) + · · · , (2.9)

which captures the total perturbative correction relative to the leading-order result. Ex-

panding eq. (2.7) order by order in αs(µ), it is straightforward to obtain the fixed-order

coefficients of R from those of K and H. Up to N3LO we have,

R(1)(µ) = K(1)(µ)−H(1)(µ) ,

R(2)(µ) = K(2)(µ)−H(2)(µ)−R(1)(µ)H(1)(µ) ,
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R(3)(µ) = K(3)(µ)−H(3)(µ)−R(2)(µ)H(1)(µ)−R(1)(µ)H(2)(µ) . (2.10)

To resum the timelike logarithms from the form factor in the cross section we can

simply take the resummed result for the hard function eq. (2.4) and use it in eq. (2.7),

σres = H(µH)UH(µH , µFO)R(µFO) (2.11)

= UH(µH , µFO)σ(0)
[
1 +H(1)(µH) +R(1)(µFO)

+H(2)(µH) +R(2)(µFO) +H(1)(µH)R(1)(µFO) + . . .
]
.

As indicated, the fixed-order expansions for H(µH) and R(µFO) are reexpanded against

each other (but without reexpanding the αs(µH) inside the coefficients H(n)(µH) in terms

of αs(µFO)). This is analogous to the standard treatment in resummed predictions as

would be used for example in eq. (2.6). This ensures that in the limit µH = µFO we exactly

recover the usual fixed-order result without inducing any higher-order cross terms between

H and R. Using the definition of R in eq. (2.7), the resummed cross section in eq. (2.11)

can equivalently be written as

σres = UH(µH , µFO)

[
H(µH)

H(µFO)
σFO

]
FO

, (2.12)

where the brackets [. . . ]FO indicate the fixed-order reexpansion in powers of αs(µFO) and

αs(µH), with σFO the usual fixed-order cross section expanded in αs(µFO). Written in this

way, the ratio of timelike to spacelike form factors is manifest.

Equation (2.11) will be the basis of all our results. For consistency with the fixed-

order limit, we always include H(µH) and R(µFO) to the same fixed order. Furthermore,

we always combine the NnLO fixed-order contributions with the NnLL resummation for

H, which corresponds to the primed resummation counting and ensures consistency with

the exclusive resummations [30, 33] based on eq. (2.6). We will denote the perturbative

accuracy by NnLO+NnLL′ϕ, where the subscript indicates that the resummed logarithms

correspond to the complex phase ϕ of the hard scale in the form factor.

While the remainder R is uniquely defined by eq. (2.7), one should of course ask

the question to what extent it is justified or meaningful to “brute-force” factorize the

perturbative series for the inclusive cross section into those for H and R.

First, one might be worried by the fact that the remaining nonlogarithmic constant

terms in the fixed-order expansion of H(µH) are scheme-dependent, i.e. they depend on

the fact that H is renormalized in the MS scheme and using a different scheme would result

in different constant terms. However, this fixed-order scheme dependence is canceled by

R up to higher orders, and this cancellation is explicitly ensured in our implementation in

eq. (2.11) by the fact that we always reproduce the exact fixed-order result, as discussed

above. The cancellation can also be seen explicitly from eq. (2.12). Expanding the ratio

H(µH)/H(µFO), including expanding αs(µH) in terms of αs(µFO), the constant terms in

H explicitly drop out. In particular, the nonlogarithmic constant terms at O(αns ) cancel

up to O(αn+2
s ) since

Re
[
αns (−iµFO)− αns (µFO)

]
= O(αn+2

s ) . (2.13)

– 6 –



Therefore, the relevant question is whether the series of timelike Sudakov logarithms

present in H can be considered to be independent from the perturbative series in R. This

would not be the case if (and only if) R were to contain contributions at each order cor-

related with the timelike Sudakov series in H and of opposite sign, which would then lead

to large cancellations between H and R at each order in perturbation theory. These can-

cellations would then be spoiled by resumming the timelike logarithms in H while keeping

the corresponding pieces in R at fixed order. This would imply that the perturbative

corrections for R would be noticeably larger than for the cross section itself, and since

the resummation of H eliminates its large corrections, the larger perturbative corrections

of R would result in the resummed cross section being worse behaved. In other words,

the absence or presence of sizeable cancellations between the resummed terms and the

unresummed fixed-order terms, is mathematically equivalent to whether the resummation

improves the perturbative convergence of the cross section or not. This is of course easy

to check up to the available order, and in all our applications we have verified that there

are indeed no large cancellations that are being spoiled by the resummation.

The primary reason one could be worried about such cancellations is that this is ac-

tually what happens in the reverse timelike process, namely color-singlet decays such as

H → gg, H → bb̄, e+e− → Z → qq̄, or hadronic τ decays. These processes involve the

same timelike form factor, but their perturbative series is known to not contain timelike

Sudakov logarithms. The relation to these processes was already discussed in some detail

in ref. [11]. In these processes, timelike logarithms only appear as single logarithms (and

thus only at higher orders) through the running of αs, for which analogous analytic con-

tinuation methods have been considered, e.g. for e+e− → hadrons in refs. [27, 46–48] and

hadronic τ -decays e.g. in refs. [49–51] (see also ref. [52] and references therein).

However, the situation is fundamentally different when the hard partons appear in

the initial vs. the final state. An explicit discussion how the timelike Sudakov logarithms

cancel in the final-state case but not in the initial-state case can be found in ref. [27].

In the final-state case, the process can be written as the imaginary part of forward ma-

trix elements summed over all possible cuts, in which case the whole calculation can be

deformed into the Euclidean domain where the timelike logarithms never appear. That

is, the timelike Sudakov logarithms fully cancel between all cuts, or equivalently between

the virtual corrections to the form factor and the real corrections to the corresponding

remainder. The same does not happen if the partons appear in the initial state, which

simply cannot be obtained from cutting a diagram, i.e. the process with incoming partons

is intrinsically more exclusive, which exposes the timelike Sudakov logarithms in the form

factor. Note also that if the same cancellations as in the final-state case were present in

the initial-state case, they would have to be present at each order starting at NLO. The

fact that we do not observe this even in the first several orders of the perturbative series

provides clear evidence that this is indeed not the case.

It is also easy to understand why one finds a substantial numerical improvement for

inclusive Higgs production. Comparing eq. (2.7) with the exclusive cross section in eq. (2.6),

in the soft-collinear limit the remainder R reduces to the soft-collinear contributions times
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power corrections,

R→ σB SC(T ) [1 +O(T /Q)] . (2.14)

Therefore, the factorization in eq. (2.7) also becomes formally justified when the inclusive

cross section is numerically dominated by soft-collinear contributions. It is well known that

a large portion of the Higgs cross section comes from the partonic threshold limit, in which

the hard function factors out of the cross section as in eq. (2.6). One can also take the

more physical limit and simply veto additional hard radiation (which is also a weaker limit

as it allows both soft and collinear radiation). Going from this exclusive 0-jet region, to

which eq. (2.6) strictly applies, to the inclusive cross section amounts to factoring out the

form factor also from the nonsingular power corrections. As pointed out in refs. [30, 33],

using either beam thrust or the pT of the leading jet to veto hard radiation, one finds

that utilizing the resummed form factor for both singular and nonsingular corrections, and

hence for the full inclusive cross section, is actually important, since not doing so can easily

lead to unphysical results with the inclusive cross section being smaller than the 0-jet cross

section.

Finally, we note that it has been argued in ref. [10] on the basis of the coefficient

of the δ(1 − z) term in the partonic cross section that the timelike logarithms are not a

dominant source of higher-order corrections and in particular that their resummation fails

to improve the results beyond NNLO. We need to disagree with this assessment, because

this coefficient is strongly scheme dependent and not a very well-defined quantity. Rather

the impact or improvement should be judged at the level of the physical cross section. A

more detailed discussion on this is given in appendix B.

2.2 Perturbative uncertainties and numerical inputs

For our numerical predictions we consider the LHC at Ecm = 13 TeV. We use the

PDF4LHC nnlo 100 [53–58] NNLO PDFs with αs(mZ) = 0.118. Since we are interested

in the size of the coefficients in the perturbative series we always use this same PDF in-

dependent of the perturbative order in consideration. The numerical value of αs(µR) is

obtained with the corresponding three-loop running, except for the total gluon fusion cross

section known at N3LO, where we use four-loop running (though the numerical differences

are negligible). For bottom-quark annihilation we use the PDF sets from refs. [59, 60],

which are reevolved from PDF4LHC nnlo mc in order to allow varying the b-quark matching

scale separately from the b-quark mass. The relevant masses entering our predictions are

mH = 125 GeV, mt = 172.5 GeV, mb(mb) = 4.18 GeV, and mZ = 91.1876 GeV.

Since we are primarily interested in investigating the perturbative structure, we do

not consider parametric uncertainties due to PDFs and the value of αs(mZ), which are

straightforward to evaluate. They are essentially unaffected by the resummation of the

form factor, since all PDF dependence, as well as the dominant overall dependence on

αs(mZ) in case of Higgs production, resides in the remainder R.

An important aspect of precision predictions is a reliable assessment of the theory

uncertainties due to missing higher-order corrections. Our predictions in principle involve

three scales that we can vary as a means to estimate the size of higher-order corrections:
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the factorization scale µF probing collinear logarithms in the PDFs, the renormalization

scale µR probing higher orders in the fixed-order series, and the hard resummation scale

µH probing higher orders in the series of timelike Sudakov logarithms. We like to stress

that these scales are unphysical parameters whose variations simply provide a convenient

way to probe the “typical” size of the associated missing higher-order terms. The resulting

variations in the cross section must be interpreted as such. In particular, we do not

assign any meaning to accidentally small one-sided scale variations that yield asymmetric

uncertainties, which are just artifacts of a nonlinear scale dependence, which is frequently

encountered in predictions at higher orders or involving resummation. We therefore always

consider the maximum absolute deviation from the central result at the chosen central

scale as the (symmetric) uncertainty. To be explicit, an observed scale variation of +|x|
and −|y| in the cross section is interpreted as a perturbative uncertainty of ±max{|x|, |y|}.

We parametrize the three scales as

µH = µFO exp(−iϕ) , µR = µFO , µF = κF µFO . (2.15)

The choices for µFO and κF for the central value depend on the process we consider. For the

resummed predictions we use the central choice ϕ = π/2 , while the fixed-order predictions

correspond to taking ϕ = 0, which turns off the resummation.

We explicitly distinguish two different sources of perturbative uncertainties, namely

fixed-order and resummation uncertainties, that are associated to the two independent

perturbative series involved. The fixed-order uncertainty, denoted as ∆µ, is obtained via

the conventional variations of µR and µF . This comprises a collective overall variation

of µFO by a factor of two around its central value, which is combined with an additional

variation of κF by a factor of two around its central value, without considering the extreme

variations where both are varied up or down at the same time. That is, relative to the

central values we consider the set of variations

VFO =
{µFO

2
, 2µFO,

κF
2
, 2κF ,

(µFO

2
, 2κF

)
,
(

2µFO,
κF
2

)}
, (2.16)

from which the fixed-order uncertainty ∆µ is obtained as the maximum deviation from the

central value

∆µ = max
v∈VFO

∣∣σvary(v)− σcentral

∣∣ . (2.17)

In the limit where the resummation is turned off, this reproduces the perturbative uncer-

tainty in the fixed-order predictions. For the resummed predictions, the magnitude of the

hard scale by construction follows the µFO variation, |µH | = µFO, as illustrated in fig. 1

on the left, such that the fixed-order variations do not change the resummed logarithms

ln(µH/µFO).

For the resummation uncertainty, we vary the phase ϕ in the interval [π/4, 3π/4]

around the central value of ϕ = π/2, while keeping µFO at its central value, as illustrated

in fig. 1 on the right. This probes the intrinsic size of the higher-order timelike logarithms.

