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Abstract: Differential spectra in observables that resolve additional soft or collinear

QCD emissions exhibit Sudakov double logarithms in the form of logarithmic plus dis-

tributions. Important examples are the total transverse momentum qT in color-singlet

production, N -jettiness (with thrust or beam thrust as special cases), but also jet mass

and more complicated jet substructure observables. The all-order logarithmic structure of

such distributions is often fully encoded in differential equations, so-called (renormalization

group) evolution equations. We introduce a well-defined technique of distributional scale

setting, which allows one to treat logarithmic plus distributions like ordinary logarithms

when solving these differential equations. In particular, this allows one (through canonical

scale choices) to minimize logarithmic contributions in the boundary terms of the solution,

and to obtain the full distributional logarithmic structure from the solution’s evolution

kernel directly in distribution space. We apply this technique to the qT distribution, where

the two-dimensional nature of convolutions leads to additional difficulties (compared to

one-dimensional cases like thrust), and for which the resummation in distribution (or mo-

mentum) space has been a long-standing open question. For the first time, we show how

to perform the RG evolution fully in momentum space, thereby directly resumming the

logarithms [lnn(q2
T /Q

2)/q2
T ]+ appearing in the physical qT distribution. The resumma-

tion accuracy is then solely determined by the perturbative expansion of the associated

anomalous dimensions.
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1 Introduction

An important class of differential observables at colliders are those that resolve additional

soft or collinear QCD emissions on top of the underlying hard Born process. They typically

exhibit Sudakov double logarithms of the form αns lnm(Q/k) with m ≤ 2n, where Q is the

relevant hard scale of the problem and k the differential observable. The bulk of the cross

section is usually contained in the regime k � Q, where the double logarithms can become

large and eventually spoil the convergence of the fixed-order perturbative expansion. The

resummation of the Sudakov logarithms to all orders in αs becomes necessary to obtain a

stable and reliable prediction in this regime.

Resummation can be carried out either using Monte Carlo techniques such as parton

showers, or analytically based on factorization theorems which can be derived diagrammat-

ically or using effective field theories. All ingredients of the factorized cross section obey

(renormalization group) evolution equations of the form

µ
dF (k, µ)

dµ
= γF (µ)F (k, µ) , (1.1)
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where F represents an ingredient of the factorized cross section depending on the (momen-

tum space) variable k and the (unphysical) scale µ, and γF is its anomalous dimension.

eq. (1.1) encodes the logarithmic structure of F to all orders. Solving it allows to expo-

nentiate all large logarithms ln(k/µ),

F (k, µ) = F (k, µ0) exp

[∫ µ

µ0

dµ′

µ′
γF (µ′)

]
, (1.2)

provided that µ0 is chosen of the order of k, µ0 ∼ k. In this case, F (k, µ0) is free of large

logarithms and can be reliably calculated in fixed-order perturbation theory, whereas all

logarithms ln(µ/k) are explicitly exponentiated.

While this is straightforward for ordinary functions F such as hard functions describing

virtual corrections, it becomes more involved when F contains (plus) distributions. These

naturally arise for many observables in order to properly cancel infrared divergences be-

tween the different functions. Well-known examples are the total transverse momentum qT
in color-singlet production, N -jettiness (with thrust or beam thrust as special cases), but

also jet mass and more complicated jet substructure observables. The simplest example to

illustrate the complications in such cases is a pure δ-distribution, which typically arises as

the LO boundary term. In this case, eq. (1.2) reads

F (k, µ) = δ(k) exp

[∫ µ

µ0

dµ′

µ′
γF (µ′)

]
≈ δ(k) exp

[
ln

µ

µ0
γF (µ)

]
, (1.3)

such that it is obviously not possible to choose µ0 = k to fully resum all logarithms

ln(k/µ). Hence one needs a technique that correctly turns this expression into a sum of

plus distributions
[
lnn(k/µ)/k

]µ
+

that are known to arise at higher orders.

In this paper, we derive a well-defined technique to solve RGEs in distribution space by

introducing a distributional scale setting µ0 = k|+. It allows to treat evolution equations

such as eq. (1.1) like ordinary differential equations, or equivalently treats distributional

logarithms like ordinary logarithms. Hence this technique allows to minimize logarithmic

terms in the boundary condition F (k, µ0) through distributional canonical scale setting,

thereby fully resumming all logarithms directly in distribution space. We also show that

this is fundamentally different from performing the resummation in conjugate space, which

also turns distributions into ordinary functions, but induces subleading terms to all orders.

We then apply this technique to the resummation of the transverse momentum (~qT )

distribution in color-singlet production. The transverse-momentum spectrum is a key ob-

servable for many processes at hadron colliders. In Higgs production, it is one of the

primary variables describing the production kinematics [1–8]. In Drell-Yan production it is

an important benchmark observable, which has been measured to very high precision [9–

13].

It has been a long-standing open question whether a direct resummation of the ~qT dis-

tribution in momentum (or distribution) space is possible at all. Instead, the resummation

is usually carried out in the conjugate Fourier (~bT ) space, which however fundamentally

resums logarithms ln(bTQ) rather than the logarithms ln(Q/qT ) appearing in the physical
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qT spectrum (with Q being the hard scale of the process). Previous attempts so far have ei-

ther encountered spurious divergences in the resummed qT spectrum, see e.g. refs. [14, 15],

or the evolution is still partially performed in Fourier space, see e.g. refs. [16–20], while

refs. [21–23] tried to obtain a closed form of the Fourier-resummed spectrum in momentum

space. Recently, ref. [24] obtained the resummation in momentum space based on the co-

herent branching formalism [25, 26] rather than solving the evolution equations associated

with a factorization theorem. They showed that the spurious divergences are avoided by

expanding around the transverse momentum of the hardest emission instead of qT . We

briefly compare our findings to those of ref. [24] in sec. 7.

In this paper, we derive the solution to perform the RG evolution entirely in distri-

bution (momentum) space, thus allowing for the explicit resummation of all logarithmic

contributions [lnn(q2
T /Q

2)/q2
T ]+ appearing in the physical qT distribution. We show that it

intrinsically requires distributional scale setting due to the two-dimensional convolutions

appearing for qT , which is not the case for one-dimensional observables such as thrust. In

particular, we find that this is the origin of the divergences observed in previous attempts

of momentum-space resummation.

An advantage of performing the resummation via the solution of the qT evolution

equations is that the solution automatically applies to all orders in resummed perturbation

theory, and the resummation accuracy is solely defined through the perturbative accuracy

of the anomalous dimensions (as well as matching conditions). In particular, this allows one

to completely avoid any discussions of how to consistently count explicit logarithms in the

cross section (which has been part of the difficulties in previous attempts). We indeed find

that apparent subleading terms in the spectrum become important to obtain a well-defined

prediction. The resummation through RG evolution also provides a natural and convenient

way to smoothly turn off the resummation and match to the fixed-order region at large qT ,

as well as to estimate perturbative uncertainties through the variation of all the appearing

resummation scales. Importantly, by performing the evolution in momentum space, these

steps can be carried out directly at the level of the physical qT spectrum. In this paper, our

primary purpose will be to derive the all-order solution for the momentum-space evolution,

while we leave its numerical implementation to future work.

The remainder of the paper is organized as follows. In sec. 2, we introduce the technique

of distributional scale setting and discuss how it is used to solve distributional differential

(RG) equations in distribution space. We also discuss why this is fundamentally different

from performing the resummation in conjugate space. For simplicity, most of this general

discussion is for one-dimensional observables, and then generalized to two-dimensional cases

at the end. The remaining sections are then devoted to the ~qT resummation. In sec. 3,

we briefly review the relevant factorization theorem and evolution equations, and discuss

the difficulties associated with the two-dimensional nature of ~qT . In sec. 4, we discuss the

resummation of the rapidity anomalous dimension via the solution of its RGE. We also

briefly discuss how its intrinsic nonperturbative contributions arise and can be handled in

momentum space. In sec. 5, we derive the solution for the momentum-space evolution for

the soft and beam functions. We then discuss how all pieces get assembled into the final

resummed ~qT spectrum in sec. 6 and provide some comparisons to existing approaches and
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implementations in the literature in sec. 7. We conclude in sec. 8. In the appendices we

collect many relevant and useful definitions and relations for plus distributions.

2 Scale setting in distribution space

A key feature of observables k that resolve the IR structure of soft and collinear emissions,

including the transverse momentum qT , is that the logarithmic structure of the differential

spectrum in k is given in terms of plus and delta distributions, which encode the cancellation

of the associated IR divergences between real and virtual contributions.

The correct scale setting to minimize logarithmic distributions is a crucial ingredient

in the resummation of the differential distributions directly in distribution space. In par-

ticular, as we will see, for the qT spectrum this becomes a necessity to obtain well-defined

predictions.

In this section, we discuss on general grounds several aspects of solving distributional

differential equations. In particular, we introduce a distributional scale setting to correctly

minimize distributional logarithms in the RGE boundary conditions. We first discuss the

simpler case of one-dimensional distributions, before generalizing it to the two-dimensional

case relevant for qT in sec. 2.7.

2.1 Toy example

To illustrate the problem we consider a toy function F (k, µ), which contains logarithms

ln(k/µ) and obeys the toy RGE

µ
dF (k, µ)

dµ
= −αs F (k, µ) . (2.1)

(For the purposes of this toy example we neglect the running of αs for simplicity.) Solving

eq. (2.1) yields the formal solution

F (k, µ) = F (k, µ0)U(µ0, µ) , U(µ0, µ) = exp
(
αs ln

µ0

µ

)
, (2.2)

where U(µ0, µ) is the evolution kernel with U(µ0, µ0) = 1 and F (k, µ0) is the boundary con-

dition. The evolution kernel resums logarithms ln(µ0/µ) and shifts the logarithms ln(k/µ0)

of F (k, µ0) into the logarithms ln(k/µ) of F (k, µ). Hence, if F (k, µ0) is known “exactly”

at the starting scale µ0, eq. (2.2) gives F at the different scale µ with all its logarithms

ln(k/µ) resummed. More precisely, eq. (2.2) determines F (k, µ) to the logarithmic accuracy

to which both the boundary condition and the evolution kernel are known.

In some cases, the boundary condition is known (or assumed to be known) exactly.

For example, the nonperturbative parton distribution functions (PDFs) are extracted from

the experimental data at some reference scale µ0 and are then evolved to an arbitrary scale

µ using the DGLAP evolution equations.

In contrast, if the boundary condition F (k, µ0) is calculated perturbatively, it must be

calculated including all logarithms (to the desired logarithmic accuracy). Typically, this is

achieved by choosing a particular starting scale µ0 for which F (k, µ0) is free of logarithms.
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In the simplest case, k is a scalar quantity such that F is a regular function and the RGE

eq. (2.1) is multiplicative, as is the case for example for a hard matching coefficient in

SCET. The logarithmic structure of F is then

F (k, µ0) = 1 + αs ln
k

µ0
+

1

2
α2
s ln2 k

µ0
+ · · · , (2.3)

where the ellipses denote higher-order terms ∼ αns lnn(k/µ0) as well as possible constant

(nonlogarithmic) terms. In this case, all logarithms vanish at µ0 = k, and F (k, µ0 = k)

can be calculated in fixed-order perturbation theory,

F (k, µ0 = k) = 1 + · · · , (2.4)

where the ellipses now only contain possible higher-order constant terms. Equation (2.2)

then gives F (k, µ) at an arbitrary scale µ by

F (k, µ) = (1 + · · · )U(µ0 = k, µ) , (2.5)

where the logarithms ln(k/µ) in F (k, µ) are now directly and fully resummed by the evo-

lution kernel U(k, µ). Hence, the crucial ingredient that allows the RGE to predict the

logarithms ln(k/µ), as opposed to merely shifting them from one scale to another, is the

choice of µ0 that eliminates all logarithms in the boundary condition F (k, µ0).

In the more complicated cases we are interested in, F (k, µ) is a differential distribution

involving plus and delta distributions in the observable k. Let us first consider a toy

example where after transforming to an appropriate conjugate space, e.g. Fourier or Mellin

space, the RG eq. (2.1) has an analogous form

µ
dF̃ (y, µ)

dµ
= −αs F̃ (y, µ) , F̃ (y, µ) = F̃ (y, µ0) Ũ(µ0, µ) . (2.6)

Here, y is the conjugate variable to k and F̃ (y, µ) is the corresponding transformed function

in conjugate space. We stress that as long as µ0 is kept symbolic, the formal RGE solution

is equivalent in any space, i.e. it does not actually matter in which space the evolution

kernel is determined, it might just be easier to find a concrete solution in a particular

space. The differences arise entirely in how the boundary condition is chosen. The above

discussion for the multiplicative example now applies to F̃ (y, µ), which has the simple

logarithmic structure

F̃ (y, µ0) = 1− αs ln(yµ0) +
1

2
α2
s ln2(y µ0) + · · · . (2.7)

Choosing µ0 = 1/y, the conjugate boundary condition F̃ (y, µ0 = 1/y) is free of logarithms

and can be calculated in fixed-order perturbation theory, while all logarithms ln(yµ) in

the conjugate function F̃ (y, µ) are correctly predicted by Ũ(µ0 = 1/y, µ). This procedure

of solving the RGE with setting the starting scale (or more generally determining the

boundary condition) intrinsically in conjugate space fundamentally resums the conjugate

logarithms and therefore we will refer to it as evolution or resummation in conjugate space.
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For the reasons discussed before, we are interested in directly resuming the (distribu-

tional) momentum-space logarithms of k, which we will refer to as evolution/resummation

in momentum (or distribution) space. The first attempt would be to use the canonical scale

choice from momentum space, µ0 = k, in the formal solution in conjugate space, eq. (2.6).

Doing so, the required boundary condition is

F̃ (y, µ0 = k) = 1− αs ln(yk) +
1

2
α2
s ln2(yk) + · · · . (2.8)

However, using fixed-order perturbation theory amounts to truncating this series at some

low order in αs and neglecting all logarithmic terms at higher orders in αs. This would only

be sufficient if it were guaranteed that the neglected logarithms in the boundary condition

do not affect the desired logarithmic accuracy in the final momentum-space distribution,

which is far from obvious. Although naively, one might think that the y-integration in the

inverse transform should be dominated by y ∼ 1/k, where the neglected logarithms are

small, the integration also includes the regions y → 0 and y → ∞, where the neglected

logarithms get arbitrarily large. As we will see, this is the reason why this naive attempt

in fact fails in case of qT (leading to the aforementioned spurious divergences).

Instead, performing the evolution in momentum space requires to set the scales and

determine the appropriate fixed-order boundary condition in momentum space. Before

discussing the analogous exponential toy example in distribution space, we can illustrate

the arising difficulties with the simple distribution

D0(k, µ) = δ(k) + αsL0(k, µ) , (2.9)

where

L0(k, µ) ≡ 1

µ
L0

(k
µ

)
≡
[
θ(k)

k

]µ
+

, (2.10)

and L0(x) = [θ(x)/x]+ is the standard plus distribution (see appendix B for more de-

tails). Since L0(k, µ) encodes a logarithmic divergence, it counts as a single logarithm in

logarithmic accuracy counting. The distribution D0(k, µ) fulfills the differential equation

µ
dD0(k, µ)

dµ
= −αsδ(k) , (2.11)

which has the general solution

D0(k, µ) = D0(k, µ0) + αsδ(k) ln
µ0

µ
. (2.12)

Using the full result for D0(k, µ0) from eq. (2.9), together with the distributional identity

[see eq. (B.5)]

δ(k) ln
µ0

µ
= L0(k, µ)− L0(k, µ0) ≡

[
θ(k)

k

]µ
+

−
[
θ(k)

k

]µ0

+

, (2.13)

eq. (2.12) gives

D0(k, µ) = δ(k) + αsL0(k, µ0) + αs

[
L0(k, µ)− L0(k, µ0)

]
= δ(k) + αsL0(k, µ) . (2.14)
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Thus, the µ0-dependent terms cancel and we reproduce the correct result for D0(k, µ). This

shows that the formal solution in eq. (2.12) is sufficient to shift the µ-dependence from µ0

to µ. However, obtaining the correct result for D0(k, µ) from it like this crucially relies on

the fact that we used the full result for the boundary condition D0(k, µ0).

In reality, calculating the boundary condition in fixed-order perturbation theory would

amount to truncating D0(k, µ0) = δ(k) and neglecting the higher-order αsL0(k, µ0) term.1

Naively setting µ0 = k to eliminate this term is clearly ill defined. Since µ0 appears in

the boundary condition of the distribution, this would lead to an ill-defined expression

δ(k) ln k [as can been seen e.g. from eq. (2.13)]. Instead, we need a distributional way of

choosing “µ0 = k” that behaves analogously to the multiplicative case above. Namely,

it should set the logarithmic distribution L0(k, µ0) in the boundary condition to zero so

fixed-order perturbation theory can be used for the boundary condition without having to

neglect any higher-order logarithmic terms, and such that the RGE directly predicts the

correct L0(k, µ). One of the key results of this paper is a generic method to do so, which

works for arbitrary distributions and will be discussed next.

2.2 Distributional scale setting

A general plus distributions of a function g(k) is defined through the conditions (see ap-

pendix B for details) [
θ(k) g(k, µ)

]µ
+

= θ(k) g(k, µ) for k 6= 0 , (2.15)∫ µ

dk
[
θ(k) g(k, µ)

]µ
+

= 0 . (2.16)

Here and in the following we always keep the lower integration limit implicit in the support

of the distribution. An important example are the logarithmic distributions

Ln(x) =

[
θ(x) lnnx

x

]
+

, Ln(k, µ) ≡ 1

µ
Ln
(k
µ

)
≡
[
θ(k)

k
lnn

k

µ

]µ
+

. (2.17)

For a general distribution D(k, µ) we define the distributional scale setting µ = k|+ as

D(k, µ = k|+) ≡ d

dk

[∫ k

dk′D(k′, µ = k)

]
. (2.18)

Here, the derivative acts on everything inside the square brackets, and µ = k is set normally

in the integrand, which is well defined since D is evaluated at the integration variable k′.

The idea behind eq. (2.18) is that it turns logarithmic distributions into ordinary

logarithms, which can then be eliminated by a normal scale choice. For example,

L0(k, µ = k|+) =
d

dk

∫ k

dk′
[
θ(k′)

k′

]µ=k

+

=
d

dk

[
θ(k) ln

k

µ

∣∣∣∣
µ=k

]
=

d

dk
0 = 0 . (2.19)

1 This is one of the reasons for utilizing NnLL′ counting in the resummation of distributions [27–30].

There, the boundary conditions are included to one higher fixed order, which remedies this issue because

the L0-terms are now explicitly included in the boundary condition.
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Similarly for the higher logarithmic distributions,

Ln(k, µ = k|+) =
d

dk

∫ k

dk′
[
θ(k′)

k′
lnn

k′

µ

]µ
+

∣∣∣∣
µ=k

=
d

dk

[
θ(k)

n+ 1
lnn+1 k

µ

∣∣∣∣
µ=k

]
=

d

dk
0 = 0 . (2.20)

Note that although Ln(k, µ) = [lnn(k/µ)/k]µ+ contains a pure logarithm ln(k/µ), the ap-

pearance of µ in the boundary formally prohibits to simply set “µ = k” to extract the

boundary term.2 It is also easy to see that this generalizes to any distribution [θ(k)g(k)]µ+,

[
g(k, µ)

]µ
+

∣∣∣
µ=k|+

=
d

dk

∫ k

dk′
[
θ(k′)g(k′, k)

]k
+

=
d

dk
0 = 0 . (2.21)

The cumulant integral exactly vanishes by definition of the distribution.

On the other hand, any µ-independent constant terms (i.e. pure boundary terms) are

unaffected since the operator d
dk precisely inverts the cumulant

∫ k
dk′. In particular,

δ(k)
∣∣∣
µ=k|+

=
d

dk

∫ k

dk′ δ(k′) =
d

dk
θ(k) = δ(k) . (2.22)

Here it is crucial to keep track of any θ(k) appearing in the cumulant to properly recover

the distributional structure. For future convenience we use the notation

D[k] ≡ D(k, µ)
∣∣∣
µ=k|+

(2.23)

to denote the pure µ-independent constant term, which will typically be D[k] ∼ δ(k), but

in general could also contain regular (integrable) functions of k.

Having a well-defined method for distributional scale setting allows us to easily solve

distributional differential equations, as it allows us to essentialy treat distributions like

ordinary logarithms. To see that eq. (2.18) has the desired properties in more nontrivial

cases, consider the simple examples

δ(k) lnn+1 µ0

µ

∣∣∣∣
µ0=k|+

= (n+ 1)Ln(k, µ) (n ≥ 0) ,

(m+ 1)Lm(k, µ) lnn
µ0

µ

∣∣∣∣
µ0=k|+

= (n+m+ 1)Lm+n(k, µ) (n ≥ 0) ,

Lm(k, µ0) lnn
µ0

µ

∣∣∣∣
µ0=k|+

= 0 (n ≥ 0) . (2.24)

These relations are quite intuitive in that the distributional scale setting essentially moves

any naively appearing ln k terms inside a suitably regulated logarithmic distribution. The

appearing prefactors count the order of the distributional logarithm in each equation.

