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1 Introduction

It is now well established that the Bern-Dixon-Smirnow (BDS) conjecture [2] for the MHV

n-point scattering amplitude in the planar limit of the N = 4 SYM theory is incomplete for

n ≥ 6. One of the first indications for this was found in [3, 4] and in [5]. Corrections to the

BDS-formula have been named ”remainder functions” Rn, and in recent years major efforts

have been made for determining these remainder functions, in particular the remainder

function R6 for the case n = 6. The function R6 has been calculated for two, three loops

[6–18], four loops [19] and even several attempts have been made for n = 7 case up to two

loops [20–23].

When trying to go beyond this loop expansion, it has turned out to be useful to con-

sider a special kinematic limit, in particular the multi-Regge limit. For the n = 6 point

amplitude the comparison of the BDS conjecture with the leading logarithmic approxima-

tion which extends over all orders of the coupling constant, has shown that BDS formula

fails in two major aspects:

1) the Regge pole contributions do not have the correct phase structure in all kinematic

regions,

2) it does not contain the Regge cut contributions which are predicted by leading-log cal-

culations. Therefore, it is the remainder function which contains Regge cut contributions.

A careful analysis has shown that this cut contribution vanishes both in the Euclidean

region and in the physical region where all energies are positive. It is nonzero only in
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special kinematic regions, named ”Mandelstam regions”: these are physical regions where

some of the energy variables are positive, others negative (”mixed regions”: the precise

definition will be given later on). These results have been generalized also beyond the

leading logarithmic approximation, and there is no doubt that the multi-Regge limit plays

a key role for the determination of the remainder functions.

To construct the remainder function in the multi-Regge limit it is therefore necessary

to consider all possible kinematic regions and to find the correct structure of Regge pole

and Regge cut contributions. The first step is the analysis of the Regge pole contributions.

It is well known that in non-abelian gauge theories the gauge bosons reggeize, and in the

leading approximation the 2 → n + 1 production amplitudes can be written in a simple

factorizing form with exchange of reggeized gluons in all t-channels. Beyond the leading

approximation this factorizing form of the Regge pole contribution remains valid in the

region of all energies being positive, but the production vertices become complex-valued

functions. This factorizing representation is equivalent to another representation, in which

the scattering amplitude is written as a sum of kn different terms1, where each of them has

a distinct set of non-vanishing simultaneous energy discontinuities: in this representation

the agreement with the Steinmann relations is explicit.

When applying these results to the planar amplitudes of N = 4 SYM theory, an

important difference between planar and fully signatured amplitudes was discovered [3, 4,

24]. Namely, the simple factorized form of the Regge pole contributions is valid in the

physical region with all energy variables being positive (and also in the Euclidean region),

but it takes a different form in other regions, in particular in the Mandelstam regions

mentioned before. In the latter region the Regge pole contribution has a term which

contains an unphysical singularity and requires the existence of Regge cut contributions

with the same phase structure. In the sum, the singular terms contained in the Regge poles

and in the Regge cut contributions cancel, leading to a sum of IR finite and conformal

invariant pole and cut contributions.

In a recent paper [1] we have started a systematic study of these Regge pole and Regge

cut contributions. We found it instructive to first return to the 6-point case, and then

developed tools which allow us to extend to higher order scattering amplitudes, in particular

to the 7-point amplitude. As the first step we have analyzed the Regge pole contribution.

Particular attention has been given to the appearance of unphysical pole singularities, and

we have outlined, for the 2 → 5 scattering amplitudes, that these pole singularities have to

be canceled by Regge cut contributions. As a result, we have found that, in all kinematic

regions, the scattering amplitude can be written as a sum of conformal invariant Regge pole

contributions and Regge cut amplitudes (a brief summary is presented in Appendix B).

Whereas our construction was designed to find explicit conformal expressions for the Regge

pole contributions (valid to all orders in the coupling constant), we did not determine the

explicit expressions of the Regge cut contribution. It is the purpose of the present paper,

to complete our program by computing the Regge cut contribution. To this end we have to

1The numbers kn coincide with the Catalan numbers Cn with Cn = 1, 1, 2, 5, 14, 42, ... for n =

0, 1, 2, 3, 4, 5, .... They satisfy the recurrence relation Cn+1 =
∑i=n

i=0
CiCn−i.
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develop a slightly different strategy which allows to compute, from energy discontinuities,

Regge cut contributions. At present we will restrict ourselves to the weak coupling limit,

but a NLO calculation is within reach. Again, our main focus is in the 7-point amplitude.

The extension to the 8-point case is under the way.

It may be useful to make a few preparatory remarks on our tools. Our calculations

will make use of the analytic structure of scattering amplitudes in multi-Regge kinematics,

and we will compute, via unitarity integrals, energy discontinuities. To be a bit more

specific, we first write the scattering amplitude as a sum of several terms: for the six

point case we have five terms, for the 7-point amplitude 14 terms, for the 8-point cases 42

terms and so on. Each term is written as a multiple Sommerfeld-Watson integral, where

the integrand consists of a product of complex energy factors and a real-valued coefficient

function, the partial wave, which depends upon the angular momentum variables, the

squared momentum transfers and the Toller angles. The phase structure is contained in

the energy factors only. The partial waves are written as sums of the Regge contributions,

Regge poles and Regge cuts. Whereas the pole contributions have been analyzed in our

previous paper, the focus of this paper will be on the Regge cut singularities: we will

compute them from energy discontinuities, i.e. our calculations will boil down to unitarity

integrals. This is the point where, at present, we restrict ourselves to the weak coupling

approximation, since inside the unitarity integrals we will insert the leading-log expressions

of the scattering amplitudes.

An important ingredient into this construction is the observation that Regge pole

and Regge cut contributions come with products of trigonometric factors which have to

be determined before the energy discontinuities can be addressed. The origin of these

trigonometric factors is the factorization of the Regge pole contribution which, in the case

of planar scattering amplitudes, leads to the appearance of unphysical pole singularities.

As we had discussed already in our previous paper, these singularities must cancel in

the scattering amplitude, i.e. in the sum of the partial waves contributions. This is the

place where the existence of Regge cuts becomes mandatory. As an important part of our

calculations we will find a systematic way of computing these trigonometric factors.

There exists an extensive literature on Regge theory, mainly on Regge poles [25, 27].

One of the key concepts is the introduction of signature: in order to define proper analytic

continuation in angular momentum plane, one has to define combinations of amplitudes

which are even or odd under crossing. Many general results in Regge theory (e.g. signature

conservation rules) cannot be considered without signature. In the context of AdS/CFT

duality we consider the limit of large Nc and are thus led to planar amplitudes to which

signature does not apply. A priori, therefore, it is not clear to what extent results from the

literature can be used2. Nevertheless, in our calculations we will adopt results of Regge

theory, and we have to view them as assumptions: their validity has to be justified by the

results. The key features which we consider as ”proof of consistency” are:

1) agreement with perturbation theory, wherever results on multiparticle scattering ampli-

tudes are available.

2We thank A.White for a helpful discussion on this point
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2) after removing those IR-singular pieces which are part of the BDS formula, the remain-

der function has to be IR finite and

3) conformal invariant. For the 2 → 4 and 2 → 5 scattering amplitudes our construction

has been completed and satisfies the constraints, and for the 2 → 6 scattering amplitude

results will be published soon.

Our paper will be organized as follows. We begin (Sec. II) with the 2 → 5 scattering

amplitude, define our ansatz (the sum of 14 terms), and we list the trigonometric factors for

the Regge pole contributions. We then discuss these factors for the Regge cut contributions

and formulate rules which can be used also for higher point amplitudes. In order to illustrate

our strategy of using energy discontinuities we make a digression (Sec. IV) and complete

the construction of Regge cuts in the 2 → 4 case. In Sec. V we return to the 2 → 5 case

and calculate, via energy discontinuities, the Regge cut contribution. Finally, in Sec. VI

we list our predictions for the scattering amplitude in different kinematic regions. A few

details of our calculations of the 2 → 5 scattering amplitude are presented in Appendix A

and a table, and a brief summary of the results of our previous paper is given in Appendix

B.

2 Analytic structure and trigonometric coefficients

We begin with the analytic structure of the 7-point amplitude. In multi-Regge kinematics

the scattering amplitude can be written as a sum of 14 terms which we will name ”analytic

decomposition”:

T =
∑

Tijk, (2.1)

where each subscript ”i,j,k” is related to a production vertex and takes the values L (left)

or R (right). In the planar approximation for the 2 → 5 amplitude each term belongs to a

maximal set of nonoverlapping energy discontinuities 3:

1 2 3 4

A B

0

LLL RRR RRL RLL

Figure 1: Terms without Regge cuts. For the produced particles we also use the labels

a, b, c.

3for signatured amplitudes there exist additional nonplanar contributions [28]. Some of them can be

derived from configurations which are planar in a crossed channel.

– 4 –



a
1

a
2

b
1

b
2

RLR RLR LRL LRL

Figure 2: Terms which contain Regge cut contributions: two doublets (a) and (b)

c
1

c
2

c
3

d
1

d
2

d
3

LLR LLR LLR

LRR LRR LRR

Figure 3: Terms which contain Regge cut contributions: two triplets (c) and (d)

We write each term as a multiple Sommerfeld-Watson integral, where the integrand consists

of a product of energy factors and of a real-valued partial wave which depends upon mo-

mentum transfers ti = −~q2i and angular momenta ωi = ji−1 and contains the singularities

in the angular momentum plane. As an example, the first term reads as follows:

TLLL = s

∫ ∫ ∫ ∫

dω′
1dω

′
2dω

′
3dω

′
4

(2πi)4
(−s34)

ω′

43(−s234)
ω′

32(−s1234)
ω′

21(−s)ω
′

1 ×

×FLLL(t1, t2, t3, t4;ω
′
1, ω

′
2, ω

′
3, ω

′
4). (2.2)

We denote these partial waves by Fijk. As we have said already, the subscripts take the

values R or L, and their origin is discussed in Appendix A. Each partial wave may consist

of several contributions which contain Regge pole or Regge cut singularities:

Fijk = F pole
ijk + FRegge cut 1

ijk + FRegge cut 2
ijk + ... . (2.3)

In particular, all 14 terms contain a Regge pole piece. A Regge cut in the t3 channel is

contained in all those terms which contain the discontinuity in s3 (RLR and LLR), and a

Regge cut in the t2-channel in the terms with a nonvanishing discontinuity in s2 (LRL and

LRR). Finally, the long Regge cut extending over the t2 and t3 channels is contained in

the first two terms of the triplets LLR and LRR: they all have the discontinuity in s123.
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From the decomposition in (2.1) we derive the scattering amplitudes in different kine-

matic regions. Following the notations introduced in [1], we will label the different kine-

matic regions by products τiτj.... Each factor τi stands for a ”twist” of the corresponding

ti-channel state and takes us into a ”crossed” channel. For example, the configuration τ1τ4
has twists in the t1 and t4-channels and denotes the kinematic region where the three pro-

duced particles have become ”incoming particles”. Further examples can be found in [1].