The phase variation by ±π/4 is chosen to be roughly equivalent to the usual factor of

2 for conventional logarithms since π/4 ' ln 2. The uncertainty ∆ϕ is then obtained as
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µFO
2

µFO 2µFO
∆µ

µR
Re

Im

µH

µFO
∆ϕ

µR
Re

Im

ϕ = π
4

µH

ϕ = 3π
4

Figure 1. Illustration of the scale variations used to estimate the perturbative uncertainties. Left:

The overall variations of µFO, which determines ∆µ (in conjunction with the variation of κF , which

is not shown). Right: The phase variation for µH for fixed µFO, which determines the resummation

uncertainty ∆ϕ.

the maximum observed deviation from the central value (usually happening at one of the

endpoints), such that

∆ϕ = max
ϕ∈[π/4, 3π/4]

∣∣σvary(ϕ)− σcentral

∣∣ . (2.18)

This additional resummation uncertainty was not considered in earlier treatments, but has

already been included in the resummed 0/1/2-jet-bin results reported in ref. [61].

The total perturbative uncertainty is obtained by adding the two independent sources,

∆µ ⊕∆ϕ =
√

∆2
µ + ∆2

ϕ . (2.19)

For bb̄→ H we follow ref. [60] and consider the low-scale matching at µb onto the b-quark

PDFs as a third independent source of uncertainty ∆b, which is estimated by varying µb
by a factor of two.

3 Gluon fusion

Gluon-fusion processes are well-known to contain large perturbative corrections, which are

partially due to the timelike logarithms in the gluon form factor, as first demonstrated

in ref. [28]. We first consider the total production cross section up to N3LO+N3LL
′
ϕ for

a generic scalar final state gg → X in sec. 3.1 and for the SM Higgs boson in the rEFT

mt → ∞ limit in sec. 3.2. In sec. 3.3 we discuss how to incorporate quark-mass and

electroweak effects into the resummed results. In sec. 3.4 we then present our results for

the Higgs rapidity spectrum and the cross section with a rapidity cut to NNLO+NNLL′ϕ.

3.1 Color-singlet production

We first consider the total production cross section from gluon fusion for a generic color-

singlet scalar X with mass mX . Its coupling to gluons at the scale µ ∼ mX can be expressed
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in terms of an effective Lagrangian as

Leff(mX) ⊃ −CX
Λ

αsG
a
µνG

a,µνX , (3.1)

where Λ is a suitable high mass scale and CX is the Wilson coefficient from integrating out

heavy particles that mediate the effective ggX interaction. This effective operator arises

for SM Higgs production in the mt →∞ limit, which we discuss in more detail in sec. 3.2.

Here, we use it as a simple case to study the effects of the resummation and its dependence

on the mass over a wide range mX ∈ [100, 1000] GeV. For this purpose, the precise values

of the effective coupling CX(µ = mX)/Λ need not be specified, as it drops out for the

K-factor σ/σ(0) on which the resummation acts.

We obtain the total gg → X cross section to N3LO from SusHi 1.6.0 [6, 10, 62–67].

Our central scale choices are µFO = mX and κF = 1, such that µR = µF = mX . Away

from µ = mX , the perturbative running of CX(µ) induces logarithms of mX/µ at NNLO

and N3LO. Their resummation is irrelevant and can be neglected, and they are instead

included in the fixed-order cross section [64].

The gluon form factor is known up to three loops [68–73], and the Wilson coefficient

Cgg is explicitly extracted from it in ref. [73] (see also refs. [74, 75]),

Hgg(m
2
X , µ) =

∣∣Cgg(m2
X , µ)

∣∣2 =

∣∣∣∣1 +
∞∑
n=1

[
αs(µ)

4π

]n
C(n)
gg

(
ln
−m2

X − i0

µ2

)∣∣∣∣2 , (3.2)

where now Q2 = m2
X . The RGE of Cgg reads

µ
d

dµ
Cgg(m

2
X , µ) = γgg(m

2
X , µ)Cgg(m

2
X , µ) , (3.3)

γgg(m
2
X , µ) = Γgcusp[αs(µ)] ln

−m2
X − i0

µ2
+ 2γgC [αs(µ)]− γt[αs(µ)]− β[αs(µ)]

αs(µ)
,

where Γgcusp(αs) is the gluon cusp anomalous dimension and the last three terms are the

total noncusp contribution. All the relevant ingredients are collected in appendix A.

The separation of the perturbative series for the K factor at fixed order into those of

H and R is shown in fig. 2 as a function of mX . Half of the large NLO K factor comes

from H and half from R, while beyond NLO the corrections in H are larger than for R.

Hence, the large corrections to the K-factor present at each order are driven to a large

extent (but also not entirely) by the corrections from H. In particular, the remainder R

by itself has a much better behaved perturbative series than K, and there are clearly no

cancellations between H and R. (Otherwise, as already explained in sec. 2.1, R would need

to have negative corrections that are larger in size than those in K.) This pattern holds

independently of mX . The visible increase in the corrections toward smaller mX is due to

the running of αs(mX).

The large perturbative corrections in Hgg at the real scale µH = mX are absent at

the imaginary scale µH = −imX , as shown by the long-dashed curve in the middle panel

of fig. 2. To illustrate this more explicitly, the numerical values for an example mass of
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Figure 2. Illustration of the fixed-order perturbative series for gg → X at µFO = mX for the

inclusive K-factor (left), the hard function Hgg at µH = mX (center), and the normalized remainder

R/σ(0) (right). The middle panel also shows the N3LO hard function Hgg at µH = −imX (black

long dashed), for which it contains no timelike logarithms.

mX = 750 GeV are,2

Hgg(m
2
X , µH = mX) = 1 + 0.49279 + 0.13855 + 0.02288 ,

Hgg(m
2
X , µH = −imX) = 1 + 0.06820− 0.00102− 0.00251 , (3.4)

where each term is the contribution from a subsequent order in αs up to N3LO. Clearly,

the large corrections to the gluon form factor at real scales are almost entirely due to the

timelike Sudakov logarithms that are present for µH = mX and are eliminated by taking

µH = −imX . Since the corrections in Hgg at µH = −imX are very small, the perturbative

convergence of the resummed cross section will be essentially determined by that of the

remainder R.

In fig. 3, we compare the fixed-order and resummed cross sections as a function of

mX , with the bands showing the total perturbative uncertainties evaluated as discussed in

sec. 2.2. (Note that in case of gg → X and gg → H, the fixed-order uncertainties come

from the variation of µR for fixed µF .) All results are normalized to the LO prediction

σ(0) at fixed µFO = mX . As expected, the absence of large corrections in the resummed

hard function directly translates into a much faster convergence of the resummed cross

section. Furthermore, the uncertainties in the resummed predictions at lower orders cover

the higher-order bands much better than at fixed order, while at the same time being sub-

stantially reduced at higher orders. Hence, even at NNLO and N3LO, where the fixed-order

results start to show convergence, the resummation noticeably improves the predictions.

Due to their better convergence, the resummed predictions provide substantially improved

2The value is chosen purely for historical reasons.
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Figure 3. The total cross section for gg → X at Ecm = 13 TeV at fixed order (left) and

including the resummation of timelike logarithms (right). All results are normalized to the central

LO prediction at µFO = mX .

uncertainty estimates both in terms of their reliability and their size. In particular, we can

be reasonably confident that the result at the next higher order will lie within the small

N3LO+N3LL
′
ϕ uncertainty band.

3.2 Inclusive Higgs production in the rEFT scheme

We now turn to the case of Higgs production through gluon fusion as an important applica-

tion of the singlet production discussed above. For Higgs masses below the top threshold,

mH < 2mt, the gluon-fusion cross section can be well approximated by an effective the-

ory where the top quark is integrated out [76–79], giving rise to an effective Lagrangian

analogous to eq. (3.1),

L(mH) ⊃ − Ct
12πv

αsG
a
µνG

a,µνH . (3.5)

In this case, the Wilson coefficient Ct itself receives sizable QCD corrections, which have

been calculated to N4LO in refs. [80–82]. The effective operator in eq. (3.5) is the same as

in eq. (3.1), giving rise to the same gluon form factor and hard function Hgg in eq. (3.2).

Rescaling the cross section σEFT obtained from eq. (3.5) by the LO mt dependence [83]

F0(ρ) =
3

2ρ
− 3

2ρ

∣∣∣∣1− 1

ρ

∣∣∣∣ arcsin2(
√
ρ) , ρ =

m2
H

4m2
t

< 1 , (3.6)

one obtains the inclusive cross section in the “rescaled EFT” scheme (rEFT),

σrEFT = |F0(ρ)|2 σEFT . (3.7)

This rescaling is known to well reproduce the mt-exact result at NLO, and hence it is

believed to be a useful approximation also at higher orders [5, 84–90]. The inclusion of

further quark mass and electroweak effects will be discussed in sec. 3.3.

We use SusHi 1.6.0 [6, 62–65] to compute the total cross section in the rEFT scheme

to NNLO. For the N3LO contribution we use the results of ref. [10] as implemented
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in ggHiggs 3.5 [16].3 We use mOS
t = 172.5 GeV and mH = 125 GeV. To study the

perturbative series and the resummation effects we choose the canonical values µFO = mH

and κF = 1 (so µR = µF = mH) as central values. With these settings, the N3LO cross

section has the perturbative series

σrEFT
FO = (1 + 1.291 + 0.783 + 0.296)× 13.80 pb ,

Hgg(m
2
H , µH = mH) = 1 + 0.619 + 0.219 + 0.045 ,

R(µFO = mH) = (1 + 0.672 + 0.148 + 0.012)× 13.80 pb , (3.8)

where again each term gives the contribution from a subsequent order in αs. The remainder

R now includes the corrections to |Ct|2. As before, its perturbative series is much better

behaved than that of the cross section, whose large perturbative corrections are thus driven

by the large corrections from timelike logarithms in Hgg.

To illustrate the improved convergence of the resummed form factor, we consider the

hard function Hgg(mH , µH) at various scales µH ,

Hgg(m
2
H , µH = mH) = 1 + 0.61925 + 0.21878 + 0.04539 ,

Hgg(m
2
H , µH = −imH) = 1 + 0.08408− 0.00145− 0.00441 ,

Hgg(m
2
H , µH = mH/2) = 1 + 0.57325− 0.12361− 0.00839 ,

Hgg(m
2
H , µH = −imH/2) = 1− 0.01553− 0.01544− 0.00247 ,

Hgg(m
2
H , µH = mH/5) = 1 + 0.08090− 0.16424− 0.00552 . (3.9)

For both imaginary-valued scales µH = −imH and µH = −imH/2, the corrections are

drastically reduced compare to the real scale choice. For comparison, choosing a real value

µH = mH/5 that yields the same reduced NLO correction as µH = −imH still leads to

much larger NNLO corrections.

To examine the dependence on the resummation phase ϕ of the hard scale, µH =

µFO exp(−iϕ), we show in the left panel of fig. 4 the resummed cross section as a function

of ϕ. Here, the uncertainty bands only show the fixed-order uncertainty ∆µ. At ϕ = 0,

σres(ϕ) is just the fixed-order cross section. As ϕ → π/2, the timelike resummation is

turned on, visibly improving the convergence of the cross section and providing better

coverage of the uncertainty bands. The ϕ dependence becomes stationary at ϕ = π/2,

where the timelike Sudakov logarithms exactly vanish. Beyond ϕ = π/2, powers of ϕ−π/2
start to enter again.