2Although this naive choice is mathematically ill-defined, it will actually yield the same result as the

proper scale setting. It explicitly fails for L0, which does not contain an explicit logarithm.
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More generally, we have

δ(k) g(µ0, µ)
∣∣∣
µ0=k|+

= δ(k) g(µ, µ) +

[
θ(k)

dg(k, µ)

dk

]µ
+

,

[
θ(k) f(k, µ)

]µ
+
g(µ0, µ)

∣∣∣
µ0=k|+

=

[
θ(k)

d

dk

(
g(k, µ)

∫ k

µ
dk′f(k′, µ)

)]µ
+

,[
θ(k) f(k, µ0)

]µ0

+
g(µ0, µ)

∣∣∣
µ0=k|+

= 0 . (2.25)

2.3 Integrating distributional differential equations

First, consider again the simple example in eq. (2.9). Setting µ0 = k|+ now has the

desired effect of being able to predict the complete logarithmic distribution from the general

solution eq. (2.12) by a scale choice,

D0(k, µ) = D0(k, µ0) + αsδ(k) ln
µ0

µ

∣∣∣∣
µ0=k|+

=
[
δ(k) + 0

]
+ αsL0(k, µ) . (2.26)

Similarly, we can reproduce a Ln(k, µ) for n ≥ 1 from its µ dependence. Consider a

distribution Dn(k, µ), which satisfies the differential equation

µ
dDn(k, µ)

dµ
= −nαsLn−1(k, µ) = −nαs

[
θ(k)

k
lnn−1 k

µ

]µ
. (2.27)

Integrating this from µ0 to µ, we get the general solution

Dn(k, µ) = Dn(k, µ0)− nαs
∫ µ

µ0

dµ′

µ′

[
θ(k)

k
lnn−1 k

µ′

]µ′
+

= Dn(k, µ0) + αs

[
θ(k)

k

(
lnn

k

µ
− lnn

k

µ0

)]µ0

+

+
δ(k)

n+ 1
αs lnn+1 µ

µ0
. (2.28)

Here we used eq. (B.5) to shift the boundary condition in the plus distribution from µ′ to

µ0, such that the integral can be pulled inside the plus distribution and performed. (This

step explicitly requires that µ0 does not depend on k, as otherwise the boundary condition

of the plus distribution would be changed.) Using eq. (2.24) to set µ0 = k|+, we thus find

Dn(k, µ) = Dn[k] + αsLn(k, µ) . (2.29)

In practice, we can also specialize eq. (2.18) to define an integral over an arbitrary

distribution G with starting scale µ0 = k|+ as∫ µ

k|+

dµ′

µ′
G(k, µ′) ≡ d

dk

∫ k

dk′
∫ µ

k

dµ′

µ′
G(k′, µ′) . (2.30)

This allows us to write a generic integral solution as

µ
dD(k, µ)

dµ
= G(k, µ) ⇒ D(k, µ) = D[k] +

∫ µ

k|+

dµ′

µ′
G(k, µ′) . (2.31)

Although this looks like an ordinary integral solution, the important difference lies in the

lower integration limit k|+ which enforces the distributional scale setting.
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2.4 Toy example in distribution space

We can now discuss the exponential toy example in distribution space. Consider a distri-

bution with the logarithmic structure

F (k, µ) = δ(k) + αsL0(k, µ) + α2
sL1(k, µ) +

1

2
α3
sL2(k, µ) + · · · , (2.32)

corresponding to an exponential in distribution space. It satisfies the differential equation

µ
dF (k, µ)

dµ
= −αs F (k, µ) , (2.33)

whose general solution is easily seen to be

F (k, µ) = F (k, µ0)U(µ0, µ) , U(µ0, µ) = exp
(
αs ln

µ0

µ

)
. (2.34)

Using the definition in eq. (2.18) to set µ0 = k|+ we obtain

F (k, µ) = F (k, µ0) exp

(
αs ln

µ0

µ

)∣∣∣∣
µ0=k|+

=
d

dk

[∫ k

dk′ F (k′, k) exp

(
αs ln

k

µ

)]
=

d

dk

[
(1 + · · · )θ(k) exp

(
αs ln

k

µ

)]
= δ(k) exp

(
αs ln

ξ

µ

)
+

[
θ(k)

d

dk
exp

(
αs ln

k

µ

)]ξ
+

= δ(k) + αs

[
θ(k)

k
exp

(
αs ln

k

µ

)]µ
+

. (2.35)

The k′-integral in the first step only acts on F (k′) and eliminates all distributions leaving

only constant boundary terms 1 + · · · . In the second step we used eq. (B.4) to take the

derivative involving the θ(k), where ξ is arbitrary and cancels between the two terms. In

the last step we chose ξ = µ. Expanding the exponential in αs, we can easily see that this

reproduces the full distributional logarithmic structure of eq. (2.32)

F (k, µ) = δ(k) + αs

[
θ(k)

k

(
1 + αs ln

k

µ
+

1

2
α2
s ln2 k

µ
+ · · ·

)]µ
+

= δ(k) + αsL0(k, µ) + α2
sL1(k, µ) +

1

2
α3
sL2(k, µ) + · · · . (2.36)

With the general properties in eqs. (2.24) and (2.25), we can also simply use the fact

that setting µ0 = k|+ eliminates any contributions from distributional logarithms in the

boundary condition F (k, µ0). We can therefore directly plug in F (k, µ0 = k|+) = F [k] =

(1 + · · · )δ(k) for the boundary condition to get

F (k, µ) = F [k]U(µ0, µ)
∣∣∣
µ0=k|+

= (1 + · · · )δ(k)U(µ0, µ)
∣∣∣
µ0=k|+

. (2.37)

Using eq. (2.25) we can see that this is identical to what we got in eq. (2.35),

F (k, µ) = δ(k)U(µ0, µ)
∣∣∣
µ0=k|+

= δ(k) +
[
θ(k)

d

dk
U(k, µ)

]µ
+

= δ(k) + αs

[
θ(k)

k
exp

(
αs ln

k

µ

)]µ
+

. (2.38)
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Alternative derivation Another way to derive the same solution without distributional

scale setting is to start from the general Ansatz

F (k, µ) = f0(µ) δ(k) +
[
θ(k) f1(k, µ)

]µ
+
. (2.39)

Plugging this back into eq. (2.33) and using eq. (B.7) to take the µ derivative,

µ
dF (k, µ)

dµ
= δ(k)

(
µ

df0(µ)

dµ
− µf1(µ, µ)

)
+

[
θ(k)µ

df1(k, µ)

dµ

]µ
+

!
= −αsf0(µ) δ(k)− αs

[
θ(k) f1(k, µ)

]µ
+
, (2.40)

yields a coupled system of differential equations for f0 and f1,

µ
df1(k, µ)

dµ
= −αsf1(k, µ) ,

µ
df0(µ)

dµ
= −αsf0(µ) + µf1(µ, µ) . (2.41)

The advantage is that these are now two ordinary RGEs, which can be solved straightfor-

wardly without having to be careful about producing distributions from taking derivatives

of θ(k). Solving for f1 in terms of f0,

f1(k, µ) = f1(k, k) exp

(
αs ln

k

µ

)
=

[
df0(k)

dk
+ f0(k)

αs
k

]
exp

(
αs ln

k

µ

)
=

d

dk
f0(k) exp

(
αs ln

k

µ

)
. (2.42)

Plugging back into the Ansatz, we obtain the result

F (k, µ) = f0(µ) δ(k) +

[
θ(k)

d

dk
f0(k) exp

(
αs ln

k

µ

)]µ
+

, (2.43)

which for f0 = 1+ · · · confirms the earlier result eq. (2.35). This form suggests to interpret

f0(µ) as the boundary term, as it completely predicts the (logarithmic) structure of F .

Indeed, setting now µ = k|+ yields F [k] = f0(ξ) δ(k) + [θ(k)f ′0(k)]ξ+, confirming that the

boundary term can be obtained as the coefficient f0(µ) of δ(k). Note that the essential

element in this derivation is the same as above, namely that with the distributional canon-

ical scale setting F (k, µ = k|+) = F [k] reduces to a pure boundary term that is free of

logarithmic distributions. In actual applications, it would be calculated in a fixed-order

expansion in αs(µ).

This simple toy example illustrates that with the distributional scale setting, using the

canonical scale choice µ0 = k|+ as in eq. (2.37) becomes exactly analogous to using the

ordinary canonical scale choice in the multiplicative case in eq. (2.5). In particular, the pure

boundary condition F [k] can now be calculated in fixed-order perturbation theory, while

the RGE solution predicts the complete distributional logarithmic structure. It should be

evident that this is true generically also for more complicated cases. We will encounter two

more complicated examples when discussing the RGE for the rapidity anomalous dimension

in sec. 4 and for the soft function in sec. 5.
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2.5 Comparison to evolution in conjugate space

It is interesting to compare the result of the momentum-space evolution to the evolution in

appropriate conjugate spaces, i.e. solving the RGEs in conjugate space with scale setting

therein. In general, using equivalent boundary conditions in different spaces can lead to

different predictions in physical space. To illustrate this, we consider again the simple

example distributions Dn, satisfying

µ
dDn(k, µ)

dµ
= −αs nLn−1(k, µ) (n ≥ 1) , (2.44)

and assume that only the LO boundary term is known from a fixed-order calculation,

Dn(k, µ) = δ(k) + · · · , (2.45)

where the ellipses denote the unknown higher order terms. Since all unknown logarithmic

higher order terms vanish for µ = k|+, the required LO boundary term to solve eq. (2.44)

distributionally is D[k] = δ(k). The solution then is (see sec. 2.3)

Dn(k, µ) = δ(k) + αsLn(k, µ) . (2.46)

In the following we compare this momentum-space result to the resummation in cumulant

and Fourier space.

2.5.1 Cumulant space

Taking the cumulant, eqs. (2.44) and (2.45) become

µ
dD̄n(kcut, µ)

dµ
= −αs θ(kcut) lnn

kcut

µ
, (2.47)

D̄n(kcut, µ) = θ(kcut) + · · · , (2.48)

where the cumulant is defined as

D̄n(kcut, µ) =

∫ kcut

dk′Dn(k′, µ) . (2.49)

The solution to eq. (2.47) is easily obtained as

D̄n(kcut, µ) = D̄n(kcut, µ0)− αs θ(kcut)

∫ µ

µ0

dµ′

µ′
lnn

kcut

µ′
. (2.50)

The important point is that all distributions in momentum space correspond to logarithms

ln(kcut/µ) in cumulant space, which can be fully resummed by choosing µ0 = kcut. With

this choice, all logarithms in D̄n(kcut, µ) are eliminated, and from eq. (2.48) it follows that

the LO boundary condition is D̄n(kcut, kcut) = θ(kcut). The solution is thus given by

D̄n(kcut, µ) = θ(kcut) +
αs
n+ 1

θ(kcut) lnn+1 kcut

µ
. (2.51)
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Transforming back to momentum space by taking the derivative with respect to kcut yields

Dn(k, µ) = δ(k) + αs

[
θ(k)

k
lnn

k

µ

]µ
+

= δ(k) + αsLn(k, µ) , (2.52)

which exactly reproduces the momentum-space solution in eq. (2.46). Hence, resummation

in cumulant and momentum space to predict the logarithmic structure is equivalent for this

example. This is of course not very surprising, considering the intimate relation between

distribution and cumulant space.

2.5.2 Fourier space

Taking the Fourier transform of eqs. (2.44) and (2.45) using eq. (B.13), we find

µ
dD̃n(y, µ)

dµ
= −αs

n∑
k=0

(−1)k
(
n

k

)
lnk
(
iyµeγE

)
R

(n−k)
1 , (2.53)

D̃n(y, µ) = 1 + · · · , (2.54)

where the Fourier transform is defined as

D̃n(y, µ) =

∫
dk e−ikyDn(k, µ) , (2.55)

and the constant R
(n)
1 is defined as (see appendix B.2 for more details)

R
(n)
1 =

dn

dan
eγEaΓ(1 + a)

∣∣∣∣
a=0

. (2.56)

The general solution is given by

D̃n(y, µ) = D̃n(y, µ0)− αs
∫ µ

µ0

dµ′

µ′

n∑
k=0

(−1)k
(
n

k

)
lnk
(
iyµ′eγE

)
R

(n−k)
1 . (2.57)

Since all logarithms depend on iyµeγE , they are fully resummed by choosing µ0 = −ie−γE/y,3

which eliminates all logarithms in the boundary term. This allows us to use the known

fixed-order boundary term eq. (2.54), D̃n(y, µ0) = 1, and gives

D̃n(y, µ) = 1− αs
R

(n+1)
1

n+ 1
+ αsFT[Ln](y, µ) . (2.58)

Transforming back to momentum space thus yields

Dn(k, µ) = δ(k) + αs

[
Ln(k, µ)− R

(n+1)
1

n+ 1
δ(k)

]
. (2.59)

3In principle, one is of course free to shift constants from the logarithms into subleading terms. This

convention for the canonical logarithm in conjugate space is the most natural one, since at least at lowest

order n = 0 the pure plus distribution L0(k, µ) corresponds to a pure logarithm ln(iyµeγE ), see table 1 in

appendix B.
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While the plus distribution matches the one in eq. (2.46), which is of course necessary to

provide the correct µ-dependence, the solution contains an additional term−δ(k)R
(n+1)
1 /(n+

1) at O(αs).

This shows explicitly that the Fourier-space resummation, which fundamentally re-

sums logarithms of the conjugate variable y, is not equivalent to the momentum-space

resummation, as it induces an additional boundary term. This discrepancy is due to the

fact that pure plus distributions Ln(k, µ) do not correspond to pure powers of ln(iyµeγE )

and vice versa.

In principle, the additional αsδ(k) term in eq. (2.59) would be compensated for if we

were to include the boundary condition D̃n(y, µ0) in Fourier space to O(αs). However, for a

general distribution, such spurious terms are generated to all orders in αs. (We will see this

explicitly in sec. 4 for the example of the rapidity anomalous dimension.) Thus in practice

for the purposes of resummation, where the boundary condition is only calculated to some

fixed order, the resummation in Fourier space intrinsically induces additional subleading

terms to all orders in αs, which is one the main motivations for performing the resummation

directly in momentum space.

2.6 Implementation of scale variations and profile scales

For phenomenological applications it is necessary to also use noncanonical scale choices.

First, varying the scales away from their strict canonical values is a standard and conve-

nient way to probe the size of higher-order logarithms and thereby estimate perturbative

uncertainties. Furthermore, it is important to be able to dynamically turn off the resum-

mation in the fixed-order region of the distribution. A standard way to achieve this is to

employ profile scales µ0(k) [27, 28], which smoothly interpolate as a function of k between

the strict canonical scale choice in the resummation region and a common fixed scale µFO in

the fixed-order region. Profile scales are also used to implement dynamical scale variations

to distinguish different sources of perturbative uncertainties, for example resummation and

fixed-order uncertainties [29, 31, 32].

We discuss the implementation of scale variations and more generally profile scales

within our framework using the exponential toy example in eq. (2.32) with the associated

RGE solution in eq. (2.34):

F (k, µ) = FFO(k, µ0)U(µ0, µ) , U(µ0, µ) = exp
(
αs ln

µ0

µ

)
. (2.60)

Here we have included the superscript “FO” to stress that the boundary condition is

obtained from a fixed-order calculation, whereas U is the evolution kernel. In a typical

application, one wants to perform the resummation using the canonical scale choice µ0 =

k|+ for k � Q, where the logarithms of k are large and should be resummed. On the other

hand, for k ∼ Q, one wants to turn off the resummation and recover the exact fixed-order

result by taking µ0 = µFO = µ. Both requirements are fulfilled by choosing µ0 to be a

profile function µ0(k) behaving as

µ0(k)→ k , k � Q (2.61)

µ0(k)→ µFO = µ , k ∼ Q . (2.62)

– 14 –



The profile furthermore smoothly interpolates between the two regimes to capture the

turning-off of the resummation. Such a profile can be conveniently implemented by gen-

eralizing the distributional scale setting in eq. (2.18), µ0 = k|+, to a generic function

µ0 = µ0(k)|+,

F (k, µ) =
d

dk

[∫ k

dk′ FFO(k′, µ0(k))U(µ0(k), µ)

]
. (2.63)

In the resummation regime, this reproduces exactly the canonical distributional scale set-

ting µ0 = k|+. In the fixed-order regime, U = 1 and µ0 is independent of k, such that the

derivative simply inverts the integral to reproduce F (k, µ) = FFO(k, µ).

Furthermore, the profile should allow scale variations to probe subleading logarithms.

To see in more detail how this works, consider the NLO boundary term

FFO(k, µ0) = δ(k) + αs
[
f1δ(k) + L0(k, µ0)

]
. (2.64)

The solution with arbitrary profile µ0(k) is then

F (k, µ) =
d

dk

{
θ(k)

(
1 + αs

[
f1 + ln

k

µ0(k)

])
U(µ0(k), µ)

}
= δ(k)

(
1 + αs

[
f1 + ln

µ

µ0(µ)

])
U(µ0(µ), µ)

+ αs

[
θ(k)

k

(
1 + αs

[
f1 + ln

k

µ0(k)

]
d lnµ0(k)

d ln k

)
U(µ0(k), µ)

]µ
+

. (2.65)

The canonical scale choice to predict all logarithmic terms to this order is µ0(k) = k,

such that we get

F (k, µ) =
(
1 + αsf1

)[
δ(k) + αsL0 + α2

sL1 + · · ·
]
, (2.66)

which is exactly the expected structure.

More general, we can vary the scale µ0 around the canonical value k, µ0(k) = a · k, to

probe subleading logarithms in the resummation regime. With this choice, we obtain

F (k, µ) =
[
1 + αs(f1 − ln a)

][
δ(k) + αsL0 + α2

sL1 + · · ·
]
eαs ln a . (2.67)

This clearly probes subleading terms through the induced exponential. Note that the

− ln a in the first term cancels the O(αs)-term of the exponential to correctly reproduce

the fixed-order content.

Lastly, we can test the fixed-order structure by varying µ0 in the fixed-order regime.

To fully turn off the evolution kernel in eq. (2.63), we choose µ0(k) = µ = a · µFO, yielding

F (k, aµFO) = δ(k) + αs
[
f1δ(k) + L0(k, aµFO)

]
= FFO(k, aµFO) (2.68)

= δ(k) + αs
[
(f1 − ln a)δ(k) + L0(k, µFO)

]
= FFO(k, µFO)− αs ln a δ(k) .

The effect of such a scale variation is to induce the term αs ln(a)δ(k), which precisely

probes the O(αs) boundary term. For a = 1, this obviously restores the FO content.
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For a more general scale variation, one can also vary µ0(k) and µ independently. We

consider the example µ0(k) = a · µFO, µ = µFO, where we only vary µ0. This gives

F (k, µFO) = δ(k) + αs
[
(f1 − ln a)δ(k) + L0(k, µFO)

]
eαs ln a . (2.69)

The additional exponential probes higher order logarithms and is a remnant of the mis-

match between the resummation scale µ0 and the common scale µ.

Distributional scale setting thus allows for a straightforward implementation of profile

scales, which can be used to smoothly transition from resummation to fixed-order regime

and allow one to probe the typical size of subleading terms and thereby estimate pertur-

bative uncertainties in both regimes. Of course, in actual applications one has to choose

suitable profile functions and variations such that they produces reasonable uncertainty

estimates.

2.7 Distributional scale setting in 2D

In this section we collect the corresponding formulas for distributional scale setting and

solving distributional differential equations for the two-dimensional case. The derivations

are almost identical to the one-dimensional case, and are not repeated here.

We consider the example of transverse momentum dependent functions, which will

be used throughout the rest of this paper. Such functions inherently contain divergences

as 1/p2
T in the limit of small transverse momenta ~pT , which are regulated through plus

distributions. These are defined through the conditions[
f(~pT , µ)

]µ
+

= f(~pT , µ) for |~pT | > 0 , (2.70)∫
|~pT |≤µ

d2~pT

[
f(~pT , µ)

]µ
+

= 0 , (2.71)

see appendix C for more details. Important examples are the logarithmic distributions

Ln(~pT , µ) ≡ 1

πµ2

[
µ2

~p2
T

lnn
~p2
T

µ2

]µ
+

≡ 1

πµ2
Ln
(
~p2
T

µ2

)
, (2.72)

which are the two-dimensional analog of the Ln(k, µ) in eq. (2.17). As in the one-dimensional

case, the boundary condition of the Ln(~pT , µ) encodes a logarithmic dependence lnn(pT /µ),

which can be seen by shifting their boundary condition [see eq. (C.4)],

Ln(~pT , µ) =
1

πµ2

[
µ2

~p2
T

lnn
~p2
T

µ2

]µ0

+

+
δ(~pT )

n+ 1
lnn+1 µ

2
0

µ2
(2.73)

For a general two-dimensional distribution D(~pT , µ) we define the distributional scale

setting µ = pT |+ as

D(~pT , µ = pT |+) ≡ 1

2πpT

d

dpT

[∫
|~kT |≤pT

d2~kT D(~kT , µ = pT )

]
. (2.74)
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The derivative acts on everything inside square brackets, and µ = pT can be set normally

in the integrand since the integral runs over the auxiliary vector ~kT . Like in the one-

dimensional case, eq. (2.74) sets purely distributional terms to zero,

Ln(~pT , µ = pT |+) = 0 ,
[
f(~pT , µ)

]µ
+

∣∣∣
µ=pT |+

= 0 , (2.75)

since the cumulant integral exactly vanishes by definition of the plus distribution, whereas

any µ-independent constant (boundary) terms are not affected at all. For convenience, we

denote the pure µ-independent boundary terms as

D[~pT ] ≡ D(~pT , µ)
∣∣∣
µ=pT |+

. (2.76)

Here, D[~pT ] can only depend on the quantity ~pT . The simplest case is D[~pT ] ∼ δ(~pT ), but

in general it can also contain regular (integrable) functions of ~pT . We will see examples of

more general boundary terms in secs. 4 and 5.

The distributional scale setting can be readily applied to solve differential equations

with two-dimensional distributions. The solution to the differential equation

µ
dD(~pT , µ)

dµ
= G(~pT , µ) (2.77)

is given by

D(~pT , µ) = D[~pT ] +

∫ µ

pT |+

dµ′

µ′
G(~pT , µ

′) , (2.78)

where the integral over the distribution G(~pT , µ) starting at the canonical scale µ = pT |+
is given by ∫ µ

pT |+

dµ′

µ′
G(~pT , µ

′) ≡ 1

2πpT

d

dpT

∫
|~kT |≤pT

d2~kT

∫ µ

pT

dµ′

µ′
G(~kT , µ

′) , (2.79)

A list of useful integrals is given in appendix C.4.

We conclude this section by comparing the resummation in distribution space with

resummation in Fourier space, analogous to sec. 2.5. Specifying to the example

µ
dDn(~pT , µ)

dµ
= −2nαsLn−1(~pT , µ) (n ≥ 1) , (2.80)

and ignoring αs running, the distributional solution for the simplest boundary termDn[~pT ] =

δ(~pT ) is given by

Dn(~pT , µ) = δ(~pT ) + αsLn(~pT , µ) . (2.81)

The solution obtained in cumulant space is again equivalent.

In contrast, solving the RGE with scale setting in Fourier space with the boundary

condition D̃n(~bT , µ0 = b0/bT ) = 1 yields

Dn(~pT , µ) = δ(~pT ) + αs

[
Ln(~pT , µ)− R

(n+1)
2

n+ 1

]
, (2.82)
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where the constant is given by eq. (C.17),

R
(n)
2 =

dn

dan
e2γEa

Γ(1 + a)

Γ(1− a)

∣∣∣∣
a=0

. (2.83)

As for the one-dimensional case, we find that performing the resummation in Fourier

space adds an additional boundary term compared to the momentum-space resummation.

In this specific example, it could be compensated for by including the boundary condition

D̃n(~bT , µ) in Fourier space to O(αs). However, for a general distribution, such spurious

term are generated to all orders in αs. Thus in practice, the resummation in Fourier space

induces additional subleading term to all orders in αs as well.

3 Overview and complications in qT resummation

Many of the difficulties in the resummation of the qT spectrum in momentum space are

due to the intrinsic two-dimensional nature of ~qT and the involved convolutions, and are

absent for one-dimensional variables like transverse energy or thrust. In this section, we

explore in detail the underlying reason for this. After briefly reviewing qT factorization and

the relevant associated RG equations in sec. 3.1, we argue in sec. 3.2 that the appearing

two-dimensional convolutions requires very careful scale setting, which turns out to be the

crucial complication of qT resummation in momentum space. In particular, we will see that

setting the boundary scales to the overall qT does not correctly resum all logarithms, as one

might naively expect. This will be illustrated in secs. 3.3 and 3.4 by reproducing a spurious

divergence, which is well-known in the literature and as we will show originates from this

incorrect scale setting, or more generally from an incorrect treatment of the boundary

condition. In the following secs. 4 and 5 we then show how the qT resummation via RG

evolution in momentum space can be carried out using the distributional scale setting of

sec. 2.

3.1 Review of qT factorization

We briefly review the factorization theorem for the transverse-momentum distribution and

set up our notation. We follow the rapidity renormalization formalism of refs. [15, 33] using

soft-collinear effective theory (SCET) [34–37]. There are several other formalisms known

in the literature, in particular the original formulation by Collins, Soper, and Sterman

(CSS) [38–40] and its applications and extensions [41–55], as well as other work in SCET

[16–18, 56–58]. A recent review of transverse-momentum dependent factorization and

evolution can be found in ref. [59].

We consider the measurement of the transverse momentum ~qT of a color-singlet system

X with invariant mass Q and total rapidity Y . In the limit of very small transverse

momentum, qT � Q, the cross section is dominated by soft and collinear gluon emissions

from the incoming partons that recoil against the hard system X. The emissions cause

large logarithms lnm(q2
T /Q

2), with a power m ≤ 2n−1 at order αns , which we like to resum

to all orders to retain predictive power in the perturbative series at small qT . In the limit
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qT � Q, the cross section can be factorized as [15]

dσ

dQ2dY d~qT
≡ 1

qT

dσ

dQ2dY dqTdφ
= σ0H(Q,µ)

∫
d2~ka d2~kb d2~ks δ(~qT − ~ka − ~kb − ~ks)

×Ba(ωa,~ka, µ, ν)Bb(ωb,~kb, µ, ν)S(~ks, µ, ν) , (3.1)

where

ωa = QeY , ωb = Qe−Y , (3.2)

and for simplicitly we have kept the sum over partonic channels (and helicities in case of

incoming gluons) implicit. Equation (3.1) is valid up to power corrections in qT /Q. We are

only interested in the leading-power cross section, which contains all singular logarithms,

and drop the power correction.

