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Abstract

A novel method for nonperturbative renormalization of lattice operators is introduced,
which lends itself to the calculation of renormalization factors for nonsinglet as well as
singlet operators. The method is based on the Feynman-Hellmann relation, and involves
computing two-point correlators in the presence of generalized background fields arising
from introducing additional operators into the action. As afirst application, and test of the
method, we compute the renormalization factors of the axialvector currentAµ and the scalar
densityS for both nonsinglet and singlet operators forN f = 3 flavors of SLiNC fermions.
For nonsinglet operators, where a meaningful comparison ispossible, perfect agreement with
recent calculations using standard three-point function techniques is found.
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1 Introduction

To relate bare lattice results of hadron matrix elements anddecay constants to phenomenolog-
ical numbers, which are usually given in theMS scheme, the underlying operators need to be
renormalized. This requires a nonperturbative method, because lattice perturbation theory is
considered to be unreliable at present couplings.

A general nonperturbative method is the RI′-MOM subtraction scheme, which has been pro-
posed in [1], with some refinements being added in [2]. Starting from the bare vertex function

ΓO(p) = S −1(p) GO(p) S −1(p) , (1)

where

GO (p) =
1
V

∑

x,y,z

e−ip(x−y)〈q(x)O(z) q̄(y)〉 (2)

is the quark Green function with operator insertionO, and

S (p) =
1
V

∑

x,y

e−ip(x−y)〈q(x) q̄(y)〉 (3)

is the quark propagator, the renormalized vertex function is defined by

ΓR
O (p) = Z−1

q ZO ΓO (p) . (4)

Zq denotes the quark field renormalization constant, which is taken as

Zq(p) =
Tr
[

−i
∑

λ γλ sin(pλ) S −1(p)
]

12
∑

ρ sin2(pρ)
. (5)

The renormalization factorZO(µ) is determined by imposing the renormalization condition

1
12

Tr
[

ΓR
O (p)ΓBorn

O (p)
−1]

= 1 (6)

at the scalep2 = µ2. Thus

Z−1
O (µ) =

1
12

Tr
[

ΓO (µ)ΓBorn
O (µ)

−1]
Z−1

q (µ) . (7)

The lattice spacinga is assumed to be one, if not stated otherwise.V is the lattice volume.
The evaluation ofZO requires the calculation of three-point functions. In the case of flavor

singlet matrix elements this entails the computation of quark-line disconnected diagrams, which
requires inversions of the fermion matrix at every lattice point and still leads to a poor signal to
noise ratio. In this paper we propose an alternative method,based on the Feynman-Hellmann
(FH) relation, which eliminates the issue of computing disconnected contributions directly at
the expense of requiring the generation of additional ensembles of gauge field configurations.
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This essentially involves computing two-point correlators only in the presence of generalized
background fields, which we show arise from introducing the operatorO into the action,

S → S(λ) = S − λ
∑

x

O(x) , S = SF + SG , (8)

whereSF andSG are the fermionic and gauge field actions. A further advantage of this method
is that the signal to noise ratio will be directly proportional to the external parameterλ, and thus
can be controlled from the outside, as opposed to the standard three-point function calculation.

The quark propagators in (1) are calculated by inverting thefermion matrix, and so must be
modified if we change the quark action. This change is straightforward to apply, only requiring
a redefinition of the Dirac operator. In addition, any modification we make to the action in (8)
should be included during the generation of the background gauge fields. By choosing to neglect
either one of these modifications, we are able to individually isolate connected and disconnected
contributions to the vertex function. Thus, modifications to the gauge configurations allow access
to disconnected quantities, and modifications to the calculation of propagators allow access to
connected quantities.

This paper follows previous work on hyperon sigma terms [3],the glue in the nucleon [4],
and the spin structure of hadrons [5], already showing the potential of the Feynman-Hellmann
approach to the calculation of hadron matrix elements. The outline of the paper is as follows.
Section 2 describes the Feynman-Hellmann relation as relevant for the calculation of renormal-
ization factors. In Secs. 3.1 and 3.2 we apply the method to the computation of renormalization
factors of the axial vector currentAµ and the scalar densityS , respectively, for singlet and non-
singlet operators. The calculations are done withN f = 3 flavors of SLiNC fermions [6, 7].
Section 4 contains our conclusions.