In the right panel of fig. 4, we compare the fixed-order results at the conventional

scales of µFO = mH and µFO = mH/2 with the resummed results. The results are shown

as relative corrections to our best prediction at N3LO+N3LL
′
ϕ. For the resummed results,

the inner uncertainty bars indicate ∆ϕ alone, while the outer ones show ∆µ ⊕∆ϕ. While

3In SusHi 1.6.0, the µF and µR dependence at N3LO is threshold expanded consistently with the µ-

independent terms, while it is kept exact in refs. [10, 16]. There is no clear theoretical preference for either

treatment. The resulting numerical differences away from the canonical values µR = µF = mH are around

0.3%, consistent with the level of systematic uncertainties expected from the threshold expansion [10]. To

ease numerical comparisons we use the numerical values corresponding to the exact running here.
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Figure 4. The gg → H cross section at Ecm = 13 TeV and mH = 125 GeV in the rEFT

scheme. Left: The cross section as a function of the resummation phase ϕ of the hard scale

µH = µFO exp(−iϕ), with the uncertainty bands corresponding to ∆µ only. Right: Comparison of

the fixed-order results for µFO = mH and µFO = mH/2, and the resummed results with µFO =

iµH = mH . All results are given as the percent difference from the N3LO+N3LL
′
ϕ central value.

The uncertainty bars show ∆µ for the fixed-order results and ∆µ ⊕ ∆ϕ for the resummed results

(with the inner bars visible at the lower orders showing ∆ϕ only). The fixed LO results are out of

range.

∆ϕ contributes to obtaining a more realistic uncertainty estimate at LO+LL′ϕ (compared

to LO), its impact is strongly reduced at higher orders. The overall picture and conclusions

from the generic color-singlet case are unaffected by the presence of the Wilson coefficient

|Ct|2 in the cross section. The resummation yields again a clear improvement in convergence

and uncertainties, also compared to the fixed-order results at µFO = mH/2, which are

already better behaved than those at µFO = mH . In particular, the NLO+NLL′ϕ result

already fully covers the highest-order result, which is not the case at fixed NLO, and the

precision of the NNLO+NNLL′ϕ result is roughly comparable to the fixed N3LO results.

This gives us good confidence in the small remaining uncertainty at N3LO+N3LL
′
ϕ, which

is reduced by a factor of two compared to N3LO. The explicit numerical results at the

highest order are

σrEFT
FO = (46.51± 2.60µ) pb (5.59%) , (N3LO, µFO = mH) ,

σrEFT
FO = (48.06± 1.83µ) pb (3.82%) , (N3LO, µFO = mH/2) ,

σrEFT
res = (47.90± 0.82µ ± 0.18ϕ) pb (1.75%) , (N3LO+N3LL

′
ϕ, µFO = mH) . (3.10)

Note that for the N3LO results in ref. [10] the perturbative uncertainties are estimated by

varying µFO but keeping κF = 1 fixed. Doing so reduces ∆µ to 2.21 pb (4.76%) at central

µFO = mH and 1.54 pb (3.21%) at central µFO = mH/2.4 Similarly dropping the κF

4Ref. [10] further utilizes the MS top-quark mass mt(µFO) in the rescaling factor in eq. (3.7), which par-

ticipates in the overall µFO scale variation and further reduces its effect to 2.4%. However, the perturbative

series for the MS top-quark mass entering in the rescaling factor has nothing to do with the perturbative

series of the gg → H cross section in the mt → ∞ limit arising from the effective Lagrangian eq. (3.5).

Hence, the fact that their µFO dependences partially compensate numerically is purely accidental.
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variation in the resummed results gives ∆µ = 0.67 pb, which combined with ∆ϕ then yields

a total perturbative uncertainty of 1.44%. Note also that using the threshold-expanded

running in µR and µF as implemented in SusHi 1.6.0, the N3LO result at µFO = mH/2

increases to (48.17±1.99µ) pb (4.14%), with a corresponding increase in ∆µ since the result

at µFO = mH is unaffected.

3.3 Incorporating quark mass and electroweak effects beyond rEFT

While the previous section focused on the QCD corrections to Higgs production in the

mt →∞ limit, further corrections arise from finite quark-mass effects as well as electroweak

contributions. Here we discuss how to consistently combine them with the resummation

of timelike logarithms.

The full dependence of the cross section on the heavy quark masses mt, mb, mc is fully

known at NLO [5, 62, 84, 85, 91–93]. We define δσq(N)LO as the correction of the exact

result relative to the rEFT result,

σt,b,cNLO = σrEFT
NLO + δσb,cLO + δσt,b,cNLO . (3.11)

On top of the exact NLO corrections, top-quark mass effects are also known in an asymp-

totic expansion in 1/mt at NNLO [86–90].

In the following we consider the top-mass effects in more detail. As discussed in

refs. [64, 88–90], the asymptotic 1/mt corrections at NNLO cannot be expected to reliably

improve over the mt → ∞ limit. Rather, they can serve to estimate the uncertainty due

to the still unknown full NNLO mt corrections. For this reason we will only take into

account the NLO corrections δσtNLO. (The inclusion of the NNLO mt corrections would be

completely analogous.) This is also consistent with our analysis of the rapidity spectrum

in sec. 3.4, for which the mt-corrections are only known at NLO. For illustration, the

numerical results for δσtNLO are

δσtNLO = −0.210 pb , (µFO = mH) , (3.12)

δσtNLO = −0.315 pb , (µFO = mH/2) .

The finite mt contributions correspond to a correction to the mt →∞ limit in eq. (3.5),

from which the gluon form factor arises, and so a priori they do not involve the same local

gluon form factor. Therefore, one option to include them in the resummed results is to

simply add them to the rEFT results in eq. (3.10), which yields

σrEFT
FO + δσtNLO = (46.30± 2.55µ) pb (5.50%) (N3LO, µFO = mH) ,

σrEFT
FO + δσtNLO = (47.74± 1.75µ) pb (3.66%) (N3LO, µFO = mH/2) , (3.13)

σrEFT
res + δσtNLO = (47.69± 0.78µ ± 0.18ϕ) pb (1.68%) , (N3LO+N3LL

′
ϕ, µFO = mH) .

The complete results including those at lower orders are collected in table 1.

Alternatively, following ref. [30] we can perform a one-step matching of the full Stan-

dard Model including the top quark onto SCET, simultaneously integrating out both the
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top quark and hard virtual corrections. The resulting hard function Ht
gg = |Ctgg|2 corre-

sponds to the full SM gg → H form factor and includes all virtual finite-mt effects. It takes

the form [30]

Ht
gg(mt,m

2
H , µ) = |F0(ρ)|2|αs(µ)|2

{∣∣Ct(mt, µ)Cgg(m
2
H , µ)

∣∣2
+ 2 Re

[αs(µ)

4π
(F1(ρ)− F1(0))

]
+O(ρα2

s)
}
, (3.14)

where as before ρ ≡ m2
H/(4m

2
t ). Compared to Hgg = |Cgg|2, the LO mt dependence F0(ρ)

and the contributions from Ct are now moved from the remainder into the hard function.

The F1(ρ) contains the full virtual mt dependence at NLO and the O(ρα2
s) terms denote

the neglected NNLO virtual mt corrections.5 Although Ht
gg is no longer normalized to unity

at leading order, we can continue to use eq. (2.12) to obtain the resummed cross section.

Compared to eq. (2.11), the result now contains an overall factor |αs(µH)/αs(µFO)|2 from

the ratio of hard functions, which replaces the α2
s(µFO) inside the LO cross section by

|αs(µH)|2.

The RGE for Ctgg is given by

µ
d

dµ
Ctgg(mt,m

2
H , µ) = γtgg(m

2
H , µ)Ctgg(mt,m

2
H , µ) ,

γtgg(m
2
H , µ) = Γgcusp[αs(µ)] ln

−m2
H − i0

µ2
+ 2γgC [αs(µ)] . (3.15)

The noncusp terms in γtgg differ from those in γgg in eq. (3.3) due to the additional µ

dependence of αs(µ)Ct(µ), which is now included in the hard Wilson coefficient. The

overall |αs(µ)|2|Ct(mt, µ)|2 in eq. (3.14) is now evaluated at µH = −iµFO and then evolved

back to µFO. For the overall αs(µ) this is largely irrelevant since it is ultimately evolved

starting from αs(mZ). For Ct(µ), which is treated in fixed order, this induces different

subleading timelike logarithms starting at NNLO compared to Hgg. This is reflected in the

noncusp terms differing by γt, whose numerical effect however is not significant. Also, the

perturbative convergence of |Ct(µ)|2 at µ = mH and µ = −imH (and at its natural scale

µ = mt) is practically the same.

The perturbative convergence of Ht
gg shows the same improvement as seen for Hgg

when evaluated at µH = −imH rather than µH = mH ,

Ht
gg(mH , µH = mH) = |αs(mH)|2 |F0|2 ×

(
1 + 0.82152 + 0.36170 + 0.10268

)
,

Ht
gg(mH , µH = −imH) = |αs(−imH)|2 |F0|2×

(
1 + 0.27631 + 0.04244− 0.00257

)
. (3.16)

The main difference compared to Hgg are the additional constant terms from Ct that

are now included in Ht
gg. The finite-mt corrections have a very small effect on the NLO

contribution, contributing a +0.005 to the above 0.82152 and 0.27631.

5The −F1(0) here simply removes the leading mt →∞ part of F1(ρ), which is already included via Ct.

We drop all cross terms of F1(ρ) − F1(0) with Cgg, which are of O(ρα2
s) and higher, because these terms

are also not included in the fixed-order cross section.
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σ [pb] for gg → H, Ecm = 13 TeV, mH = 125 GeV

σrEFT
FO + δσtNLO σrEFT

res + δσtNLO (σrEFT + δσtNLO)res

n NnLO, µFO = mH NnLO, µFO = mH

2 NnLO+NnLL′ϕ (Hgg) NnLO+NnLL′ϕ (Ht
gg)

0 13.8±3.2µ (23%) 16.0±4.3µ (27%) 24.5±5.7µ±3.5ϕ (27%) 23.3±5.1µ±3.4ϕ (26%)

1 31.4±6.2µ (20%) 36.6±8.2µ (23%) 42.2±5.9µ±2.7ϕ (15%) 41.8±5.7µ±2.8ϕ (15%)

2 42.2±4.5µ (11%) 46.2±4.6µ (10%) 47.2±2.6µ±1.0ϕ (6.0%) 47.3±2.7µ±1.0ϕ (6.1%)

3 46.3±2.5µ (5.5%) 47.7±1.7µ (3.7%) 47.7±0.8µ±0.18ϕ (1.7%) 47.8±0.8µ±0.25ϕ (1.8%)

Table 1. Total gg → H cross section at Ecm = 13 TeV and mH = 125 GeV. All results include the

exact mt dependence δσt at NLO. The percent uncertainties for the resummed results correspond

to the total uncertainty ∆µ ⊕∆ϕ.

For reference, we first consider the rEFT limit and drop the finite-mt terms in Ht
gg as

well as δσtNLO. The rEFT result based on Ht
gg at N3LO+N3LL

′
ϕ then reads

σrEFT
res, Ht = (47.98± 0.85µ ± 0.24ϕ) pb (1.85%) . (3.17)

This is equivalent to the results at µH = −imH reported in ref. [61]. Including the full

NLO mt dependence, we obtain(
σrEFT + δσtNLO

)
res, Ht = (47.84± 0.81µ ± 0.25ϕ) pb (1.77%) . (3.18)

The full set of results including the lower orders are shown in the last column of table 1.

Comparing the last two columns of table 1, the resummed results using the two differ-

ent ways to include the top-quark contributions are perfectly compatible with each other.