Here, σ0 denotes the Born cross section and H(Q,µ) is the hard function containing

virtual corrections to the partonic process. Following refs. [60, 61], the bare beam functions

Bi are defined in SCET in terms of forward proton matrix elements of collinear quark and

gluon operators,

Bbare
q (ω,~pT ) = θ(ω) 〈P (pn)| χ̄n

/̄n

2
δ(ω − Pn) δ(~pT − P⊥n)χn |P (pn)〉 ,

Bµν bare
g (ω,~pT ) = ωθ(ω) 〈P (pn)|Tr{Bµn,⊥ δ(ω − Pn) δ(~pT − P⊥n)Bνn,⊥} |P (pn)〉 . (3.3)

They encode the effects of collinear initial-state radiation and are equivalent to transverse-

momentum dependent parton distributions. They depend on the flavor i and light-cone

momentum ω = xp−n of the parton that enters the hard interaction, where pn is the proton

momentum. They also depend on the total transverse momentum ~pT of collinear initial-

state radiation that was emitted prior to the hard interaction. The soft function S measures

the total transverse momentum originating from soft emissions and is defined as the vacuum

matrix element

Sbare
gg (~pT ) =

1

N2
c − 1

〈0|Tr{T̄ [S†n⊥Sn̄⊥] δ(~pT − P⊥s)T [S†n̄⊥Sn⊥]} |0〉 , (3.4)

Sbare
qq (~pT ) =

1

Nc
〈0|Tr{T̄ [S†n⊥Sn̄⊥] δ(~pT − P⊥s)T [S†n̄⊥Sn⊥]} |0〉 . (3.5)

The Bµn,⊥ and χn are collinear gluon and quark fields in SCET, P is the momentum label

operator, and the Sn,⊥ are soft Wilson lines along the light-cone direction n. For more

details see refs. [15, 62].

The bare hard, beam, and soft functions are divergent quantities and require renor-

malization. The UV divergences are regulated as usual by dimensional regularization. The

resulting renormalized functions, which appear in eq. (3.1), satisfy the renormalization

group equations

µ
dH(Q,µ)

dµ
= γH(Q,µ)H(Q,µ) , (3.6)

µ
dB(ω,~pT , µ, ν)

dµ
= γB(ω, µ, ν)B(ω,~pT , µ, ν) , (3.7)

µ
dS(~pT , µ, ν)

dµ
= γS(µ, ν)S(~pT , µ, ν) , (3.8)
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where the anomalous dimensions have the all-order structure

γH(Q,µ) = 4Γcusp[αs(µ)] ln
Q

µ
+ γH [αs(µ)] , (3.9)

γB(ω, µ, ν) = 2Γcusp[αs(µ)] ln
ν

ω
+ γB[αs(µ)] , (3.10)

γS(µ, ν) = 4Γcusp[αs(µ)] ln
µ

ν
+ γS [αs(µ)] . (3.11)

The µ-independence of the cross section implies the RG consistency relation

γH(αs) + 2γB(αs) + γS(αs) = 0 . (3.12)

The beam and soft functions furthermore depend on a rapidity scale ν, associated

with an additional regulator required to regulate rapidity divergences. These arise because

both soft and beam modes describe modes of virtuality µ2 ∼ q2
T , leading to an “overlap”

of soft and collinear momentum regions which are not resolved by dimensional regulariza-

tion There have been a variety of rapidity regulators suggested in the literature to deal

with these divergences. In the original CSS approach a non-lightlike axial gauge was em-

ployed [38], whereas in recent work Wilson lines off the light cone are used [41, 63]. In the

context of SCET, the utilized regulators include the analytic regulator acting on eikonal

propagators [64–66], the η-regulator inserted into Wilson lines [15, 33], the δ-regulator

adding a mass to eikonal propagators [56, 67], and the exponential regulator acting on

the phase space [68]. For all of these approaches, the beam and soft functions are cur-

rently known to NNLO [62, 69–73]. These fixed-order ingredients are not necessary for the

purpose of this paper, which only relies on the RGE structure of beam and soft functions.

For concreteness we employ the η-regulator together with the rapidity renormalization

group [15, 33]. Our discussion can be applied similarly to other regulators. The crucial

point is that the additional rapidity regulator induces an additional rapidity scale, here

denoted as ν. In particular, ν is analogous to the scale ζ in the original CSS formula-

tion ref. [38], see also ref. [59]. (In some formalisms or applications the rapidity scale is

kept implicit and/or fixed to canonical values.)

The rapidity renormalization group equations are given by

ν
dB(ω,~pT , µ, ν)

dν
=

∫
d2~kT γν,B(~kT , µ)B(ω,~pT − ~kT , µ, ν) , (3.13)

ν
dS(~pT , µ, ν)

dν
=

∫
d2~kT γν,S(~kT , µ)S(~pT − ~kT , µ, ν) . (3.14)

The overall ν-independence of the cross section implies the consistency relation

γν(~pT , µ) ≡ γν,S(~pT , µ) = −2γν,B(~pT , µ) , (3.15)

which means that there is only one independent rapidity anomalous dimension, which we

denote as γν . The crucial difference to the µ-RGE is that the ν-RGE is intrinsically a con-

volution. The commutativity of d/dν and d/dµ relates the µ and ν anomalous dimensions

through

µ
d

dµ
γν(~kT , µ) = ν

d

dν
γS(µ, ν)δ(~kT ) = −4Γcusp[αs(µ)]δ(~kT ) . (3.16)
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We stress that the singular logarithmic structure of the qT spectrum is fully encoded in

the RGE equations eqs. (3.6)–(3.16). While their precise definitions and derivation depend

to some extent on the employed effective-field theory framework, equivalent evolution equa-

tions with the same momentum structure exist in all approaches. In particular, the original

CSS formulation for qT resummation is based on analogous evolution equations [38–40].

Also, the corresponding system of differential equations in Fourier space, which is often

considered, is completely equivalent. The SCET framework with rapidity renormalization

we use is convenient in that it makes the structure maximally general and explicit.

The nontrivial task at hand is to solve the RG equations with appropriate momentum-

space boundary conditions in order to perform the resummation in momentum space. In

other words, we want to predict the all-order distributional logarithmic structure in qT
from the RG evolution. As we will see, carrying out the RG evolution in momentum space

is quite complicated due to the distributional nature coupled with the two-dimensional

convolutions in ~kT . The correct solution for the momentum-space RG evolution is the

main purpose of this paper.

An important comment concerns the definition of the formal resummation accuracy.

In problems with Sudakov double logarithms, the cross section exponentiates into the

form σ ∼ exp[αns lnn+1 +αns lnn +αns lnn−1 + · · · ]. Including the first set of terms in the

exponent ∼ αns lnn+1 corresponds to the leading-logarithmic (LL) order, including the next

set of terms ∼ αns lnn corresponds to the next-to-leading logarithmic (NLL) order, and so

forth. Alternatively, one can consider the logarithm of the cross section and count the

corresponding terms in its αs expansion. One issue with this way of counting logarithms

is that it is intrinsically ambiguous, i.e., it is always possible to have slightly different

definitions which agree to a given order, but differ by contributions that in one or the other

definition are formally subleading. As we will see the qT spectrum in momentum space does

not exponentiate into a simple exponential, but rather it will have a generalized exponential

structure in distribution space, which makes this counting of explicit logarithms even less

well-defined. (We will see that this can even lead to producing spurious divergences in the

resummed result from formally subleading terms.)

The exponential structure of the resummed qT spectrum is fully encoded in its evo-

lution equations, or equivalently the anomalous dimenions are in essence the generalized

“logarithm” of the resummed cross section. Therefore, an easy, fully consistent, and unam-

biguous way to define the resummation order is strictly by the pure fixed-order expansions

of the cusp and noncusp anomalous dimensions together with the fixed-order expansions

of the pure boundary terms for the hard, beam, and soft functions. Since these fixed-

order series are the fundamental input to the RG evolution, with everything else following

from them, it makes sense to define the fundamental resummation accuracy solely by the

perturbative accuracy at which these inputs are included. In particular, with this strict

definition one is not allowed to disregard seemingly subleading logarithmic terms at inter-

mediate stages. This also means that the various RG consistency relations should always

be exactly fulfilled by the resummed result. Our goal is to derive the solution for the evolu-

tion and resummation in momentum space, i.e., with anomalous dimensions and boundary

terms defined in momentum space, valid to in principle any order in this strict definition.
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Note that given the resummed result at strict LL, NLL, etc. one can of course consider ad-

ditional choices or further approximations to simplify the result and study their numerical

impact, which however is not our concern here.

Notation: In the remainder of this paper, we denote the final transverse momentum of

the produced color-singlet state X by ~qT , while the transverse-momentum argument of a

specific function is typically denoted by ~pT , and the integration momenta in the convolution

integrals are usually denoted by ~ki. Convolutions are often abbreviated as

(f ⊗ g)(~pT , . . . ) ≡
∫

d2~kT f(~pT − ~kT , . . . ) g(~kT , . . . ) , (3.17)

where the ellipses denote possible additional variables. Multiple convolutions are abbrevi-

ated as

(f⊗n)(~pT ) ≡
∫

d2~k1 . . . d
2~kn f(~k1) . . . f(~kn) δ(~pT − ~k1 − · · · − ~kn) . (3.18)

These formulas are also summarized in appendix A.

3.2 Implications of two-dimensional convolutions

The transverse momentum spectrum is generically given in terms of plus distributions,

which are necessary to regulate its 1/q2
T divergences. Furthermore, the factorized cross

section and its RGEs involve two-dimensional convolutions, see eqs. (3.1) and (3.14). While

the issue of scale setting with distributions has been addressed in sec. 2, we now discuss

the implications of the two-dimensional convolutions.

To illustrate the arising subtleties, it is sufficient to focus on the rapidity RGE of the

soft function, as evolving it to the beam scale ν = νB ∼ Q eliminates all rapidity logarithms

in the beam functions entering eq. (3.1). A formal solution to eq. (3.14) is readily derived

to be

S(~pT , µ, νB) =

∫
d2~kT V (~pT − ~kT , µ, νB, νS)S(~kT , µ, νS) , (3.19)

where the rapidity evolution kernel V is given by

V (~pT , µ, νB, νS) = δ(~pT ) +

∞∑
n=1

1

n!
lnn

νB
νS

(γν⊗n)(~pT , µ)

= δ(~pT ) + ln
νB
νS
γν(~pT , µ)

+
1

2
ln2 νB

νS

∫
d2~k1

∫
d2~k2 γν(~k1, µ) γν(~k2, µ) δ(~k1 + ~k2 −~pT )

+ · · · . (3.20)

Here (γν⊗n) denotes n convolutions of γν with itself, see eq. (3.18). V is an exponential

in convolution space and eq. (3.20) can be derived equivalently in convolution space or

Fourier space (see sec. 3.3 below). Taking the derivative with respect to ν, one can easily

verify that it provides a solution for eq. (3.14).
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The evolution kernel eq. (3.20) has a simple physical interpretation. Each factor of

γν(~ki, µ) corresponds to a real soft emission with momentum ~ki. The convolution integrals

are the remaining transverse phase-space integrals, which are constrained such that the

transverse momenta of all emissions sum up to the total ~pT . Each emission is dressed with

a rapidity logarithm ln(νB/νS) to evolve in rapidity from the soft scale νS to the beam

scale νB, which corresponds to the effective range in rapidity over which the soft emission

has been integrated. The n emission term then scales with lnn(νB/νS), which precisely

builds up an exponential in convolution space.

To investigate the structure of V in more detail, we focus on the first nontrivial con-

volution. It involves integrating over two real emissions with momenta ~k1,2 such that
~k1 + ~k2 = ~pT . Figure 1 illustrates the momentum regions in |~k1,2| contributing to this in-

tegral. The region between the solid lines is allowed, while the gray region outside cannot

fulfill the measurement constraint. The dashed lines correspond to a fixed angle between

the two emissions of ∠(~k1,~k2) = 90◦, 135◦. The larger this angle is, the larger the allowed

magnitudes |~k1,2| are. In the limit where the emissions are back-to-back, the magnitudes

|~k1,2| can become infinitely large, as long as their difference still gives ~pT . This is the limit

given by the two blue lines. Hence, the convolution integrals in eq. (3.20) in principle

receive contributions from infinitely large momenta. Physically, the limit of both emissions

having large |~k1,2| ∼ Q should be power-suppressed in qT /Q and hence not affect the singu-

lar logarithmic structure. However, in this limit the emissions are not correctly described

anymore by the underlying soft expansion, which assumes |~k1,2| ∼ pT � Q. Therefore,

we can in principle receive spurious contributions to the integral from this region. On the

other hand, there can also be relevant physical contributions from any intermediate region

pT � |~k1,2| � Q that must be correctly taken into account. It was already argued in

ref. [74] (see also ref. [24]) that the very small ~qT region can be influenced (or even be

dominated) by such kinematic cancellations of harder emissions.

One might now be worried that the factorization theorem is intrinsically ill-defined, as

it contains effects of arbitrarily hard emissions. This is unavoidable, as the soft approxima-

tion eliminates the phase-space constraints that would normally cut off such emissions, as

already noticed in ref. [14]. However, all large rapidity logarithms should arise from the soft

region where all emissions are of the order of the final qT , |~ki| ∼ qT . From the above ob-

servations, it is clear that the rapidity evolution kernel eq. (3.20) violates this requirement.

This is perfectly fine because a priori eqs. (3.19) and (3.20) only shift logarithms ln(pT /νS)

in S(~pT , µ, νS) into logarithms ln(pT /νB) in S(~pT , µ, νB). In particular, if S(~pT , µ, νS) is

already resummed, eqs. (3.19) and (3.20) are valid solutions of the rapidity RGE.

The situation changes if we want to use the rapidity RGE to predict all logarithms

of the soft function. Then we would like to start from a boundary condition for the soft

function without any real emissions, and subsequently let the evolution add real emissions

by convolving with γν . Each such emission with momentum ~ki should scale with a rapidity

logarithm ∼ ln(νB/|~ki|) to evolve in rapidity from its own emission scale to the beam scale.

For the example of two emissions, we thus expect a contribution of the form

∼
∫

d2~k1

∫
d2~k2 ln

νB

|~k1|
γν(~k1, µ) ln

νB

|~k2|
γν(~k2, µ)δ(~pT − ~k1 − ~k2) . (3.21)
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Figure 1. Illustration of the transverse momentum regions contributing to the convolution (γν ⊗
γν)(~pT , µ). The region between the solid blue and orange lines contributes to the convolution

integral. The dashed lines correspond to a fixed angle θ = ∠(~k1,~k2) = 90, 135◦ between the two

emissions. Canonical scaling |~k1| ∼ |~k2| ∼ pT is only fulfilled in the shaded orange region.

(For the moment we ignore that the rapidity logarithms need to be properly included into

plus distributions, which will be taken care of in the final solution in sec. 5.) If the ~k1,2

integrals were dominated by |~k1,2| ∼ pT , indicated by the shaded orange region in figure 1,

both rapidity logarithms could be approximated as ∼ ln(νB/pT ), and a double logarithm

ln2(νB/pT ) could be pulled out of the convolution integrals. This is precisely what happens

in eq. (3.20). However, as explained above, the convolution also gets contributions from

energetic emissions |~k1,2| � pT , which happen to be back-to-back such that ~k1 + ~k2 = ~pT .

In this region, the rapidity logarithms ln(νB/|~k1,2|) in eq. (3.21) get smaller and eventually

become irrelevant for |~k1,2| ∼ Q. Instead, the approximation |~k1,2| ∼ pT would result

in a spuriously large rapidity logarithm ln2(νB/pT ), which would artificially enhance this

otherwise suppressed phase-space region. To properly treat these emissions, it is necessary

to keep the correct rapidity logarithms ∼ ln(νB/|~ki|) in the convolutions. This is obviously

not possible by simply choosing a fixed value for νS in eqs. (3.19) and (3.20). In particular, if

we were to use the naive canonical choice νS ∼ pT , we would artificially enhance unphysical

contributions from energetic emissions. In sec. 3.4, this point will be stressed by showing

that doing so actually produces a spurious divergence in the qT -spectrum. The correct

RG evolution to predict the resummed soft function is significantly more complicated than

eq. (3.20), and in particular will rely on distributional scale setting. It will be derived in

sec. 5.

So far we have focused on the role of the rapidity scale. The two-dimensional con-

volution structure also has implications for the scale µ entering the rapidity anomalous

dimension and soft function. For this purpose, it suffices to consider eqs. (3.19) and (3.20),
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which correctly evolve the (already resummed) soft function between two scales νS and νB.

The final results in eqs. (3.19) and (3.20) after all integrations can only depend on pT and

thus can only contain logarithms ln(pT /µ). One might therefore expect that when perform-

ing the rapidity evolution at µ ∼ pT , it should be sufficient to evaluate γν at fixed order.

However, what is important is that the rapidity anomalous dimension contains logarithms

ln(|~ki|/µ) (in distributional form). These are only minimized by µ ∼ pT if the convolutions

were dominated by |~ki| ∼ pT . However, as argued above, since the convolution intrinsically

probes momenta |~ki| � pT , setting µ ∼ pT can induce spurious logarithms ln(|~ki|/pT ).

Hence, the rapidity anomalous dimension γν entering the convolutions should always be

resummed in order to correctly describe emissions at any |~ki| . Q. As we will see in sec. 4,

the main effect of resumming γν(~ki, µ) is to evaluate it at αs(|~ki|) rather than αs(µ). This

suppresses the amplitude of energetic emissions, which is particularly important because

there is no phase-space suppression due to the soft approximations, as discussed above.

At this point we can also discuss why these complications do not arise for scalar

quantities like thrust or transverse energy. Taking transverse energy as the closest example4

to qT , the measurement constraint (for two emissions) changes to

δ(~k1 + ~k2 −~pT ) → δ(|~k1|+ |~k2| − ET ) . (3.22)

This is clearly a much stronger constraint and forces both momenta to be of the order of

the total transverse energy, |~ki| ∼ ET . In figure 1, this corresponds to forcing the momenta

to lie on the orange line, and it does not allow any contributions from the large momentum

region. In particular, the rapidity logarithms ln(νB/|~ki|) are now well approximated by

∼ ln(νB/ET ). As we will see in the next subsection, this is precisely the reason why in

the one-dimensional case the convolution structure of the RGE does not lead to a spurious

singularity.

3.3 Rapidity evolution in Fourier space

To illustrate that the problems observed in the previous section are not an artifact of

the momentum space approach, we now consider the resummation of the soft function in

Fourier space. There, the rapidity RGE in eq. (3.14) becomes multiplicative,

S̃(~bT , µ, ν) = γ̃ν(~bT , µ) S̃(~bT , µ, ν) , (3.23)

where~bT is Fourier conjugate to~pT and the tilde denotes the Fourier transformed quantities.

Equation (3.23) is easily solved by

S̃(~bT , µ, ν) = S̃(~bT , µ, ν0) exp

[
ln
ν

ν0
γ̃ν(~bT , µ)

]
, (3.24)

from which we recover the momentum space solution

S(~pT , µ, ν) =

∫
d2~bT
(2π)2

ei~pT ·
~bT S̃(~bT , µ, ν0) exp

[
ln
ν

ν0
γ̃ν(~bT , µ)

]
. (3.25)

4The factorization of ET is known to be affected by Glauber modes [75], but the ET -distribution can

still serve as an example for the different mathematical structure of the renormalization group equations.
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For arbitrary ν0, this is exactly equal to eqs. (3.19) and (3.20), and allows one to correctly

shift logarithms from ν0 to ν.

However, to instead predict the soft function including its logarithms, one needs

to choose ν0 suitably. Since the final S(~pT , µ, ν) result is known to contain logarithms

ln(pT /ν), one might be tempted to set ν0 = pT and use the fixed-order boundary condition

S̃(~bT , µ, ν0) = 1 + · · · . However, we know that S̃ contains logarithms ln(ν0bT ), and these

are of course not eliminated by ν0 ∼ pT . Since the Fourier integral runs over all ~bT , they

can in principle become relevant at small and large ~bT , in particular wherever the simple

scaling bT ∼ p−1
T is violated. (This is the same situation as discussed in eq. (2.8).) This

is analogous to setting νS in eq. (3.19) to the overall qT and using the pure fixed-order

boundary condition for S(~kT , µ, νS).

We will explicitly see in the next section that the bT → 0 region causes troubles if one

were to set S̃(~bT , µ, ν0) = 1. In Fourier space, the problem is easily overcome by choosing

ν0 ∼ 1/bT , which would allow one to evaluate the boundary condition in a pure fixed-order

expansion. However, this corresponds to an intrinsic scale setting and thus resummation

in Fourier space. The correct momentum-space analog corresponds to the discussion in

eq. (3.21) and will be derived in sec. 5.

3.4 Illustration: effects from energetic emissions

In the sec. 3.2 we argued that the two-dimensional convolutions of γν are intrinsically sen-

sitive to large transverse momenta. As a result the formal solution eq. (3.20) does not allow

one to correctly predict the all-order soft function because these energetic emissions are

artificially enhanced by large rapidity logarithms. We will now explicitly demonstrate that

this incorrect treatment is what causes a well-known spurious singularity in the evolution

kernel.

We first calculate the rapidity evolution kernel V in eq. (3.20) using the fixed leading-

order expression for γν , which is given by

γν(~pT , µ) = 2Γcusp[αs(µ)]L0(~pT , µ) . (3.26)

Inserting this into eq. (3.20), the evolution kernel can be calculated either through Fourier

transformation or by explicitly calculating L0⊗n [see eq. (C.24)]. Both techniques yield

V (~pT , µ, ν, ν0) =
[
δ(~pT ) + ωsLωs(~pT , µ)

]
e−2γEωs

Γ(1− ωs)
Γ(1 + ωs)

, (3.27)

where

ωs = 2Γcusp[αs(µ)] ln
ν

ν0
, (3.28)

and the plus distribution is defined as [see eq. (C.8)]

La(~pT , µ) ≡ 1

πµ2

[(
~p2
T

µ2

)a−1]µ
+

≡ 1

πµ2
La(~p2

T /µ
2) . (3.29)

The result in eq. (3.27) contains an explicit divergence at ωs = 1, which has been en-

countered before [14–17, 24]. Using what would seem to be the canonical scale choices,
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µ = ν0 = qT and ν = Q, the divergence at ωs = 1 occurs when

Γcusp[αs(qT )] = ln−1 Q
2

q2
T

. (3.30)

For illustration, for gluon-induced processes like gg → H, where Γcusp ∼ CA, this happens

at qT ≈ 8 GeV for Q = 125 GeV and qT ≈ 27 GeV for Q = 1 TeV. For quark-induced

process like Drell-Yan, where Γcusp ∼ CF , it occurs at qT ≈ 2 GeV for Q = mZ and

qT ≈ 4 GeV for Q = 1 TeV.

Clearly, the all-order qT spectrum cannot contain such a singularity, especially since

for large Q it happens at purely perturbative qT . Its appearance for small enough qT /Q

respectively large enough ln(qT /Q) indicates that the above naive attempt simply does not

properly treat the resummation of logarithms. As we have shown, eq. (3.27) can be derived

working entirely in momentum space and without any reference to Fourier space, which

means that it is not related to a possibly ill-defined inverse Fourier transformation.

To show that the origin of this divergence is indeed due to contributions from large

transverse momenta in the convolution, as argued earlier, we regulate the LO anomalous

dimension in eq. (3.26) by introducing an explicit cut off Λ in momentum space,

γν(~pT , µ)→ γ(Λ)
ν (~pT , µ) ≡ γν(~pT , µ)θ(Λ− pT ) . (3.31)

Since γν(~pT , µ) corresponds to a single real emission with momentum ~pT , this is equivalent

to cutting off emissions with large transverse momentum |~pT | > Λ. Using eq. (3.31) in

eq. (3.20), the rapidity evolution kernel becomes rather complicated and is most easily

evaluated in Fourier space, where the regulated anomalous dimension eq. (3.31) reads

γ̃ν
(Λ)(~bT , µ) = 2Γcusp[αs(µ)]

[
ln

Λ2

µ2
−
b2TΛ2

4
2F3

(
−
b2TΛ2

4

)]
, (3.32)

where 2F3(x) = 2F3(1, 1; 2, 2, 2;x) is a generalized hypergeometric function. The rapidity

evolution kernel then is

V (~pT , µ, ν, ν0) =

∫
d2~bT
(2π)2

ei
~bT ·~pT exp

[
ln
ν

ν0
γ̃(Λ)
ν (~bT , µ)

]
=

1

2π

(
Λ2

µ2

)ωs ∫ ∞
0

dbT bTJ0(bT pT ) exp

[
−ωs

b2TΛ2

4
2F3

(
−
b2TΛ2

4

)]
=

2

πµ2

(
Λ2

µ2

)ωs−1 ∫ ∞
0

dxxJ0

(
2xpT

Λ

)
exp
[
−ωs x2

2F3(−x2)
]
. (3.33)

This is perfectly finite for ωs = 1. It shows that by cutting off energetic emissions the

divergence disappears, and confirms our observation that it is precisely the large momentum

region that is being treated incorrectly. Taking the Λ → ∞ limit in eq. (3.33) is slightly

nontrivial but reproduces eq. (3.27). In particular, from the expression in the last line of

eq. (3.33) it is easy to see that for ωs = 1 the prefactor diverges for Λ→∞, while it does

not for ωs < 1.
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Interestingly, by choosing Λ = pT , meaning that no single emission is allowed to be

harder than the total ~pT , one obtains

V (~pT , µ, ν, ν0) =
2

πµ2

(
p2
T

µ2

)ωs−1 ∫ ∞
0

dxxJ0(2x) exp

[
−ωs x2

2F3(−x2)

]
, (3.34)

where the pT -dependence is exactly the same as in the unregulated solution eq. (3.27),

while the remaining integral is a function of ωs that is finite for any ωs (except for ωs = 0,

for which the whole expression has to reproduce the boundary condition V (~pT , µ, ν, ν) =

(2π)2δ(~pT )). This stresses again that emissions much harder than the actual final state ~pT
cause the divergence.