2 The Feynman-Hellmann method

Throughout this paper we will consider quark-bilinear, flavor diagonal operators

O(x) = q̄(x)Γ q(x) (9)

only, whereΓ is some combination of gamma matrices. The generalization to operators including
covariant derivatives is straightforward. The modified fermionic action then reads

SF(λ) =
∑

q=u,d,s

∑

x

q̄(x) [D + M − λ Γ] q(x) , (10)

whereD is the lattice Dirac operator including the Wilson and clover terms, andM is the Wilson
mass term. The latter is a diagonal 3× 3 matrix in flavor space,

M =





















1/2κu
1/2κd

1/2κs





















. (11)
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One is mainly interested in renormalization factors in a mass-independent scheme, such as the
MS scheme. To comply with that, we choose the quarks to be massdegenerate,

M = (1/2κ)1 , κu = κd = κs ≡ κ , (12)

and tuneκ to its critical value,κc, at the end of the calculation. A better choice might be to only
take theu andd quarks as mass-degenerate,κu = κd ≡ κℓ, and keep the sum of the quark masses
fixed [7], 2/κℓ + 1/κs = constant, while takingκℓ to its critical value,κℓ,c. In that case we would
have

M =





















1/2κℓ
1/2κℓ

1/2κs





















. (13)

After integrating out the quark fields, the fermion propagator becomes

S (λsea, λval) =

∫

DU [D + M − λvalΓ]−1 det [D + M − λseaΓ] exp{−SG(U)}
∫

DU det [D + M − λseaΓ] exp{−SG(U)}
, (14)

where we differentiate between operator insertions in the quark propagator (λval) and the fermion
determinant (λsea), to separate connected and disconnected diagrams eventually. In what follows
Fourier transformation ofS (λsea, λval) to momentum space is understood. For the sake of sim-
plicity any dependence on external momenta will be omitted.Expanding the propagator in terms
of λsea, λval gives

S (λsea, λval) = 〈[D + M]−1〉 + λval 〈[D + M]−1Γ [D + M]−1〉

− λsea

{

〈[D + M]−1 Tr (Γ [D + M]−1)〉 − 〈[D + M]−1〉 〈Tr (Γ [D + M]−1)〉
}

+ O(λ2
sea, λseaλval, λ

2
val) ,

(15)

where the expectation values〈· · · 〉 refer to the unmodified action. By differentiating the quark
propagator with respect toλval andλseawe obtain

∂ S (0, λval)
∂ λval

∣

∣

∣

∣

∣

λval=0
= 〈[D + M]−1Γ [D + M]−1〉 ≡ Gcon

O (16)

and

∂ S (λsea, 0)
∂ λsea

∣

∣

∣

∣

∣

λsea=0
= − 〈[D + M]−1 Tr (Γ [D + M]−1)〉

+ 〈[D + M]−1〉 〈Tr (Γ [D + M]−1)〉 ≡ Gdis
O ,

(17)

whereGcon
O

andGdis
O

are the fermion-line connected and -disconnected quark Green functions, re-
spectively. In Fig. 1 we sketch both types of contributions.Note that (17) only includes diagrams
where gluon lines connect the quark loop to the external legs. The unitary (full) quark Green
function, including both connected and disconnected diagrams, is given by

GO =
∂ S (λ, λ)
∂ λ

∣

∣

∣

∣

∣

λ=0
= Gcon

O +Gdis
O . (18)
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Figure 1: Diagrams contributing to the renormalization of quark-bilinear operators (inserted at
point ×). The left figure shows the connected (nonsinglet) contribution, the right figure the
disconnected (singlet minus nonsinglet) contribution. Gluon lines have been omitted.