The fixed-order uncertainty is essentially unaffected, because it is insensitive to the pre-

cise split of the constant terms into H and R due to the reexpansion of their fixed-order

contributions [see eq. (2.11)]. The resummation uncertainty ∆ϕ increases somewhat in the

one-step matching, which reflects the fact that the Ct contributions introduce an additional

residual µ dependence and that they are evaluated at µ = −imH rather than their natu-

ral scale µ = mt. Overall, the numerical differences are however completely insignificant,

which shows that the results are insensitive to the precise treatment of the top contribu-

tions. This also provides nontrivial verification that the scheme dependence in how the

nonlogarithmic constant terms are split between H and R at each order is much smaller

than the perturbative uncertainties and hence irrelevant.

A complete numerical inclusion of all known corrections beyond the rEFT limit is

beyond the scope of this paper. The inclusion of b-quark and electroweak effects can pro-

ceed completely analogously to the treatment of the top contributions. Any multiplicative

contributions can be trivially included, while additive corrections such as the NLO mb-

dependent terms can be treated analogously to the finite-mt corrections. For example, the

dominant known electroweak corrections can be included by replacing [94]

Ct → Ct + δEW(1 + C1wαs + · · · ) , (3.19)
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Figure 5. The perturbative remainder R(Y )/σ(0)(Y ) as a function of the Higgs rapidity Y

normalized to the LO spectrum σ(0)(Y ) ≡ dσ(0)/dY in the rEFT limit for µFO = mH (left) and

µFO = mH/2 (right).

where δEW is the pure NLO electroweak correction to the LO cross section [95, 96] and C1w

contains the mixed O(ααs) correction calculated in ref. [94] by integrating out W - and Z-

bosons as an estimate of the fullO(ααs) corrections. These additional contributions will not

affect the benefit of the resummation, in the same way the inclusion of the top corrections

for gg → H did not affect the conclusions compared to the generic scalar gg → X case.

3.4 Higgs rapidity spectrum

As discussed in sec. 2.1, the resummed form factor can be incorporated in the same way as

for the total production cross section into generic cross sections that are differential in or

contain cuts on the Born kinematics. Here we consider the primary example of the rapidity

spectrum as well as the cross section with a rapidity cut. For simplicity we do not consider

additional fiducial cuts on the Higgs decay products here, but stress again that these are

straightforward to include.

The rapidity spectrum for gluon-fusion Higgs production is known to NNLO [17–21],

while the N3LO corrections are available in the threshold limit [97]. We obtain the fixed-

order bin-integrated rapidity distribution for gg → H to NNLO with HNNLO 2.0 [20, 21].

We use a binsize of ∆Y = 0.25 and for clarity in all plots interpolate the binned results.

We first consider the rEFT limit and exclude additional quark mass effects. In fig. 5, we

display the perturbative remainder R(Y ) as a function of Y . Although it has some intrinsic

nontrivial rapidity dependence, the overall behavior is as for the total cross section, namely

it exhibits a noticeably better convergence than the full fixed-order spectrum. Hence, we

expect a similar improvement from applying the resummation to the rapidity spectrum as

for the total cross section.

The upper panels of fig. 6 show the fixed-order results at µFO = mH and µFO = mH/2,

with the bands showing ∆µ. The overall K factor at NLO and NNLO is roughly constant

in the central rapidity range and similar to that of the total cross section. This is consistent
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Figure 6. The rapidity distribution for gg → H at Ecm = 13 TeV and mH = 125 GeV in the

rEFT limit. The fixed-order results are shown in the top row at µFO = mH (left) and µFO = mH/2

(right). The resummed result is shown on the bottom. The uncertainty bands indicate ∆µ and

∆µ ⊕∆ϕ, respectively.

with the fact that a large part of the K factor stems from the timelike logarithms in the

gluon form factor, which is independent of the rapidity.

The resummed result including fixed-order and resummation uncertainties, ∆µ⊕∆ϕ, is

shown in the bottom panel of fig. 6. Clearly, resumming the timelike logarithms improves

the perturbative convergence across the spectrum as it did for the total cross section.

The NNLO+NNLL′ϕ result has perturbative uncertainties that are almost a factor of two

smaller than at NNLO. At the same time, the NNLO+NNLL′ϕ result is well covered by the

lower-order NLO+NLL′ϕ uncertainty band, which is not the case at fixed order. Judging

from the results for the total cross section, for which the full N3LO is known, we expect

the precision of the NNLO+NNLL′ϕ to be roughly comparable to what can be expected

for the full N3LO result, and we can be confident that the corresponding N3LO+N3LL
′
ϕ

result will have further reduced uncertainties and will be well contained within the current

NNLO+NNLL′ϕ uncertainties.
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σ(Ycut = 2.5) [pb] for gg → H, Ecm = 13 TeV, mH = 125 GeV

σrEFT
FO + δσtNLO σrEFT

res + δσtNLO (σrEFT + δσtNLO)res

n NnLO, µFO = mH NnLO, µFO = mH

2 NnLO+NnLL′ϕ (Hgg) NnLO+NnLL′ϕ (Ht
gg)

0 12.5±2.9µ (23%) 14.5±3.9µ (27%) 22.2±5.2µ±3.2ϕ (27%) 21.1±4.6µ±3.1ϕ (26%)

1 28.5±5.6µ (20%) 33.3±7.5µ (23%) 38.4±5.4µ±2.4ϕ (15%) 38.0±5.2µ±2.6ϕ (15%)

2 38.3±4.0µ (11%) 41.9±4.2µ (10%) 42.8±2.3µ±0.9ϕ (5.8%) 42.9±2.4µ±0.9ϕ (6.0%)

3 ≈ 42.0 ≈ 43.2 ≈ 43.2 ≈ 43.3

Table 2. Cross section for gg → H with a rapidity cut of Ycut = 2.5. All results include the exact

mt dependence δσt(Ycut) at NLO. The percent uncertainties for the resummed results correspond

to the total uncertainty ∆µ ⊕∆ϕ. The approximate n = 3 results are constructed as explained in

the text and are given for illustration only.

Next, we consider the cross section with a rapidity cut,

σ(Ycut) =

∫ Ycut

0
d|Y | dσ

d|Y |
. (3.20)

We now also include the exact mt-dependence at NLO using HNNLO 2.0 [98], from which

we extract the rapidity-dependent analogue of δσtNLO in eq. (3.11). The latter is included

in the resummed results as discussed in the previous subsection: It is either added to the

resummed result based on Hgg giving d(σres + δσt)/dY . Alternatively, we can apply the

resummation to the full mt-exact spectrum d(σrEFT + δσt)res/dY using Ht
gg. The obtained

differential rapidity spectra look extremely similar to those in fig. 6, since the finite-mt

correction yields a small negative shift −0.2 pb < d(δσt)/dY < 0 throughout.

In table 2, we provide benchmark results for Ycut = 2.5 at fixed order and including

resummation. As expected, the resummed results show the same improved convergence

and perturbative uncertainties as the rapidity spectrum and the total cross section.

Since the full N3LO rapidity spectrum is not yet known, one might think about ap-

proximating it by rescaling the NNLO spectrum to the inclusive N3LO cross section, e.g.,

by taking σN3LO(Ycut) ≈ (σN3LO/σNNLO) × σNNLO(Ycut). Although this likely improves

the central value by moving it closer to the correct result, it is unclear what uncertainties

one should assign. In fact, the resummed NNLO+NNLL′ϕ result for the rapidity spectrum

provides a clean way to essentially achieve this goal, because it includes the dominant part

of the inclusive N3LO K factor, and it does so with the correct rapidity dependence and

reliable uncertainties, which are already substantially reduced compared to NNLO.

To illustrate this, first note that the entire rapidity dependence is contained in the

remainder R. Looking at fig. 5, one might assume that the N3LO contribution is roughly

flat in rapidity such that taking

R(3)(Y ) ≈ R(3)

σ(0)
σ(0)(Y ) , R(3)(Ycut) ≈

R(3)

σ(0)
σ(0)(Ycut) , (3.21)

provides a reasonable approximation, where R(3)/σ(0) is the N3LO correction for the total

cross section. Using eq. (3.21) as input and combining it with the known H(3) and lower-
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order results we obtain the approximate numbers at N3LO and N3LO+N3LL
′
ϕ shown in

the last line of table 2. As expected, the NNLO+NNLL′ϕ results indeed capture most of

the expected shift from the NNLO result. Using the same procedure to evaluate the scale

variations, we can project that the relative uncertainties will be similar to the inclusive

cross section, namely around 4% at N3LO and around 2% at N3LO+N3LL
′
ϕ. However, we

caution again that it is debatable whether it is justified to assign these without knowing

the exact result.

4 Quark annihilation

We now turn to qq̄ annihilation processes, for which the perturbative corrections are typ-

ically much smaller than for gluon fusion. For these, timelike Sudakov logarithms still

arise in the corresponding quark form factor at timelike momentum transfer and can be

resummed to all orders. We apply the resummation to Higgs production through bottom

quark annihilation in sec. 4.1 and to the Drell-Yan process in sec. 4.2.

4.1 Higgs production through bottom-quark annihilation

The cross section for Higgs production through bottom-quark annihilation, bb̄ → H, is

much smaller than for gg → H, but is important phenomenologically as it provides direct

access to the bottom-quark Yukawa coupling and can be enhanced in theories beyond the

Standard Model.

The hard function for bb̄ → H corresponds to the quark scalar form factor and is

obtained from the SCET matching coefficient CSqq̄(Q
2, µ) for the scalar current with two

massless quarks, see eq. (2.1). The scalar form factor naturally arises in the five-flavor

scheme calculation in which the b quark is treated as a massless quark at the hard matching

scale, except for its Yukawa coupling y(µ) to the Higgs, which always has its physical

value corresponding to mb(µ). We exclude the Yukawa coupling from the hard matching

coefficient, just as we excluded the overall |αsCX |2 for gluon fusion.

To the best of our knowledge, CSqq̄ is not yet directly available in the literature. We

extract it in appendix A.3.4 to N3LO from the three-loop massless quark scalar form factor

calculated in ref. [99] (see also refs. [100–102] for the NNLO form factor, and ref. [103] for

the NNLO form factor including the full mass dependence). The RGE of CSqq̄ is given by

µ
d

dµ
CSqq̄(m

2
H , µ) = γSqq̄(m

2
H , µ)CSqq̄(m

2
H , µ) ,

γSqq̄(m
2
H , µ) = Γqcusp[αs(µ)] ln

−m2
H − i0

µ2
+ 2γqC [αs(µ)]− γm[αs(µ)] . (4.1)

where Γqcusp is the quark cusp anomalous dimension, and the last two terms are the total

noncusp contribution, where 2γqC is the usual hard quark noncusp anomalous dimension

(also appearing for the vector current) and γm is the mass anomalous dimension of the

Yukawa coupling.

We obtain the bb̄→ H total cross section to NNLO in the five-flavor scheme [104, 105]

from SusHi 1.6.0 [6, 63–65, 100]. The Yukawa coupling is evaluated at µFO and obtained
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Figure 7. The total bb̄→ H cross section at µFO = µR = mH as a function of the central choice

for κF = µF /mH . The fixed-order results are shown on the left and the resummed results on the

right. We also include the ∆b uncertainty from the low-scale matching onto the b-quark PDF. The

uncertainty bands show ∆µ (fixed order) and ∆µ ⊕∆ϕ (resummed).

by evolving from mb(mb) = 4.18 GeV using three-loop running. We use the reevolved

five-flavor PDF4LHC PDF sets from refs. [59, 60], which use a b-quark pole mass for the b

PDF that is consistent with our choice of mb(mb) (namely the one-loop pole mass mb =

4.58 GeV). These PDF sets also distinguish the b-quark matching scale µb from the physical

mass parameter mb, allowing to estimate the perturbative uncertainty ∆b associated with

the low-scale matching onto the b-quark PDFs by varying µb (see ref. [60] for details). For

the central value we use µb = mb.