To see more explicitly how the divergence in eq. (3.27) arises, we can focus on its δ(~pT )

term. Using the expression for L0⊗n from eq. (C.24), we get

V (~pT , µ, ν, ν0) = δ(~pT ) +
∞∑
n=1

ωns
n!

(L0⊗n)(~pT , µ) = δ(~pT )
∞∑
n=0

ωns
n!

(−1)nR
(n)
2 + · · ·

∼ δ(~pT )

∞∑
n=0

ωns
n!
× n! + · · · , (3.35)

where the ellipses denote the remaining distributions Ln that built up the Lωs term in

eq. (3.27). The (−1)nR
(n)
2 is exactly the nth derivative of the ωs-dependent factor in

eq. (3.27), e−2γEωsΓ(1− ωs)/Γ(1 + ωs), see eq. (C.17). The last sum in the first line hence

precisely leads to the δ(~pT ) piece of eq. (3.27), including its divergence at ωs = 1. In the

last step we inserted the asymptotic behaviour R
(n)
2 ∼ (−1)nn! [see eq. (C.21)]. Each factor

ωs corresponds to a single γν and hence a single real emission. Therefore, the n! growth of

the contribution from n emissions, which leads to the divergence for ωs = 1, simply reflects

the number of combinations of n individual emissions ~ki to yield an overall ~pT =
∑

i
~ki.

Hence it is of a kinematic origin and intrinsic to the two-dimensional nature of ~pT .

To further illustrate this, we can show that this divergence does not appear for the

one-dimensional case, where the convolution momentum is strictly limited to k′ ≤ k. The

analogous one-dimensional problem (which would be relevant for ET ) is given by

ν
dF (k, µ, ν)

dν
=

∫
dk′ γν,F (k − k′, µ)F (k′, µ, ν) ,

γν,F (k, µ) = 2Γcusp[αs(µ)]L0(k, µ) . (3.36)

The corresponding evolution kernel is given by,

U(k, µ, ν, ν0) = δ(k) +

∞∑
n=1

ωns
n!

(L0⊗n)(k, µ) =
[
δ(k) + ωsLωs(k, µ)

] e−γEωs

Γ(1 + ωs)

= δ(k)

∞∑
n=0

ωns
n!

(−1)nR̃
(n)
1 + · · · = δ(k)

e−γEωs

Γ(1 + ωs)
+ · · · , (3.37)

where the ellipses in the second line denote plus distributions Ln(k, µ), which we omitted

for simplicity to focus on the δ(k) term. As before, each power of ωs corresponds to a
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single emission. The n-emission term comes with a coefficient (−1)nR̃
(n)
1 , which is the nth

derivative of e−γEωs/Γ(1 + ωs), see eq. (B.16). This function is well defined for all ωs,

and in particular its derivatives do not show the factorial growth that is present in the

two-dimensional case R
(n)
2 ∼ (−1)nn!.

Finally, for completeness we show how the divergence arises from the Fourier space

calculation. In this case, the evolution kernel is given by the inverse Fourier transform

V (~pT , µ, ν, ν0) =

∫
d2~bT
(2π)2

ei
~bT ·~pT exp

[
ln
ν

ν0
γ̃ν(bT , µ)

]
. (3.38)

The Fourier transform of the LO expression for γν in eq. (3.26) is given by

γ̃ν(bT , µ) =

∫
d2~pT e

−i~bT ·~pT γν(~pT , µ) = −2Γcusp[αs(µ)] ln
b2Tµ

2

b20
, (3.39)

such that

V (~pT , µ, ν, ν0) =
1

2π

∫ ∞
0

dbT bT J0(bT pT ) exp

(
−ωs ln

b2Tµ
2

b20

)
, (3.40)

with ωs as in eq. (3.28). The integral converges at large bT . At small bT the integrand

behaves as

bT J0(bT pT ) exp

(
−ωs ln

b2Tµ
2

b20

)
∼ b1−2ωs

T , (3.41)

where we approximated J0(bT pT ) ≈ 1 for bT → 0. Hence we find a logarithmic divergence

from the small bT limit when ωs → 1. This is consistent with the previous calculation,

since roughly bT ∼ p−1
T , and thus we can again conclude that energetic emission cause

the divergent term. To identify the factorial growth, we expand the exponential in the

integrand and perform the integration in the small bT region, where J0(bT pT ) ∼ 1,

V (~pT , µ, ν, ν0) =
1

2π

∫ ∞
0

dbT bT J0(bT pT ) exp

(
−ωs ln

b2Tµ
2

b20

)
∼ 1

2π

∞∑
n=0

1

n!
(−ωs)n

∫
dbT bT lnn

b2Tµ
2

b20

∼ b20
4πµ2

∞∑
n=0

1

n!
ωns n! =

b20
4πµ2

1

1− ωs
. (3.42)

Hence, the small-bT region of the Fourier integral reproduces the n! growth responsible for

the first pole in ωs = 1 in eq. (3.27). Note that expanding the Bessel function J0 to higher

orders similarly produces the other poles at ωs = 2, 3, · · · of eq. (3.27).

In conclusion, the two-dimensional nature of the convolutions appearing in transverse

momentum distributions pose a significant complication to performing the associated renor-

malization group evolution and resummation. The main problem is that these convolutions

can intrinsically probe emissions at arbitrarily large momentum via kinematic cancellations.

In principle, such kinematic cancellations among several hard emissions to produce a small
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value of ~qT is a physical effect which will be present in the full all-order result for the spec-

trum, However, in the above naive approach, the large-momentum emissions get artificially

enhanced by fake rapidity logarithms. By explicitly cutting off such emissions, we have

shown that they indeed produces unphysical contributions and are the origin of a spurious

singularity in the rapidity evolution kernel. As discussed in sec. 3.2, the appearance of these

energetic emissions requires a careful scale setting when performing the RG evolution for

qT -spectrum in momentum space, which will be the focus of the remainder of this paper.

4 Resummation of the rapidity anomalous dimension

In this section, we carry out the resummation of the rapidity anomalous dimension γν(~pT , µ)

in momentum space by solving its differential equation [see eq. (3.16)],

µ
dγν(~pT , µ)

dµ
= −4Γcusp[αs(µ)] δ(~pT ) , (4.1)

using the techniques introduced in sec. 2. Since eq. (4.1) encodes the consistency (i.e. exact

path independence) between the µ and ν evolutions [15, 33], the solution of eq. (4.1) is

an important ingredient in the full momentum-space resummation. In particular, as was

discussed in sec. 3, since the two-dimensional convolutions are intrinsically sensitive to

emissions at all momentum scales, one cannot naively use a fixed-order approximation for

γν even when the rapidity RGE is performed at µ ∼ qT .

We will also use the resummed result for γν(~pT , µ) as an example to study the differ-

ences to carrying out the resummation in Fourier space, the appearance of nonperturbative

effects in the qT spectrum, as well as the implementation of a profile scale and how it allows

to probe subleading logarithms.

4.1 Resummation of γν in closed form

We can solve eq. (4.1) distributionally by integrating it from arbitrary µ0 to µ and then

setting µ0 = pT |+ using eq. (2.74),

γν(~pT , µ) =

[
γν(~pT , µ0)− δ(~pT )

∫ µ

µ0

dµ′

µ′
4Γcusp[αs(µ

′)]

]
µ0=pT |+

=
1

2πpT

d

dpT

{
θ(pT )γν [αs(pT )]− θ(pT )

∫ µ

pT

dµ′

µ′
4Γcusp[αs(µ

′)]

}
. (4.2)

Here we used that the boundary term can only depend on αs(pT ) and that by virtue of the

cumulant must be proportional to θ(pT ), to write it as θ(pT )γν [αs(pT )]. Evaluating the

derivative [see eq. (C.7)] yields

γν(~pT , µ) =

[
4Γcusp[αs(pT )]

2πp2
T

]µ
+

+

[
1

2πp2
T

dγν [αs(pT )]

d ln pT

]ξ
+

+ δ(~pT )γν [αs(ξ)] . (4.3)

The µ dependence is carried by the first distribution, which can easily be seen to fulfill

eq. (4.1). The last two terms arise from the derivative acting on θ(pT )γν [αs(pT )] and are
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hence independent of any scale except pT . The ξ dependence exactly cancels between the

two terms, but is necessary to introduce a plus distribution to regulate the 1/p2
T divergence.

The same result is also obtained by directly solving eq. (4.1) in cumulant space.

Let us briefly discuss the form of eq. (4.3). Recall that γν(~pT , µ) corresponds to a single

real emission with transverse momentum ~pT . The factor 1/p2
T inside the plus distributions

corresponds to the propagator associated with such an emission. The associated infrared

singularity at ~pT → 0 has to cancel against virtual corrections, which is encoded by the

plus distribution that regulates the divergence. The effect of solving the RGE of γν is to

evaluate the anomalous dimension at αs(pT ) rather than αs(µ). This is not very surprising,

as we would expect the µ-RGE to resum virtual corrections to this single emission, which

naturally pushes αs to be evaluated at the emission scale rather than the overall scale µ.

The boundary term γν [αs(ξ)] can be extracted by integrating eq. (4.3) up to pT ≤ µ,

θ(µ)γν [αs(µ)] =

∫
|~pT |≤µ

d2~pT γν(~pT , µ) . (4.4)

It corresponds precisely to the noncusp piece of the anomalous dimensions. We expand it

as

γν(αs) =

∞∑
n=0

γν n

(αs
4π

)n+1
, (4.5)

and the constants γν n are the coefficients of δ(~pT ) in the fixed-order calculation of γν(~pT , µ).

4.2 Iterative resummation of γν

It is instructive to see how the resummed result for γν(~pT , µ) arises order-by-order in

perturbation theory by using a recurrence relation. To obtain the recurrence relation, we

expand

γν(~pT , µ) =
∞∑
n=0

γ(n)
ν (~pT , µ)

[
αs(µ)

4π

]n+1

. (4.6)

Differentiating this with respect to µ and plugging it back into eq. (4.1) gives the relation

µ
dγ

(n)
ν (~pT , µ)

dµ
= −4Γnδ(~pT ) +

n−1∑
m=0

2(m+ 1)βn−m−1γ
(m)
ν (~pT , µ) , (4.7)

where Γn and βn are the coefficients of the cusp anomalous dimensions and beta function,

see eq. (A.11). Applying the integration rule in eq. (2.79) yields the solution

γ(n)
ν (~pT , µ) = 2ΓnL0(~pT , µ) +

n−1∑
m=0

2(m+ 1)βn−m−1

µ∫
µ0=pT |+

dµ′

µ′
γ(m)
ν (~pT , µ

′) + γν nδ(~pT ) .

(4.8)

The first two terms follow from integrating the right hand side of eq. (4.7), leaving only a

pure number times δ(~pT ) as possible boundary term. This shows explicitly that the noncusp

coefficients γν n determine the boundary condition, which can (and must) be determined in
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fixed-order perturbation theory, while all plus distributions arise from the µ-evolution. Note

that the remaining integral has to be evaluated with distributional scale setting according

to eq. (2.79).

The first few terms following from eq. (4.8) are given by

γ(0)
ν (~pT , µ) = 2Γ0 L0(~pT , µ) ,

γ(1)
ν (~pT , µ) = −2β0Γ0 L1(~pT , µ) + 2Γ1 L0(~pT , µ) + γν 1 δ(~pT ) ,

γ(2)
ν (~pT , µ) = 2β2

0Γ0 L2(~pT , µ)− 2(β1Γ0 + 2β0Γ1)L1(~pT , µ)

+ 2(Γ2 − β0γν 1)L0(~pT , µ) + γν 2 δ(~pT ) ,

γ(3)
ν (~pT , µ) = −2β3

0Γ0 L3(~pT , µ) + (5β0β1Γ0 + 6β2
0Γ1)L2(~pT , µ)

− 2(β2Γ0 + 2β1Γ1 + 3β0Γ2 − 3β2
0γν 1)L1(~pT , µ)

+ (2Γ3 − 2β1γν 1 − 3β0γν 2)L0(~pT , µ) + γν 3 δ(~pT ) . (4.9)

Here we already used γν 0 = 0 to simplify the expressions. One can easily check that the

same result is obtained by expanding the full resummed result in eq. (4.3).

4.3 Comparison to resummation in Fourier space

The transverse momentum resummation is typically performed in Fourier (impact param-

eter) space. The rapidity anomalous dimension in Fourier space satisfies the corresponding

differential equation

µ
dγ̃ν(~bT , µ)

dµ
= −4Γcusp[αs(µ)] . (4.10)

Here, γ̃ν(~bT , µ) is the Fourier transform of γν(~pT , µ). It naturally depends on ln(b2Tµ
2/b20)

with b0 = 2e−γE , such that the resummation with canonical scale choice µ0 = b0/bT is

γ̃ν(~bT , µ) = γ̃ν [αs(b0/bT )]−
∫ µ

b0/bT

dµ′

µ′
4Γcusp[αs(µ

′)] , (4.11)

where γ̃ν [αs(b0/bT )] is the boundary term.

To compare eq. (4.11) to the momentum space solution in eq. (4.3), we need to take

the inverse Fourier transform, which involves integrating γ̃ν(~bT , µ) over the nonperturba-

tive region 1/bT . ΛQCD. It is hence easier to compare at the level of the perturbative

reexpansion of γν . A recurrence relation similar to eq. (4.8) is easily derived in Fourier

space,

γ̃(n)
ν (~bT , µ) = −2Γn ln

b2Tµ
2

b20
+ 2

n−1∑
m=0

(m+ 1)βn−m−1

∫ µ

b0/bT

dµ′

µ′
γ(m)
ν (~bT , µ

′) + γ̃ν n . (4.12)

Calculating the first few terms and transforming them to momentum space, we obtain

γ(0)
ν (~pT , µ) = 2Γ0L0(~pT , µ) ,

γ(1)
ν (~pT , µ) = −2β0Γ0L1(~pT , µ) + 2Γ1L0(~pT , µ) + γ̃ν 1δ(~pT ) ,

γ(2)
ν (~pT , µ) = 2β2

0Γ0L2(~pT , µ)− 2(β1Γ0 + 2β0Γ1)L1(~pT , µ)
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+ 2(Γ2 − β0γ̃ν 1)L0(~pT , µ) +
(
γ̃ν 2 +

8

3
ζ3β

2
0Γ0

)
δ(~pT ) ,

γ(3)
ν (~pT , µ) = −2β3

0Γ0 L3(~pT , µ) + (5β0β1Γ0 + 6β2
0Γ1)L2(~pT , µ)

− 2(β2Γ0 + 2β1Γ1 + 3β0Γ2 − 3β2
0 γ̃ν 1)L1(~pT , µ)

+ (2Γ3 − 2β1γ̃ν 1 − 3β0γ̃ν 2 − 8ζ3β
3
0Γ0)L0(~pT , µ)

+
(
γ̃ν 3 +

20

3
ζ3β0β1Γ0 + 8ζ3β

2
0Γ1

)
δ(~pT ) . (4.13)

The first two terms agree with eq. (4.9), and hence to this order we find identical noncusp

constants, γ̃ν 1 = γν 1. The differences compared to eq. (4.9) start at O(α3
s), where the

b-space resummation induces additional terms. This means that the 3-loop and 4-loop

noncusp constants are related by

γν 2 = γ̃ν 2 +
8

3
ζ3β

2
0Γ0 ,

γν 3 = γ̃ν 3 +
20

3
ζ3β0β1Γ0 + 8ζ3β

2
0Γ1 . (4.14)

In addition, the L0 term in γ
(3)
ν differs by a contribution 8ζ3β

3
0Γ0, which is induced by the

different boundary term γ̃ν 2, which feeds into the logarithmic distribution at higher orders.

Similar additional terms are induced at each higher order. The reason is that pure

b-space logarithms lnn(b2µ2/b20) do not correspond to pure plus distributions Ln−1(~pT , µ),

but also induce δ(~pT ) terms when Fourier transformed back to momentum space. The

implications of this were discussed already in secs. 2.5 and 2.7. If γν is calculated in full fixed

order to αns , the boundary terms can be extracted up to this order, which also takes into

account the differences between γν n and γ̃ν n up to this order. However, for the unknown

higher order terms one would set γ̃ν n = 0 in the b-space resummation (i.e. by setting the

boundary condition in b-space) and γν n = 0 in the momentum-space resummation (i.e. by

setting the boundary condition in momentum space). This means if one were to use the

b-space resummation to obtain the momentum-space result this would induce additional

boundary terms which then lead to additional subleading terms to all orders compared to

the momentum-space resummation, and vice versa.

Even though the inverse Fourier transformation over the full b-space result is not

possible, we can express the differences in closed form by relating eqs. (4.3) and (4.11)

through

γν(~pT , µ) = FT−1[γ̃ν(~bT , µ)](~pT )−
[

1

2πp2
T

d∆γν [αs(pT )]

d ln pT

]µ
+

− δ(~pT ) ∆γν [αs(µ)] , (4.15)

where

∆γν [αs(µ)] =

∫ ∞
0

dbT µJ1(bTµ) γ̃ν(|~bT |, µ)− γν [αs(µ)] . (4.16)

Here we used that γ̃ν only depends on the magnitude of ~bT , γ̃ν(~bT , µ) ≡ γ̃ν(|~bT |, µ). The

relation is derived by relating the pure δ(~pT ) pieces via eq. (4.4) to each other. It holds in the

sense that the fixed-order expansions of both sides match to all orders. The ∆γν contains
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the differences in the boundary condition and the second term in eq. (4.15) explicitly shows

the subleading logarithmic terms contained in the inverse Fourier transform of the b-space

solution.

4.4 Turning off resummation using profiles

Having obtained the resummed rapidity anomalous dimension, we can use it as an illus-

trative example for the implementation of a profile scale to smoothly transition between

resummation and fixed-order regimes, as discussed in sec. 2.6. Starting from the formal

solution

γν(~pT , µ) = γν(~pT , µ0)− δ(~pT )

∫ µ

µ0

dµ′

µ′
4Γcusp[αs(µ

′)] , (4.17)

the aim is to choose a profile scale µ0(pT ) that smoothly transitions from the canonical

scale choice µ0 = pT |+ in the resummation regime to the fixed scale µ0 = µ that turns off

the resummation. Note that the profile function can also depend on further variables such

as Q or the final ~qT . Since these dependences do not require distributional scale setting,

we suppress them.

As discussed in sec. 2.6, the pT -dependence of µ0(pT ) requires distributional scale

setting using eq. (2.74) generalized to a function µ0(pT ),

γν(~pT , µ) =
1

2πpT

d

dpT

∫
|~kT |≤pT

d2~kT

{
γFO
ν (~kT , µ0(pT ))− δ(~kT )

∫ µ

µ0(pT )

dµ′

µ′
4Γcusp[αs(µ

′)]

}
.

(4.18)

Here the superscript “FO” makes explicit that the boundary term is obtained from a

fixed-order calculation. Focusing for the moment on the second term, which predicts the

logarithmic terms at higher orders in αs, the derivative can be evaluated [see eq. (C.7)],

γν(~pT , µ) ⊃
[

1

2πp2
T

d lnµ0(pT )

d ln pT
4Γcusp[µ0(pT )]

]µ
+

− δ(~pT )

∫ µ

µ0(µ)

dµ′

µ′
4Γcusp[αs(µ

′)] . (4.19)

This has to be compared to the corresponding term in the canonical solution in eq. (4.3),

γν(~pT , µ) ⊃
[

4Γcusp[αs(pT )]

2πp2
T

]µ
+

. (4.20)

This result is recovered using the canonical scale µ0(pT ) = pT , for which the integral

in eq. (4.19) vanishes. On the other hand, the resummation is turned off by choosing

µ0(pT ) = µ, for which both terms in eq. (4.19) vanish and only the fixed-order term in

eq. (4.18) survives. In between, the shape of the derivative d lnµ0(pT )
d ln pT

6= 1 entering in the

plus distribution controls how the plus distribution, which is entirely generated by the

resummation, is being turned off until it vanishes in the fixed-order regime.

Another purpose of the profile scale is to probe the size of higher-order terms through

scale variations. To show concretely how this works, consider choosing µ0(pT ) = 2pT , for

which eq. (4.19) becomes

γν(~pT , µ) ⊃
[

4Γcusp[αs(2pT )]

2πp2
T

]µ
+

− δ(~pT )

∫ µ

2µ

dµ′

µ′
4Γcusp[αs(µ

′)] . (4.21)
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We observe two effects. On the one hand, the plus distribution now has a different shape

in ~pT due to Γcusp[αs(2pT )]. This is reasonable, as all higher-order logarithms in γν are

resummed into the scale entering the cusp anomalous dimension Γcusp, so we expect a

variation there. On the other hand, the δ(~pT ) term does not vanish anymore, and hence

probes the constant fixed-order boundary terms.

In conclusion, the distributional scale setting allows one to use profile scales as usual,

allowing to smoothly connect the resummation and fixed-order regimes as well as to im-

plement profile scale variations.

Example at lowest order As an illustrative example, we consider resumming γν at

lowest order (i.e. LL including β0 and Γ0) with a profile scale in conjunction with the full

O(αs) boundary term,

γFO
ν (~pT , µ) = 2Γ0

αs(µ)

4π
L0(~pT , µ) . (4.22)

(This combination corresponds to a partial NLL result and would typically not arise in

practice, but it is useful for illustration.) From eq. (4.18), we obtain

γ(N)LL
ν (~pT , µ) =

Γ0

π

[
1

2πpT

d

dpT

{
αs[µ0(pT )] ln

pT
µ0(pT )

−
∫ µ

µ0(pT )

dµ′

µ′
αs(µ

′)

}]µ
+

+
Γ0

π
δ(~pT )

{
αs[µ0(µ)] ln

µ

µ0(µ)
−
∫ µ

µ0(µ)

dµ′

µ′
αs(µ

′)

}
. (4.23)

The first term in each of the curly brackets is from the fixed-order boundary condition and

the second term is from the LL µ evolution. Expanding the result in αs(µ), we obtain

γ(N)LL(0)
ν (~pT , µ) = 2Γ0 L0(~pT , µ) = γ(0)

ν (~pT , µ) ,

γ(N)LL(1)
ν (~pT , µ) = −2β0Γ0

1

πµ2

[
µ2

~p2
T

ln
µ0(pT )2

µ2

]µ
+

+ 2β0Γ0
1

πµ2

[
µ2

~p2
T

ln
µ0(pT )2

p2
T

d lnµ0(pT )

d ln pT

]µ
+

+ 4Γ0β0 ln2 µ

µ0(µ)
δ(~pT ) . (4.24)

As discussed in generality above, by including the full O(αs) boundary condition, the O(αs)

result γ
(0)
ν is exactly reproduced independently of the choice of µ0(pT ). The two-loop term

has to be compared to the full fixed-order result from eq. (4.9),

γ(1)
ν (~pT , µ) = −2β0Γ0

1

πµ2

[
µ2

~p2
T

ln
p2
T

µ2

]µ
+

+ 2Γ1
1

πµ2

[
µ2

~p2
T

]µ
+

+ γν 1δ(~pT ) . (4.25)

With the fixed-order scale µ0(pT ) = µ, the two-loop term γ
(N)LL(0)
ν completely vanishes,

leaving only the fixed-order term γ
(0)
ν . With the canonical resummation scale µ0(pT ) =

pT , the first term in γ
(N)LL(0)
ν exactly reproduces the leading-logarithmic two-loop term

∼ β0Γ0L1, while the other terms vanish. Varying µ0(pT ) induces higher-order terms with

precisely the structure of the formally higher-order Γ1 and γν 1 terms. Furthermore, the

pT -dependence of the variation allows one to distinguish and separately probe the size of

the higher-order logarithmic and higher fixed-order boundary pieces.
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4.5 Nonperturbative modeling with the moment expansion

It is well known from the resummation in Fourier space that the rapidity evolution ker-

nel becomes intrinsically nonperturbative at 1/b � ΛQCD [38–40]. In momentum space

this corresponds to the fact that the resummed result for γν(~pT , µ) in eq. (4.3) explicitly

depends on αs(pT ), which means that it becomes nonperturbative for pT . ΛQCD. This

nonperturbative region is necessarily probed in the rapidity RGE of the soft function, see

e.g. eqs. (3.14) and (3.20), since γν(~kT , µ) is integrated over all ~kT .