By multiplying GO andGcon
O

with the inverse unmodified propagator from left and right we
obtain singlet,

ΓS
O = S (0, 0)−1GO S (0, 0)−1 , (19)

and nonsinglet,
ΓNS
O = S (0, 0)−1Gcon

O S (0, 0)−1 , (20)

vertex functions. The corresponding renormalization factors are then given by

ZS
O

−1
=

1
12

Tr
[

ΓS
O Γ

Born
O

−1]
Z−1

q (21)

and

ZNS
O

−1
=

1
12

Tr
[

ΓNS
O Γ

Born
O

−1]

Z−1
q . (22)

We could have started from singlet and nonsinglet operatorswith a single parameterλ, as stated
in (8), instead of differentiating between operator insertions in propagator anddeterminant. For
example

OS(x) =
∑

q=u,d,s

q̄(x)Γ q(x) , (23)

ONS(x) = ū(x)Γ u(x) − d̄(x)Γ d(x) . (24)

For the singlet operator (23) nothing changes. The nonsinglet operator (24) would contribute
O(λ2) to the determinant for either choice ofM, eqs. (12) and (13), which leaves us with

∂ S (λ, λ)
∂ λ

∣

∣

∣

∣

∣

λ=0
= Gcon

O . (25)

We have just added the singlet operator to the action. If we also added a termλNS
seaONS it would

not change anything, the non-singlet operator would contribute to the determinant atO((λNS
sea)

2),
and so not change the derivative atλ = 0.
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3 Numerical results and tests

We shall now apply the Feynman-Hellmann method of nonperturbative renormalization to the
axial vector current and the scalar density. It is convenient to introduce the primitive

ΛO(λsea, λval) =
1
12

Tr
[

S (0, 0)−1 S (λsea, λval) S (0, 0)−1ΓBorn
O

−1]
. (26)

Expanding the propagatorS (λsea, λval) in terms ofλsea, λval, using (15), we obtain

ΛO(λsea, λval) = a0 + aseaλsea+ aval λval + O(λ2
sea, λseaλval, λ

2
val) . (27)

The coefficientsaseaandaval are what we need to compute,

ZNS
O =

Zq

aval
, ZS

O =
Zq

aval + asea
. (28)

The proposed method involves the computation of two-point functions only. In the case of
nonsinglet operators no extra gauge field configurations need to be generated. The parameters
λsea, λval should be chosen large enough to give a strong signal, but small enough so thatΛO can
be fitted by a low-order polynomial inλsea, λval.

The calculations are performed on 323 × 64 lattices atβ = 5.50, corresponding to a lat-
tice spacing ofa = 0.074(2) fm [8]. We will use momentum sources [2] throughout the cal-
culation. Using twisted boundary conditions, the momenta are chosen to be strictly diagonal,
p = (ρ, ρ, ρ, ρ). They are (ap)2 = 0.1542, 0.6169, 1.3879, 2.4674, 3.8553, 5.5517, 7.5564 and
9.8696, as given in the first column of Table III in [9]. This choice of momenta will leave us with
O((ap)2) scaling violations only, but with no direction-specific corrections, which we consider a
great advantage.

We are finally interested in renormalization factors in the RGI andMS schemes. The conver-
sion from the RI′-MOM scheme to the RGI scheme is preferably done by a two-stepprocess [10]

ZRGI
O = ∆ZMOM

O (µ) ZMOM
RI′−MOM(µ) ZRI′−MOM

O (µ) , (29)

λval λsea

−0.0125 −0.03 0.0 0.00625 0.0125

−0.00625 −0.03 0.0 0.00625 0.0125

−0.003125 −0.03 0.0 0.00625 0.0125

0.0 −0.03 0.0 0.00625 0.0125

0.03 −0.03 0.0 0.00625 0.0125

Table 1: The parametersλval andλseaemployed in the simulations.
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which we follow here. The renormalization factors in theMS scheme are given by

ZMS
O (µ) = ∆ZMS

O (µ)
−1

ZRGI
O . (30)

The conversion factors∆ZMOM
O

(µ), ZMOM
RI′−MOM(µ) and∆ZMS

O
(µ) are computed in continuum pertur-

bation theory [12, 13]. They depend onΛMS, which we choose asΛMS = 339 MeV [11].