The choice of the kinematic region determines the phases of the energy factors after their

analytic continuation. Each of the 14 terms, therefore, comes with a certain phase, and in

their sum cancellations may occur. Prominent examples are the region where all squared

energies are positive (each positive energy si comes with a phase e−iπ) and the Euclidean

region where all energies are negative (each negative energy has a factor 1). In both re-

gions, all terms containing Regge cuts sum up to zero, and only Regge pole contributions

remain.

To understand the existence of Regge cuts it is necessary to say a few words about the

connection between the decomposition (2.1) and Feynman diagrams. In multi-Regge kine-

matics, the sum of relevant Feynman amplitudes for a 2 → n+ 1 multiparticle production

process can be decomposed according to the analytic structure, and it can be written as a

sum of multiple dispersion integrals in the energy variables; in Regge theory these disper-

sion integrals can be used to define Froissart-Gribov partial wave projections which contain

the Regge singularities. This leads to the decomposition (2.1). However, the existence of

Regge cuts in the scattering amplitude can most easily be understood if we go back to the

Feynman amplitudes (i.e. prior to the decomposition (2.1)). As an example, let us return

to the Regge cut in the planar 2 → 4 amplitude (Fig.4):

ka

b

p
A p

B

s
2

a b

k’

0

1 2

3

a’

b’

Figure 4: Mandelstam criterion for the Regge cut in the 2 → 4 scattering amplitude

(wavy lines denote reggeons, straight lines scalar particles).

(a) the simplest diagram illustrating the Mandelstam criterion

(b) a generalization (enhanced diagram) in which the propagators a and a′ are replaced by

sets of ladder diagrams (reggeons).

Let us consider the kinematic region where all energies are positive. It is well-known [31]

that, as a rule, Regge cuts cancel in planar diagrams. In Fig.4a this cancellation is easily

seen [24]: introducing Sudakov variables k = βpA +αpB + k⊥ and concentrating on the α-

integral of the k loop momentum in the left hand part of the diagram, the two singularities

coming from the poles of line ”a” and ”b” lie on the same side of the integration contour

and thus lead to a vanishing integral. However, when analytically continuing into the

kinematic region s, s2 > 0, s1, s012, s3, s123 < 0 the poles of the lines b and b’ move and on
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the other sides of the integration contours and the Regge cut remains. In fact, the particles

”1” and ”2” are in the initial state, and the diagram becomes ”physically nonplanar”. This

leads to the following Mandelstam condition: in order to have a nonvanishing Regge cut

contribution, one needs, at both ends of the two reggeon cut, nonplanar α (β) integrals.

For the 2 → 4 production amplitude this is achieved by analytically continuing in s1 and

s3, i.e. by twisting the t1 and t3 channels. This Mandelstam condition can easily be applied

to more general 2 → n scattering processes with n > 4.

Returning to the decomposition (2.1), we have already stated that Feynman diagrams

in the multi-Regge limit may contribute to several terms in this decomposition. In each

term, the content of Regge singularity of the partial waves Fijk is independent of the kine-

matic region. The vanishing of a Regge cut contribution in Feynman diagrams (so-called

Amati-Fubini-Stanghellini (AFS) cancellation), in the decomposition (2.1) therefore trans-

lates into a cancellation between different terms. Applying the Mandelstam criterion to

the kinematic region of all energies being positive or negative, we immediately see that

Regge cuts must cancel for all 2 → n processes. In contrast, there exist Mandelstam re-

gions (”mixed” regions) where some energies are positive, others negative. As an example,

for 2 → 5, we have the Mandelstam region s1 = s01, s012, s0123, s4 = s45, s345, s2345 <

0; s2, s3, s234, s > 0 (in our notation: τ1τ4). In this region, a Regge cut contribution ex-

tending over the t2 and t3 channels exists.

Further details on the decomposition are presented in Appendix A. Here we list the

energy factors which determine the phases of the scattering amplitudes:

LLL : (−s4)
ω43 (−s345)

ω32 (−s2345)
ω21 (−s)ω1 (2.4)

RRR : (−s1)
ω12 (−s012)

ω23 (−s0123)
ω34 (−s)ω4 (2.5)

RRL : (−s4)
ω43 (−s1)

ω12 (−s012)
ω23 (−s)ω3 (2.6)

RLL : (−s1)
ω12 (−s4)

ω43 (−s345)
ω32 (−s)ω2 . (2.7)

Next the doublets:

RLR : a1 = (−s1)
ω12 (−s3)

ω34 (−s234)
ω42 (−s)ω2 (2.8)

a2 = (−s1)
ω12 (−s3)

ω32 (−s0123)
ω24 (−s)ω4

and

LRL : b1 = (−s2)
ω21 (−s012)

ω13 (−s4)
ω43 (−s)ω3 (2.9)

b2 = (−s2)
ω23 (−s4)

ω43 (−s1234)
ω31 (−s)ω1 .

Similarly for the two triplets:

LLR : c1 = (−s3)
ω32 (−s123)

ω21 (−s0123)
ω14 (−s)ω4 (2.10)

c2 = (−s3)
ω32 (−s123)

ω24 (−s1234)
ω41 (−s)ω1

c3 = (−s3)
ω34 (−s234)

ω42 (−s1234)
ω21 (−s)ω1
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and

LRR : d1 = (−s2)
ω23 (−s123)

ω34 (−s1234)
ω41 (−s)ω1 (2.11)

d2 = (−s2)
ω23 (−s123)

ω31 (−s0123)
ω14 (−s)ω4

d3 = (−s2)
ω21 (−s012)

ω13 (−s0123)
ω34 (−s)ω4 .

It should be noted that in these expressions, for simplicity, we have disregarded κ factors

as well as energy scales. Details are described in [1]. Depending on the kinematic regions,

these energy factors lead to different phases. A complete list of phases in the different

kinematic regions is presented in the Appendix B.

Let us now discuss the form of the partial waves. Regge pole contributions are con-

tained in all partial waves, whereas Regge cuts can be contained only in those partial

waves which have nonvanishing energy discontinuities along the Regge cut. In detail, par-

tial waves which have a cut in the energy s2 (s3) are expected to have a short Regge cut in

the t2-(t3) channel: LRL and LRR (RLR and LLR). The long Regge cut in the ω2 and ω3

channel can contribute only to the partial waves with a nonvanishing energy discontinuity

in the s123: LLR and LRR.

Let us go through the partial waves. Simplest are the Regge pole contributions. In

most of the partial waves, these Regge pole contributions contain trigonometric factors

which are closely related to Regge factorization. For the case of signatured 2 → 4 scat-

tering amplitudes, it has been shown in [25] that the property of Regge factorization and

the analytic decomposition (2.1) are compatible only if the Regge poles contain special

combinations of trigonometric factors. One of our tasks is to generalize this and to find

the corresponding factors for the case 2 → 5 (and for higher n > 5). This will be done in

Appendix A where we formulate general rules for computing these factors.

One of the peculiar features of these factors is that, in certain kinematic regions,

they contain unphysical singularities of the type ∼ 1/ sin πω2 which should not be present

in scattering amplitudes (and certainly do not appear in perturbation theory). In our

previous paper [1] we have discussed these singular terms in detail: starting from the

Regge-factorized form of the 2 → n+1 scattering amplitude we have calculated the Regge

pole contributions to scattering amplitude in all different kinematic regions. In particular,

for the 2 → 4, and for the 2 → 5 cases we presented a full list of these singular terms and

of the kinematic regions where they appear. Here it is important to note the difference

between signatured and planar amplitudes. In planar amplitudes, these singular terms

coming from the Regge poles have to cancel against Regge cut contributions: in fact, in

[1] we have already derived the phase structure of the Regge cut which allows to absorb

and cancel these singular terms. In the present paper we will complete this discussion by

computing the full Regge cut amplitudes. This leads to the conclusion that, for the planar

amplitudes, the existence of Regge cut contributions is necessary for obtaining scattering

amplitudes which are free from unphysical singularities.

For signatured amplitudes the situation is slightly different. In order to obtain signa-

tured amplitudes we form even or odd combinations of different kinematic regions. As an

example, we return to the simplest case of the 2 → 4 amplitude, and list the two regions
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with singular terms:

τ1τ3 : e−iπω2

[

eiπ(ωa+ωb) − 2ieiπω2
ΩaΩb

Ω2

]

= e−iπω2

[

cos πωab + i sinπ(ωa + ωb)− 2i
cos πω2ΩaΩb

Ω2

]

(2.12)

τ1τ2τ3 : −
[

e−iπ(ωa+ωb) + 2ie−iπω2
ΩaΩb

Ω2

]

= −
[

cos πωab − i sinπ(ωa + ωb) + 2i
cos πω2ΩaΩb

Ω2

]

. (2.13)

In the signatured amplitude the singular terms appear in the following combination:

− 2iτ1τ3
(

e−iπω2 + τ2
) cosπω2ΩaΩb

Ω2
, (2.14)

i.e. the singularities cancel for odd signature τ2 = −1, and there is no need for a Regge

cut in the t2 channel. At the same time, because of signature conservation, the signatured

amplitude cannot contain in the t2 channel a Regge cut composed of two (odd signatured)

gluons. The situation will be different for even signature τ2 = +1: the singularity in the

Regge pole is present, and signature conservation admits the two reggeon cut.