In contrast to the gluon-initiated case, here the µF dependence of the cross section

plays the dominant role, while the µR dependence is much less important. For our central

scales we use µFO = mH and κF = 1/4 corresponding to (µR, µF ) = (mH ,mH/4), as

typically adopted in the five-flavor scheme calculation. This low central value for µF is

motivated by the observation that it roughly minimizes the collinear logarithms in the

partonic cross section and leads to more stable predictions, see e.g. refs. [59, 100, 106–

110]. This is also seen in the left panel of fig. 7, which shows the fixed-order results as

a function of the central value used for κF in the range κF = µF /mH ∈ [1/8, 1] (always

using µFO = µR = mH for the central value). The bands show the fixed-order uncertainty

∆µ, which is obtained from the µFO and κF variations as discussed in sec. 2.2.

The perturbative series of the fixed-order cross section and its separation into HS
qq̄ and

R are given by

σFO(µR = mH , µF = mH/4) = (1 + 0.342 + 0.050)× 0.387 pb ,

HS
qq̄(m

2
H , µH = mH) = 1 + 0.227 + 0.054 ,

R(µR = mH , µF = mH/4) = (1 + 0.115− 0.031)× 0.387 pb . (4.2)

Although the perturbative corrections to the cross section are more moderate than for

gg → H, they are still clearly driven by the hard function, while the corrections to the
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remainder at µF = mH/4 are relatively small. The hard function itself shows a markedly

improved convergence when evaluated at µH = −imH . Up to N3LO, we have

HS
qq̄(m

2
H , µH = mH) = 1 + 0.22742 + 0.05447 + 0.00507 ,

HS
qq̄(m

2
H , µH = −imH) = 1− 0.00807 + 0.01202 + 0.00237 , (4.3)

showing that the corrections at real scales µH = mH are mostly due to the timelike loga-

rithms, which are eliminated at µH = −imH .

The resummed results are shown in the right panel of fig. 7, again as a function of

the central choice for κF . From the above observations, we expect the resummed results

to have an improved convergence at µF = mH/4. This is clearly seen, as the resummed

predictions at the different orders roughly intersect at µF = mH/4, with the corrections

beyond LO+LL′ϕ amounting to less than 10%. The explicit numerical results at each order

including a breakdown of the perturbative uncertainties are collected in table 3.

Note that the remainder R carries the full µF dependence of the cross section. Evalu-

ating it at κF = 1, corresponding to µF = mH , its corrections are substantially larger than

at µF = mH/4,

R(µR = µF = mH) = σ(0)(µR = µF = mH)× (1− 0.359− 0.136) . (4.4)

We also checked that in the considered range of µF the perturbative coefficients of the

remainder are indeed minimized around µF = mH/4. This explains why the resummed

results in fig. 7 do not improve the fixed-order results above κF = 1/4, since there the

cross section becomes dominated by large negative corrections to the remainder and is also

affected by accidental numerical cancellations between H and R. Hence, the central choice

κF = 1/4 is also quite optimal from this point of view, as it leads to a clear “division of

labor” between the remainder and the hard function in capturing the perturbative correc-

tions to bb̄ → H: By evaluating the former at an appropriate µF the collinear logarithms

arising from initial-state g → bb̄ splittings are resummed into the b-quark PDFs, while the

latter captures the hard virtual contributions to the bb̄H vertex, the bulk of which are

enhanced at timelike kinematics and are resummed by setting µH = −imH .

The resummation also reduces the fixed-order uncertainty ∆µ by reducing the µFO

dependence and by eliminating large cross terms, which can also reduce the impact of the

large µF dependence from lower-order contributions. This is seen in the slightly reduced

µF dependence in fig. 7 at NLO+NLL′ϕ and NNLO+NNLL′ϕ compared to their fixed-

order counterparts. However, the reduction of ∆µ is not nearly as dramatic as for gg → H,

because the µF dependence plays a much bigger role here. (In principle, the µF dependence

and resulting uncertainties can be reduced further by reorganizing the perturbative series

as discussed in ref. [59], which is however beyond our scope here.) In table 3 we also

include the ∆b uncertainty from the low-scale b-quark PDF. (The parametric uncertainty

in mb is much smaller than ∆b and not considered.) The resummation uncertainty ∆ϕ is

completely negligible compared to ∆µ, thanks to the very stable resummed hard function.

Overall, we find that the NNLO and NNLO+NNLL′ϕ results are very similar, which

is reassuring, and that the resummation of timelike logarithms provides a useful tool to
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σ [pb] for bb̄→ H, Ecm = 13 TeV, mH = 125 GeV

n σFO at NnLO σres at NnLO+NnLL′ϕ

0 0.387±0.208µ±0.020b (54%) 0.500±0.269µ±0.026b±0.033ϕ (54%)

1 0.520±0.153µ±0.027b (30%) 0.550±0.138µ±0.028b±0.006ϕ (26%)

2 0.539±0.074µ±0.028b (15%) 0.537±0.052µ±0.028b±0.002ϕ (11%)

Table 3. Total bb̄ → H cross section at mH = 125 GeV at the LHC with Ecm = 13 TeV. The

central scales are µFO = mH , κF = 1/4. The percent uncertainties correspond to the quadratic

sum of all uncertainties.

accelerate the convergence of the bb̄ → H cross section and to reduce its perturbative

uncertainties.

4.2 Drell-Yan rapidity spectrum

As final example we consider the Drell-Yan process, pp → Z/γ∗ → `+`−. The necessary

quark vector form factor is known to three loops [69–73, 111–114]. The corresponding hard

matching coefficient CVqq̄ for the quark vector current to N3LO was obtained in refs. [73, 115].

We also need the matching coefficient CAqq̄ for the axial-vector current, which is equal to the

vector coefficient up to singlet corrections that start entering at O(α2
s) [45]. At NNLO the

axial-vector coefficient receives a nonvanishing singlet contribution from the axial-vector

anomaly due to the large bottom-top mass splitting, but these contributions have been

found to be small at cross section level [116, 117]. Since they are also not implemented in

the program Vrap 0.9 [118], which we use for our fixed-order predictions, we set CAqq̄ = CVqq̄,

dropping any singlet terms, and take Hqq̄ ≡ |CVqq̄|2 for our analysis. The RGE in either

case is identical, since the axially anomalous terms are nonlogarithmic, and reads

µ
d

dµ
CV,Aqq̄ (Q2, µ) = γV,Aqq̄ (Q,µ)CV,Aqq̄ (Q2, µ) ,

γV,Aqq̄ (Q2, µ) = Γqcusp

[
αs(µ)

]
ln
−Q2 − i0

µ2
+ 2γqC

[
αs(µ)

]
. (4.5)

We consider the double differential cross section d2σ/dY dQ, where Y and Q are the

rapidity and invariant mass of the produced lepton pair, and for simplicity focus on the Z

pole, Q = mZ . Note that perturbative corrections to the quark current can only have a

weak logarithmic dependence on Q, so our observations also hold away from the Z pole.

We obtain the rapidity distribution from Vrap 0.9 [118], taking into account V = Z, γ∗

and their interference terms.

As for bottom-quark fusion, we can expect that for Drell-Yan the choice of µF will

be important to improve the predictions by minimizing the perturbative corrections to

the remainder. We first consider the rapidity spectrum at fixed Y = 0. (Alternatively,

one could integrate over rapidity, which yields similar conclusions.) Figure 8 shows the

dependence on the factorization scale µF at fixed order (top left panel) and including the
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Figure 8. Double-differential cross section d2σ/dY dQ for pp → Z/γ∗ → `+`− at Q = mZ and

Y = 0 and for µFO = µR = mZ as a function of the central choice for κF = µF /mZ . The fixed-

order results are shown on the left and the resummed results on the right. In the bottom panel, the

highest-order results at NNLO and NNLO+NNLL′ϕ are directly compared with a further zoomed

in y-axis. The uncertainty bands show ∆µ (fixed order) and ∆µ ⊕∆ϕ (resummed).

resummation of timelike logarithms in the quark form factor (top right panel), always

using µFO = µR = mZ . In the bottom panel of fig. 8 we directly compare the NNLO (gray)

and NNLO+NNLL′ϕ (orange) results. The fixed-order results show the best convergence

around µF = mZ , which is the typical choice adopted for Drell-Yan. In contrast, the

resummed results clearly favor lower values of µF . We therefore take µF = mZ/2 as our

central choice, as in this region the lower-order uncertainties provide the best coverage of

the higher-order results, while at the same time the µF dependence at the highest order is

the most stable. (In principle, one might even consider going as low as µF ≈ mZ/4 close

to where the NLO+NLL′ϕ and NNLO+NNLL′ϕ central values coincide. However, the µF
dependence is much larger there, and we also prefer to stay within a factor of two of the

canonical value µF = mZ .) The explicit results at Y = 0 are given in table 4, including a

breakdown of the uncertainties.

The perturbative series of the fixed-order cross section at Q = mZ and Y = 0 and its
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d2σ/dY dQ [pb/GeV] for pp→ Z/γ∗ → `+`−, Ecm = 13 TeV, Q = mZ , Y = 0

dσFO at NnLO dσres at NnLO+NnLL′ϕ

n µF = mZ µF = mZ/2 µF = mZ/2

0 63.7±9.1µ (14%) 54.6±9.6µ (17%) 71.5±12.6µ±5.0ϕ (19%)

1 72.5±3.5µ (4.8%) 69.0±5.4µ (7.9%) 74.9±4.2µ±1.6ϕ (6.1%)

2 71.9±0.7µ (0.9%) 71.2±1.8µ (2.5%) 72.2±0.6µ±0.2ϕ (0.9%)

Table 4. Cross section for pp → Z/γ∗ → `+`− at Q = mZ and Y = 0 at the LHC with

Ecm = 13 TeV. The central scale is always µFO = µR = mZ . The percent uncertainties for the

resummed results correspond to the total uncertainty ∆µ ⊕∆ϕ.

decomposition into hard function Hqq̄ and remainder R at µF = mZ and µF = mZ/2 is

given by

d2σFO(µR = mZ , µF = mZ) = (1 + 0.138− 0.010)× 63.7 pb/GeV ,

Hqq̄(m
2
Z , µH = mZ) = 1 + 0.088 + 0.0317 ,

R(µR = mZ , µF = mZ) = (1 + 0.050− 0.046)× 63.7 pb/GeV ,

d2σFO(µR = mZ , µF = mZ/2) = (1 + 0.263 + 0.040)× 54.6 pb/GeV ,

Hqq̄(m
2
Z , µH = mZ) = 1 + 0.088 + 0.0317 ,

R(µR = mZ , µF = mZ/2) = (1 + 0.175− 0.007)× 54.6 pb/GeV . (4.6)

The corrections to the fixed-order cross section are smaller at µF = mZ . However, its

small NNLO contribution stems from a numerical cancellation between Hqq̄ and R, and as

discussed in sec. 2, there is a priori no reason to expect that this continues to happen at

higher orders. Also, the NLO and NNLO contributions for R are of the same size, indicating

that the NLO contribution is artificially small or the NNLO contribution unusually large

or a mixture of both. For µF = mZ/2, the NNLO contribution to R is very small and the

NNLO contribution to the cross section primarily comes from Hqq̄. It will be interesting

to see how this pattern continues at N3LO.