Λsea

Λval

LA

-0.03

-0.02

-0.01

0

0.01
-0.01

0

0.01

0.02

0.03

-0.01
0

0.01

-0.0003

-0.0002

-0.0001

0

0.0001

0.0002

0.0003

0.0004

0.0005

0.0006

-0.04 -0.03 -0.02 -0.01 0 0.01 0.02

Λ
A
(λ

s
e
a
,λ

v
a
l)
−

Λ
A
(0
,λ

v
a
l)

λsea

λval

(ap)2 = 2.4674

0.03
0.0

-0.003125
-0.0625
-0.0125

Figure 2: Top panel:ΛA(λsea, λval) as a function ofλseaandλval for (ap)2 = 2.4674. Bottom panel:
The differenceΛA(λsea, λval) − ΛA(0, λval) = aseaλsea+ O(λ2

sea, λseaλval, λ
2
val) as a function ofλsea,

for (ap)2 = 2.4674.
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3.1 Axial vector current

In order to proceed with the determination of the renormalization constant of the axial current,
we add the third component of the axial current

A3(x) = q̄(x) γ3γ5 q(x) , (31)

to the action (8). This operator isγ5-hermitean, and hence suitable for inclusion as part of
the Hybrid Monte Carlo when generating the new sets of gauge configurations required for the
determination of the disconnected contributions. The simulations are performed at the SU(3)
flavor symmetric pointκu = κd = κs = 0.12090 [7], corresponding tomπ = mK = 465 MeV, for
five differentλval values with four different values ofλsea each. The actual run parameters are
listed in Table 1.

In Fig. 2 we show our results forΛA(λsea, λval) and the differenceΛA(λsea, λval) − ΛA(0, λval)
for one of our intermediate momenta, (ap)2 = 2.4674. Within the range of parameters we have
explored,ΛA(λsea, λval) (shown in the top figure) appears to be a linear function of both λseaand
λval. The figure indicates thatasea≪ aval for the axial vector current. In spite of being a rather
small number, the disconnected contributionaseacan be computed very accurately by our method.
This is illustrated by the differenceΛA(λsea, λval) − ΛA(0, λval) = aseaλsea+ O(λ2

sea, λseaλval, λ
2
val)

(shown in the bottom figure). It helps the fit that higher ordercorrections are small. Similar
results are found for the other momenta. We thus may fit our data forΛA(λsea, λval) by the ansatz

ΛA(λval, λsea) = a0 + aseaλsea+ aval λval . (32)

This is done for each momentum source separately. The resultis shown in Fig. 3. Fromasea

andaval, together withZq defined in (5), we obtain the renormalization factors in the RI′-MOM
scheme. The result is given in Fig. 4 (left panel) for singletand nonsinglet operators. The obvious
question now is: how does that result compare with previous results using standard methods?
In [9] we have computed the nonsinglet renormalization factor from three-point functions using
the same action. We compare that result with the Feynman-Hellmann result of this paper in Fig. 4
(right panel). We find perfect agreement.

-0.14

-0.12

-0.1

-0.08

-0.06

-0.04

-0.02

0

0.02

0 2 4 6 8 10

a
s
e
a

(ap)2

1.02

1.03

1.04

1.05

1.06

1.07

1.08

0 2 4 6 8 10

a
v
a
l

(ap)2

Figure 3: The coefficientsaseaandaval as a function of (ap)2.
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NS

S

0.86

0.87

0.88

0.89

0.9

0.91

0.92

0 2 4 6 8 10

Z
R
I′
−
M
O
M
,N

S
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(ap)2
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3-point

Figure 4: Left panel: Singlet and nonsinglet renormalization factorsZA in the RI′-MOM scheme
at κsea = 0.12090. Right panel: Comparison of the nonsinglet renormalization factorZA in the
RI′-MOM scheme obtained from the Feynman-Hellmann (FH) approach (this work) and the
three-point function method [9].