Although we will show in sec. 5.3 that the final result for the momentum convolutions is

actually perturbative up to power corrections O(Λ2
QCD/p

2
T ), it is still important to properly

handle and isolate the nonperturbative contributions to γν . To do so, we can write the

true all-order result for γν as

γν(~pT , µ) =

[
4Γcusp[αs(µ0(pT ))]

2πp2
T

]µ
+

+

[
1

2πp2
T

dγν [αs(µ0(pT ))]

d ln pT

]ξ
+

+ δ(~pT ) γν [αs(µ0(ξ))]

+ γ(np)
ν (~pT ) . (4.26)

Here, we have replaced the fixed canonical scale µ0 = pT |+ in the resummed result in

eq. (4.3) by a cutoff function µ0(pT ), which is equal to µ0(pT ) = pT for pT & ΛQCD

but cuts off and approaches some constant (perturbative) value for pT . ΛQCD. The

difference to the true result is absorbed into the nonperturbative contribution γ
(np)
ν (~pT ).

Since the resummed perturbative result is now only ever evaluated at perturbative scales, all

nonperturbative contributions must be contained in γ
(np)
ν (~pT ). The precise choice of µ0(pT )

here corresponds to a perturbative scheme dependence in the definition of γ
(np)
ν (~pT ), which

cancels on the right-hand sice in eq. (4.26) (and which we suppress in our notation). At

the same time, γ
(np)
ν (~pT ) is µ independent because the (perturbative) µ dependence is by

definition carried by the resummed perturbative contributions.

Letting µ0(pT ) = pT in the perturbative regime, γ
(np)
ν (~pT ) will have support of order

ΛQCD. Hence we can expand it in its moments,

γ(np)
ν (~pT ) =

( ∞∑
n=1

Ωn∆n
~pT

)
δ(~pT ) ≡ γ(np)

ν [∆~pT
] δ(~pT ) , (4.27)

where ∆~pT
= ∂2/∂2px+∂2/∂2py is the Laplace operator. Since γν is known to be azimuthaly

symmetric, no other operators, such as e.g. linear operators, may arise. The associated Ωn

coefficients are nonperturbative parameters, which have to be extracted from data. Like

γ
(np)
ν (~pT ) itself, they are µ independent but scheme dependent. This is reminiscent of

the moment expansions to treat the nonperturbative corrections in one-dimensional soft

functions [27, 76].

The moment expansion eq. (4.27) becomes more intuitive upon Fourier transformation.

In impact parameter space, it turns into a simple polynomial in −b2T ,

γ̃(np)
ν (~bT ) =

∞∑
n=1

Ωn(−b2T )n = γ(np)
ν [−b2T ] . (4.28)
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The analysis of ref. [77] found that the perturbative result for γ̃ν(~bT , µ) has a leading

renormalon contribution which scales as b2T . This is consistent with the fact that the first

nonperturbative moment Ω1 scales with ∆~pT
or b2T , and the renormalon in the perturbative

series should be precisely cancelled by a corresponding renormalon in Ω1. We expect that

the above cutoff definition can be used to provide a renormalon-free scheme definition for

Ω1 in momentum space and presumably γ
(np)
ν (~pT ) as a whole. It would be interesting to

investigate this in more detail in the future.

To compare the above moment expansion to the literature, consider the formal solution

of the rapidity RGE in eq. (3.14) in impact parameter space,

S̃(~bT , µ, ν) = S̃(~bT , µ, ν0) exp

[
ln
ν

ν0
γ̃ν(bT , µ)

]
. (4.29)

Including both the perturbative and nonperturbative contributions to γ̃ν , this yields

S̃(~bT , µ, ν) = S̃(~bT , µ, ν0) exp
[
ln
ν

ν0
γ̃(pert)
ν (bT , µ)

]
exp
[
−Ω1 ln

ν

ν0
b2T + · · ·

]
, (4.30)

where γ̃
(pert)
ν (bT , µ) is the Fourier transform of the resummed perturbative contribution.

Hence, the momentum-space resummation reproduces and confirms the often-used proce-

dure in the literature to model nonperturbative effects using a Gaussian factor in impact

parameter space, which is also motivated by renormalon analyses [77, 78]. In practice, a

variety of nonperturbative models have been suggested, see e.g. refs. [79, 80] for recent

studies. The above also confirms that the nonperturbative correction scales with a rapidity

logarithm [39, 81].

5 Resummation of soft and beam functions

In the previous section we have solved the RGE for the rapidity anomalous dimension γν ,

which already illustrated some of the key features of the distributional scale setting in a

nontrivial setting. In this section, we will solve the RGEs for both beam and soft function

and derive the correct momentum-space evolution to predict their complete distributional

logarithmic structure. The implications on the full qT spectrum are discussed in sec. 6.

5.1 Soft function

The soft function obeys the coupled system of renormalization group equations, eqs. (3.8)

and (3.14),

µ
dS(~pT , µ, ν)

dµ
= γS(µ, ν)S(~pT , µ, ν) , (5.1)

ν
dS(~pT , µ, ν)

dν
=

∫
d2~kT γν(~kT , µ)S(~pT − ~kT , µ, ν) , (5.2)

where the ν-RGE involves a two-dimensional convolution, which is the main source of

complications, as discussed in sec. 3.2.
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5.1.1 Iterative solution

We first derive an iterative solution order by order in αs. This requires the expansions

S(~pT , µ, ν) =
∞∑
n=0

S(n)(~pT , µ, ν)

[
αs(µ)

4π

]n
, (5.3)

γS(µ, ν) =

∞∑
n=0

(
4Γn ln

µ

ν
+ γS n

)[αs(µ)

4π

]n+1

, (5.4)

γν(~pT , µ) =
∞∑
n=0

γ(n)
ν (~pT , µ)

[
αs(µ)

4π

]n+1

, (5.5)

where the γ
(n)
ν were derived in sec. 4.2. The two RGEs then become

µ
dS(n)(~pT , µ, ν)

dµ
=

n−1∑
m=0

(
4Γn−m−1 ln

µ

ν
+ γS n−m−1 + 2mβn−m−1

)
S(m)(~pT , µ, ν) , (5.6)

ν
dS(n)(~pT , µ, ν)

dν
=

n−1∑
m=0

(
γ(n−m−1)
ν ⊗ S(m)

)
(~pT , µ, ν) . (5.7)

These equations allow to determine the αns coefficient S(n) from the lower order terms S(m)

with m < n. Solving first the ν-RGE in eq. (5.7), we obtain the formal solution

S(n)(~pT , µ, ν) = S(n)(~pT , µ, ν0) +

∫ ν

ν0

dν ′

ν ′

n−1∑
m=0

γ(n−m−1)
ν (~pT , µ)⊗ S(m)(~pT , µ, ν

′) . (5.8)

The missing boundary term S(n)(~pT , µ, ν0) is deduced from the µ-RGE in eq. (5.6),

S(n)(~pT , µ, ν0) = S(n)(~pT , µ0, ν0) (5.9)

+

∫ µ

µ0

dµ′

µ′

n−1∑
m=0

(
4Γn−m−1 ln

µ′

ν0
+ γS n−m−1 + 2mβn−m−1

)
S(m)(~pT , µ

′, ν0) .

The remaining boundary term S(n)(~pT , µ0, ν0) can only contain logarithms ln(µ0/pT ) or

ln(ν0/pT ) or any combination of these. In particular, these logarithms can be hidden inside

the boundary condition of plus distributions Ln(~pT , µ),Ln(~pT , ν). To eliminate them, we

apply eq. (2.74) to set µ0 = ν0 = pT |+. The remaining pure fixed-order boundary term

must then be proportional to δ(~pT ), and we obtain

S(n)(~pT , µ, ν) = Snδ(~pT )

+

∫ µ

pT |+

dµ′

µ′

n−1∑
m=0

(
4Γn−m−1 ln

µ′

ν0
+ γS n−m−1 + 2mβn−m−1

)
S(m)(~pT , µ

′, ν0)

∣∣∣∣
ν0=pT |+

+

∫ ν

pT |+

dν ′

ν ′

n−1∑
m=0

(
γ(n−m−1)
ν ⊗ S(m)

)
(~pT , µ, ν

′) . (5.10)

In the µ-integral, both distributional scale settings should be performed in one step, µ0 =

ν0 = pT |+. By construction, this solution fulfills both RGEs and fully resums all logarithmic
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distributions. We have explicitly verified this solution by predicting the structure of the soft

function through O(α6
s) and comparing with the results obtained from impact parameter

space, where the distributions become simple functions and hence the complication of

distributional scale setting does not arise. As for γν , the constant pieces differ in general,

i.e. Sn 6= S̃n, thereby also inducing different logarithms at higher orders. Upon making

the appropriate identifications between S̃n and Sn, exact agreement between both iterative

solutions is obtained. This shows that the distributional scale setting is well-defined for the

soft function, even though it involves two distinct scales. For illustration, the fixed-order

expansion of the soft function is given through O(α3
s) in appendix D, including the relation

between the boundary terms Sn and S̃n.

For completeness, we also give the iterative solution when first solving the µ-RGE and

then the ν-RGE:

S(n)(~pT , µ, ν) = Snδ(~pT )

+

∫ µ

pT |+

dµ′

µ′

n−1∑
m=0

(
4Γn−m−1 ln

µ′

ν
+ γS n−m−1 + 2mβn−m−1

)
S(m)(~pT , µ

′, ν)

+

∫ ν

pT |+

dν ′

ν ′

n−1∑
m=0

(
γ(n−m−1)
ν ⊗ S(m)

)
(~pT , pT |+, ν ′) . (5.11)

Equations (5.10) and (5.11) are useful to illustrate again the correct scale setting

for distributions. Firstly, the lower order terms S(m) feeding into S(n) are themselves

distributions with boundaries µ or ν. Hence integrating over µ and ν with starting scale

pT requires distributional scale setting, which we apply according to eq. (2.74). Secondly,

we see that it is crucial to set ν0 = pT |+ at each order rather than keeping ν0 arbitrary

and setting ν0 = pT only at the very end. The reason lies in the convolution term in

eqs. (5.10) and (5.11), (γ
(n−m−1)
ν ⊗ S(m))(~pT , µ, ν

′): The convolution depends on whether

the integrand contains a formal scale ν0 or whether it is set to the convolution variable ~kT .

In contrast, multiplicative RGEs are not sensitive to this, such that the scale can be set at

the very end.

5.1.2 Solution in closed form

We now proceed to derive a closed form of the solution. We start by solving the µ-RGE

in eqs. (3.8) and (3.11) at ν0 = pT |+. The solution is straightforwardly obtained using the

technique of sec. 2.3. The formal solution

S(~pT , µ, ν0) = S(~pT , µ0, ν0) exp

[∫ µ

µ0

dµ′

µ′
γS(µ′, ν0)

]
(5.12)

only requires to set µ0 = ν0 = pT |+, yielding5

S(~pT , µ, ν0 = pT |+) =
1

2πpT

d

dpT
θ(pT )S[αs(pT )] exp

[∫ µ

pT

dµ′

µ′
γS(µ′, pT )

]
(5.13)

= δ(~pT )S[αs(µ)] +

[
1

2πpT

d

dpT
S[αs(pT )] exp

{∫ µ

pT

dµ′

µ′
γS(µ′, pT )

}]µ
+

.

5To allow scale variations, one could of course choose profile functions µ0 = µ0(pT )|+, ν0 = ν0(pT )|+.
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The plus distribution contains the exponentiated Sudakov double logarithm at ν0 = pT |+
as dictated by the RGE. The pure boundary term, which can only depend on αs, is defined

as

θ(pT )S[αs(pT )] =

∫
|~kT |≤pT

d2~kT S(~kT , µ = pT , ν = pT ) . (5.14)

and has the perturbative expansion

S(αs) =

∞∑
n=0

Sn

(αs
4π

)n
. (5.15)

The constants Sn can be obtained as coefficients of δ(~pT ) in the fixed-order calculation.

More generally, the soft function at the canonical distributional scales is given in terms of

this boundary term by

S(~pT , pT |+, pT |+) =
1

2πpT

d

dpT
θ(pT )S[αs(pT )]

= δ(~pT )S[αs(ξ)] +

[
1

2πpT

d

dpT
S[αs(pT )]

]ξ
+

, (5.16)

where the ξ dependence exactly cancels.

In the next step, the ν-RGE in eq. (3.14) has to be solved, which is more complicated.

Inspired by the iterative solution, we expand the soft function as

S(~pT , µ, ν) =
∞∑
n=0

S[n](~pT , µ, ν) , (5.17)

where the S[n] correspond to the soft function including n contributions from γν . More

intuitively, S[n] is the piece of the soft function originating from n real emissions. Since γν
describes a single real emission, the rapidity RGE becomes

ν
dS(~pT , µ, ν)

dν
=

∞∑
n=0

ν
d

dν
S[n](~pT , µ, ν) =

∞∑
n=0

(γν ⊗ S[n])(~pT , µ, ν)

=
∞∑
n=1

(γν ⊗ S[n−1])(~pT , µ, ν) . (5.18)

Hence the S[n] are determined through the recursive RGE

ν
d

dν
S[n](~pT , µ, ν) = (γν ⊗ S[n−1])(~pT , µ, ν) , ν

d

dν
S[0](~pT , µ, ν) = 0 . (5.19)

The solution at order n is

S[n](~pT , µ, ν) = S[n](~pT , µ, pT |+) +

∫ ν

pT |+

dν ′

ν ′
(γν ⊗ S[n−1])(~pT , µ, ν

′) , (5.20)

where it is now quite intuitive that ν0 should be set to pT |+ and not to the overall qT . Iterat-

ing this, the only leftover boundary term is precisely S(~pT , µ, pT |+) =
∑

n S
[n](~pT , µ, pT |+),
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and we can write the formal all-order solution as

S(~pT , µ, ν) = S(~pT , µ, pT |+) +

∫ ν

pT |+

dν1

ν1

∫
d2~k1 γν(~pT − ~k1, µ)S(~k1, µ, k1|+)

+

∫ ν

pT |+

dν1

ν1

∫
d2~k1 γν(~pT − ~k1, µ)

∫ ν1

k1|+

dν2

ν2

∫
d2~k2 γν(~k1 − ~k2, µ)S(~k2, µ, k2|+)

+ · · ·

= S(~pT , µ, pT |+) +

∞∑
n=1

[
n∏
i=1

∫ νi−1

ki−1|+

dνi
νi

∫
d2~ki γν(~ki−1 − ~ki, µ)

]
S(~kn, µ, kn|+) ,

(5.21)

where in the last line k0 ≡ pT and ν0 ≡ ν. All νi integrals have to be understood according

to eq. (2.79).

From the explicit form of the first few terms, it is easy to see that eq. (5.21) fulfills

the rapity RGE and that by choosing the overall ν = pT |+ reproduces the (µ-evolved)

boundary condition S(~pT , µ, pT |+). Note that although both γν and S will be probed at

nonperturbative αs in the convolutions of eq. (5.21), the result is actually perturbative up

to corrections O(Λ2
QCD/p

2
T ), as will be discussed in sec. 5.3. For practical purposes it is

nevertheless necessary to use a nonperturbative modelling, as already discussed for γν in

sec. 4.5. To allow scale variations, one would replace all ki|+ by a profile functions ν0(ki)|+.

Together, eqs. (5.13) and (5.21) completely predict the logarithmic structure of the soft

function to all orders. Crucially, the canonical-scale boundary condition for the solution is

S(~pT , pT |+, pT |+), which can be reliably calculated in a pure fixed-order calculation. The

iterative structure of the rapidity evolution eq. (5.21) ensures that the correct rapidity

logarithms ln(ν/|~ki|) evolving each emission to the overall rapidity scale are resummed.

Once the soft function has been evolved to some scale νS using this method, it can be

evolved further to a different overall scale ν using the simple kernel of eq. (3.20),

S(~pT , µ, ν) =

∫
d2~kT VS(~pT − ~kT , µ, ν, νS)S(~kT , µ, νS) ,

VS(~pT , µ, ν, νS) = δ(~pT ) +
∞∑
n=1

1

n!
lnn

ν

νS
(γν⊗n)(~pT , µ) , (5.22)

where we introduce the notation VS for the evolution kernel when used in this way for

continuing the evolution. This simple structure immediately emerges from eq. (5.21) when

replacing all ν0 = ki|+ by a common scale νS , such that all ν-integrals factor out of the

convolutions. This shows that eq. (5.22) is indeed sufficient to continue the ν evolution in

eq. (5.21) from the overall scale νS to a new overall scale ν.

5.1.3 Comparison to “naive” scale setting

Having obtained a solution correctly minimizing the boundary term distributionally, we

can turn back to the discussion of sec. 3.2. There we had argued that the naive solution,

eqs. (3.19) and (3.20), leads to wrong predictions, because energetic emissions are artificially

enhanced by unphysical logarithms ln(Q/qT ). Instead, each convolution should be dressed
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with its proper rapidity logarithm ln(Q/|~ki|), which is precisely what is happening in

eq. (5.21).

To see in more detail the different treatment of these rapidity logarithms, we now

compare the iterative solution to the naive evolution kernel eq. (3.20). To do this, we

simply assume the trivial boundary condition S(~kT , µ, kT |+) = δ(~kT ). This of course

means that the following result is not the properly resummed soft function, but it allows to

disentangle effects from rapidity and µ evolution, since the latter are now neglected in the

boundary term. Furthermore, we neglect running of αs for simplicity to keep the following

formula as compact as possible, and work only to LL accuracy. In this toy model, the

rapidity anomalous dimension is given by

γν(~pT , µ) = 2ΓcuspL0(~pT , µ) , (5.23)

where at LL we can ignore all constant pieces. To keep track of only the first two emissions,

we evaluate the resummed toy soft function only up to O(Γ2
cusp). We then obtain from

eq. (5.21)

S(toy)(~pT , µ, ν) = δ(~pT ) +

∫ ν

pT |+

dν1

ν1
γν(~pT , µ)

+

∫ ν

pT |+

dν1

ν1

∫
d2~k1 γν(~pT − ~k1, µ)

∫ ν1

k1|+

dν2

ν2
γν(~k1, µ) + · · ·

= δ(~pT )− 2
Γcusp

πµ2

[
µ2

~p2
T

ln
~p2
T

µν

]µ
+

+
2Γ2

cusp

πµ2

[
µ2

~p2
T

ln
~p2
T

µ2
ln
~p2
T

ν2
ln
~p2
T

µν

]µ
+

+ 4ζ3Γ2
cuspL0(~pT , ν) +O(Γ3

cusp) . (5.24)

For comparison, we calculate the soft function using the naive resummation eqs. (3.19)

and (3.20), where the starting scale ν0 is kept arbitrary. Similarly to above, we set the

boundary term to S(~pT , µ, ν0) = δ(~pT ), and evaluate the resummed soft function only at

LL without αs running. We find

S(toy)(~pT , µ, ν) = δ(~pT ) + ln
ν

ν0
γν(~pT , µ) +

1

2
ln2 ν

ν0

∫
d2~kT γν(~pT − ~kT , µ)γν(~kT , µ)

= δ(~pT ) +
Γcusp

πµ2
ln
ν2

ν2
0

[
µ2

~p2
T

]µ
+

+
Γ2

cusp

πµ2
ln2 ν

2

ν2
0

[
µ2

~p2
T

ln
~p2
T

µ2

]µ
+

. (5.25)

Comparing the two results eqs. (5.24) and (5.25), we observe a very different logarithmic

structure. In particular, in the solution eq. (5.24) derived from the known exact solution,

all rapidity logs are necessarily sensitive to the soft function ~pT . This becomes crucial when

the soft function is inserted into further convolutions, for example to predict the higher

order terms of S(toy) itself.
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5.2 Beam functions

The beam function RGE in eqs. (3.7) and (3.13)

µ
dB(ω,~pT , µ, ν)

dµ
= γB(ω, µ, ν)B(ω,~pT , µ, ν) , (5.26)

ν
dB(ω,~pT , µ, ν)

dν
= −1

2

∫
d2~kT γν(~kT , µ)B(ω,~pT − ~kT , µ, ν) (5.27)

are very similar to the soft function RGEs, and hence both iterative solution eqs. (5.10)

and (5.11) as well as the all-order solutions eqs. (5.13) and (5.21) can be applied to the

beam function upon proper replacement of anomalous dimensions and boundary terms.

The main difference to the soft function is that the canonical rapidity scale is νB = ω

rather than νB = pT |+, and hence does not require distributional scale setting. The solution

of the µ-RGE at the canonical ν-scale is

B(ω,~pT , µ, νB = ω) = δ(~pT )B(ω, µ) (5.28)

+

[
1

2πpT

d

dpT
B(ω, pT ) exp

{∫ µ

pT

dµ′

µ′
γB(ω, µ′, νB = ω)

}]µ
+

.

The boundary term is defined as

θ(pT )B(ω, pT ) =

∫
|~kT |≤pT

d2~kT B(~kT , µ = pT , νB = ω) (5.29)

and is expanded as

B(ω, µ) =

∞∑
n=0

Bn(ω, µ)

[
αs(µ)

4π

]n
. (5.30)

It is more complicated than for the soft function, because the beam functions are further

matched onto PDFs by an operator product expansion (see ref. [62] for more details),

Ba(ω,~pT , µ, ν) =
∑
i

∫
dz

z
Iai(z,~pT , µ, ν) fi

(ω/Ecm

z
, µ
)
. (5.31)

Here Ba is the beam function for flavor a and fi is the PDF for flavor i. (We ignore for the

moment that gluon beam functions furthermore have a helicity structure.) While applying

eq. (5.29) to eq. (5.31) eliminates all distributions in ~pT in the Iai matching kernels, the

boundary term still involves a convolution in z with the PDF.

The rapidity evolution kernel is obtained from eq. (5.21) by replacing all ν0 = ki|+ by

ν0 = νB ∼ ω. Since this scale is independent of pT , the ν-integrals can be pulled out as

B(ω,~pT , µ, ν) =

∫
d2~kT VB(~kT , ν, νB)B(ω,~pT − ~kT , µ, νB) ,

VB(~kT , ν, νB) = δ(~kT ) +
∞∑
n=0

1

n!

(
−1

2
ln

ν

νB

)n
(γν⊗n)(~kT , µ) , (5.32)

where the −1/2 arises from γν,B = −γν/2. Hence, for the beam function we recover the sim-

ple exponential in convolution space with the fixed-order boundary conditionB(ω,~pT , µ, νB).

This allows for a simple scale variation by choosing νB to be a suitable profile.
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~kT

~pT

Figure 2. Illustration of division of the integration range of ~kT in discs around the two singularities

at ~0 and ~pT . The grey discs represent the disc radius pT � Λ � ΛQCD. The red, dashed line

illustrates the location of the Landau poles at |~kT | = ΛQCD and |~pT − ~kT | = ΛQCD.

5.3 Perturbativity of convolutions

The solution eq. (5.21) of the rapidity RGE contains multiple convolutions of the form (γν⊗
S)(~pT ) or (γν⊗B)(~pT ). These convolutions naturally probe αs(|~kT |) in the nonperturbative

regime |~kT | . ΛQCD. Fortunately, nonperturbative effects turn out to be suppressed by

O(Λ2
QCD/p

2
T ), which ultimately means that the qT spectrum is also perturbative up to

corrections O(Λ2
QCD/q

2
T ), as one would naively expect.

To show this, we consider the convolution (f1 ⊗ f2)(~pT , µ) of two generic distributions[
f1(|~kT |)

]µ
+
,

[
f2(|~kT |)

]µ
+
, (5.33)

which only depend on the magnitude |~kT |, which is the typical case we are interested in. In

general, the distributions can depend on further parameters which we suppress, as they do

not affect the following calculation. We also do not include δ(~kT ) terms, as they trivially

factor out of the convolution f1 ⊗ f2.