The hard function itself shows again a notably improved convergence at µH = −imZ

compared to µH = mZ ,

HV
qq̄(mZ , µH = mZ) = 1 + 0.08801 + 0.03169 + 0.00745 ,

HV
qq̄(mZ , µH = −imZ) = 1− 0.15048− 0.00126− 0.00101 . (4.7)

As for bb̄H, the improvement is not as dramatic as for gluon-fusion due to the reduced color

factor for quarks vs. gluons. Nevertheless, by eliminating the timelike logarithms in Hqq̄,

the higher-order contributions are substantially reduced, except that the NLO contribution

actually gets larger (in contrast to bb̄H). The reason for this is an accidental numerical

cancellation in the one-loop matching coefficient

CVqq̄(Q,µ) = 1 +
αs(µ)

4π
CF

[
− ln2

(
−Q2 − i0

µ2

)
+ 3 ln

(
−Q2 − i0

µ2

)
− 8 +

π2

6

]
+O

(
α2
s(µ)

)
,

(4.8)
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Figure 9. The perturbative remainder R(Y ) for pp → Z/γ∗ → `+`−, normalized to σ(0)(Y ) ≡
d2σ(0)/dQdY at Q = mZ for µF = mZ (left) and µF = mZ/2 (right).

where the rather large nonlogarithmic constant term of −8 + π2/6 partially cancels the

− ln2(−1) = π2 when Hqq̄ is evaluated at µH = mZ . As discussed in sec. 2, the sep-

aration of the nonlogarithmic constant terms between H and R amounts to a scheme

choice and only their sum is ultimately relevant. Hence, this large NLO constant term is a

scheme-dependent artifact and in fact cancels most of the equally large NLO contribution

in R(µF = mZ/2). This also means that the +0.263 NLO contribution in the cross section

at µF = mZ/2 in eq. (4.6) does in fact primarily come from the NLO timelike logarithm

in Hqq̄, which gives a contribution of +0.247 to it, even though this is not immediately

obvious from eq. (4.6). This explains the much improved convergence of the resummed

results at µF = mZ/2 compared to the fixed-order results at the same scale.

It was already noted in ref. [25] that the constant terms in CVqq̄ are scheme dependent

and hence not physical, unlike the ratio of form factors. Since the constant terms in

H and R are evaluated at different scales, there is a residual scheme dependence, which

is analogous to a scale choice in that it affects the numerical results but is formally of

higher order [see eq. (2.13)]. To check this, we can consider an alternative renormalization

scheme for the Wilson coefficient C̃Vqq̄, for which all constant terms exactly vanish. That

is, the corresponding hard function solely consists of timelike logarithms, H̃V
qq̄(m

2
Z , µH =

mZ) = 1 + 0.247 + 0.073 + 0.013, while H̃V
qq̄(m

2
Z , µH = −imZ) = 1 + 0 + 0 + 0. Hence,

the constant terms are moved entirely into the remainder. In this scheme, the resummed

result at NNLO+NNLL′ϕ is d2σ̃res(Y = 0, Q = mZ , µR = mZ , µF = mZ/2) = (71.4±0.7µ±
0.2ϕ) pb/GeV (1.0%). Compared to the last line of table 4, the difference of ±0.8 pb is of

the same size as the uncertainties and thus of the typical size we expect for an O(α3
s) effect.

We now discuss the effect of the resummation on the rapidity spectrum. In fig. 9,

we show the remainder R(Y ) normalized to the Born cross section as a function of Y for

µF = mZ (left) and µF = mZ/2 (right). The behavior discussed for Y = 0 above is

similar throughout most of the spectrum. Namely, for µF = mZ , the NNLO corrections

are relatively large and of the same size and opposite sign as the NLO contributions, while
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Figure 10. Rapidity spectrum for pp → Z/γ∗ → `+`− at Q = mZ . The fixed-order results are

shown for Y < 0 and the resummed results for Y > 0. For the central scale we use µFO = mZ in

both cases, while κF = 1 (fixed order) and κF = 1/2 (resummed). The uncertainty bands indicate

∆µ (fixed order) and ∆µ ⊕∆ϕ (resummed).

the NNLO corrections are almost negligible at µF = mZ/2 over most of the rapidity range.

(A large part of the rapidity-independent constant shift at NLO will again be canceled by

the constant term in Hqq̄.) In fig. 10, we compare the rapidity spectrum at Q = mZ , where

the fixed-order calculation at its optimal µF = mZ is shown for Y < 0 and the resummed

result at µF = mZ/2 for Y > 0.

Overall, we find that the NNLO and NNLO+NNLL′ϕ predictions provide very simi-

lar results. On the one hand, this is reassuring, as it shows that the good convergence

of the fixed-order series is not spoiled by the resummation. On the other hand, given

the extreme reduction of the perturbative uncertainties in the fixed-order results at the

conventional choice of µF = mZ by a factor of five when going from NLO to NNLO and

the substantially larger uncertainties at µF = mZ/2, one might perhaps be worried that

the fixed-order uncertainties are somewhat underestimated, in part due to the accidentally

small NNLO contribution. In this respect, the resummed results provide a useful confirma-

tion and increased confidence in the very small perturbative uncertainties in the Drell-Yan

predictions.

5 Conclusion

We have investigated in detail the resummation of timelike logarithms ln2(−1) = −π2

that arise to all orders in perturbation theory and are an important source of perturba-

tive corrections in s-channel color-singlet production processes, which involve a timelike

hard momentum transfer. These logarithms can be resummed to all orders using the RG

evolution of the corresponding quark or gluon form factors from spacelike to timelike scales.

We have shown how to incorporate the resummed form factor in a completely straight-

forward manner into predictions for generic inclusive cross sections with arbitrary depen-
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dence or cuts on the Born kinematics. We have verified that this does not spoil the

perturbative series in all considered cases. We have also discussed the assessment of the

uncertainties intrinsic to the resummation.

We first revisited the resummation for the total gluon-fusion cross section, for which

it has been discussed before, considering both the production of a generic scalar as well as

the SM Higgs boson in the mt → ∞ limit up to N3LO+N3LL
′
ϕ. For the latter we have

also shown how to incorporate quark-mass and electroweak effects. We confirm that the

resummation significantly improves the perturbative series, and find that it reduces the

perturbative uncertainties at the highest orders by about a factor of two.

For the Higgs rapidity spectrum as well as the cross section with a cut on the Higgs

rapidity we obtain results at NNLO+NNLL′ϕ, which provide the currently most precise

predictions with central values close to what might be expected at N3LO, and perturbative

uncertainties of ∼ 6%, which are almost a factor of two smaller than at NNLO. Once N3LO

results for the rapidity dependence become available, we project that the corresponding

resummation at N3LO+N3LL
′
ϕ will provide a similar improvement.

We also studied the resummation of timelike logarithms for quark-induced processes,

namely Higgs production through bottom-quark annihilation and the Drell-Yan rapidity

spectrum. For the former, the resummation provides a small improvement in the perturba-

tive convergence and resulting uncertainties. For Drell-Yan production, the resummation

provides no clear improvement but also no worsening of the predictions, due to the already

fast convergence of the fixed-order perturbative series. In this case it provides a useful

confirmation of the very small residual perturbative uncertainties.

We conclude that utilizing the resummed timelike quark and gluon form factors is

viable and beneficial for obtaining precise and reliable predictions for s-channel color-singlet

production processes.
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A Perturbative ingredients

A.1 Master formula for hard Wilson coefficients to three loops

The hard matching coefficients C satisfy an RGE of the form

µ
d

dµ
C(q2, µ) =

{
Γcusp[αs(µ)] ln

−q2 − i0

µ2
+ γ[αs(µ)]

}
C(q2, µ) , (A.1)

which allows us to completely predict the logarithmic structure in terms of the cusp and

noncusp anomalous dimension coefficients. We write the perturbative expansion of the
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hard coefficient as

C(q2, µ) =
∞∑
n=0

C(n)(L)

[
αs(µ)

4π

]n
, L = ln

−q2 − i0

µ2
, Cn = C(n)(0) . (A.2)

Normalizing C such that the tree-level result is C0 = 1, the perturbative solution of

eq. (A.1) to N3LO is given by

C(0) = 1 ,

C(1)(L) = −L
2

4
Γ0 −

L

2
γ0 + C1 ,

C(2)(L) =
L4

32
Γ2

0 +
L3

24
Γ0(2β0 + 3γ0) +

L2

8
(2β0γ0 + γ2

0 − 2C1Γ0 − 2Γ1)

− L

2
(2C1β0 + C1γ0 + γ1) + C2 ,

C(3)(L) = − L6

384
Γ3

0 −
L5

192
Γ2

0(4β0 + 3γ0) +
L4

96
Γ0

(
−4β2

0 − 10β0γ0 − 3γ2
0 + 3C1Γ0 + 6Γ1

)
+
L3

48

[
−8β2

0γ0 − 6β0γ
2
0 − γ3

0 + Γ0(16C1β0 + 6C1γ0 + 6γ1 + 4β1) + Γ1(8β0 + 6γ0)
]

+
L2

8

[
C1(8β2

0 + 6β0γ0 + γ2
0 − 2Γ1) + 2β1γ0 + 4β0γ1 + 2γ0γ1 − 2C2Γ0 − 2Γ2

]
− L

2

(
4C2β0 + 2C1β1 + C2γ0 + C1γ1 + γ2

)
+ C3 . (A.3)

Here, βn are the beta-function coefficients, Γn ≡ Γin the appropriate quark or gluon cusp

anomalous dimensions coefficients, and γn are the coefficients of the total noncusp anoma-

lous dimension γ in eq. (A.1) as appropriate for the hard coefficient of interest. All required

anomalous dimension coefficients are given below in appendix A.2. The results for the

nonlogarithmic constant terms Cn for the different Wilson coefficients are given below in

appendix A.3

The full expression for the hard function is obtained by squaring C, accounting for

cross terms. In the case of Ht
gg defined in eq. (3.14) the product of CtCgg is reexpanded.

A.2 Anomalous dimensions

We expand the β function of QCD as

µ
dαs(µ)

dµ
= β[αs(µ)] , β(αs) = −2αs

∞∑
n=0

βn

(αs
4π

)n+1
. (A.4)

The coefficients up to four loops in the MS scheme are [119–122]

β0 =
11

3
CA −

4

3
TF nf ,

β1 =
34

3
C2
A −

(20

3
CA + 4CF

)
TF nf , (A.5)

β2 =
2857

54
C3
A +

(
C2
F −

205

18
CFCA −

1415

54
C2
A

)
2TF nf +

(11

9
CF +

79

54
CA

)
4T 2

F n
2
f ,
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β3 =
(149753

6
+ 3564ζ3

)
−
(1078361

162
+

6508

27
ζ3

)
nf +

(50065

162
+

6472

81
ζ3

)
n2
f +

1093

729
n3
f ,

where for β3 we specified to SU(3) for brevity. Throughout our analysis, we consider nf = 5

active flavors.

The cusp and noncusp anomalous dimensions are expanded as

Γicusp(αs) =

∞∑
n=0

Γin

(αs
4π

)n+1
, γ(αs) =

∞∑
n=0

γn

(αs
4π

)n+1
. (A.6)

The coefficients of the MS cusp anomalous dimension to three loops are [123–125]

Γqn = CFΓn , Γgn = CAΓn , (for n = 0, 1, 2) ,

Γ0 = 4 ,

Γ1 = 4
[
CA

(67

9
− π2

3

)
− 20

9
TF nf

]
=

4

3

[
(4− π2)CA + 5β0

]
,

Γ2 = 4
[
C2
A

(245

6
− 134π2

27
+

11π4

45
+

22ζ3

3

)
+ CA TF nf

(
−418

27
+

40π2

27
− 56ζ3

3

)
+ CF TF nf

(
−55

3
+ 16ζ3

)
− 16

27
T 2
F n

2
f

]
. (A.7)

The resummation at N3LL formally also requires the yet unknown four-loop coefficient Γi3,

which we estimate as usual by the Padé approximation

Γi3,Padé =
(Γi2)2

Γi1
, (A.8)

and explicitly verify that a variation ±200% only affects the hard evolution kernel UH (and

thus the resummed cross section) at the sub-permille level. We therefore neglect this source

of theory uncertainty.