Let us now address the trigonometric factors for the 2 → 5 scattering amplitude. With

the notations

Ωi = sinπωi, Ωij = sinπ(ωi − ωj), ωij = ωi − ωj (2.15)

and

ωi = −γK
4

ln
|qi|2
λ2

, ωa = −γK
8

ln
|q1|2|q2|2

|q1 − q2|2λ2
, ωb = −γK

8
ln

|q2|2|q3|2
|q2 − q3|2λ2

(2.16)

the results for the first four partial waves are4 :

F pole
LLL =

VL(a)

Ω21

VL(b)

Ω32

VL(c)

Ω43
(2.17)

F pole
RRR =

VR(a)

Ω12

VR(b)

Ω23

VR(c)

Ω34
(2.18)

F pole
RRL =

VR(a)

Ω12

VR(b)

Ω23

VL(c)

Ω43
(2.19)

F pole
RLL =

VR(a)

Ω12

VL(b)

Ω32

VL(c)

Ω43
. (2.20)

Here the vertex functions are given by:

VR(a) = sinπ(ω1 − ωa) = Ω1a

VL(a) = sinπ(ω2 − ωa) = Ω2a. (2.21)

4In the following it will be understood that our expressions for the partial waves have to be multiplied

with the Born amplitudes and with the Regge pole propagators, e.g. 1/(ω′

1 − ω1) etc. The Born ampli-

tude carries a factor s: its sign will be included when we presents results for Regge pole and Regge cut

contributions for the different kinamatic regions.
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Next we consider the two doublets which contain Regge poles and cuts. We write:

FRLR(1) = F pole

RLR(1)
+ Fω3−cut

RLR(1)
. (2.22)

FRLR(2) = F pole

RLR(2) + Fω3−cut
RLR(2). (2.23)

and

FLRL(1) = F pole

LRL(1)
+ Fω2−cut

LRL(1)
. (2.24)

FLRL(2) = F pole

LRL(2) + Fω2−cut
LRL(2) . (2.25)

The pole and cut terms differ by their singularities in the angular momentum planes ω1,

ω2, and ω3. However, later on we will see that the cut pieces will contain subtractions

related to the Regge pole terms. For the pole terms we have the trigonometric factors (see

Appendix A):

F pole

RLR(1) =
Ω4

Ω3

Ω32

Ω42

VR(a)

Ω12

VL(b)

Ω32

VR(c)

Ω34
(2.26)

F pole

RLR(2) =
Ω2

Ω3

Ω34

Ω24

VR(a)

Ω12

VL(b)

Ω32

VR(c)

Ω34
(2.27)

and

F pole

LRL(1) =
Ω1

Ω2

Ω23

Ω13

VL(a)

Ω21

VR(b)

Ω23

VL(c)

Ω43
. (2.28)

F pole

LRL(2)
=

Ω3

Ω2

Ω21

Ω31

VL(a)

Ω21

VR(b)

Ω23

VL(c)

Ω43
. (2.29)

Next we have to find the trigonometric factors of the ω3-cut contribution. We first observe

that, in the region where all energies are positive, the two partial waves FRLR(1) and FRLR(2)

come with the same phase (Appendix A). The absence of the Regge cuts implies that they

must be opposite equal. We make the ansatz:

Fω3−cut
RLR(1)

=
VR(a)

Ω12

Wω3;RLR

Ω42

Fω3−cut
RLR(2) =

VR(a)

Ω12

Wω3;RLR

Ω24
. (2.30)

The form of the first factor, VR(a)
Ω21

follows from the requirement of Regge factorization,

whereas the existence of the denominator 1/Ω24 can be deduced from a study of the kine-

matic region τ2τ4. Namely, in this region the Regge cut is expected to be present, and the

amplitude has to be free from unphysical singularities. From the energy factors of FRLR(1)

and FRLR(2) we have the phases e−iπ(ω3+ω1−ω2)e−iπ(ω2−ω4) and e−iπ(ω3+ω1−ω2)e−iπ(ω4−ω2),

i.e. in the difference we find a factor 2i sin π(ω2 −ω4) which just cancels this denominator.

With a similar argument for the partial waves FLRL(1) and FLRL(2) we put:

Fω2−cut
LRL(1) =

Wω2;LRL

Ω13

VL(c)

Ω43

Fω2−cut
LRL(2) =

Wω2;LRL

Ω31

VL(c)

Ω43
. (2.31)
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Finally we turn to the triplets which contain Regge poles and two types of cuts, a ”short”

one and a ”long” one. In detail:

FLLR(1) = F pole

LLR(1) + Fω3−cut
LLR(1) + Fω2−ω3−cut

LLR(1)

FLLR(2) = F pole

LLR(2) + Fω3−cut
LLR(2) + Fω2−ω3−cut

LLR(2)

FLLR(3) = F pole

LLR(3) + Fω3−cut
LLR(3) . (2.32)

Similarly

FLRR(1) = F pole

LRR(1) + Fω2−cut
LRR(1) + Fω2−ω3−cut

LRR(1)

FLRR(2) = F pole

LRR(2) + Fω2−cut
LRR(2) + Fω2−ω3−cut

LRR(2)

FLRR(3) = F pole

LRR(3) + Fω2−cut
LRR(3). (2.33)

Again, the pole and cut terms differ by their singularities in the complex angular momentum

planes. The Regge pole terms are (Appendix A):

F pole

LLR(1) =
Ω1

Ω3

Ω34

Ω14

VL(a)

Ω21

VL(b)

Ω32

VR(c)

Ω34
(2.34)

F pole

LLR(2) =
Ω4

Ω3

Ω34Ω21

Ω24Ω41

VL(a)

Ω21

VL(b)

Ω32

VR(c)

Ω34
, (2.35)

F pole

LLR(3) =
Ω4

Ω3

Ω32

Ω42

VL(a)

Ω21

VL(b)

Ω32

VR(c)

Ω34
. (2.36)

For the second triplet:

F pole

LRR(1) =
Ω4

Ω2

Ω21

Ω41

VL(a)

Ω21

VR(b)

Ω23

VR(c)

Ω34
, (2.37)

F pole

LRR(2) =
Ω1

Ω2

Ω34Ω21

Ω31Ω14

VL(a)

Ω21

VR(b)

Ω23

VR(c)

Ω34
, (2.38)

F pole

LRR(3) =
Ω1

Ω2

Ω23

Ω13

VL(2)

Ω21

VR(3)

Ω23

VR(4)

Ω34
. (2.39)

For the short cut in the ω3-channel we observe that, for positive energies, the absence of

the Regge cut requires the cancellation of the three partial waves FLLR(1), FLLR(2), and

FLLR(3). Therefore, in the ansatz:

Fω3−cut
LLR(1) = x1

VL(a)

Ω21

Wω3;LLR

Ω24

Fω3−cut
LLR(2) = x2

VL(a)

Ω21

Wω3;LLR

Ω24

Fω3−cut
LLR(3) = x3

VL(a)

Ω21

Wω3;LLR

Ω24
(2.40)

the sum of the coefficents xi must be zero:

x1 + x2 + x3 = 0. (2.41)
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In order to obtain more information for the xi, we compute the contribution of the ω3 -cut

to the scattering amplitude. Namely, in the region τ2τ4 where this Regge cut is expected

to be present, we have:

Fω3−cut
RLR(1) + Fω3−cut

RLR(2) → 2ie−iπ(ω1+ω3)eiπω2
VR(a)

Ω12
Wω3;RLR (2.42)

and

Fω3−cut
LLR(1) + Fω3−cut

LLR(2) + Fω3−cut
LLR(3) → −2ix3

VL(a)

Ω21
e−iπω3Wω3;LLR, (2.43)

where we have used x1+x2 = −x3. Taking the sum of the last two equations and observing

the Regge factorization formula

VR(a)

Ω12
eiπω2 +

VL(a)

Ω21
eiπω1 = eiπωa , (2.44)

we are led to the identifications

x3 = −1 (2.45)

and

Wω3;RLR = Wω3;LRL = Wω3
. (2.46)

The result for the sum of all five terms then becomes:

RLR(1) +RLR(2) + LLR(1) + LLR(2) + LLR(3) = 2ie−iπ(ω1+ω3)eiπωaWω3
. (2.47)

Next we consider the region τ1τ2τ4. We find:

τ1τ2τ4 : −e−iπω3 VL(a)
Ω21Ω24

(

x1e
−iπ(ω1−ω4−ω2) + x2e

−iπ(ω4−ω1−ω2) + x3e
−iπ(ω2−ω1−ω4)

)

Wω3

= −2ie−iπω3VL(a)
(

x1
eiπω4

Ω24
+ x2

eiπω1

Ω21

)

Wω3
. (2.48)

The coefficients x1 and x2 must be chosen to cancel the unphysical singularities ∼ 1/Ω21,

∼ 1/Ω24; furthermore, they must satisfy x1 + x2 = −x3 = 1. The solution of these

conditions is

x1 =
Ω1

Ω2

Ω24

Ω14
(2.49)

x2 =
Ω4

Ω2

Ω21

Ω41
. (2.50)

With these findings the trigonometric factors of the ω3-cut become:

Fω3−cut
LLR(1) =

Ω1

Ω2

Ω24

Ω14

VL(a)

Ω21

Wω3

Ω24

Fω3−cut
LLR(2) =

Ω4

Ω2

Ω21

Ω41

VL(a)

Ω21

Wω3

Ω24

Fω3−cut
LLR(3) =

VL(a)

Ω21

Wω3

Ω42
. (2.51)
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An analogous argument applies to the short cut in the ω2-channel, and the trigonometric

factors become:

Fω2−cut
LRR(1) =

Ω4

Ω3

Ω31

Ω41

Wω2

Ω31

VR(c)

Ω34

Fω2−cut
LRR(2) =

Ω1

Ω3

Ω34

Ω14

Wω2

Ω31

VR(c)

Ω34

Fω2−cut
LRR(3) =

Wω2

Ω13

VR(c)

Ω34
. (2.52)

Finally, the long cut term has the form:

Fω2−ω3−cut
LLR(1) =

Wω2ω3;L

Ω32Ω14

Fω2−ω3−cut
LLR(2) =

Wω2ω3;L

Ω32Ω41
(2.53)

and

Fω2−ω3−cut
LRR(1) =

Wω2ω3;R

Ω23Ω41

Fω2−ω3−cut
LRR(2) =

Wω2ω3;R

Ω23Ω14
. (2.54)

As discussed before, the absence of this Regge cut in the kinematic region where all energies

are positive requires the cancellation of the two partial waves Fω2−ω3−cut
LLR(1) , Fω2−ω3−cut

LLR(2) ; the

same argument applies to Fω2−ω3−cut
LRR(1) and Fω2−ω3−cut

LRR(2) .