Let us now convert our numbers to the RGI andMS schemes, using (29) and (30). In the
nonsinglet case∆ZMOM

A (µ) = ∆ZMS
A (µ) = 1, as the anomalous dimension is zero. In the singlet

case both∆ZMOM
A (µ) and∆ZMS

A (µ) are nonzero and depend on the scaleµ =
√

p2 [12, 13]. In
Fig. 5 we showZRGI

A for both singlet and nonsinglet operators. We restrict ourselves to (ap)2 ≥ 2.
Below that long-distance effects become dominant. As in [9], the nonsinglet data show scaling
violations which can be approximated by a linear ansatz in (ap)2. We fit the singlet data by a

0.8

0.84

0.88

0.92

0.96

1

2 4 6 8 10

Z
R
G
I

A

(ap)2

NS

S

Figure 5: Singlet and nonsinglet renormalization factors in the RGI scheme, together with a
linear (quadratic) fit to 2≤ (ap)2 ≤ 10 for the nonsinglet (singlet)ZRGI.
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κval κsea

0.120900 0.120920 0.120950 0.120990 0.120900

0.190920 0.120920

0.120950 0.120950

0.120990 0.120990

0.121021 0.121021

Table 2: The parameters of background field configurations,κval andκsea, used in the calculation
of the scalar density.

quadratic ansatz. The result is

ZRGI,NS
A = 0.8458(8), ZRGI,S

A = 0.9285(36). (33)

The renormalization factorsZMS
A (µ) are obtained by multiplying the numbers in (33) by∆ZMS

A (µ)
−1

.
They are scale dependent. Atµ = 2 GeV we obtain

ZMS,NS
A = 0.8458(8), ZMS,S

A = 0.8662(34). (34)

The difference of singlet and nonsinglet renormalization factors of the axial vector current
turns out to be small. That is not surprising since it is already known that in perturbation theory
singlet and nonsinglet numbers start to depart only at two loops [14]. The good news is that the
Feynman-Hellmann method enables us to compute the disconnected contributionasea, in spite of
being a factor of 20 smaller than the connected oneaval, to an unprecedented precision of less
than a percent.

It should be remembered that our results (33) and (34) refer to the flavor symmetric point
κℓ = κs = 0.12090. To extrapolate the renormalization factors to the chiral limit, we would have
to perform more simulations with the modified fermionic action at smaller quark masses.

3.2 Scalar density

We now turn to the scalar density
S (x) = q̄(x)q(x) . (35)

In this case the modification of the fermionic action,S F → S F − λ
∑

x S (x), is equivalent to
changing theκ values toκ + δ, with δ = 2λκ2/(1 − 2λκ). As before,κu = κd = κs is assumed.
We allow the kappa values of sea and valence quarks to be different, and express the primitive
(26) in terms of the new variablesδseaandδval. ExpandingΛS (δsea, δval) about the reference point
(κsea, κval) then gives

ΛS (δsea, δval) = a0 +
(

asea/2κ
2
sea

)

δsea+
(

aval/2κ
2
val

)

δval + O(δ2sea, δseaδval, δ
2
val) . (36)
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of δ for (ap)2 = 7.5564, together with a linear fit.

Here we can draw on existing background gauge field configurations [7]. In Table 2 we list theκ
parameters of the configurations used in this calculation.