Assuming perturbative |~pT |, µ� ΛQCD, we introduce an auxiliary parameter Λ fulfill-

ing ΛQCD � Λ� pT to split the integration range of the convolution

(f1 ⊗ f2)(~pT , µ) =

∫
d2~kT

[
f1(|~pT − ~kT |)

]µ
+

[
f2(|~kT |)

]µ
+

(5.34)

into three pieces (see fig. 2), two discs around ~0 and ~pT of radius Λ, and the rest of the

plane.

The convolution integral then splits into three pieces,

(f1 ⊗ f2)(~pT , µ) =

∫
BΛ(~0)

d2~kT f1(|~pT − ~kT |)
[
f2(|~kT |)

]µ
+

+

∫
BΛ(~pT )

d2~kT

[
f1(|~pT − ~kT |)

]µ
+
f2(|~kT |)

+

∫
R2\(BΛ(~0)∪BΛ(~pT ))

d2~kT f1(|~pT − ~kT |)f2(|~kT |) , (5.35)
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where BΛ(~pT ) denotes the ball of radius Λ around the origin ~pT . In the first integral,

the range is restricted to be close the origin, and hence the plus prescription of f1 can be

dropped, and vice versa for the second integral. The third integral is separated from both

poles by Λ � ΛQCD such that both distributions can be dropped. Furthermore, it also

avoids both Landau poles at |~kT | = ΛQCD and |~pT −~kT | = ΛQCD, and hence is completely

perturbative. This isolates all the nonperturbative contributions into the first two integrals.

We now focus on the first integral. Since by construction |~kT | ≤ Λ � |~pT | , we can

approximate |~pT −~kT |2 = |~pT |2
(
1 +O(~k

2

T /~p
2
T )
)
. Assuming that the functions only depend

on the squared magnitudes, we find∫
BΛ(~0)

d2~kT f1|(~pT − ~kT |)
[
f2(|~kT |)

]µ
+

=

∫
BΛ(~0)

d2~kT f1(|~pT |)
[
1 +O

(~k2

T

~p2
T

)][
f2(|~kT |)

]µ
+

= f1(|~pT |)
[
1 +O

(
Λ2

~p2
T

)]∫
|~kT |≤Λ

d2~kT

[
f2(|~kT |)

]µ
+

= f1(|~pT |)
[
1 +O

(
Λ2

~p2
T

)]
2π

∫ Λ

µ
dkT kT f2(kT ) .

(5.36)

Here we used that the plus distribution by definition removes all contributions for |~kT | ≤ µ
and therefore its integral is only sensitive to the upper integration limit Λ. Hence, we find

that the leading nonperturbative effect is suppressed as O(Λ2/~p2
T ).

The same approximation can be applied to the second integral in eq. (5.35), such that

eq. (5.35) becomes

(f1 ⊗ f2)(~pT , µ) =

[
1 +O

(
Λ2

p2
T

)]
2π

∫ Λ

µ
dkT kT

[
f1(pT )f2(kT ) + f1(kT )f2(pT )

]
+

+

∫
R2\(BΛ(~0)∪BΛ(~pT ))

d2~kT f1(~pT − ~kT )f2(~kT ) . (5.37)

In conclusion, we find that convolutions (f1 ⊗ f2)(~pT , µ) are well behaved with non-

perturbative contributions suppressed as O(Λ2/~p2
T ), as long as both |~pT | and µ themselves

are perturbative, |~pT |, µ� ΛQCD.

Illustration: The above result can be illustrated by an explicit example, which also

shows a different strategy to evaluate such convolutions. We consider the convolution

(f ⊗ f)(~pT , µ) of

f(~pT , µ) =

[
αs(|~pT |)
~p2
T

]µ
+

, (5.38)

which is the prototype of nonperturbative convolutions appearing in the qT spectrum. Even

without an explicit calculation, its generic form is known from its µ-dependence. From

µ
df(~pT , µ)

dµ
= −2παs(µ)δ(~pT ) , (5.39)

it follows that

µ
d(f ⊗ f)(~pT , µ)

dµ
= −4παs(µ)

[
αs(|~pT |)
~p2
T

]µ
+

. (5.40)
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Integrating this according to the prescription eq. (2.79), we find

(f ⊗ f)(~pT , µ) = (f ⊗ f)(~pT , µ0 = pT |+)− 4π

∫ µ

µ0=pT |+

dµ′

µ′
αs(µ

′)

[
αs(|~pT |)
~p2
T

]µ′
+

= (f ⊗ f)(~pT , µ0 = pT |+)−

[
4παs(|~pT |)

~p2
T

∫ µ

pT

dµ′

µ′
αs(µ

′)

]µ
+

. (5.41)

The plus distribution is perturbative as long as both |~pT |, µ� ΛQCD, which is precisely the

regime we have considered in the above general derivation. The structure of the boundary

term is not known, but its most generic structure to be µ0-independent is

(f ⊗ f)(~pT , µ0 = pT |+) =

[
−ΛQCD/|~pT | · F ′(ΛQCD/|~pT |)

2π~p2
T

]ξ
+

+ F (ΛQCD/ξ)δ(~pT ) , (5.42)

where the dependence on the arbitrary parameter ξ cancels between the two terms. Since

(f⊗f) scales as 1/~p2
T , F must be a scalar function. It can hence only depend on ΛQCD/|~pT |,

as no other scales can be combined into a scaleless number. To be any physically reasonable

function, F should vanish (or at most become constant) for ΛQCD → 0. Furthermore we

expect it to only depend on the magnitude ~p2
T , and hence the boundary term should scale

as O(Λ2
QCD/~p

2
T ), just as expected from the general calculation.

6 The resummed transverse-momentum spectrum

We now discuss in more detail the final result for the resummed transverse momentum

spectrum eq. (3.1),

dσ

dQ2dY d~qT
= σ0H(Q,µ)

∫
d2~ka d2~kb d2~ks δ(~qT − ~ka − ~kb − ~ks)

×Ba(ωa,~ka, µ, ν)Bb(ωb,~kb, µ, ν)S(~ks, µ, ν) , (6.1)

where ωa,b = Q±Y . All distributional logarithms in the qT spectrum are fully resummed

in momentum space by using the RG-evolved hard, beam, and soft functions in eq. (6.1).

To simplify the complicated structure of the ν-evolution, we use eq. (5.32) to evolve

the beam functions Ba,b from their natural rapidity scales νa,b ∼ ωa,b to ν. Since both

kernels are simple exponentials in convolution space, they can be combined into a single

evolution kernel, which due to 2γν,B = −γν,S = −γν precisely yields the kernel used to

shift the soft function, eq. (5.22),

(Ba ⊗Bb)(~pT , µ, ν) =

∫
d2~kT d2~ka d2~kb δ(~pT − ~kT − ~ka − ~kb)

× VS(~kT , µ, νB, ν)Ba(ωa,~ka, µ, νa)Bb(ωb,~kb, µ, νb) , (6.2)

where νB =
√
ν1ν2. Since beam functions inside the final convolution are evaluated at their

natural scales νa,b ∼ ωa,b, they are free of large rapidity logarithms.

– 46 –



In addition to soft and beam evolution, we also need the RG evolution of the hard

function, which is straightforwardly obtained from eq. (3.6),

H(Q,µ) = H(Q,µH) exp

[∫ µ

µH

dµ′

µ′
γH(Q,µ′)

]
, (6.3)

where µH ∼ Q ensures that H(Q,µH) is free of large logarithms.

To assemble the cross section eq. (6.1), we set the arbitrary scale µ to the total trans-

verse momentum qT . As usual, this requires distributional scale setting, µ = qT |+ ≡ µT |+.6

We keep the symbolic notation µT rather than qT to make the origin of all factors of qT
and µT in the final formula clear. We then find

dσ

dQ2dY d~qT
= σ0H(Q,µH)

1

2πqT

d

dqT

∫
|~pT |≤qT

d2~pT

× exp

[∫ µT

µH

dµ′

µ′
γH(Q,µ′)

] ∫
d2~ka d2~kb d2~ks δ(~pT − ~ka − ~kb − ~ks)

∫
d2~k
′
s

×
[
δ(~ks − ~k

′
s) +

∞∑
n=1

n∏
i=1

∫ νi−1

ki−1|+

dνi
νi

∫
d2~ki γν(~ki−1 − ~ki, µT ) δ

(
~ks − ~k

′
s −

∑
i

~ki

)]
×Ba(ωa,~ka, µT , νa)Bb(ωb,~kb, µT , νb)S(~k

′
s, µT , k

′
s|+) . (6.4)

The first line contains the µT -independent pieces and the cumulant integral from the dis-

tributional scale setting µ = µT |+. The second line makes explicit that the µ-evolution

resums logarithms ln(µT /µH) ∼ ln(qT /Q). The third line contains the ν-evolution kernel,

eq. (5.21), to evolve the soft function to ν0 ≡ νB =
√
νaνb. The last line contains beam

and soft functions evaluated at their natural ν-scales, and hence all rapidity logarithms in

eq. (6.4) are fully resummed.

Note that eq. (6.4) could be the starting point for a numerical evaluation. Although the

infinite number of convolutions cannot be calculated in closed form, one could for example

evaluate the result iteratively and truncate the sum in eq. (6.4) once a desired numerical

accuracy is reached.

One of the original motivations to carry out the momentum-space resummation (see

refs. [14, 21, 82]) was to avoid the intrinsic nonperturbative sensitivity at large qT � ΛQCD

arising in the Fourier-space resummation (see sec. 7.1.1 for more details). From eq. (6.4) it

is clear that the analogous sensitivity is still present in the momentum-space resummation,

namely the cross section is intrinsically sensitive to the nonperturbative contributions from

the rapidity anomalous dimension, since the convolutions probe |~k
′
i| . ΛQCD. Fortunately,

in either case these effects turn out to be suppressed by Λ2
QCD/q

2
T , as shown in sec. 5.3.

The last line of eq. (6.4) contains the µ-evolved beam and soft functions given by

eqs. (5.13) and (5.28). To investigate its structure in more detail, we omit the pure δ-terms

in eqs. (5.13) and (5.28), which trivially factor out of the convolution, and for simplicity

6Alternatively, one could choose µ = µH , but then the final structure is less intuitive.
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write everything into a single plus distribution. This gives

Ba(ωa,~ka, µT , νa)Bb(ωb,~kb, µT , νb)S(~ks, µT , ks|+) (6.5)

⊃
[

1

2πka

d

dka

1

2πkb

d

dkb

1

2πks

d

dks
B(ωa, ka)B(ωb, kb)S[αs(ks)]

× exp

{∫ µT

ka

dµ′

µ′
γB(ωa, µ

′, ωa) +

∫ µT

kb

dµ′

µ′
γB(ωb, µ

′, ωb) +

∫ µT

ks

dµ′

µ′
γS(µ′, ks)

}]µT
+

.

The first line of the plus distribution contains the pure fixed-order boundary terms, which

are free of any logarithmic distributions. The exponential explicitly contains µ-evolutions

from the convolution momenta to the scale µT . These are required to properly satisfy

the exact path independence of the µ- and ν-evolution. This can be checked explicitly by

verifying the µT -independence of eq. (6.4). For practical purposes, it might be sufficient

to use the fixed-order expansion for eq. (6.5), but since this would deviate from the strict

resummation order, it would have to be verified numerically.

6.1 Illustration at LL

To illustrate eq. (6.4), we evaluate it to leading-logarithmic (LL) order, which is strictly

defined by keeping the LO boundary terms for hard, beam, and soft function, keeping Γ0

and β0 in the anomalous dimensions, and dropping all noncusp anomalous dimensions. In

this limit, the µ-evolved beam function boundary term becomes

B(ω,~pT , µT , ν = ω) = δ(~pT )f(ω, µT ) +

[
1

2πpT

d

dpT
f(ω, pT )

]µT
+

≈ δ(~pT )f(ω, µT ) , (6.6)

where the µ-evolution drops out because γB(µ, ν = ω) vanishes at LL. We can also drop

the PDF evolution, since it is a subleading logarithmic effect (i.e. the PDF anomalous

dimensions are counted as noncusp contributions). The µ-evolved soft function boundary

term at LL is

S(~ks, µT , ks|+) = δ(~ks) +

[
1

2πks

d

dks
exp

{∫ µT

ks

dµ′

µ′
4Γcusp[αs(µ

′)] ln
µ′

ks

}]µT
+

. (6.7)

With strict canonical scales, νB = Q and µT = qT , eq. (6.4) is then given by

dσLL

dQ2dY d~qT
= σ0

1

2πqT

d

dqT
fa(ωa, µT ) fb(ωb, µT )

∫
|~pT |≤qT

d2~pT exp

[∫ µT

µH

dµ′

µ′
γH(Q,µ′)

] ∫
d2~ks

×
[
δ(~pT − ~ks) +

∞∑
n=1

n∏
i=1

∫ νi−1

ki−1|+

dνi
νi

∫
d2~ki γν(~ki−1 − ~ki, µT ) δ

(
~pT − ~ks −

∑
i

~ki

)]
×
(
δ(~ks) +

[
1

2πks

d

dks
exp

{∫ µT

ks

dµ′

µ′
4Γcusp[αs(µ

′)] ln
µ′

ks

}]µT
+

)
. (6.8)

In this form, it is somewhat reminiscent of the form suggested by Dokshitzer, Dyakonov,

and Troyan for the LL cross section in refs. [83, 84],

dσ(DDT)

dQ2dY d~qT
=
σ0

π

d

dq2
T

fa(ωa, qT ) fb(ωb, qT ) eS(Q,qT ) . (6.9)
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However, comparing this to eq. (6.8), eS would be given by the full cumulant integral of

eq. (6.8), which has an exponential structure but is by no means a simple exponential.

Only if one were to neglect all convolutions, i.e. keep only the first δ(~pT − ~ks) term in the

rapidity evolution in the second line of eq. (6.8), one would find the expected Sudakov

factor S =
∫ qT
Q

dµ′

µ′ γH(Q,µ′). In a full LL resummation, the rapidity evolution forbids

such a simple relation, and as a consequence the simple DDT form eq. (6.9) cannot hold

for the qT spectrum. (At higher orders, the effect of PDF running neglected in eq. (6.6)

would similarly spoil this.) In fact, the DDT formula was never derived as LL solution of

a factorization theorem, but from a summation of ladder diagrams relevant at LL [83].

An interesting feature of eq. (6.8) is that after carrying out all convolutions, the result

can always be written in the form δ(~pT ) +
∑
cnLn(~pT , µT ) +

∑
dmLm(~pT , νB). With strict

canonical scale setting, µT = qT |+, the first sum vanishes due to Ln(~qT , qT |+) = 0. In

contrast, the second sum is converted into Lm(~pT , νB) → Lm(~qT , νB). Since νB ∼ Q,

this precisely yields the rapidity logarithms ln(Q/qT ), which however do not have a simple

exponential structure any more. For noncanonical scales, the Ln(~pT , µT ) would not exactly

vanish, but yield small corrections that probe the all-order logarithmic structure.

As an illustrative example, we carry out the first few convolutions, but ignore αs-

running for simplicity. This is analogous to the simple study in sec. 5.1.3. We find

dσ

dQ2dY d~qT
= σ0

1

2πqT

d

dqT
θ(qT )fa(ωa, qT ) fb(ωb, qT ) exp

[
−Γcusp

2
ln2 Q

2

q2
T

]
×
[
1− 2Γ2

cuspζ3 ln
Q2

q2
T

+ Γ3
cusp

(
2ζ3

3
ln3 Q

2

q2
T

+ 6ζ5 ln
Q2

q2
T

)
+ Γ4

cusp

(
−4ζ5 ln3 Q

2

q2
T

+ 10ζ2
3 ln2 Q

2

q2
T

− 30ζ7 ln
Q2

q2
T

)
+O(Γ5

cusp)

]
. (6.10)

We have not evaluated the derivative, as in this form the terms in square bracket are

exactly the result of the rapidity evolution. It clearly induces apparent subleading terms

in the cross section, which however are part of the strict LL order that is based on the

expansion of the anomalous dimensions.

For comparison, the Fourier-resummed spectrum (see sec. 5.1.3 for more details) with

its canonical scale choices νS = µ = b0/bT , neglecting again αs-running, is given by

dσ

dQ2dY d~qT
= σ0 fa(ωa, µ) fb(ωb, µ)

∫
d2~bT
(2π)2

ei
~bT ·~qT exp

[
−Γcusp

2
ln2 Q

2b2T
b20

]
. (6.11)

As before, we neglect running in the PDFs for simplicity to evaluate them at the random

scale µ. The Sudakov double logarithm is clearly a well-behaved function that drops fast

for both ~bT → 0 and ~bT →∞, and hence the inverse Fourier integral must be fine as well.

To compare this expression to eq. (6.10), we split ln(QbT /b0) = ln(Q/µ)+ln(µbT /b0), with

µ arbitrary. Expanding the integrand in Γcusp, we only need to Fourier-transform powers
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of logarithms lnn(µbT /b0), which is well known (see appendix C.2). Setting µ = qT |+ gives

dσ

dQ2dY d~qT
= σ0

1

2πqT

d

dqT
θ(qT )fa(ωa, qT ) fb(ωb, qT ) exp

[
−Γcusp

2
ln2 Q

2

q2
T

]
×
[
1− 2Γ2

cuspζ3 ln
Q2

q2
T

+ Γ3
cusp

(
2ζ3

3
ln3 Q

2

q2
T

+ 6ζ5 ln
Q2

q2
T

− 10

3
ζ2

3

)
(6.12)

+ Γ4
cusp

(
−4ζ5 ln3 Q

2

q2
T

+ 10ζ2
3 ln2 Q

2

q2
T

− 30ζ7 ln
Q2

q2
T

+ 28ζ3ζ5

)
+O(Γ5

cusp)

]
.

The result agrees with eq. (6.10) up to the constant terms −10/3 ζ2
3Γ3

cusp and 28ζ3ζ5Γ4
cusp.

These nonlogarithmic terms are examples of different boundary terms induced by using

the Fourier-space boundary conditions. The important observation is that the logarithmic

structure exactly matches in both attempts.

Lastly, we also compare this to the result from using the naive rapidity evolution of

the soft function. In this case, eq. (6.1) is evaluated at µ = µT ∼ qT , and the soft function

is taken from eqs. (3.19) and (3.20),

dσ

dQ2dY d~qT
= σ0H(Q,µH) exp

[∫ µT

µH

dµ′

µ′
γH(Q,µ′)

] ∫
d2~ka d2~kb d2~ks δ(~qT − ~ka − ~kb − ~ks)

×Ba(ωa,~ka, µT , νa)Bb(ωb,~kb, µT , νb)

×
∫

d2~kTVS(~ks − ~kT , µT , νB, νS)S(~ks, µT , νS) . (6.13)

Assuming the LO boundary conditions for the hard, beam, and soft functions, we obtain

dσ

dQ2dY d~qT
= σ0 fa(ωa, µT ) fb(ωb, µT ) exp

[∫ µT

µH

dµ′

µ′
γH(Q,µ′)

]
×
[
δ(~qT ) +

∞∑
n=1

1

n!
lnn

νB
νS

(γν⊗n)(~qT , µT )

]
. (6.14)

Setting µT = νS = qT |+, we get

dσ

dQ2dY d~qT
= σ0

1

2πqT

d

dqT
θ(qT )fa(ωa, qT ) fb(ωb, qT ) exp

[
−Γcusp

2
ln2 Q

2

q2
T

]
×
[
1 +

2

3
Γ3

cusp ln3 Q
2

q2
T

ζ3 +O(Γ5
cusp)

]
. (6.15)

The obtained highest logarithmic term Γ3
cusp ln3(Q2/q2

T ) matches the one in eqs. (6.10)

and (6.12), but all other terms are missing. The second line of eq. (6.15) is nothing

but the familiar factor e−2γEωsΓ(1 − ωs)/Γ(1 + ωs) from eq. (3.27), which diverges at

ωs = 2Γcusp ln(Q/qT ) = 1. The fact that this term also appears in the correctly resummed

results in eqs. (6.10) and (6.12) is quite surprising as one might expect it to get modified

in order to alleviate the spurious divergence. On the other hand, since the naive rapidity

evolution kernel eq. (3.27) does correctly shift the rapidity logarithms, it must in fact

also appear in eqs. (6.10) and (6.12), and so it seems that both the ~pT -space and ~bT -

space resummation still contain this divergence. However, we know that eq. (6.11) is well
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behaved, and hence all the additional logarithmic terms in eqs. (6.10) and (6.12) that are

not present in eq. (6.15) must conspire to cancel the divergence in the spectrum. Hence,

we find the peculiar feature that apparent-NNLL and higher terms cancel the divergence

caused by the apparent-NLL terms in the strict LL spectrum. A detailed numerical study

of this effect would be an interesting extension of this work.

This simple exercise clearly shows that counting logarithms ln(Q/qT ) in the qT spec-

trum is an intrinsically ill-defined notion. Instead, the resummation order should be defined

strictly and unambiguously through the perturbative order of anomalous dimensions and

pure boundary terms entering all RGEs. This is done in both our momentum-space and

the Fourier-space resummation, which both lead to well-behaved results.

7 Comparison to the literature

In this section, we discuss the relation of our results to the Fourier-space resummation in

the original CSS formulation and various existing implementations (sec. 7.1), as well as

other approaches for a direct momentum-space resummation (secs. 7.2 and 7.3).

7.1 Resummation in Fourier space

7.1.1 Comparison to CSS formalism

The equivalence of the Fourier-space resummation in the original CSS formulation and

performing the RG evolution in Fourier space in the context of SCET has been discussed

several times before [16, 85] (see e.g. refs. [30, 86–88] for one-dimensional cases like thrust

or threshold resummation). It is not unexpected that the two formulations are equivalent,

since both are based on the same underlying factorization in the soft-collinear approxima-

tion.

Interestingly, in their first paper [38] in the context of back-to-back jets in e+e−-

collisions, Collins and Soper formulated an evolution equation in transverse momentum

space that precisely corresponds to the rapidity RGE in our framework; compare eq. (6.4)

in ref. [38] with eq. (3.14), where the rapidity scale ν essentially corresponds to the scale ζ

in the CSS formulation. However, due to the much simpler formulation in Fourier space,

as first noted by Parisi and Petronzio [74], they carried out their analysis in Fourier space.

Studying in detail the properties of the inverse transform, with particular focus on the

effect of the (nonperturbative) large b-region [39], then paved the road to resumming the

qT -spectrum in hadronic collisions [40].

The CSS formula of ref. [40] can be easily related to the SCET formalism by Fourier

transforming the beam and soft functions and their RGEs given in sec. 3.1. For example,

for the soft function we have

µ
dS̃(~bT , µ, ν)

dµ
= γS(µ, ν)S̃(~bT , µ, ν) ,

ν
dS̃(~bT , µ, ν)

dν
= γ̃ν(~bT , µ)S̃(~bT , µ, ν) , µ

dγ̃ν(~bT , µ)

dµ
= −4Γcusp[αs(µ)] , (7.1)
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and most importantly the rapidity RGE becomes multiplicative. Since logarithms in impact

parameter space always depend on µbT /b0 or νbT /b0, all logarithms are minimized with

boundary scale choice µ0 = ν0 = b0/bT . With this choice, the above RGEs are solved by

S̃(~bT , µ, ν) = exp

[∫ µ

b0/bT

dµ′

µ′
γS(µ′, ν)

]
exp

[
γ̃ν(~bT , b0/bT ) ln

νbT
b0

]
S̃(~bT , b0/bT , b0/bT ) ,

γ̃ν(~bT , µ) = −
∫ µ

b0/bT

dµ′

µ′
4Γcusp[αs(µ

′)] + γ̃ν [αs(b0/bT )] . (7.2)

Note that by first solving the ν-RGE at the low scale and then the µ-RGE, γ̃ν enters

evaluated at its natural scale µ0 = b0/bT for which it reduces to the pure fixed-order

boundary γ̃ν [αs(b0/bT )]. In this way, the resummation of γ̃ν becomes trivial in the Fourier

space evolution.