This completes our derivation of the trigonometric factors for Regge poles and Regge

cuts of all 14 terms. Our construction of the trigonometric factors for the Regge cuts

has followed the line of arguments given in our previous paper[1]: we required that in all

kinematic regions the scattering amplitudes satisfy Regge factorization and are free from

unphysical singularities. In the Appendix A we make use of these results and formulate

rules for the Regge cuts which generalize those of the Regge poles. These rules can also

be used for the 2 → 6 amplitude. At present we do not know how to ”derive” these rules;

as we have said before, the justification will come from the IR finiteness and conformal

invariance of our final results.

We conclude this section with a few comments on the Regge pole contributions. First,

in our previous paper [1] our discussion of Regge pole contributions has started from the

factorizing expression. This representation is equivalent to the decomposition (2.1). To

illustrate this, we go into the region of positive energies. With the identity

Ω4

Ω3

Ω32

Ω42
+

Ω2

Ω3

Ω34

Ω24
= 1 (2.55)

it is easy to see that the sum of two pole terms, F pole

RLR(1) and F pole

RLR(2), can be written as:

F pole

RLR(1) + F pole

RLR(2) →
VR(a)

Ω12

VL(b)

Ω32

VR(c)

Ω34
, (2.56)
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where the arrow indicates that we have multiplied the partial waves with their phases.

Similarly,

F pole

LRL(1) + F pole

LRL(2) →
VL(a)

Ω21

VR(b)

Ω23

VL(c)

Ω43
. (2.57)

For the triplets we need the identities:

Ω4

Ω3

Ω21Ω34

Ω24Ω41
+

Ω1

Ω3

Ω34

Ω14
+

Ω4

Ω3

Ω32

Ω42
= 1 (2.58)

and
Ω1

Ω2

Ω21Ω34

Ω31Ω14
+

Ω1

Ω2

Ω23

Ω13
+

Ω4

Ω2

Ω21

Ω41
= 1 (2.59)

and obtain

F pole

LLR(1)
+ F pole

LLR(2)
+ F pole

LLR(3)
→ VL(a)

Ω21

VL(b)

Ω32

VR(c)

Ω34
. (2.60)

and

F pole

LRR(1) + F pole

LRR(2) + F pole

LRR(3) →
VL(a)

Ω21

VR(b)

Ω23

VR(c)

Ω34
. (2.61)

When combining the results of all 14 partial waves, it is convenient to use identities such

as (2.44). In this way one obtains, for the sum of all 14 terms, the factorizing expression:

T pole

Γ(t1)|s1|ω1 |s2|ω2 |s3|ω3 |s4|ω4Γ(t4)
= eiπ(ωa+ωb+ωc)e−iπ(ω1+ω2+ω3+ω4). (2.62)

As far as the other kinematic regions are concerned, it is possible - but much more tedious

- to perform similar calculations for the other kinematic regions and to arrive at the same

results as those listed in [1].

3 A digression: the 2 → 4 scattering amplitude

To illustrate our future strategy we briefly return to the well-studied case of the 2 → 4

scattering [1, 24]. We begin with the ansatz consisting of five terms. We write:

T2→4 = TLL + TRR + TRL + TLR(1) + TLR(2). (3.1)

Each term has an energy factor which - depending on the kinematic region - determines

the phase:

LL : (−s3)
ω32(−s123)

ω21(−s)ω1 (3.2)

RR : (−s1)
ω12(−s012)

ω23(−s)ω3 (3.3)

RL : (−s1)
ω12(−s3)

ω32(−s)ω2 (3.4)

LR(1) : (−s2)
ω21(−s012)

ω13(−s)ω3

LR(2) : (−s2)
ω23(−s123)

ω31(−s)ω1 . (3.5)
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The first three terms have Regge poles only. For the last two partial waves we write a sum

of Regge pole and Regge cut contributions. We have from [3]:

F pole
LL =

VL(a)

Ω21

VL(b)

Ω32
(3.6)

F pole
RR =

VR(a)

Ω12

VR(b)

Ω23
(3.7)

F pole
RL =

VR(a)

Ω12

VL(b)

Ω32
(3.8)

FLR(1) = F pole

LR(1) + F cut
LR(1)

=
VL(a)

Ω21

VR(b)

Ω23

Ω1

Ω2

Ω23

Ω13
+

Wω2

Ω13
(3.9)

FLR(2) = F pole

LR(2) + F cut
LR(2)

=
VL(a)

Ω21

VR(b)

Ω23

Ω3

Ω2

Ω21

Ω31
+

Wω2

Ω31
. (3.10)

In the next step we describe the derivation of the function Wω2
. To this end, we consider

single-energy discontinuities5 of the full scattering amplitude. It is important to observe

that, when calculating discontinuities, we have to take into account all five terms in (3.1).

Furthermore, in each term there may be different Regge contributions, Regge poles and

Regge cuts. The former ones are known, and they contain singular terms ∼ 1/Ω2. We will

find that these singular pieces in the Regge poles will be ”inherited” also by the Regge cut

contributions. Only at the end, when the full scattering amplitude is computed, we will

show that these singularities completely cancel in all kinematic regions.

First we consider, in the kinematic region of positive energies, the discontinuity in s2
which is contained only in the two partial waves FLR. From the Regge pole we obtain:

− e−i(ω1+ω3)VL(a)VR(b)

Ω2
, (3.11)

whereas the contribution of the Regge cut reads:

e−i(ω1+ω3)eiπω2Wω2
. (3.12)

The discontinuity of the full scattering amplitude therefore becomes:

disc12 T2→4 = ...∆12, ∆12 = e−i(ω1+ω3)

(

−VL(a)VR(b)

Ω2
+ eiπω2Wω2

)

, (3.13)

where the dots indicate that we have left out the integration symbols and the energy

factors. Here the important result is the singular term ∼ 1/Ω2: since the lhs is computed

from the unitarity integral and has no singularity, the Regge cut amplitude Wω2
on the lhs

must contain a singular term with cancels the singularity from the Regge pole.

So far our results are valid to all orders in the coupling constant. The energy discon-

tinuities have to be calculated from unitarity integrals, and at this stage the restriction

5We define discxf(x) =
1

2i
(f(x+ iǫ)− f(x− iǫ)); discs(−s)ω = −|s|ω sin πω = −|s|ωΩ.
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in accuracy enters. In [4] the discontinuities in s12 has been calculated in the leading ap-

proximation. Restricting ourselves to this approximation we can neglect the phases and

obtain:

Wω2
= ∆12 + π

ω2aω2b

ω2

= ∆12 + π

(

ω2 − ωa − ωb +
ωaωb

ω2

)

. (3.14)

This is not yet our final result. In [4] we have discussed that the RPRR vertex consists of

a ”local” and a ”nonlocal” piece (Fig.5a). The former piece does not couple to a Regge

cut. It satisfies the bootstrap condition in the t2-channel: in leading order this condition

implies that the vertex does not depend upon the momenta k and q2−k separately, but only

upon the sum q2. As a result, when multiplying the production with the BFKL color octet

Green’s function, the local term reggeizes, whereas the second one leads to the reggeon cut

(Fig.5b):

q
2
−k

=
−

a

b

q
1

k

k
1

= −

Figure 5: The RPRR production vertex

Finally, when the two production vertices are combined, we arrive at the terms illustrated

in Fig.6:

+=

2 a b
).

Figure 6: the s12-discontinuity ∆12 of the 2 → 4 scattering amplitude

Inserting this into (3.14), the terms ∼ ω2 − ωa − ωb cancel. What is left is the Regge cut

piece (second diagram in Fig.6): we separate the infrared divergent lowest order (one loop)
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term6 from the infrared finite cut amplitude which we denote by fω2
and obtain.

∆12 = −π(ω2 − ωa − ωb) +
π

2
V13 + fω2

, (3.15)

where

Vik =
γK
4

ln
|qi|2|qk|2

|qi − qk|2λ2
. (3.16)

Since the term V13 is neither infrared finite nor conformal invariant, we introduce the phase

δ13 = π (V13 + ωa + ωb) = π
γK
4

ln
|q1||q3||ka||kb|
|ka + kb|2|q2|2

(3.17)

and write

∆12 = −π(ω2 − ωa − ωb)−
π(ω + ωb)

2
+

δ13
2

+ fω2
, (3.18)

The resulting Regge cut amplitude, fω2
, is defined to begin with at least one iteration of

the color octet BFKL kernel and is given by:

fω2
=

g2Nc

16π2

∑

n

(−1)n
∫

dν

ν2 + n2

4

(

(

−s2
s0

)ω(ν,n)

− 1

)

(

q∗3k
∗
a

k∗b q
∗
1

)iν−n
2
(

q3ka
kbq1

)iν+n
2

(3.19)

(here we have included one of the ω-integrals from the Sommerfeld-Watson integral rep-

resentation). The calculation of the unitarity integral and impact factors which leads to

this expression has been described in [4] and will not be repeated here. We still write the

expression for fω2
in a slightly more general form [32, 33] which also specifies the energy

scale s0. We introduce the anharmonic ratios:

u1 =
(−s)(−s2)

(−s012)(−s123)
, u2 =

(−s3)(−t1)

(−s123)(−t2)
, u3 =

(−s1)(−t3)

(−s012)(−t2)
, (3.20)

and the complex-valued variable w:

w =
q3ka
q1kb

. (3.21)