The gluon noncusp anomalous dimension γgC enters the RGE for the gluon-to-scalar

matching coefficients Cgg and C ′gg in eqs. (3.3) and (3.15). The coefficients in MS up to

three loops are [70, 74, 75]

γgC 0 = −β0 ,

γgC 1 = CA

[
CA

(
−59

9
+ 2ζ3

)
+ β0

(
−19

9
+
π2

6

)]
− β1 ,

γgC 2 =
CA
2

[
C2
A

(
−60875

162
+

634π2

81
+

8π4

5
+

1972ζ3

9
− 40π2ζ3

9
− 32ζ5

)
+ CAβ0

(7649

54
+

134π2

81
− 61π4

45
− 500ζ3

9

)
+ β2

0

(466

81
+

5π2

9
− 28ζ3

3

)
+ β1

(
−1819

54
+
π2

3
+

4π4

45
+

152ζ3

9

)]
− β2 . (A.9)

The evolution of Ctgg in the one-step matching also requires the anomalous dimension

γt of the Wilson coefficient Ct arising from integrating out the top quark. It is given by

γt(αs) = α2
s

d

dαs

β(αs)

α2
s

, γt n = −2n · βn . (A.10)
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The quark noncusp anomalous dimension γqC enters the RG eqs. (4.1) and (4.5) for both

quark-induced processes we consider. The coefficients in MS up to three loops are [70, 75,

114, 126]

γqC 0 = −3CF ,

γqC 1 = −CF
[
CA

(41

9
− 26ζ3

)
+ CF

(3

2
− 2π2 + 24ζ3

)
+ β0

(65

18
+
π2

2

)]
,

γqC 2 = −CF
[
C2
A

(66167

324
− 686π2

81
− 302π4

135
− 782ζ3

9
+

44π2ζ3

9
+ 136ζ5

)
+ CFCA

(151

4
− 205π2

9
− 247π4

135
+

844ζ3

3
+

8π2ζ3

3
+ 120ζ5

)
+ C2

F

(29

2
+ 3π2 +

8π4

5
+ 68ζ3 −

16π2ζ3

3
− 240ζ5

)
+ CAβ0

(
−10781

108
+

446π2

81
+

449π4

270
− 1166ζ3

9

)
+ β1

(2953

108
− 13π2

18
− 7π4

27
+

128ζ3

9

)
+ β2

0

(
−2417

324
+

5π2

6
+

2ζ3

3

)]
. (A.11)

The evolution of CSqq̄ also requires the anomalous dimension of the quark Yukawa

coupling, which is equivalent to the quark mass anomalous dimension γm,

µ
d

dµ
y(µ) = γm[αs(µ)] y(µ) . (A.12)

It is known to five loops [127–133]. For our main analysis at NNLL we only require the

two-loop result, while the three-loop coefficient γm 2 serves to verify our N3LO result for

CSqq̄. The results are

γm 0 = −6CF ,

γm 1 = −2CF

(3

2
CF +

97

6
CA −

10

3
TF nf

)
,

γm 2 = −2CF

[
11413

108
C2
A −

129

4
CFCA +

129

2
C2
F + CA TF nf

(
−556

27
− 48ζ3

)
+ CF TF nf (−46 + 48ζ3)− 140

27
T 2
F n

2
f

]
. (A.13)

A.3 Constant terms to three loops

In the following, we provide the process-specific nonlogarithmic constant terms Cn for the

various hard matching coefficients. For Cgg, Ct, and CVqq̄, we can collect the results from

the literature. The result for CSqq̄ we have extracted from the three-loop scalar quark form

factor. By convention, we normalize all coefficients to unity at LO,

Cgg 0 = Ct 0 = CVqq̄ 0 = CSgg 0 = 1 . (A.14)

Note that for all coefficients quoted here, we closely follow the notation from the original

publications. For this reason, we set TF = 1/2 in the following results.
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A.3.1 Gluon matching coefficient

The finite terms of Cgg can be read off from the full result given in ref. [73],

Cgg 1 = CA ζ2 ,

Cgg 2 = C2
A

(5105

162
− 143

9
ζ3 +

67

6
ζ2 +

1

2
ζ2

2

)
+ CA nf

(
−916

81
− 46

9
ζ3 −

5

3
ζ2

)
+ CF nf

(
−67

6
+ 8ζ3

)
,

Cgg 3 = C3
A

(
+

29639273

26244
− 1939

270
ζ2

2 +
2222

9
ζ5 +

105617

729
ζ2 −

24389

1890
ζ3

2 −
152716

243
ζ3

− 605

9
ζ2ζ3 −

104

9
ζ2

3

)
+ C2

A nf

(
−3765007

6561
+

428

9
ζ5 −

460

81
ζ3 −

14189

729
ζ2 −

82

9
ζ2ζ3 +

73

45
ζ2

2

)
+ CACF nf

(
−341219

972
+

608

9
ζ5 +

14564

81
ζ3 −

68

9
ζ2 +

64

3
ζ2ζ3 −

64

45
ζ2

2

)
+ C2

F nf

(304

9
− 160ζ5 +

296

3
ζ3

)
+ CA n

2
f

(611401

13122
+

4576

243
ζ3 +

4

9
ζ2 +

4

27
ζ2

2

)
+ CF n

2
f

(4481

81
− 112

3
ζ3 −

20

9
ζ2 −

16

45
ζ2

2

)
. (A.15)

A.3.2 Ct coefficient for Higgs production in the EFT limit

The general expression for Ct(mt, µ) up to O(α3
s) is given by

Ct(mt, µ) = 1 + Ct 1
αs(µ)

4π
+

[
(β1 − β0Ct 1) ln

m2
t

µ2
+ Ct 2

]
α2
s(µ)

(4π)2

+

[
−β0(β1 − β0Ct 1) ln2 m

2
t

µ2
+ 2(β2 − β0Ct 2) ln

m2
t

µ2
+ Ct 3

]
α3
s(µ)

(4π)3
. (A.16)

The constant terms are given by

Ct 1 = 5CA − 3CF ,

Ct 2 =
91

6
C2
A −

100

3
CACF +

27

2
C2
F + CA

(47

12
β0 −

5

6
TF

)
− CFTF

(4

3
+ 5nf

)
,

Ct 3 = −2761331

648
+

897943

144
ζ3 + nf

(58723

324
− 110779

216
ζ3

)
− n2

f

6865

486
, (A.17)

where Ct 3 is taken from ref. [10], where all color factors are already evaluated for Nc = 3.

The dependence of Ht
gg on ρ = m2

H/(4m
2
t ) at NLO is given by [30]

F1(ρ) = CA

(
5− 38

45
ρ− 1289

4725
ρ2 − 155

1134
ρ3 − 5385047

65488500
ρ4
)

+ CF

(
−3 +

307

90
ρ+

25813

18900
ρ2 +

3055907

3969000
ρ3 +

659504801

1309770000
ρ4
)

+O(ρ5) , (A.18)

where F1(0) = Ct 1. The exact ρ dependence of F1(ρ) in terms of harmonic polylogarithms

is known [62, 91, 92]. We use the results expanded in ρ, which are completely sufficient

for practical purposes because the corrections are small and the expansion in ρ ' 0.13

converges very quickly.
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A.3.3 Quark vector-current matching coefficient

The finite terms of CVqq̄ to three loops can be read off from ref. [73],

CVqq̄ 1 = CF (−8 + ζ2) ,

CVqq̄ 2 = CF

[
CA

(
−51157

648
+

313

9
ζ3 −

337

18
ζ2 +

44

5
ζ2

2

)
+ CF

(255

8
− 30ζ3 + 21ζ2 −

83

10
ζ2

2

)
+ nf

(4085

324
+

2

9
ζ3 +

23

9
ζ2

)]
,

CVqq̄ 3 = CF

[
C2
A

(
−51082685

52488
− 434

9
ζ5 +

505087

486
ζ3 −

1136

9
ζ2

3 −
412315

729
ζ2 +

416

3
ζ2ζ3

+
22157

270
ζ2

2 −
6152

189
ζ3

2

)
+ CACF

(415025

648
− 2756

9
ζ5 −

18770

27
ζ3 +

296

3
ζ2

3 +
538835

648
ζ2 −

3751

9
ζ2ζ3

− 4943

270
ζ2

2 −
12676

315
ζ3

2

)
+ C2

F

(
−2539

12
− 413

5
ζ2

2 + 664ζ5 −
6451

24
ζ2 +

37729

630
ζ3

2 − 470ζ3 + 250ζ2ζ3 + 16ζ2
3

)
+ CA nf

(1700171

6561
− 4

3
ζ5 −

4288

27
ζ3 +

115555

729
ζ2 +

4

3
ζ2ζ3 +

2

27
ζ2

2

)
+ CF nf

(41077

972
− 416

9
ζ5 +

13184

81
ζ3 −

31729

324
ζ2 −

38

9
ζ2ζ3 −

331

27
ζ2

2

)
+ n2

f

(
−190931

13122
− 416

243
ζ3 −

824

81
ζ2 −

188

135
ζ2

2

)
+NF,V

(
N2
c − 4

Nc

)(
4− 80

3
ζ5 +

14

3
ζ3 + 10ζ2 −

2

5
ζ2

2

)]
. (A.19)

The last term is the three-loop contribution from diagrams where the initial-state quarks

do not couple directly to the vector boson. Here, Nc = 3 is the number of colors and we

refer to ref. [73] for details of NF,V . Since the full Drell-Yan fixed-order cross section is only

available to NNLO, the three-loop coefficient never enters our resummed predictions. For

the illustrative values of HV
qq̄ given in eq. (4.7) we set NF,V = 0 for the sake of comparison.

The explicit three-loop results for CVqq̄ were also extracted in ref. [115] from the three-

loop form factor in ref. [72]. We verified that the above results agree with the numerical

results for the vector hard function HV
qq̄ given in ref. [115] after setting NF,V = 0.

A.3.4 Quark scalar-current matching coefficient

As far as we are aware, a result for CSqq̄ has not been given explicitly in the literature so

far. The quark scalar form factor F in QCD has been computed to O(α3
s) in ref. [99], from

which we can extract CSqq̄. A slight difficulty arises as F is only given at timelike kinematics

and fixed µ = Q in ref. [99]. To obtain the full dependence on L = 2 ln(−iQ/µ), we start

from the bare form factor F given in ref. [99] and perform its UV-renormalization at an

arbitrary MS renormalization point µ. We explicitly checked that the ratio of the timelike

to spacelike form factor is IR-finite as required. We then proceed by subtracting the IR
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poles in F in MS by a multiplicative renormalization factor,

CSqq̄(µ) =
1

y(µ)
lim
ε→0

Z−1(ε, µ)F (ε, µ) . (A.20)

In SCET with pure dimensional regularization, the 1/ε IR poles in F (ε, µ) are the UV poles

of the bare Wilson coefficient, so eq. (A.20) is equivalent to the MS renormalization of CSqq̄.