The beam functions are similarly resummed with boundary scales µ0 = b0/bT , ν0 = ωi,

B̃a(ω,~bT , µ, ν) = exp

[∫ µ

b0/bT

dµ′

µ′
γB(µ′, ν;ω)

]
exp

[
−1

2
γ̃ν(~bT , b0/bT ) ln

ν

ω

]
× B̃a(ω,~bT , µ = b0/bT , ν = ω) , (7.3)

and can furthermore be matched onto PDFs using an operator product expansion,

B̃a(ω,~bT , µ, ν) =
∑
i

∫
dz

z
Ĩai(z,~bT , µ, ν) fi

(ω/Ecm

z
, µ
)
, (7.4)

where Ecm is hadronic center-of-mass energy, Ĩai are perturbative matching coefficients,

and fi are standard PDFs. Altogether, the resummed cross section eq. (3.1) takes the

simple form

dσ

dQdY d~qT
= σ0

∫
d2~bT
(2π)2

ei
~bT ·~qT

∑
i,j

∫
dza
za

dzb
zb

fi

(ωa/Ecm

za
,
b0
bT

)
fj

(ωb/Ecm

zb
,
b0
bT

)
× exp

[
−
∫ Q

b0/bT

dµ′

µ′
γH(Q,µ′) + ln

QbT
b0

γ̃ν [αs(b0/bT )]

]
×H(Q,µ = Q) Ĩai(za, bT ) Ĩbj(zb, bT ) S̃(bT ) . (7.5)

The functions Ĩai(z, bT ) ≡ Ĩai(z, bT , µ0 = b0/bT , ν0 = ω) and S̃(bT ) ≡ S̃(~bT , µ0 = ν0 =

b0/bT ) are all free of logarithms. We have explicitly split the Sudakov exponential into a

piece originating from the µ-RGEs and one from the rapidity RGE. This result should be

compared to the CSS formula [40],

dσ

dQdY d~qT
= σ0

∫
d2~bT
(2π)2

ei
~bT ·~qT

∑
i,j

∫
dza
za

dzb
zb

fi

(ωa/Ecm

za
,
b0
bT

)
fj

(ωb/Ecm

zb
,
b0
bT

)
(7.6)

× Cai(za, bT )Cbj(zb, bT ) exp

[
−
∫ Q2

(b0/bT )2

dµ̄2

µ̄2

(
ln
Q2

µ̄2
A[αs(µ̄)] + 2B[αs(µ̄)]

)]
.

Comparing eqs. (7.5) and (7.6), we see that the functions Caj correspond to the product

of hard and soft function with the beam function matching kernels Ĩai, showing that they
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can be further split into a process-dependent hard virtual and a process-independent soft-

collinear piece, as was noticed also in refs. [46, 50]. The evolution kernels are related

by

A(αs) = Γcusp(αs) + β(αs)
dγ̃ν(αs)

dαs
, 2B(αs) = γH(αs)− γ̃ν(αs) . (7.7)

The important observation that A(αs) receives a contribution from the rapidity anomalous

dimension in addition to the cusp anomalous dimension was first made in ref. [16].

To compare to our canonical resummation in momentum space, first note that setting

ν0 = b0/bT inside the Fourier integral is the analog of choosing the scale ν0 = kT |+ inside

the convolutions building up the ν-evolution kernel. Similarly, choosing µ0 = b0/bT for

both beam and soft function inside the Fourier integral corresponds to choosing µ0 =

pT |+ when solving the µ-RGE for S(~pT ) and B(~pT ), which then accordingly enters the

convolutions B ⊗ B ⊗ S. In practice, the Fourier-space resummation is of course more

easily implemented because the measurement constraint ~qT =
∑

i
~ki is translated into a

common impact parameter ~bT for all convolved functions, and hence the iteratively defined

convolution exponential in eq. (5.21) turns into a standard exponential function in Fourier

space. As discussed on general grounds in sec. 2.5 and in detail for γν in sec. 4.3, the

formal difference between the different spaces arises from the fact that one uses different

boundary conditions which induce different subleading terms to all orders in αs. Hence with

a robust estimate of theoretical uncertainties at any given order, one would expect that

both techniques yield results compatible within their uncertainties, but a direct comparison

of both results would provide another interesting way to assess theory uncertainties, in

particular of nonperturbative effects.

7.1.2 Practical implementations

In the following we briefly comment on several implementations (without claiming to be

exhaustive), which perform the resummation fully or partially in b space. As reference

to compare to we take either the canonical b-space or the canonical momentum-space

evolution we have derived, as both techniques reproduce all logarithms in the fixed-order

reexpansion in their respective space. We only focus on the effects of deviating from these

canonical scale choices and the strict resummation order. A detailed discussion regarding

the phenomenologically important aspects of matching to the full fixed-order and assessing

theory uncertainties can be found e.g. in ref. [85].

The original CSS formula is the basis of refs. [42–45] as well as refs. [46–55]. For the

latter, the canonical Fourier-space logarithms are replaced by

ln(b2Tµ
2/b20)→ ln(1 + b2Tµ

2/b20) . (7.8)

The benefit of shifting the argument of the logarithm is that it suppresses the region pT ∼
1/bT � Q. This should effectively suppress the contributions from energetic emissions,

and it would be interesting to study its effect on the small qT region compared to the strict

canonical resummation. Furthermore it ensures that integrating over the ~qT -spectrum

restores the inclusive cross section. The Landau pole intrinsic to the calculation is treated
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using the minimal prescription [89, 90] by deforming the integration contour around the

Landau pole, which is valid as long as qT is sufficiently perturbative.

The first SCET-based calculation7 was carried out in refs. [16–18] in the so-called

collinear anomaly framework using an analytic regulator [64–66]. The resummation of ra-

pidity logarithms there corresponds to performing the ν-evolution in Fourier space with

fixed canonical scale choice ν0 = b0/bT . However, the low scale µ0 is set to qT , and the ra-

pidity anomalous dimension γν (corresponding to the anomaly coefficient F in their frame-

work) is not resummed but expanded to a certain fixed order (referred to as ε-expansion).

This looses some of the strict resummation accuracy, and in light of our discussion, one

might expect that energetic emissions are incorrectly treated, which could affect the region

of very small qT . The naive divergence in the cross section (see sec. 3.4) is further avoided

by choosing µ0 = qT + q∗. The offset q∗ ≈ 2 GeV for Drell-Yan and q∗ ≈ 8 GeV for Higgs

production is chosen large enough to explicitly avoid the divergence. However, it does

so by essentially turning off the resummation below qT . q∗, which then also drops the

sensitivity to nonperturbative effects in the rapidity evolution kernel.

In refs. [56–58], a factorization theorem has been derived using the δ-regulator [56, 67],

and has been applied e.g. in refs. [19, 20]. Here, the rapidity evolution is also performed

in Fourier space, while the µ-RGEs are solved in momentum space, but in contrast to

the above the rapidity anomalous dimension (in their notation the D function) is fully

resummed. The low scale µ0 is chosen as µ0 = qT + Q0, where Q0 ≈ 2 GeV for both

Drell-Yan and Higgs production serves as a cutoff for the nonperturbative region. While

at very small qT . Q0 deviations from the canonical resummation are expected, these can

be effectively absorbed into the nonperturbative contributions that become relevant in this

region. Indeed ref. [19] takes great care to assess nonperturbative effects in the Drell-Yan

spectrum.

Lastly, the factorization theorem of refs. [15, 33] has been applied to Higgs production

in ref. [85]. They employ a canonical resummation fully in b-space, similar to the CSS

approach, but instead of shifting the arguments of the b-space logarithms, the resummation

is turned off with profile scales in b-space whose form is based on the final value of qT . The

nonperturbative large bT -region is avoided by explicitly cutting off the Fourier integration

at bT ≤ 2 GeV−1, while verifying that changing the cut in 1.5 − 3 GeV−1 only produces

a negligible variation. Because of the generic suppression of nonperturbative effects by

Λ2
QCD/q

2
T , this can be expected to hold as long as qT is sufficiently perturbative.

7.2 Early approaches for direct qT -space resummation

There have been several attempts in the past to carry out the resummation directly in

momentum space. They typically attempt to explicitly count logarithms ln(Q/qT ) in the

qT spectrum. As we discussed before, this is dangerous as it can easily lead one to discard

apparent subleading contributions that are seemingly unimportant but are actually rele-

vant. The original DDT approach [83, 84] introduced the LL cross section in the form of

7Earlier attempts of ~qT -resummation in SCET [91–93] missed the effects of rapidity divergences.
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eq. (6.9),

dσ(DDT)

dQ2dY d~qT
=
σ0

π

d

dq2
T

fa(ωa, qT ) fb(ωb, qT ) eS(Q,qT ) . (7.9)

Its connection to our full LL solution was already discussed in sec. 6.

Ref. [14] tried to extend eq. (7.9) to NLL, counting logarithms L = ln(Q/qT ) in the

Sudakov exponent S. In this counting, ref. [14] finds the cross section

dσ(DDT)

dQ2dY d~qT
∝ Q2 d

dq2
T

[
eS

Γ(1 + h/2)

Γ(1− h/2)

]
, h = 4Γcusp[αs(qT )] ln

qT
Q
, (7.10)

which diverges for h = −2. This can be directly related to our results, where the log-

counting in the exponent corresponds to using the naive solution of the rapidity RGE

in eq. (3.20) and keeping the rapidity anomalous dimension γν at a fixed order rather

than fully resuming it. As we saw in sec. 3.4, the result for the rapidity evolution kernel

in this approximation [see eq. (3.27)] contains exactly the same spurious divergence at

ωs ≡ −h/2 = 1 as eq. (7.10). As we have argued, this is caused by the incorrect treatment

of energetic emissions, which become increasingly important for small qT . This agrees

with ref. [14], where it is remarked that energy conservation constraints are not correctly

implemented in the resummation formula. This is remedied by basing the logarithmic

order counting on the anomalous dimensions, and hence is not a flaw of the factorization

theorem itself.

The second DDT-based approach, ref. [82], counts logarithms L = ln(Q/qT ) directly in

the cross section, i.e. only counting αsL
2 ∼ 1. Interestingly, this actually happens to lead

to a numerically well-defined prediction of the cross section. To see this, consider again

the naive rapidity evolution kernel eq. (3.20),

V (~pT , µ, ν, ν0) = δ(~pT ) +
∞∑
n=1

1

n!
lnn

ν

ν0
(γν⊗n)(~pT , µ) . (7.11)

Counting logarithms in the cross section is equivalent to truncating the n-fold convolution

γν⊗n at the desired accuracy. For example, at LLσ where γν(~pT , µ) = 2Γcusp[αs(µ)]L0(~pT , µ),

one would only keep the first term of the sum

(γν⊗n)(~kT , µ) = (2Γcusp)nn

[
Ln−1(~kT , µ) + 4ζ3

(
n− 1

n− 4

)
Ln−4(~kT , µ) + · · ·

]
, (7.12)

but treat the first subleading term Ln−4 as a N3LLσ correction. The evolution kernel would

then be given by

V (~pT , µ, ν, ν0) = δ(~pT ) + ωsLωs(~pT , µ) , (7.13)

where ωs = 2Γcusp[αs(µ)] ln(ν/ν0). Comparing to eqs. (3.27) and (7.10), where all terms

in eq. (7.12) are kept, only keeping the first term in eq. (7.12) completely removes the

divergence in the kernel. However, this cross-section counting is of course only applicable

in an intermediate qT range and only includes a small subset of logarithms compared to

the full resummation.
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A different approach was adopted in refs. [21–23], which attempt to obtain an explicit

momentum-space expression of the inverse Fourier transform of the b-space result. The re-

summed b-space result dσ̃/db2T is then expanded in terms of logarithms Lb = ln(b2Tµ
2/b20),

whose inverse Fourier transform is known for arbitrary powers Lnb , see appendix C.2. This

allows one to construct a series in momentum space that approximates the Fourier trans-

form to an in principle arbitrary precision. However, the resummation itself is effectively

still performed canonically in b space.

7.3 Coherent branching formalism

Very recently, a different approach using the coherent branching formalism of refs. [25, 26]

has been proposed in ref. [24], which is not based on a factorization theorem or solving the

qT evolution equations.

While a detailed comparison to the NNLL result given in ref. [24] would be very

interesting, we leave it for future work and in the following concentrate on comparing to

their NLL result, which is already instructive. The starting point of their derivation is the

cumulative cross section obtained by summing over any number of independent emissions

Σ(qT ) =

∫ qT

0
dkT

dσ(kT )

dkT
= σ0

∫ ∞
0
〈dk1〉 R′(k1) e−R(εk1)

×
∞∑
n=0

1

n!

n+1∏
i=2

∫ k1

εk1

〈dki〉 R′(ki) θ
(
|~qT | −

∣∣∣∣∑
j

~kj

∣∣∣∣) , (7.14)

where the phase-space measure is 〈dkT 〉 = dkT
kT

dφ
2π . The differential spectrum follows to be

dσ

d~qT
= σ0

∫
d2~k1

R′(k1)

2πk2
1

e−R(εk1)
∞∑
n=0

1

n!

n+1∏
i=2

∫
εk1<|~ki|<k1

d2~ki
R′(ki)

2πk2
i

δ

(
~qT −

∑
j

~kj

)
, (7.15)

where we use a notation resembling our convolution notation. Here, the hardest emission
~k1 has been singled out. The parameter ε � 1 reflects that emissions with ki < εk1 are

unresolved. Correspondingly, the exponential e−R(εk1) encodes the Sudakov suppression of

having no emission between scales εk1 and Q. The radiator R is given at NLL by

R(kT ) =

∫ Q

kT

dµ′

µ′

(
4Γcusp[αs(µ

′)] ln
Q

µ′
− αs(µ

′)

π
β0

)
=

∫ Q

kT

dµ′

µ′
γH(Q,µ′) , (7.16)

where we converted from the Catani-Marchesini-Webber scheme [94] used in ref. [24] to

the MS-scheme. Its derivative R′ evaluates to8

R′(kT ) = −kT
dR(kT )

dkT
= 4Γcusp[αs(kT )] ln

Q

kT
. (7.17)

8The results in eqs. (7.14) and (7.15) are technically only NLL accurate up to the fact that the PDFs

in σ0 are evaluated at fixed µF rather than k1, which however is irrelevant for the present discussion. We

have dropped the constant β0αs/π here, which would be canceled if the PDFs were evaluated at k1.
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The structure of eq. (7.15) is closely related to our results, as it essentially contains an

infinite number of convolutions, with the exception that the hardest emission is explicitly

singled out. Furthermore the unresolved regions 0 < ki < εk1 that are cut out of the ki
integrals (i ≥ 2) are already captured in the Sudakov exponent. Letting ε → 0 is then

equivalent to the cancellation of IR singularities encoded in the plus distributions in our

framework. Each factor R′ corresponds to a ν-anomalous dimension times its rapidity

logarithm,

R′(ki)

2πk2
i

=
4Γcusp[αs(ki)] ln(Q/ki)

2πk2
i

=

∫ Q

ki

dν ′

ν ′
4Γcusp[αs(ki)]

2πk2
i

=

∫ Q

ki

dν ′

ν ′
γν(~ki, µ) , (7.18)

where we assumed ki > 0 to drop the plus prescription in γν . In summary, eq. (7.15)

agrees very well with our momentum-space resummed cross section that follows from the

factorization theorem, up to the different treatment of the cancellation of IR divergences.

Differences arise when the resummed spectrum is further expanded to obtain NLL

accuracy, defined by counting logarithms in the cumulative cross section. Expanding the

individual emission momenta around ki ∼ qT and counting logarithms ln(Q/qT ), they also

reproduce the spurious divergence in the cross section. This is precisely equivalent to

using the naive rapidity resummation, which does not treat energetic emissions correctly,

as discussed in secs. 3.2 and 3.4.

To circumvent this, ref. [24] instead expands all radiators appearing in eq. (7.14) around

the hardest emission k1. At NLL, the necessary expansions are

R(εk1) = R(k1) +R′(k1) ln
1

ε
+ · · · , R′(ki) = R′(k1) + · · · . (7.19)

A simplification is that all radiators R(ki) and R′(ki) are now evaluated at αs(k1) rather

than αs(ki), thereby removing the nonperturbative effects that would otherwise be present

in the rapidity evolution. This procedure hence fundamentally resums logarithms of

ln(Q/k1) to NLL, where the resummation accuracy is defined by explicitly counting log-

arithms in the cumulative cross section (using exponent counting). Ref. [24] then argues

that the formal accuracy in terms of counting logarithms ln(Q/qT ) will be the same, and

only differ by subleading terms from the naive result.

Compared to our exact solution, this procedure effectively corresponds to approximat-

ing the rapidity logarithms ln(ν/ki) in the exact rapidity evolution kernel by logarithms

ln(ν/k1), which allows to pull them out of the convolutions. Since this avoids the spurious

singularity, one might expect that this approximation is safer than the naive one of taking

ln(ν/ki) ∼ ln(ν/qT ). On the other hand, these differences are all of apparent subleading

nature, and it would be interesting to study in more detail to what extent this approach

reproduces the subleading terms in the qT spectrum that are included in the strict LL and

NLL evolution in either momentum or Fourier space.

8 Conclusion

We have investigated solving differential equations for arbitrary distributions. These arise

naturally in differential spectra of observables resolving additional soft or collinear QCD
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radiation, where the cancellation of IR singularities is encoded through plus distributions,

and the all-order logarithmic structure is fully encoded in (renormalization group) evolution

equations. Solving these equations allows the resummation of the logarithmic distributions

to all orders, provided that the boundary term in the solution is free of logarithms, such

that it can be reliably calculated in fixed-order perturbation theory.

We have introduced a technique for distributional scale setting µ = k|+ that allows

one to treat logarithmic distributions like ordinary logarithms. In particular, it eliminates

any logarithms contained in the boundary condition of plus distributions such as [µ/k]µ+.

It can be straightforwardly applied to solve distributional differential equations for both

one-dimensional and two-dimensional distributions, where it ensures that the appearing

boundary term is free of any logarithmic distributions. This allows one to perform the RG

evolution and resummation directly in distribution (momentum) space. It thus enables the

implementation of profile scales, the transition and matching to the full fixed-order distri-

bution, and the estimation of perturbative uncertainties through scale variations directly

in distribution space.

The technique has been applied to obtain the resummation of the transverse mo-

mentum (qT ) spectrum for the first time by solving the associated evolution equations

in momentum space. We showed that a well-known spurious singularity in the spectrum

arises from wrong scale setting, i.e. wrong boundary terms in the RG evolution, causing

an incorrect treatment of energetic emissions, and which is cured by a proper distribu-

tional scale setting. This yields a well-defined resummation of the qT spectrum, whose

resummation accuracy is strictly defined by the perturbative expansion of the associated

anomalous dimensions (and boundary terms) without requiring to count explicit powers of

logarithms. We indeed find that trying to specify the logarithmic accuracy by explicitly

counting logarithms ln(Q/qT ) in the spectrum can be ill defined, and partly is the reason

for the spurious divergences encountered in previous attempts to perform resummation in

momentum space.

Previous attempts at a momentum-space resummation were partially motivated by

trying to avoid nonperturbative effects in the qT spectrum, which are unavoidable in the

Fourier space resummation due to integrating αs(1/bT ) over its Landau pole. We find

that analogous nonperturbative effects also appear in the rapidity evolution kernel in the

strict momentum-space resummation, because real emissions with momentum ~ki naturally

scale with αs(ki), which is necessary to suppress energetic emissions. We discussed how

the nonperturbative contributions to the rapidity anomalous dimension can be isolated in

momentum space, which closely reproduces the common treatment in Fourier space. We

also showed that nonperturbative effects arising from integrating over the ~ki → 0 region

inside convolutions are generically suppressed as Λ2
QCD/q

2
T , such that they do not spoil the

predictivity of the resummation for perturbative qT .

The correct momentum-space rapidity evolution involves an intricate iterative convo-

lution structure. Its numerical implementation is nontrivial, which we plan to address in

future work. The rapidity evolution has so far been performed in Fourier bT space, where

logarithms ln(QbT ) rather than ln(Q/qT ) are resummed. While both approaches are for-

mally equivalent, our general analysis shows that the boundary conditions employed in the
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evolution intrinsically differ to all orders. In the future, it would be interesting to compare

them numerically, as they probe different subleading terms to all orders, and this could

also provide new insight into nonperturbative effects.
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A Notation and conventions

Most of this paper is devoted to transverse momentum dependent distributions, but sec. 2

also discusses one-dimensional distributions. To distinguish the two cases, the momentum-

space arguments are typically called k for the one-dimensional case and ~pT ,
~kT ,~qT for the

two-dimensional case. The subscript T is always added to make the distinction clear. For

magnitudes of vectors, we drop the explicit vector sign and simply write |~pT |2 = p2
T etc.

A.1 Fourier transformations

By default we work in distribution space. The conjugate functions in Fourier space are

always denoted with a tilde. The Fourier conjugate variable in the one-dimensional case is

typically called y, while for the two-dimensional case it is called ~bT . Our conventions for

the Fourier transformation for the one-dimensional case are

f(k) =

∫
dy

2π
e+ixyf̃(y) , (A.1)

f̃(y) =

∫
dk e−ikyf(k) , (A.2)

and for the two-dimensional case

f(~pT ) =

∫
d2~bT
(2π)2

e+i~pT ·~bT f̃(~bT ) , (A.3)

f̃(~bT ) =

∫
d2~pT e

−i~pT ·~bT f(~pT ) . (A.4)

For azimuthally symmetric functions, f(~pT ) ≡ f(pT ), the latter simplify to

f(pT ) =
1

2π

∫ ∞
0

dbT bTJ0(bT pT ) f̃(bT ) , (A.5)

f̃(bT ) = 2π

∫ ∞
0

dpT pTJ0(bT pT )f(pT ) , (A.6)

where J0(x) is the 0th-order Bessel function.
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A.2 Convolutions

One-dimensional convolutions are defined as

(f ⊗ g)(k, . . .) ≡
∫

dk′ f(k − k′, . . .) g(k′, . . .) , (A.7)

where the dots stand for possible additional arguments of the functions. Multiple convo-

lutions are abbreviated as

(f⊗n)(k) ≡
∫

dk1 . . . dkn f(k1) . . . f(kn) δ(k − k1 − · · · − kn) . (A.8)

Two-dimensional convolutions are defined as

(f ⊗ g)(~pT , . . .) =

∫
d2~k1d2~k2 f(~k1, . . .) g(~k2, . . .) δ(~pT − ~k1 − ~k2)

=

∫
d2~kT f(~pT − ~kT , . . .) g(~kT , . . .) , (A.9)

where the dots stand again for possible additional arguments of the functions. Multiple

convolutions are abbreviated as

(f⊗n)(~pT ) ≡
∫

d2~k1 · · · d2~kn f(~k1) . . . f(~kn) δ(~pT − ~k1 − · · · − ~kn) . (A.10)

A.3 Fixed-order perturbative expansions

We make frequent use of fixed-order expansions in αs. The expansion coefficients of beta

function and cusp anomalous dimension are defined as

dαs
d lnµ

= β(αs) = −2αs

∞∑
n=0

βn

(αs
4π

)n+1
, Γcusp(αs) =

∞∑
n=0

Γn

(αs
4π

)n+1
. (A.11)

Similarly, the constant noncusp pieces of all anomalous dimensions are expanded as

γ(αs) =

∞∑
n=0

γn

(αs
4π

)n+1
. (A.12)

The soft function, and analogously other functions, are expanded as

S(~pT , µ, ν) =

∞∑
n=0

S(n)(~pT , µ, ν)

[
αs(µ)

4π

]n
. (A.13)

B One-dimensional plus distributions

For completeness we collect and extend the definitions and formulas for one-dimensional

plus distributions from refs. [27, 95].
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B.1 Definition

For a function g(x) that has support for x ≥ 0 and diverges less than 1/x2 for x→ 0, the

defining properties of its plus distributions with boundary condition x0 > 0 are[
θ(x)g(x)

]x0

+
= θ(x) g(x) for x 6= 0 , (B.1)∫ x0

dx′
[
θ(x′)g(x′)

]x0

+
= 0 . (B.2)

The lower limit of integration is kept implicit and formally has to include the singularity

at x = 0. An explicit definition is given by [27][
g(x)

]x0

+
≡
[
θ(x)g(x)

]x0

+

= lim
ε→0

d

dx

[
θ(x− ε)

∫ x

x0

dx′ g(x′)

]
= lim

ε→0

[
θ(x− ε)g(x) + δ(x− ε)

∫ x

x0

dx′ g(x′)

]
. (B.3)

Equivalently, we have

lim
ε→0

d

dx

[
θ(x− ε)G(x)

]
= lim

ε→0

d

dx

[
θ(x− ε)

(
G(x)−G(x0) +G(x0)

)]
=

[
θ(x)

dG(x)

dx

]x0

+

+ δ(x)G(x0) . (B.4)

From the above definitions, it follows that the boundary condition can be shifted using[
θ(x)g(x)

]x0

+
=
[
θ(x)g(x)

]x1

+
+ δ(x)

∫ x1

x0

dx′ g(x′) . (B.5)

The derivative with respect to the boundary value is thus given by

d

dx0

[
θ(x)g(x)

]x0

+
= −g(x0) δ(x) . (B.6)

More generally, if g itself depends on x0, we have

d

dx0

[
θ(x)g(x, x0)

]x0

+
=

[
d

dx0
g(x, x0)

]x0

+

− g(x0, x0) δ(x) . (B.7)

Following ref. [27], we denote the standard plus distributions with boundary condition

x0 = 1 as

Ln(x) =

[
θ(x) lnn x

x

]1

+

, La(x) =

[
θ(x)

x1−a

]1

+

(B.8)

In addition, for dimensionful arguments, we define

Ln(k, µ) ≡ 1

µ
Ln
(k
µ

)
≡
[
θ(k)

k
lnn

k

µ

]µ
+

, La(k, µ) ≡ 1

µ
La
(k
µ

)
≡
[
θ(k)

k

(k
µ

)a]µ
+

(B.9)

They are related by

Ln(x) =
dn

dan
La(x)

∣∣∣∣
a=0

, Ln(k, µ) =
dn

dan
La(k, µ)

∣∣∣∣
a=0

. (B.10)
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Ln(k, µ) FT[Ln(k, µ)]

L0(k, µ) −Ly

L1(k, µ) +1
2L

2
y + π2

12

L2(k, µ) −1
3L

3
y − π2

6 Ly −
2
3ζ3

L3(k, µ) +1
4L

4
y + π2

4 L
2
y + 2ζ3Ly + 3

80π
4

L4(k, µ) −1
5L

5
y − π2

3 L
3
y − 4ζ3L

2
y − 3

20π
4Ly −

(
2
3π

2ζ3 + 24
5 ζ5

)
L5(k, µ) +1

6L
6
y + 5

12π
2L4

y + 20
3 ζ3L

3
y + 3

8π
4L2

y +
(

10
3 π

2 + 24ζ5

)
Ly +

(
61

1008π
6 + 20

3 ζ
2
3

)
Table 1. Fourier transform of Ln(k, µ) for n ≤ 5. Results are expressed in terms of Ly = ln(iyµeγE ).