We write:

fω2
=

g2Nc

16π2

∑

n

(−1)n
( w

w∗
)

n
2

∫

dν

2πi
Φ∗
ν,n

[

(−√
u2u3)

−ω(ν,n) − 1
]

Φν,n|w|2iν . (3.22)

It is important to note that this expression is conformal invariant. To summarize the

construction of fω2
, the impact factor Φν,n has its origin in the ”nonlocal” piece of the

RPRR production vertex only (i.e. from the full RPRR production vertex we first have

to remove the ”local” term), and from the BFKL Green’s function we remove the one-loop

contribution. Our final result for Wω2
thus becomes:

Wω2
= π

ωaωb

ω2
− π(ωa + ωb)

2
+

δ13
2

+ fω2
. (3.23)

6We follow the notation of [1]
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At the end of this section we will show that the first two terms, which coincide with

leading approximation of the ”subtraction” defined in [1], will cancel parts of the Regge

pole, leaving what we call ”conformal Regge pole”. The last two terms are conformally

invariant, and fω2
defines the ”conformally invariant Regge cut” amplitude

Before we conclude this digression on the 2 → 4 amplitude, we want to make several

comments. First, our choice of computing the discontinuity in the kinematic region where

all energies are positive was not unique. Alternatively, we could compute the discontinuity

in s2 also in another kinematic region, e.g. in the region τ1τ3:

τ1τ3 : disc12 T
τ1τ3
2→4 = ...∆τ1τ3

12 , ∆τ1τ3
12 = −VL(a)VR(b)

Ω2
+ e−iπω2Wω2

. (3.24)

The phases are different from those of the positive energy result in (3.14). They reflect the

fact that, in the unitarity integral, the amplitudes on both sides of the unitarity integral,

have their phases, and they clearly depend upon the kinematic region where the unitarity

integral is computed. In the weak coupling limit, these phases can be neglected and we

obtain the same result for Wω2
.

Next, it is instructive to consider also other discontinuities, e.g. in the total energy s.

In the region of positive energies we obtain:

discs T2→4 = ...∆s,

∆s = −Ω2VR(a)e
−iπω12 − Ω1VL(a)e

−iπω21

Ω12

Ω3VR(b)e
−iπω23 − Ω2VL(b)e

−iπω32

Ω23

+ei(ω1−ω3)eiπω2Wω2
, (3.25)

whereas in the region τ1τ3 the result is much simpler:

τ1τ3 : ∆τ1τ3
s = −ΩaΩb

Ω2
+ e−iπω2Wω2

. (3.26)

Let us verify that these different expressions for Wω2
all coincide in the weak coupling

limit. To see this in detail, we first note that, after neglecting the phases, ∆12 and ∆τ1τ3
12

coincide:

∆12 = −π
ω2aω2b

ω2
+Wω2

. (3.27)

We are thus led to compare the two equations:

Wω2
= ∆12 + π

ω2aω2b

ω2

= ∆12 + π

(

ω2 − ωa − ωb +
ωaωb

ω2

)

(3.28)

and

Wω2
= ∆s + π

ωaωb

ω2
. (3.29)

The reason why these seemingly different expression for Wω2
coincide, lies in application

of the bootstrap relations. As we have explained above, for the discontinuity in s2, ∆12,
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we have applied the bootstrap condition in the t2 channel which, in (3.14), leads to the

cancellation of the terms ∼ ω2−ωa−ωb. In contrast, for the discontinuity in s, namely ∆s,

we apply the bootstrap condition to the t1 and to the t3 channel: we illustrate the result

in Fig.7:

=

Figure 7: the s-discontinuity ∆s of the 2 → 4 scattering amplitude

This leads directly to the second piece on the rhs of Fig.5, which results from the nonlocal

piece of the RPRR production vertex. With this observation, Wω2
in (3.29), agrees with

(3.28), i.e. both energy discontinuities lead to the same answer. This equality can be seen

also directly by comparing the second term on the rhs of Fig.7 and the rhs of Fig.6: for

the α integral on the lhs (and for the β integral on the rhs) of the Green’s function there

are two ways of closing the integration contour which give the same answer.

As we have explained above, in this last part of our discussion, we had to restrict our-

selves to the leading logarithmic approximation. This was because, in evaluating the energy

discontinuities via unitarity integrals, so far we have used only the leading approximation

for the scattering amplitudes. Fortunately, all building blocks for a NLO calculation are

known: the RPR production vertex, the RPRR vertex, the gluon trajectory function, and

the bootstrap condition. So it is possible to verify that our construction of the Regge cut

piece can be done also in NLO.

In the final step we put the pieces together and compute, for different kinematic re-

gions, the full scattering amplitude. In [1] we have presented a full list of the Regge pole

contributions. They can be derived from the phases in (3.5) and the pole pieces in (3.10);

in [1] we found a slightly simpler way of calculation. For the two most interesting regions

τ1τ3 and τ1τ2τ3, we found the following results:

τ1τ3 : e−iπω2

[

eiπ(ωa+ωb) − 2ieiπω2
ΩaΩb

Ω2

]

= e−iπω2

[

cos πωab + i sinπ(ωa + ωb)− 2i
cos πω2ΩaΩb

Ω2

]

(3.30)

τ1τ2τ3 : −
[

e−iπ(ωa+ωb) + 2ie−iπω2
ωaΩb

Ω2

]

= −
[

cos πωab − i sinπ(ωa + ωb) + 2i
cos πω2ΩaΩb

Ω2

]

. (3.31)

These regions contain the Regge cut contributions. From (3.5), (3.9), and (3.10) we derive

the phase structure of the cut contributions:

τ1τ3 : 2ie
−iπω2Wω2

(3.32)

τ1τ2τ3 : 2iWω2
. (3.33)
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Combining poles and cuts we arrive at:

τ1τ3 : e
−iπω2

[

cos πωab + i sin π(ωa + ωb)− 2i cos πω2ΩaΩb

Ω2
+ 2iWω2

]

(3.34)

τ1τ2τ3 : −
[

cos πωab − i sinπ(ωa + ωb) + 2i cos πω2ΩaΩb

Ω2
− 2iWω2

]

. (3.35)

These results are valid for all orders. We remind that Wω2
is a real-valued function and

contains no further phases.

Since, for the Regge cut contribution Wω2
, we have only the leading logarithmic result

we can approximate (3.34) and (3.35):

τ1τ3 : e
−iπω2

[

cos πωab + iπ(ωa + ωb)− 2iπ ωaωb

ω2
+ 2iWω2

]

(3.36)

τ1τ2τ3 : −
[

cosπωab − iπ(ωa + ωb) + 2iπ ωaωb

ω2
− 2iWω2

]

. (3.37)

When inserting the result (3.23) for the Regge-cut amplitude into (3.36) we immediately

notice the cancellation of the singular terms, ωaωb

ω2
and of the terms ∼ ωa +ωb. We obtain:

τ1τ3 : e
−iπω2 [cos πωab + iδ13 + 2ifω2

] (3.38)

τ1τ2τ3 : − [cos πωab − iδ13 − 2ifω2
] (3.39)

Our phase δ13 coincides with the phase contained in th BDS amplitude [3].

We thus have found that the scattering amplitude can be written as a sum of the

conformal invariant Regge pole term, cos πωab, and a conformal invariant and infrared

finite Regge cut term [24]. Whereas the pole term is given by an all-order expression, the

derivation of the cut term has been presented here only in the leading approximation:

4 2 → 5: computing Regge cut contributions from energy discontinuities

Returning now to the 2 → 5 scattering amplitude, we proceed in the same way as in

the 2 → 4 case. Our ansatz, a sum of 14 terms, has already been described in Sec. II,

and we have listed the trigonometric factors. In this section we calculate the Regge cut

contributions via energy discontinuities.

4.1 Short Regge cuts: discontinuity in s3

We begin with the discontinuity in s3 = s34; it receives contributions from the doublet RLR

and the triplet LLR. These are the five partial waves which contain the short cut in ω3.

For simplicity we chose the kinematic region where all energies are positive. Together with

the phases listed in Appendix B, the Regge pole terms of the two partial waves RLR(1)

and RLR(2) are found to lead to

disc3 (T pole

RLR(1) + T pole

RLR(2)) = ...− e−iπ(ω1+ω4)

Ω3

VR(a)

Ω12
VL(b)VR(c), (4.1)

where, as before, the dots indicate that we have left out the integration symbols and the

energy factors. From the three partial waves LLR(1), LLR(2), and LLR(3) we obtain:

discs3 (T pole

LLR(1) + T pole

LLR(2) + T pole

LLR(3)) = ...− e−iπ(ω2+ω4)

Ω3

VL(a)

Ω21
VL(b)VR(c). (4.2)
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Their sum equals:

disc3 (T
pole

RLR(1) + T pole

RLR(2) + T pole

LLR(1) + T pole

LLR(2) + T pole

LLR(3))

= ...− e−iπ(ω1+ω2+ω4)eiπωa
VL(b)VR(c)

Ω3
. (4.3)

Next we consider the contributions of the Regge cut term. From the doublet RLR we have

discs3 (Tω3−cut
RLR(1)

+ Tω3−cut
RLR(2)

) = ...e−iπ(ω1+ω2+ω4)eiπω3
VR(a)

Ω12
eiπω2Wω3

, (4.4)

whereas the triplet LLR yields:

disc3 (Tω3−cut
LLR(1) + Tω3−cut

LLR(2) + Tω3−cut
LLR(3)) = ...e−iπ(ω1+ω2+ω4)eiπω3

VL(a)

Ω21
eiπω1Wω3

. (4.5)

Their sum equals:

disc3 (T
ω3−cut
RLR(1)

+ Tω3−cut
RLR(2)

+ Tω3−cut
LLR(1)

+ Tω3−cut
LLR(2)

+ Tω3−cut
LLR(3)

)

= ...e−iπ(ω1+ω2+ω4)eiπωaeiπω3Wω3
. (4.6)

We finally note that the long cut pieces in LLR(1) and LLR(2) cancel against each other

and do not contribute to the s3 discontinuity in the positive energy region.