In Fig. 6 we showΛS (δ, δ) as a function ofδ at the reference pointκref = κsea= κval = 0.12090
for one of our intermediate fit momenta, (ap)2 = 7.5564. To a good approximation, the data lie
on a straight line. From the slope atδ = 0 (κ = κref) we obtain the singlet renormalization factor

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6
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Figure 7: The singlet renormalization factor in the RI′-MOM scheme as a function ofm2
π for two

momenta, (ap)2 = 2.4674 and 9.869, together with a linear extrapolation to the chiral limit.
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Figure 8: The singlet renormalization factorZRGI,S
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2 ≤ (ap)2 ≤ 10.

in the RI′-MOM scheme,

∂ΛS (δ, δ)
∂ δ

∣

∣

∣

∣

∣

δ=0
=

asea+ aval

2κ2ref

=
Zq

2κ2ref ZRI′−MOM,S
S

. (37)

Repeating the calculation atκref = 0.12092, 0.12095, 0.12099 and 0.121021, with pion masses
ranging from 465 MeV (κ = 0.12090) to 290 MeV (κ = 0.121021) [9], we can perform the chiral
extrapolation ofZRI′−MOM,S

S . In Fig. 7 we showZRI′−MOM,S
S as a function ofm2

π for two different
momenta, together with the extrapolated values. SingletZRI′−MOM,S

S is practically independent of
the pion mass.

To convertZRI′−MOM,S
S to the RGI andMS schemes we proceed as before. In Fig. 8 we

showZRGI,S
S . The data show scaling violations approximately linear in (ap)2, which appear to be

common to all our results [9]. We restrict ourselves to (ap)2 ≥ 2 and fit the data by the ansatz
ZRGI

S + C (ap)2. The result is
ZRGI,S

S = 0.2617(35), (38)

which upon conversion to theMS scheme atµ = 2 GeV gives

ZMS,S
S = 0.3544(48). (39)

In contrast to (33) and (34), both numbers refer to the chirallimit.
As a further test, we have computed the nonsinglet renormalization factorZRI′−MOM,NS

S at
κref = 0.12090 and compared the outcome with our previous result fromthree-point functions [9].
We find perfect agreement, as before.

Using raw momentum data from [9] we found in the chiral limit

ZRGI,NS
S = 0.5635(61) (40)
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and
ZMS,NS

S = 0.7631(82) at µ = 2 GeV, (41)

giving

rS =
ZRGI,NS

S

ZRGI,S
S

=
ZMS,NS

S

ZMS,S
S

= 2.15(4). (42)

Note that∆ZRGI
S (µ) = ∆ZMS

S (µ). In continuum perturbation theory and for chiral fermionsrS = 1.
The deviation from one is an artifact of Wilson-type fermions. In [15] it was found thatrS

rapidly approachesrS = 1 as the lattice spacing is decreased. An independent estimate of rS can
be obtained from the ratio of valence to sea quark masses [7].An updated value isrS = 1.82(8),
which is in reasonable agreement with the result (42).

4 Conclusions

We have demonstrated that the Feynman-Hellmann method is aneffective approach to calculating
renormalization factors. For nonsinglet operators no additional gauge field configurations have
to be generated. For singlet operators it appears that only acouple of different background field
strengths need to be realized in order to make an accurate andprecise calculation. We have
demonstrated this through the determination of singlet andnonsinglet renormalization factors of
the axial vector current and the scalar density. Simulations of the axial vector current at smaller
quark masses are in progress.

There is room for improvement. The renormalization factorsshow scaling violations in (ap)2,
which has puzzled us already in [9]. So far we have worked withunimproved quark propagators.
Improving off-shell quark propagators should be simpler than improving three-point functions.
Our goal is to remove lattice artifacts as far as possible. A first step in this direction has been
taken in [16].
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and J. M. Zanotti, Phys. Rev. D79 (2009) 094507 [arXiv:0901.3302[hep-lat]].
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G. Schierholz, A. Schiller, H. Stüben and J. M. Zanotti, Phys. Rev. D82 (2010) 114511
[Erratum-ibid. D86 (2012) 099903] [arXiv:1003.5756[hep-lat]].

[11] S. Aoki, Y. Aoki, C. Bernard, T. Blum, G. Colangelo, M. Della Morte, S. Drr and A. X. El
Khadraet al., [arXiv:1310.8555[hep-lat]].

[12] K. G. Chetyrkin and J. H. Kühn, Z. Phys. C60 (1993) 497.
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