See eq. (B.13).

Lny FT−1[Lny ]

1 δ(k)

Ly −L0(k, µ)

L2
y 2L1(k, µ)− π2

6 δ(k)

L3
y −3L2(k, µ) + π2

2 L0(k, µ)− 2ζ3δ(k)

L4
y 4L3(k, µ)− 2π2L1(k, µ) + 8ζ3L0(k, µ) + π4

60 δ(k)

L5
y −5L4(k, µ) + 5π2L2(k, µ)− 40ζ3L1(k, µ)− π4

12L0(k, µ) +
(

10
3 π

2ζ3 − 24ζ5

)
δ(k)

L6
y 6L5(k, µ)− 10π2L3(k, µ) + 120ζ3L2(k, µ) + π4

2 L1(k, µ) + (144ζ5 − 20π2ζ3)L0(k, µ)

+
(
40ζ2

3 − 5
168π

6
)
δ(k)

Table 2. Fourier transform of Lny = lnn(iyµeγE ) for n ≤ 6. See eq. (B.14).

B.2 Fourier transformation

The Fourier transformation of a plus function La(k, µ) with respect to y = y − i0 is given

by ∫
dk e−ikyLa(k, µ) =

1

a

[
(iµy)−aΓ(1 + a)− 1

]
=

1

a

[
e−aLyR1(a)− 1

]
, (B.11)

which holds for a > −1 through analytic continuation. In the second step we introduced

the abbreviations

Ly = ln(iyµeγE ) , R1(a) = eγEaΓ(1 + a) . (B.12)
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R
(n)
1 Exact value Numerical value

R
(0)
1 1 1

R
(1)
1 0 0

R
(2)
1

π2

6 ≈ 1.64 = 0.822× 2!

R
(3)
1 −2ζ3 ≈ −2.40 = −0.401× 3!

R
(4)
1

3π2

20 ≈ 14.6 = 0.609× 4!

R
(5)
1 −10π2

3 ζ3 − 24ζ5 ≈ −64.4 = −0.537× 5!

R
(6)
1

61π6

168 + 40ζ2
3 ≈ 406.9 = 0.565× 6!

R
(7)
1 −21π4

2 ζ3 − 84π2ζ5 − 720ζ7 ≈ −2815 = −0.559× 7!

Table 3. The first values of R
(n)
1 , defined in eq. (B.15).

R̃
(n)
1 Exact value Numerical value

R̃
(0)
1 1 1

R̃
(1)
1 0 0

R̃
(2)
1 −π2

6 ≈ −1.64

R̃
(3)
1 −2ζ3 ≈ −2.40

R̃
(4)
1

π4

60 ≈ 1.62

R̃
(5)
1

10π2

3 ζ3 − 24ζ5 ≈ 14.7

R̃
(6)
1 −5π6

168 + 40ζ2
3 ≈ 29.2

R̃
(7)
1 −7π4

6 ζ3 + 84π2ζ5 − 720ζ7 ≈ −2.96

Table 4. The first values of R̃
(n)
1 , defined in eq. (B.16).

An explicit form of the Fourier transform for plus functions Ln(k, µ) follows from eq. (B.10),∫
dk e−ikyLn(k, µ) =

dn

dan

∣∣∣∣
a=0

1

a

[
e−aLyR1(a)− 1

]
=

1

n+ 1

n+1∑
k=0

(−1)k
(
n+ 1

k

)
Lky R

(n+1−k)
1 , (B.13)
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and the inverse is given by [95]∫
dy

2π
eikyLny =

dn

dan

{
−a

R1(−a)
L−a(k) +

δ(k)

R1(−a)

}
a=0

=

n−1∑
k=0

(−1)k+1n

(
n− 1

k

)
R̃

(n−k−1)
1 Lk(k, µ) + R̃

(n)
1 δ(k) , (B.14)

where the quantities R
(n)
1 , R̃

(n)
1 occurring in the coefficients are defined as

R
(n)
1 =

dn

dan

∣∣∣
a=0

eγEaΓ(1 + a) , (B.15)

R̃
(n)
1 =

dn

dan

∣∣∣
a=0

eγEa

Γ(1− a)
. (B.16)

They fulfill the sum rule
n∑
k=0

(
n

k

)
(−1)kR

(n−k)
1 R̃

(k)
1 = 0 . (B.17)

The values can be conveniently obtained from the expansions

∞∑
n=0

R
(n)
1 xn

n!
= exp

[
+

∞∑
n=1

ζ(n+ 1)

n+ 1
(−x)n+1

]
, (B.18)

∞∑
n=0

R̃
(n)
1 xn

n!
= exp

[
−
∞∑
n=1

ζ(n+ 1)

n+ 1
xn+1

]
. (B.19)

Numerically we find the asymptotic behavior

R
(n)
1 ≈ 0.561× (−1)nn! for n� 1 . (B.20)

The factorial behavior of R
(n)
1 reflects that the Taylor series of R1(a) = eγEaΓ(1 + a) only

converges for |a| < 1. For R
(n)
1 there is no such simple asymptotic behavior, but due to the

infinite radius of convergence of R̃1(a) = eγEa/Γ(1 − a), it is expected to grow much less

severely. This is confirmed by the first values shown in 4.

For illustration, table 1 shows the Fourier transforms of Ln(k, µ) for n ≤ 5, table 2 the

Fourier transforms of Lny for n ≤ 6. The first few R
(n)
1 and R̃

(n)
1 are given in tables 3 and

4.

B.3 Convolutions

The convolution of two plus distributions is given by∫
dx′ La(x− x′)Lb(x′) =

[
La+b(x) +

δ(x)

a+ b

]
V1(a, b)

+
(1

a
+

1

b

)
La+b(x)− 1

b
La(x)− 1

a
Lb(x) , (B.21)

where V1(a, b) is defined by

V1(a, b) =
Γ(a) Γ(b)

Γ(a+ b)
− 1

a
− 1

b
, (B.22)
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which satisfies V1(0, 0) = 0. Taking derivatives with respect to a and b we can get the

corresponding formulas for convolutions of the form Ln ⊗ La and Lm ⊗ Ln. The explicit

results can be found in Appendix B of ref. [27].

An important special case are multiple convolutions of Ln, which is given by

(L0⊗n)(k, µ) = (−1)n
n−1∑
i=0

(−1)i+1n

(
n− 1

i

)
R̃

(n−i−1)
1 Li(k, µ) + (−1)nR̃

(n)
1 δ(k) . (B.23)

C Two-dimensional plus distributions

C.1 Definition

Plus distributions in momentum space are uniquely defined by the two conditions[
g(~pT )

]µ
+

= g(~pT ) for |~pT | > 0 (C.1)∫
|~pT |≤µ

d2~pT

[
g(~pT )

]µ
+

= 0 , (C.2)

where g(~pT ) diverges at most as 1/p2
T for pT → 0. The boundary condition can be shifted

using [
g(~pT )

]µ
+

=
[
g(~pT )

]ξ
+
∓ δ(~pT )

∫
ξ<|~kT |<µ

d2~kT g(~kT ) , (C.3)

where the − sign holds for ξ < µ and the + sign for ξ > µ. For azimuthally symmetric

functions, g(~pT ) ≡ g(|~pT |), this simplifies to[
g(|~pT |)

]µ
+

=
[
g(|~pT |)

]ξ
+
− 2πδ(~pT )

∫ µ

ξ
dkT kT g(kT ) . (C.4)

It is important to keep in mind that it is nevertheless defined as a two-dimensional distri-

bution, even though the distribution effectively contains a scalar function.

It follows that the derivative with respect to the boundary condition is given by

µ
d

dµ

[
g(|~pT |)

]µ
+

= −2πµ2g(µ) δ(~pT ) . (C.5)

More generally, if g itself depends on µ, then

µ
d

dµ

[
g(|~pT |, µ)

]µ
+

= −2πµ2g(µ, µ) δ(~pT ) +

[
µ

dg(|~pT |, µ)

dµ

]µ
+

. (C.6)

For a scalar input function f(pT ), the azimuthally symmetric two-dimensional plus

distribution can be defined by the derivative

1

2πpT

d

dpT
θ(pT ) = δ(~pT ) ,

∫
|~kT |≤pT

d2~kT δ(~kT ) = θ(pT ) ,

1

2πpT

d

dpT

[
θ(pT )f(pT )

]
=

[
1

2πpT

df(pT )

dpT

]ξ
+

+ δ(~pT )f(ξ) . (C.7)
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Note that the appearance of the θ-function is crucial to render the derivative well defined

in form of a plus distribution.

We define the frequently occurring logarithmic plus distributions as

La(~pT , µ) ≡ 1

πµ2

[(
~p2
T

µ2

)a−1]µ
+

≡ 1

πµ2
La
(
~p2
T

µ2

)
, (C.8)

Ln(~pT , µ) ≡ 1

πµ2

[
µ2

~p2
T

lnn
~p2
T

µ2

]µ
+

≡ 1

πµ2
Ln
(
~p2
T

µ2

)
, (C.9)

where the La(x) and Ln(x) on the right-hand side are the standard ones for dimensionless

arguments with boundary condition x0 = 1 as defined in eq. (B.8). They are related by

Ln(~pT , µ) =
dn

dan
La(~pT , µ)

∣∣∣∣
a=0

. (C.10)

Their cumulant and inverse cumulants are∫
|~kT |≤pT

d2~kT Ln(~kT , µ) =
θ(pT )

n+ 1
lnn+1 p

2
T

µ2
,

1

2πpT

d

dpT

[
θ(pT ) lnn

p2
T

µ2

]
= nLn−1(~pT , µ) for n ≥ 1 . (C.11)

Finally note that our definition of Ln(~pT , µ) is related to that in ref. [15] by

Ln(~pT , µ) = 2(−1)nL0
n(µ,~pT ;µ) , (C.12)

where L0
n(µ,~pT ;µ) is defined in eq. (F.1) in ref. [15].

C.2 Fourier transformation

The Fourier transform of La(~pT , µ) is given by∫
d2~pT e

−i~pT ·~bTLa(~pT , µ) =
1

a

[(
b2Tµ

2

4

)−aΓ(1 + a)

Γ(1− a)
− 1

]
. (C.13)

It is convenient to express the Fourier transform of Ln(~pT , µ) as polynomials of

Lb ≡ ln
b2Tµ

2

b20
, b0 = 2e−γE ≈ 1.12291 . . . . (C.14)

The Fourier transform of Ln(~pT , µ) then follows from eq. (C.13) using eq. (C.10),∫
d2~pT e

−i~pT ·~bTLn(~pT , µ) =
dn

dan
1

a

[(
b2Tµ

2

4

)−aΓ(1 + a)

Γ(1− a)
− 1

]∣∣∣∣
a=0

=
1

n+ 1

n+1∑
k=0

(−1)k
(
n+ 1

k

)
R

(n+1−k)
2 Lkb . (C.15)
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The inverse transformation is given by∫
d2~bT
(2π)2

ei~pT ·
~bTLnb =

dn

dan
[
−aR2(a)L−a(~pT , µ) +R2(a)δ(~pT )

]∣∣∣∣
a=0

=
n−1∑
k=0

(−1)k+1n

(
n− 1

k

)
R

(n−k−1)
2 Lk(~pT , µ) +R

(n)
2 δ(~pT ) . (C.16)

The constants R
(n)
2 occurring in the coefficients are defined as

R
(n)
2 =

dn

dan
e2γEa

Γ(1 + a)

Γ(1− a)

∣∣∣∣
a=0

. (C.17)

They fulfill the useful property

n∑
k=0

(−1)k
(
n

k

)
R

(k)
2 R

(n−k)
2 = 0 . (C.18)

By integrating eq. (C.16) over |~pT | ≤ µ, it also follows that

R
(n)
2 =

∫ ∞
0

dxJ1(x) lnn
x2

b20
. (C.19)

They can also be obtained from the relation [21]

∞∑
n=0

R
(n)
2

n!
xn = exp

[
−2

∞∑
n=1

ζ(2n+ 1)

2n+ 1
x2n+1

]
. (C.20)

Approximating the zeta-function with its asymptotic value ζ(n) ≈ 1, it is easy to see from

this equation that R
(n)
2 scales as n! for large n. Numerically we find

R
(n)
2 ≈ 0.315× (−1)nn! for n� 1 . (C.21)

For illustration, we list in table 5 the Fourier transforms of Ln(~pT , µ) for n ≤ 5, and

in table 6 the inverse Fourier transforms of Lnb for n ≤ 6. The first few R
(n)
2 are given in

table 7.

C.3 Convolutions

Convolutions of plus functions can be conveniently calculated by transforming to impact

parameter space with eqs. (C.13) and (C.15), where convolutions become simple products,

and then Fourier transforming back using eq. (C.16).

The convolution of two La is given by [15]

(La ⊗ Lb)(~pT , µ) = V2(a, b)La+b(~pT , µ)− L
a(~pT , µ)

b
− L

b(~pT , µ)

a
+

(
V2(a, b)

a+ b
− 1

ab

)
δ(~pT ) ,

(C.22)
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Ln(~pT , µ) FT[Ln(~pT , µ)]

L0(~pT , µ) −Lb

L1(~pT , µ) +1
2L

2
b

L2(~pT , µ) −1
3L

3
b −

4
3ζ3

L3(~pT , µ) +1
4L

4
b + 4ζ3Lb

L4(~pT , µ) −1
5L

5
b − 8ζ3L

2
b −

48
5 ζ5

L5(~pT , µ) +1
6L

6
b + 40

3 ζ3L
3
b + 48ζ5Lb + 80

3 ζ
2
3

Table 5. Fourier transform of Ln(~pT , µ) to ~bT -space for n ≤ 5. Results are expressed in terms of

Lb = ln(b2Tµ
2e2γE/4). See eq. (C.15).

Lnb FT−1[Lnb ]

1 δ(~pT )

Lb −L0(~pT , µ)

L2
b +2L1(~pT , µ)

L3
b −3L2(~pT , µ)− 4ζ3δ(~pT )

L4
b +4L3(~pT , µ) + 16ζ3L0(~pT , µ)

L5
b −5L4(~pT , µ)− 80ζ3L1(~pT , µ)− 48ζ5δ(~pT )

L6
b +6L5(~pT , µ) + 240ζ3L2(~pT , µ) + 288ζ5L0(~pT , µ) + 160ζ2

3δ(~pT )

Table 6. Fourier transform of Lnb = lnn(b2Tµ
2e2γE/4) to ~pT -space for n ≤ 6. See eq. (C.16).

where

V2(a, b) =
Γ(1− a− b)

Γ(1− a)Γ(1− b)
Γ(a)Γ(b)

Γ(a+ b)
. (C.23)

Convolutions of type Ln⊗La and Ln⊗Lm can be obtained by applying eq. (C.10) to both

sides of the above relation by carefully taking the derivative with respect to a and b. An

important special case are multiple convolutions of L0(~pT , µ), which are found to be

(L0⊗n)(~pT , µ) =

∫
d2~bT
(2π)2

ei~pT ·
~bT (−Lb)n (C.24)

= (−1)n
n−1∑
k=0

(−1)k+1n

(
n− 1

k

)
R

(n−k−1)
2 Lk(~pT , µ) + (−1)nR

(n)
2 δ(~pT ) .
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R
(n)
2 Exact value Numerical value

R
(0)
2 1 1

R
(1)
2 0 0

R
(2)
2 0 0

R
(3)
2 −4ζ3 ≈ −4.81 = −0.801× 3!

R
(4)
2 0 0

R
(5)
2 −48ζ5 ≈ −49.8 = −0.415× 5!

R
(6)
2 160ζ2

3 ≈ 231.2 = 0.321× 6!

R
(7)
2 −1440ζ7 ≈ −1452 = −0.288× 7!

Table 7. The first values of R
(n)
2 , defined in eq. (C.17).

C.4 Integral relations

Here we collect a few important integrals with distributional scale setting according to

eq. (2.79), ∫ µ

pT |+

dµ′

µ′
f(~pT , µ

′) ≡ 1

2πpT

d

dpT

∫
kT≤pT

d2~kT

∫ µ

pT

dµ′

µ′
f(~kT , µ

′) , (C.25)

which are useful to resum the soft function iteratively using eqs. (5.10) and (5.11)∫ µ

pT |+

dµ′

µ′
δ(~pT ) lnn

µ′2

µ2
= −1

2
Ln(~pT , µ) , (C.26)∫ µ

pT |+

dµ′

µ′
Lm(~pT , µ

′) lnn
µ′2

µ2
= −1

2

m!n!

(n+m+ 1)!
Ln+m+1(~pT , µ) , (C.27)∫ µ

pT |+

dµ′

µ′
δ(~pT ) lnn

µ′

ν = pT |+
= (−1/2)n+1Ln(~pT , µ) , (C.28)∫ µ

pT |+

dµ′

µ′
Lm(~pT , µ

′) lnn
µ′

ν = pT |+
=

(−1/2)n+1

m+ 1
Ln+m+1(~pT , µ) . (C.29)

Setting ν = pT |+ inside the last two integrals only makes sense within the distributional

prescription.

Furthermore, the following two-dimensional generalization of eq. (2.24) is also useful,

δ(~pT ) lnn+1 µ
2
0

µ2

∣∣∣∣∣
µ0=pT |+

= (n+ 1)Ln(~pT , µ) ,

(m+ 1)Lm(~pT , µ) lnn
µ2

0

µ2

∣∣∣∣∣
µ0=pT |+

= (n+m+ 1)Ln+m(~pT , µ) ,

Lm(~pT , µ0) lnn
µ2

0

µ2

∣∣∣∣∣
µ0=pT |+

= 0 , (C.30)
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which holds for n,m ≥ 0.

D Fixed-order expansion of the soft function

For completeness we give the fixed order expansion of the soft function S(~pT , µ, ν) to three

loops, derived using distributional scale setting in sec. 5, and show the relation to the

soft function predicted through scale setting in Fourier space. Similar expressions for the

rapidity anomalous dimension γν are given in secs. 4.2 and 4.3. To simplify the formulas,

we make use of the known one-loop result

γν 0 = 0 , γS 0 = 0 . (D.1)

The soft function is expanded as

S(~pT , µ, ν) =

∞∑
n=0

S(n)(~pT , µ, ν)

[
αs(µ)

4π

]n
. (D.2)

The coefficients through O(α3
s) are expressed in terms of Lν ≡ ln(µ/ν) and Ln ≡ Ln(~pT , µ),

S(0) = δ(~pT ) , (D.3)

S(1) = −Γ0 L1 − 2Γ0 Lν L0 + S1δ(~pT ) , (D.4)

S(2) =
Γ2

0

2
L3 + L2(3Γ2

0 Lν + β0Γ0) + L1(4Γ2
0 L

2
ν + 2β0Γ0 Lν − Γ1 − Γ0S1)

+ L0

[
Lν(−2Γ1 − 2Γ0S1)− 1

2
(γS 1 + γν 1)− β0S1 + 2Γ2

0ζ3

]
+ δ(~pT )

[
Lν(−γν 1 + 4Γ2

0ζ3) + S2

]
, (D.5)

S(3) = −Γ3
0

8
L5 + L4

(
−5

4
Γ3

0Lν −
5

6
β0Γ2

0

)
+ L3

(
−4Γ3

0 L
2
ν −

14

3
β0Γ2

0 Lν − β2
0Γ0 + Γ0Γ1 +

1

2
Γ2

0S1

)
+ L2

[
−4Γ3

0L
3
ν − 6β0Γ2

0L
2
ν + Lν

(
−2β2

0Γ0 + 6Γ0Γ1 + 3Γ2
0S1

)
+ β1Γ0 + 2β0Γ1 +

3

4
Γ0(γS 1 + γν 1) +

5

2
β0Γ0S1 − 5Γ3

0ζ3

]
+ L1

[
L2
ν

(
8Γ0Γ1 + 4Γ2

0S1

)
+ Lν

(
2β1Γ0 + 4β0Γ1 + 2Γ0γS 1 + 3Γ0γν 1 + 6β0Γ0S1 − 20Γ3

0ζ3

)
− Γ2 + β0γS 1 + 2β0γν 1 + 2β2

0S1 − Γ1S1 − Γ0S2 − 12β0Γ2
0ζ3

]
+ L0

[
L2
ν(2Γ0γν 1 − 16Γ3

0ζ3) + Lν(−2Γ2 + 2β0γν 1 − 2Γ1S1 − 2Γ0S2 − 16β0Γ2
0ζ3)

− 1

2
(γS 2 + γν 2)− 1

2
(2β1 + γS 1 + γν 1)S1 − 2β0S2 + 4Γ0Γ1ζ3 + 2Γ2

0S1ζ3 − 6Γ3
0ζ5

]
+ δ(~pT )

[
−16

3
Γ3

0ζ3L
3
ν − 8β0Γ2

0ζ3L
2
ν

+ Lν
(
−γν 2 − γν 1S1 + 8Γ0Γ1ζ3 + 4Γ2

0S1ζ3 − 12Γ3
0ζ5

)
+ S3

]
. (D.6)
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The results through O(α2
s) agree with the explicit calculation using the η-regulator in

ref. [62]. The Sn denote the constants as derived using distributional setting, see sec. 5.

They are related to S̃n, the correspond constants with scale setting in Fourier space, by

S1 = S̃1 , (D.7)

S2 = S̃2 +
4

3
β0Γ0ζ3 , (D.8)

S3 = S̃3 +
4

3
β1Γ0ζ3 +

8

3
β0Γ1ζ3 + Γ0(γS 1 + γν 1)ζ3 +

10

3
β0Γ0S1ζ3 −

10

3
Γ3

0ζ
2
3 − 8β0Γ2

0ζ5 .

(D.9)
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