As a result, the discontinuity in s3 = s34 of the full scattering amplitude T2→5 in the

region of only positive energies equals:

∆34 = e−iπ(ω1+ω2+ω4)eiπωa

(

−VL(b)VR(c)

Ω3
+ eiπω3Wω3

)

. (4.7)

We mention that in other kinematic regions the results are similar, e.g.

τ2τ4 : ∆τ2τ4
34 = e−iπω1eiπωa

(

−VL(b)VR(c)

Ω3
+ e−iπω3Wω3

)

. (4.8)

The important feature of these expressions is the singular term from the Regge pole con-

tribution: similar to the 2 → 4 case, on the lhs the energy discontinuity is computed from

unitarity integrals and thus is free from the unphysical pole ∼ 1/ sin πω3. Hence, on the

rhs, the function Wω3
must compensate the singularity.

Let us now evaluate (4.7) in the weak coupling approximation. We proceed exactly in

the same way as we have described for the 2 → 4 case and obtain:

Wω3
= ∆34 + π

(

ω3 − ωb − ωc +
ωaωb

ω3

)

. (4.9)

For the computation of the discontinuity on the lhs we, as before, decompose the production

vertices into ”local” and ”nonlocal” pieces and make use of the bootstrap equation. This

removes, on the rhs of (4.9), the terms ω3, ωb, and ωc, and we arrive at the analogue of

(3.23):

Wω3
= π

ωbωc

ω3
− π

2
(ωb + ωc) +

δ24
2

+ fω3
, (4.10)
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where

δ24 = π(V24 + ωb + ωc) (4.11)

The integral representation for fω3
is easily derived from (3.19). As expected, the partial

wave in (4.10) consists of a ”subtraction” (first two terms) which will be shown to cancel

against the unwanted parts of the Regge pole terms. It agrees with the result obtained

in our previous paper [c.f. Appendix B]. The piece ”1
2δ24 + fω3

” represents the conformal

invariant and infrared finite Regge-cut amplitude.

4.2 Long cut: discontinuity in s123

Let us now turn to the long Regge cut contribution which is contained in the two triplets:

LLR(1), LLR(2), LRR(1), LRR(2). In order to determine Wω2ω3
we consider the discon-

tinuity in s123. For simplicity we again take all energies to be positive. We begin with the

Regge pole contribution:

disc123

(

T pole

LLR(1) + T pole

LLR(2)

)

= ...− e−iπ(ω1+ω4)VL(a)e
−iπω32

VL(b)

Ω3Ω32
VR(c) (4.12)

and

disc123

(

T pole

LRR(1) + T pole

LRR(2)

)

= ...− e−iπ(ω1+ω4)VL(a)e
−iπω23

VR(b)

Ω2Ω23
VR(c). (4.13)

Next we consider the short cuts in ω3 and ω2. We find:

disc123

(

Tω3−cut
LLR(1) + Tω3−cut

LLR(2)

)

= ...− e−iπ(ω1+ω4)e−iπω32VL(a)
Wω3

Ω2
(4.14)

and

disc123

(

Tω2−cut
LRR(1) + Tω2−cut

LRR(2)

)

= ...− e−iπ(ω1+ω4)e−iπω23
Wω2

Ω3
VR(c). (4.15)

Finally the long cut:

disc123

(

Tω2ω3−cut
LLR(1) + Tω2ω3−cut

LLR(2)

)

= ...e−iπ(ω1+ω4)e−iπω32eiπω2
Wω2ω3;L

Ω32
(4.16)

and

disc123

(

Tω2ω3−cut
LRR(1) + Tω2ω3−cut

LRR(2)

)

= ...e−iπ(ω1+ω4)e−iπω23eiπω3
Wω2ω3;R

Ω23
. (4.17)

The sum of all terms equals:

∆123 = e−iπ(ω1+ω4)
[

e−iπω32

(

eiπω2
Wω2ω3;L

Ω32
− VL(a)Wω3

Ω2
− VL(a)VL(b)VR(c)

Ω3Ω32

)

+e−iπω23

(

eiπω3
Wω2ω3;R

Ω32
− Wω2

VR(c)

Ω3
− VL(a)VR(b)VR(c)

Ω2Ω23

)

]

(4.18)

So far the results for the discontinuity are valid to all orders. In the weak coupling limit

we find for the sum of all terms:

∆123 = −π
ω2aωbω3c

ω2ω3
− ω2a

ω2
Wω3

−Wω2

ω3c

ω3
+

Wω2ω3;L −Wω2ω3;R

πω32
. (4.19)
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Let us first evaluate the discontinuity on the lhs which we illustrate in Fig.8. Similarly

to the 2 → 4 case we decompose the structure of the RPRR and the RRPR production

vertices:

=

a b c

+
b

.

−−

Figure 8: Illustration of the discontinuity ∆123 in the weak coupling limit

After separating the one loop contributions we obtain:

∆123 = −πωb +
π

2
V14 + fω2ω3

− π

2
V13 −

π

2
V24 − fω3

− fω2
, (4.20)

which we can also write in the form

∆123 =
1

2
(δ14 − δ24 − δ13) + fω2ω3

− fω2
− fω3

(4.21)

with

δ14 = π(V14 + ωa + ωc). (4.22)

For fω2ω3
we have the integral representation [34]:

fω2ω3
=

a

2

∑

n1,n2

(−1)n1+n2

∫ ∫

dν1dν2
(2π)2

1

iν1 +
n1

2

(

k∗aq
∗
3

q∗1k
∗
b

)iν1−
n1
2
(

kaq3
q1kb

)iν1+
n1
2
(−s2

s02

)ω(ν1,n1)

C(ν1, ν2, n1, n2)

(−s3
s03

)ω(ν2,n2)(k∗bq
∗
4

q∗2k
∗
c

)iν2−
n2
2
(

kbq4
q2kc

)iν2+
n2
2 1

iν2 − n2

2

|sub, (4.23)

where the subscript ”sub” indicates that we have subtracted the one loop contribution,

and the function C(ν1, ν2, n1, n2) is the ”central emission vertex” as defined in [34] [cf.

Eq.(19)].

It may be useful to write this Regge cut amplitude also in terms of anharmonic ratios.

We introduce the six anharmonic ratios:

u11 =
(−s0123)(−s2)

(−s012)(−s123)
, u21 =

(−s234)(−t1)

(−s1234)(−t2)
, u31 =

(−s1)(−t3)

(−s012)(−t2)
,

u12 =
(−s1234)(−s3)

(−s123)(−s234)
, u22 =

(−s4)(−t2)

(−s234)(−t3)
, u32 =

(−s012)(−t4)

(−s0123)(−t3)
, (4.24)
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and the complex-valued variables wσ:

w1 =
q3ka
q1kb

, w2 =
q4kb
q2kc

. (4.25)

The integral representation becomes:

fω2ω3
=

a

2

∑

n1,n2

(−1)n1+n2

(

w1

w∗
1

)n1
(

w2

w∗
2

)n2
∫ ∫

dν1dν2
(2π)2

Φ(ν1, n1)
∗|w1|2iν1 (−

√
u21u31)

−ω(ν1,n1)

C(ν1, ν2, n1, n2) (−
√
u22u32)

−ω(ν2,n2) |w2|2iν2Φ(ν2, n2)|sub. (4.26)

Returning to the energy discontinuity we insert (4.21) into the (4.19) and obtain:

Wω2ω3;L −Wω2ω3;R

πω32
+

ωa

ω2
Wω3

+Wω2

ωc

ω3
= π

ωaωbωc

ω2ω3
− π

2
(ωa + ωc) +

1

2
δ14 + fω2ω3

. (4.27)

We notice that the single discontinuity is not sufficient to determine Wω2ω3;L and Wω2ω3;R

separately. However, it fixes the combination which appears in the leading approximation

of the scattering amplitude. On the rhs of (4.27) we again find the subtraction terms which

will be canceled by the Regge pole contributions, and the conformal invariant Regge cut

contribution. The subtraction term agrees with the result of our previous paper (Appendix

B).

For comparison, we consider also another discontinuity in the total energy s in the

kinematic region τ1τ4. First, one has to write the Regge pole contribution. After some

algebra we find for the sum of all partial waves

discs
∑

T pole
ijk = ...− ΩaΩbΩc

Ω2Ω3
, (4.28)

where, again, the dots stand for the ω-integrals and energy factors. For later purposes it

will be convenient to use the identity

ΩaΩbΩc

Ω2Ω3
= Ωa

(

e−iπω3
Ωb

Ω3Ω23
+ e−iπω2

Ωb

Ω2Ω32

)

Ωc. (4.29)

Next we consider the short ω3-cut, contained in the doublet RLR

discs

(

Tω3−cut
RLR(1) + Tω3−cut

RLR(2)

)

= ...e−iπω3
VR(a)

Ω12
Wω3

(4.30)

and in the triplet LLR:

discs

(

Tω3−cut
LLR(1) + Tω3−cut

LLR(2) + Tω3−cut
LLR(3)

)

=

= ...e−iπω3
Ω1

Ω2

VL(a)

Ω21
Wω3

. (4.31)

Their sum equals:

discs

(

Tω3−cut
RLR(1) + Tω3−cut

RLR(2) + Tω3−cut
LLR(1) + Tω3−cut

LLR(2) + Tω3−cut
LLR(3)

)

= ...e−iπω3
Ωa

Ω2
Wω3

. (4.32)
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An analogous result holds for the short cut contained in the doublet LRL and in the triplet

LRR. Finally, the contributions of the long cut are:

discs

(

Tω2−ω3−cut
LLR(1)

+ Tω2−ω3−cut
LLR(2)

)

= ...e−iπω3
Wω2ω3;L

Ω32
(4.33)

and

discs

(

Tω2−ω3−cut
LRR(1) + Tω3−ω2−cut

LRR(2)

)

= ...e−iπω2
Wω2ω3;R

Ω23
. (4.34)

The full discontinuity in s becomes:

∆τ1τ4
s = e−iπ(ω2+ω3)ΩaΩbΩc

Ω2Ω3
+

eiπω2Wω2ω3;L − eiπω3Wω2ω3;R

Ω32

+e+iπω2
Ωa

Ω2
Wω3

+ eiπω3Wω2

Ωc

Ω3
. (4.35)

To proceed further let us restrict ourselves to the leading logarithmic approximation. We

obtain:

∆τ1τ4
s =

Wω2ω3;L −Wω2ω3;R

πω32
+

ωa

ω2
Wω3

+
ωc

ω3
Wω2

− π
ωaωbωc

ω2ω3
. (4.36)

For the lhs we use the bootstrap relations in the t1 and t4 channels and obtain the result

illustrated Fig.9:

=

Figure 9: the s-discontinuity ∆s of the 2 → 5 scattering amplitude

As we did before, we isolate on the rhs the IR-divergent one loop term:

∆τ1τ4
s =

1

2
δ14 −

π

2
(ωa + ωc) + fω2ω3

, (4.37)

where fω2ω3
is given in (4.23). We thus find for Wω2ω3

in the leading logarithmic approxi-

mation:

Wω2ω3;L −Wω2ω3;R

πω32
+

ωa

ω2
Wω3

+Wω2

ωc

ω3
= π

ωaωbωc

ω2ω3
− π

2
(ωa + ωc) +

1

2
δ14 + fω2ω3

, (4.38)

which agrees with our previous result (4.27).