Here we have made explicit that the renormalized quark Yukawa coupling y(µ) is

excluded from CSqq̄. We have also verified that the obtained renormalization factor Z

reproduces the correct anomalous dimension for CSqq̄, i.e. that it satisfies

− d lnZ(µ)

d lnµ
= Γqcusp[αs(µ)]L+ 2γqC [αs(µ)] (A.21)

order-by-order in αs, which provides a strong check on the pole structure of F . Equivalently,

we also checked that the full result for CSqq̄(µ) obtained from eq. (A.20) agrees with eq. (A.3)

(with Γcusp ≡ Γqcusp and γ = 2γqC − γm). For the nonlogarithmic constant terms of CSqq̄ we

obtain

CSqq̄ 1 = CF (−2 + ζ2) ,

CSqq̄ 2 = CF

[
CF

(
6 + 14ζ2 −

83

10
ζ2

2 − 30ζ3

)
+ CA

(
−467

81
− 103

18
ζ2 +

44

5
ζ2

2 +
151

9
ζ3

)
+ nf

(200

81
+

5

9
ζ2 +

2

9
ζ3

)]
,

CSqq̄ 3 = CF

[
C2
A

(
−6152

189
ζ3

2 +
10093

135
ζ2

2 +
326

3
ζ2ζ3 −

264515

1458
ζ2 −

1136

9
ζ2

3 +
107648

243
ζ3

+
106

9
ζ5 +

5964431

26244

)
+ CFCA

(
−12676

315
ζ3

2 −
893

270
ζ2

2 −
3049

9
ζ2ζ3 +

31819

81
ζ2 +

296

3
ζ2

3 −
4820

27
ζ3

− 1676

9
ζ5 −

9335

81

)
+ C2

F

(37729

630
ζ3

2 − 77ζ2
2 + 178ζ2ζ3 −

353

3
ζ2 + 16ζ2

3 − 654ζ3 + 424ζ5 +
575

3

)
+ CA nf

(
−476

135
ζ2

2 +
4

3
ζ2ζ3 +

33259ζ2

729
− 2860

27
ζ3 −

4

3
ζ5 −

521975

13122

)
+ CF nf

(
−61

27
ζ2

2 −
38

9
ζ2ζ3 −

6131

162
ζ2 +

11996

81
ζ3 −

416

9
ζ5 +

35875

972

)
+ n2

f

(
−188

135
ζ2

2 −
212

81
ζ2 −

200

243
ζ3 +

2072

6561

)]
. (A.22)

A.4 Renormalization group evolution

For reference we collect the explicit expressions needed for the RG evolution of the hard

functions. The evolution factor UH is defined by eq. (2.5). It is given explicitly by

UH(Q,µ0, µ) =

∣∣∣∣ exp

[
2ηiΓ(µ0, µ) ln

(−iQ

µ0

)
− 2Ki

Γ(µ0, µ) +Kγ(µ0, µ)

]∣∣∣∣2 , (A.23)
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where

Ki
Γ(µ0, µ) =

∫ αs(µ)

αs(µ0)

dαs
β(αs)

Γicusp(αs)

∫ αs

αs(µ0)

dα′s
β(α′s)

, ηiΓ(µ0, µ) =

∫ αs(µ)

αs(µ0)

dαs
β(αs)

Γicusp(αs) ,

Kγ(µ0, µ) =

∫ αs(µ)

αs(µ0)

dαs
β(αs)

γ(αs) . (A.24)

Here Γcusp(αs) is the relevant quark or gluon cusp anomalous dimension and γ(αs) the

appropriate noncusp anomalous dimension of the relevant hard matching coefficient.

Their explicit expressions at NNLL are

KΓ(µ0, µ) = − Γ0

4β2
0

{
4π

αs(µ0)

(
1− 1

r
− ln r

)
+

(
Γ1

Γ0
− β1

β0

)
(1− r + ln r) +

β1

2β0
ln2 r

+
αs(µ0)

4π

[(
β2

1

β2
0

− β2

β0

)(1− r2

2
+ ln r

)
+

(
β1Γ1

β0Γ0
− β2

1

β2
0

)
(1− r + r ln r)

−
(

Γ2

Γ0
− β1Γ1

β0Γ0

)
(1− r)2

2

]}
,

ηΓ(µ0, µ) = − Γ0

2β0

[
ln r +

αs(µ0)

4π

(
Γ1

Γ0
− β1

β0

)
(r − 1)

+
α2
s(µ0)

16π2

(
Γ2

Γ0
− β1Γ1

β0Γ0
+
β2

1

β2
0

− β2

β0

)
r2 − 1

2

]
,

Kγ(µ0, µ) = − γ0

2β0

[
ln r +

αs(µ0)

4π

(
γ1

γ0
− β1

β0

)
(r − 1)

]
, (A.25)

where r = αs(µ)/αs(µ0) and the running coupling is given by the three-loop expression

1

αs(µ)
=

X

αs(µ0)
+

β1

4πβ0
lnX +

αs(µ0)

16π2

[
β2

β0

(
1− 1

X

)
+
β2

1

β2
0

( lnX

X
+

1

X
− 1
)]
, (A.26)

withX ≡ 1+αs(µ0)β0 ln(µ/µ0)/(2π). For the resummation at lower logarithmic accuracies,

the expressions in eq. (A.25) are truncated accordingly. The relevant expressions at N3LL,

used for the inclusive gg → H cross sections, can be found in ref. [115].

B Fixed-order estimates from resummed timelike logarithms

It is instructive to compare explicitly the fixed-order contributions induced purely by the

timelike logarithms in the form factor with the full fixed-order result to assess whether

they are indeed a dominant part of the perturbative corrections. However, we also stress

that this is not a good way for judging the usefulness of the resummation as a whole, since

it does not capture the full resummed result and in particular does not take into account

the improvements in perturbative convergence and uncertainties.

In ref. [10], such an analysis was carried out for gg → H for the coefficient Cδ of the

δ(1 − z) term in the partonic cross section. This coefficient is fully determined by the

partonic threshold limit z = m2
H/ŝ → 1, where ŝ is the partonic center-of-mass energy,

and factorizes as in eq. (2.6) into the product of the gluon form factor and purely soft
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contributions. Ref. [10] found that Cδ is poorly predicted from the timelike logarithms

alone. However, this can be very misleading since the δ(1−z) coefficient is strongly scheme

dependent and not a physical quantity. Rather, this type of analysis should be carried out

at the level of the cross section, which is a scheme-independent physical observable. To

illustrate this, we repeat the analysis of ref. [10] and compare it to a different convention

for the soft function, as well as considering the hadronic K factor.

Following ref. [10], we choose µFO = mH and work in the pure EFT limit of sec. 3.1

with CX(µFO) = 1. (The result for Higgs production is easily restored by reexpanding

against |Ct|2.) The relevant hard function is hence Hgg in eq. (3.2). Given the exact hard

function to O(αns ), which is fully included in the NnLL′ resummed result, the O(αn+1
s )

contribution predicted by and included in the resummation is given by

H(n+1)
appr = 2

(αs
4π

)n+1
Re
[
C(n+1)(L = −iπ)

]
Cn+1=0

+ cross terms

= H(n+1) − 2
(αs

4π

)n+1
Cn+1 , (B.1)

where all logarithmic terms in the O(αn+1
s ) Wilson coefficient C(n+1) are predicted by the

RGE [see eq. (A.3)], and the only missing ingredient compared to the full result for H(n+1)

is the nonlogarithmic O(αn+1
s ) term Cn+1. Denoting the soft function contribution to the

δ(1− z) coefficient by Sδ = 1 + S
(1)
δ + · · · , the corresponding approximate result for Cδ at

O(αn+1
s ) is

C
(n+1)
δ appr = H(n+1)

appr +H(n) S
(1)
δ + · · ·+H(1) S

(n)
δ . (B.2)

The result for Sδ to O(α3
s) can be obtained from ref. [13], which writes the soft function

in terms of the standard (plus) distributions

δ(1− z) ,
[

lnn(1− z)
1− z

]
+

(n ≥ 0) . (B.3)

Applying eq. (B.2) at each successive order, we find

LO+LL′ϕ: Cδ = 1 + 14.80
(αs
π

)
+ · · · ,

NLO+NLL′ϕ: Cδ = 1 + 9.87
(αs
π

)
+ 45.35

(αs
π

)2
+ · · · ,

NNLO+NNLL′ϕ: Cδ = 1 + 9.87
(αs
π

)
+ 13.61

(αs
π

)2
− 644.26

(αs
π

)3
+ · · · ,

N3LO: Cδ = 1 + 9.87
(αs
π

)
+ 13.61

(αs
π

)2
+ 1124.31

(αs
π

)3
. (B.4)

The last coefficients in the first three lines are those predicted by the resummation beyond

the included fixed-order accuracy. In the last line the N3LO result is given for comparison.

(These numbers agree with those given in ref. [10] except for C
(3)
δ appr, where they find

−554.79 rather than our −644.26. We were unable to resolve this numerical difference, but

it is immaterial for the present discussion.)

From eq. (B.4) it looks like the resummation does a poor job at approximating the

higher fixed-order result, which would be in stark contrast to what we have seen in sec. 3.
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The resolution lies in the cross terms with the soft function in eq. (B.2). The S
(n)
δ coeffi-

cients depend on the (in principle arbitrary) boundary condition chosen for the plus distri-

butions. In other words, the distinction between the soft-function cross terms included in

eq. (B.4) and those between H(n) and the remaining soft-function terms is arbitrary. To

illustrate this, we can instead write the soft function in terms of the different set of plus

distributions

δ(1− z) ,
[

1

1− z
lnn

(1− z)2

z

]
+

(n ≥ 0) , (B.5)

used e.g. in refs. [11, 14], for which we get a different S̃δ coefficient6 and a corresponding

different C̃δ coefficient of δ(1− z),

LO+LL′ϕ: C̃δ = 1 + 14.80
(αs
π

)
+ · · · ,

NLO+NLL′ϕ: C̃δ = 1 + 19.74
(

(
αs
π

)
+ 215.82

(αs
π

)2
+ · · · ,

NNLO+NNLL′ϕ: C̃δ = 1 + 19.74
(αs
π

)
+ 210.07

(αs
π

)2
+ 1484.58

(αs
π

)3
+ · · · ,

N3LO: C̃δ = 1 + 19.74
(αs
π

)
+ 210.07

(αs
π

)2
+ 1372.11

(αs
π

)3
. (B.6)

In this convention, the resummation approximates the higher fixed-order terms of C̃δ very

well. The strong scheme dependence of the δ(1−z) coefficient is obvious from the completely

different coefficients in the exact results for Cδ and C̃δ in eqs. (B.4) and (B.6).

Instead, it is much more meaningful to consider physical quantities such as the inclusive

hadronic cross section. The approximate result analogous to eq. (B.2) for the total K factor

is given by

K(n+1)
appr = H(n+1)

appr +H(n) ·R(1) + · · ·+H(1) ·R(n) , (B.7)

where the Sδ coefficient is now replaced by the full perturbative remainder R defined in

eq. (2.7). The scheme dependence in this case is how the nonlogarithmic constant terms

are split between H and R, which as discussed in sec. 2.1 cancels in their product and by

construction does not enter H
(n+1)
appr . The analogous fixed-order expansions of the resummed

results for the K factor are given by

LO+LL′ϕ: Kgg→X = 1 + 14.80
(αs
π

)
+ · · · ,

NLO+NLL′ϕ: Kgg→X = 1 + 30.52
(αs
π

)
+ 402.00

(αs
π

)2
+ · · · ,

NNLO+NNLL′ϕ: Kgg→X = 1 + 30.52
(αs
π

)
+ 425.27

(αs
π

)2
+ 3820.46

(αs
π

)3
+ · · · ,

N3LO: Kgg→X = 1 + 30.52
(αs
π

)
+ 425.27

(αs
π

)2
+ 3576.94

(αs
π

)3
. (B.8)

Evidently, the resummed results approximate the higher fixed-order terms in the K factor

very well, except at NLO, where H(1) and R(1) each contribute about half of the full K

6 Ref. [14] seems to miss a minus sign in e−2γEη. Restoring this we find full agreement with ref. [13] and

with the two-loop result in ref. [11].
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factor. This is precisely equivalent to our discussion in sec. 3.1 that the large corrections to

the K factor are primarily driven by the timelike logarithms in H, while the nonlogarithmic

constant terms, R(n) and H(n)(µH = −imX), are much smaller.
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