5 The 2 → 5 scattering amplitudes in different kinematic regions

In this final section we put pieces together and compute the scattering amplitudes. As we

have mentioned before, in the region of all energies being positive all Regge cut contribu-

tions cancel, and we are left with the Regge pole terms only. They have been computed in

[1]. Most important, in some kinematic regions singular terms appear, e.g. ∼ 1/Ω2. We

will show that the Regge cut contributions will remove all these unwanted singularities.
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We begin with the kinematic region τ2τ4. In this region, only the short Regge cut in

the ω3 channel is nonzero, whereas both the short cut in the ω2 channel and the long cut

vanish. From eqs.(2.4) - (2.11) we derive, for the product of the partial waves and their

phase factors the following contributions to the scattering amplitude:

Fω3−cut
RLR(1) + Fω3−cut

RLR(2) → 2ie−iπ(ω1+ω3)eiπω2
VR(a)

Ω12
Wω3

(5.1)

and

Fω3−cut
LLR(1) + Fω3−cut

LLR(2) + Fω3−cut
LLR(3) → 2i

VL(a)

Ω21
e−iπω3Wω3

. (5.2)

Taking the sum of the last two equations and observing the identity (2.44), we obtain the

result:

RLR(1) +RLR(2) + LLR(1) + LLR(2) + LLR(3) = 2ie−iπ(ω1+ω3)eiπωaWω3
. (5.3)

Similarly for the region τ2τ3τ4:

τ2τ3τ4 : 2ie
−iπω1eiπωaWω3

. (5.4)

We combine these Regge cut results with the Regge poles which are taken from [1]:

τ2τ4 : e
−iπ(ω1+ω3)eiπωa

[

eiπ(ωb+ωc) − 2ieiπω3 ΩbΩc

Ω3

]

= e−iπ(ω1+ω3)eiπωa [cos π(ωb − ωc)

+i sinπ(ωb + ωc)− 2i cos πω3ΩbΩc

Ω3

]

(5.5)

τ2τ3τ4 : −e−iπω1eiπωa

[

e−iπ(ωb+ωc) + 2ie−iπω3 ΩbΩc

Ω3

]

= −e−iπω1eiπωa [cos π(ωb − ωc)

−i sinπ(ωb + ωc) + 2i cos πω3ΩbΩc

Ω3

]

. (5.6)

When combining these Regge pole expressions with the Regge cuts in (5.3) and (5.4) (with

Wω3
) from (4.10)) , one easily verifies the cancellation between the subtraction terms in

Wω3
and parts of the Regge pole contributions. The results for the scattering amplitudes

are:

τ2τ4 : e
−iπ(ω1+ω3)eiπωa [cos πωbc + iδ24 + 2ifω3

] (5.7)

τ2τ3τ4 : −e−iπω1eiπωa [cos πωbc − iδ24 − 2ifω3
] . (5.8)

The expressions for the two regions τ1τ3 and τ1τ2τ3 can easily be obtained by symmetry

considerations.

For the remaining kinematic regions we have to calculate the contributions of the short

cuts and of the long cut. First we complete our calculations of the short cut in ω3:

τ1τ4 : 2ie−iπω3 Ωa

Ω2
Wω3

(5.9)

τ1τ2τ4 : −2ie−iπω3 VL(a)
Ω2

Wω3
(5.10)

τ1τ3τ4 : 2iΩa

Ω2
Wω3

(5.11)

τ1τ2τ3τ4 : −2iVL(a)
Ω2

Wω3
. (5.12)
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Next we turn to the long cut which is contained in the two triplets: LLR(1), LLR(2),

LRR(1), and LRR(2). Their contributions to the scattering amplitude are:

τ1τ4 : Fω2−ω3−cut
LLR(1) + Fω2−ω3−cut

LLR(2) → 2ie−iπω3
Wω2ω3:L

Ω32
(5.13)

τ1τ2τ4 : F
ω2−ω3−cut
LLR(1) + Fω2−ω3−cut

LLR(2) → 2ie−iπω3eiπω2
Wω2ω3:L

Ω32
(5.14)

τ1τ3τ4 : Fω2−ω3−cut
LLR(1) + Fω2−ω3−cut

LLR(2) → 2i
Wω2ω3:L

Ω32
(5.15)

τ1τ2τ3τ4 : Fω2−ω3−cut
LLR(1) + Fω2−ω3−cut

LLR(2) → 2ie−iπω2
Wω2ω3:L

Ω32
(5.16)

and

τ1τ4 : Fω2−ω3−cut
LRR(1) + Fω2−ω3−cut

LRR(2) → 2ie−iπω2
Wω2ω3:R

Ω23
(5.17)

τ1τ2τ4 : Fω2−ω3−cut
LRR(1) + Fω2−ω3−cut

LRR(2) → 2i
Wω2ω3:R

Ω23
(5.18)

τ1τ3τ4 : F
ω2−ω3−cut
LRR(1) + Fω2−ω3−cut

LRR(2) → 2ie−iπω2eiπω3
Wω2ω3:R

Ω23
(5.19)

τ1τ2τ3τ4 : Fω2−ω3−cut
LRR(1) + Fω2−ω3−cut

LRR(2) → 2ie−iπω3
Wω2ω3:R

Ω23
. (5.20)

The sum of all four contributions, Fω2−ω3−cut
LLR(1) +Fω2−ω3−cut

LLR(2) +Fω2−ω3−cut
LRR(1) +Fω2−ω3−cut

LRR(2) can

be combined into:

τ1τ4 : → 2ie−iπ(ω2+ω3)

[

eiπω2
Wω2ω3;L

Ω32
+ eiπω3

Wω2ω3;R

Ω23

]

(5.21)

τ1τ2τ4 : → 2ie−iπω3

[

eiπω2
Wω2ω3;L

Ω32
+ eiπω3

Wω2ω3;R

Ω23

]

(5.22)

τ1τ3τ4 : → 2ie−iπω2

[

eiπω2
Wω2ω3;L

Ω32
+ eiπω3

Wω2ω3;R

Ω23

]

(5.23)

τ1τ2τ3τ4 : → 2i

[

e−iπω2
Wω2ω3;L

Ω32
+ e−iπω3

Wω2ω3;R

Ω23

]

. (5.24)

One easily verifies that in fact, that the regions τ2τ4 and τ2τ3τ4 which contain the short

cut in ω3 receive no contribution from the long cut. Similarly, the regions τ1τ3 and τ1τ2τ3
contain only the Regge poles and the short ω2-cut.

Before we combine the contributions of the long cut with short cuts and Regge poles,

let us pause for a moment and take a closer look at the long cut contributions. The long

cut is obtained from the discontinuity in s123 (or the s-discontinuity). The structure of the

long cut expression (square brackets in (5.21) - (5.24)) is illustrated in Fig.10 (for the weak

coupling see also Fig.8 ):

Figure 10: structure of the long Regge cut

It consists of impact factors on the left and on the right sides of the two reggeon cut which,

because of Regge factorization, are the same as in the 2 → 4 scattering amplitude (in the
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leading approximation they are illustrated in Fig.5) and the RRPRR production vertex in

the center. The latter one is a new element which, in the leading order, has been calculated

in [34]. The phase structure contained in (5.21) - (5.24) indicates that, beyond the leading

approximation, this production vertex must become complex-valued. It is instructive to

recapitulate the RPR production vertex in the BDS formula for 2 → 3 [1]. For the different

kinematic regions labeled by the τ -factors the relevant phase factors are:

1 :→ e−iπ(ω1+ω2)
(

eiπω1 VL

Ω21
+ eiπω2 VR

Ω12

)

= e−iπ(ω1+ω2)eiπωa

τ1 :→ e−iπω2

(

eiπω1 VL

Ω21
+ eiπω2 VR

Ω12

)

= e−iπω2eiπωa

τ2 :→ e−iπω1

(

eiπω1 VL

Ω21
+ eiπω2 VR

Ω12

)

= e−iπω1eiπωa

τ1τ2 :→
(

e−iπω1 VL

Ω21
+ e−iπω2 VR

Ω12

)

= e−iπωa . (5.25)

This phase structure allows for two equivalent descriptions: either we write a sum of two

terms with real-valued coefficients VL(a) and VR(a) (in agreement with the Steinmann

relations) or, alternatively, we use a factorized representation with the complex-valued

production vertex eiπωa . Comparing the bracket expressions with the square brackets in

(5.21) - (5.24) we find the same phase structure. Therefore, for the RRPRR-vertex in the

center of Fig.10, we either retain the sum of the two terms with real-valued coefficients

contained in Wω2−ω3;L and Wω2−ω3;R, or we introduce a complex-valued production vertex.

In leading order, this vertex is real. In contrast to the Regge pole case in 2 → 3, we do

not yet know the complex-valued RRPRR vertex function beyond the leading order. It is

tempting to expect, again, some form of exponentiation.

Finally we combine the contributions of the long cut, the contributions of the short

cut in with the Regge pole contributions which are taken from the appendix of [1]. The

latter ones are:

τ1τ4 : e
−iπ(ω2+ω3)

[

eiπ(ωa+ωb+ωc) − 2ieiπ(ω2+ω3) ΩaΩbΩc

Ω2Ω3

]

(5.26)

τ1τ2τ4 : −e−iπω3

[

eiπ(−ωa+ωb+ωc) − 2ieiπω3 Ω2aΩbΩc

Ω2Ω3

]

(5.27)

τ1τ3τ4 : −e−iπω2

[

eiπ(ωa+ωb−ωc) − 2ieiπω2 ΩaΩbΩ3c

Ω2Ω3

]

(5.28)

τ1τ2τ3τ4 :
[

eiπ(−ωa+ωb−ωc) − 2iΩ2aΩbΩ3c

Ω2Ω3

]

. (5.29)

The contributions of the long cuts (5.21) - (5.24), together with those of the short cut in
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ω3 (5.9) - (5.12) (and analogous expressions for the short cut in ω2) are

τ1τ4 :→ 2ie−iπ(ω2+ω3)
([

eiπω2
Wω2−ω3;L

Ω32
+ eiπω3

Wω2−ω3;R

Ω23

]

+ eiπω2
ΩaWω3

Ω2
+ eiπω3

Wω2
Ωc

Ω3

)

= 2ie−iπ(ω2+ω3)
(

eiπω2

[

Wω2−ω3;L

Ω32
+

ΩaWω3

Ω2

]

+ eiπω3

[

Wω2−ω3;R

Ω23
+

Wω2
Ωc

Ω3

])

(5.30)

τ1τ2τ4 :→ 2ie−iπω3

([

eiπω2
Wω2−ω3;L

Ω32
+ eiπω3

Wω2−ω3;R

Ω23

]

− Ω2aWω3

Ω2
+ eiπω3

Wω2
Ωc

Ω3

)

= 2ie−iπω3

(

eiπω2

[

Wω2−ω3;L

Ω32
+

ΩaWω3

Ω2

]

+ eiπω3

[

Wω2−ω3;R

Ω23
+

Wω2
Ωc

Ω3

]

− eiωaWω3

)

(5.31)

τ1τ3τ4 :→ 2ie−iπω2

([

eiπω2
Wω2−ω3;L

Ω32
+ eiπω3

Wω2−ω3;R

Ω23

]

+ eiπω2
ΩaWω3

Ω2
− Wω2

Ω3c

Ω3

)

= 2ie−iπω2

(

eiπω2

[

Wω2−ω3;L

Ω32
+

ΩaWω3

Ω2

]

+ eiπω3

[

Wω2−ω3;R

Ω23
+

Wω2
Ωc

Ω3

]

−Wω2
eiωc

)

(5.32)

τ1τ2τ3τ4 :→ 2i
([

e−iπω2
Wω2−ω3;L

Ω32
+ e−iπω3

Wω2−ω3;R

Ω23

]

− Ω2aWω3

Ω2
− Wω2

Ω3c

Ω3

)

= 2i
(

e−iπω2

[

Wω2−ω3;L

Ω32
+

ΩaWω3

Ω2

]

+ e−iπω3

[

Wω2−ω3;R

Ω23
+

Wω2
Ωc

Ω3

]

−Wω2
e−iωc − e−iωaWω3

)

. (5.33)

For the expressions on the rhs of these equations we have only weak coupling limit results.

Disregarding the phases and using (4.27) we find for the region τ1τ4:

e−iπ(ω2+ω3)

(

iδ14 + 2ifω2ω3
+ iπ

ωaωbωc

ω2ω3
− iπ(ωa + ωc)

)

. (5.34)

After combination with the Regge pole term, we find the expected cancellation between

the subtraction term and the Regge pole piece, and we arrive at:

τ1τ4 :→ e−iπ(ω2+ω3) (1 + iπωb + iδ14 + 2ifω2ω3
) . (5.35)

In the same way we compute the other regions and obtain

τ1τ2τ4 : → −e−iπω3

(

1 + iπωc − iδ124 − 2i (fω2ω3
− fω3

)
)

(5.36)

τ1τ3τ4 : → −e−iπω2

(

1 + iπωa − iδ134 − 2i (fω2ω3
− fω2

)
)

(5.37)

τ1τ2τ3τ4 : → 1 + iδ1234 − iπωb + 2i (fω2ω3
− fω2

− fω3
) , (5.38)

where

δ124 = π (V14 − V24 + ωa − ωb) (5.39)

δ134 = π (V14 − V13 + ωc − ωb) (5.40)

δ1234 = π (V14 − V13 − V24 − ωa − ωc) . (5.41)

Note that, in analogy with our remark at the end of the 2 → 4 section, the term V14 is the

one loop approximation of the long Regge cut and is contained in the BDS formula; the
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same holds for the terms and V13 and V24 which represent the one-loop approximations of

the short cuts in the ω2 and ω3 channels.

Making use of the results from [1] we can slightly generalize our results. As discussed

in Appendix B, our weak coupling results for the partial waves are in agreement with

the subtractions predicted in [1], and in this paper it was shown that they remove all

the unwanted pieces of the Regge pole terms. Therefore, this part of our results - the

combination of subtraction terms with the Regge pole terms - can be generalized to all

orders, and our restriction to the leading logarithmic approximation only applies to the

calculation of the Regge cut contributions. From the second lines in (5.30) - (5.33) we infer

that the partial waves fω3
(fω2

) contained in Wω3
(Wω2

) are multiplied by phase factors

eiπωa or e−iπωa (eiπωc or e−iπωc ). We therefore write:

τ1τ4 : → e−iπ(ω2+ω3)
[

eiπωb cos πωac + iδ14 + 2ifω2ω3

]

, (5.42)

τ1τ2τ4 : → −e−iπω3
[

eiπωc cos πωab − iδ124 − 2i
(

fω2ω3
− eiπωafω3

)]

(5.43)

τ1τ3τ4 : → −e−iπω2
[

eiπωa cos πωbc − iδ134 − 2i
(

fω2ω3
− fω2

eiπωc
)]

(5.44)

τ1τ2τ3τ4 : →
[

e−iπωbeiπωbaeiπωbc + 2i
(

fω2ω3
+ iδ1234 − fω2

e−iπωa − e−iπωafω3

)]

. (5.45)

In order to pass to the conformally invariant remainder functions R7;τiτj ...τk , we first re-

capitulate the relation between our scattering amplitude, the BDS amplitude, and the

remainder function:

T2→5 = TBorn
2→45 × TBDS ×R. (5.46)

Here the BDS amplitude contains kinematic phases (e.g. e−iπ(ω2+ω3) for the region τ1τ4),

the exponentials of production vertices: eiπωb , eiπωc , eiπωa , e−iπωb for the regions τ1τ4,

τ1τ2, τ4 τ1τ3τ4, τ1τ2τ3τ4, resp., and the phases eiδij...k . Finally, the Born amplitude TBorn

is proportional to s which, when introducing a further twist in a t-channel, produces a

minus sign (for example, when going from τ1τ4 to τ1τ2τ4). These factors, therefore, have

to be taken into account in our expressions for the scattering amplitudes in (5.42) - (5.45),

before we arrive at the remainder functions R7.

Before we write down our results for the remainder functions we want to make a

further comment on the Regge cut amplitude fω2ω2
. Since this amplitude is known only

to leading order accuracy, we will not be able to write all the phase factors for this term.

Beyond the leading order however, we know from our discussion after (5.24) and from

(5.30) - (5.33) that the RRPRR vertex becomes complex. As a result, also the amplitude

fω2ω3
will become complex and the exponential of the production vertices can no longer be

disregarded. For the region τ1τ4 this means:

fω2ω3
→ e−iπωb

eiπω2fω2ω3;L − eiπω2fω2ω3:R

Ω32
. (5.47)

Our prediction for higher order, therefore, is that the rhs of (5.47) must be conformally

invariant. Finally, it is customary to present results for the product of the remainder

functions and the the phases eiδij...k which are part of the BDS formula.
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With these modifications our final results for the remainder function become7

R7;τ1τ4e
iπδ14 = cos πωac + iπδ14 + 2ifω2ω3

(5.48)

R7;τ1τ2τ4e
−iπδ124 = cos πωab − iπδ124 − 2i(fω2ω3

− eiπωacfω3
) (5.49)

R7;τ1τ3τ4e
−iπδ134 = cos πωbc − iπδ134 − 2ifω2ω3

− eiπωcafω2
) (5.50)

R7;τ1τ2τ3τ4e
iπδ1234 = eiπωbaeiπωbc + iπδ1234 + 2i(fω2ω3

− eiπωbcfω2
− eiπωbafω3

) (5.51)

Eqs.(5.7),(5.8), (5.48), (5.49), (5.50), and (5.51), represent our final results. All unphysical

singularities have been cancelled, and the final expressions consist of conformally invariant

Regge pole and Regge cut contributions.

6 Summary and conclusions

In this paper we have completed our analysis of the n = 7 BDS scattering amplitude in the

multi-Regge limit. To summarize the result of this work, we once more list the final results

for the remainder function R7;τiτj ...τk in the different Mandelstam kinematic regions labeled

by τiτj...τk. We follow the definitions given in our previous paper [1]: from the expressions

listed in the previous section, we remove the kinematic phase factors and exponents of the

production vertices, e±iπωa , e±iπωb , e±iπωc which are already part of the BDS formula. The

final expressions are sums of the conformally invariant contributions of Regge poles and

Regge cuts:

R7;τ2τ4e
iδ24 = cos πωbc + iδ24 + 2ifω3

(6.1)

R7;τ2τ3τ4e
−iδ24 = cos πωbc − iδ24 − 2ifω3

(6.2)

R7τ1τ3e
iδ13 = cos πωab + iδ13 + 2ifω2

(6.3)

R7;τ1τ2τ3e
−iδ13 = cos πωab − iδ13 − 2ifω2

(6.4)

R7;τ1τ4e
iπδ14 = cos πωac + iπδ14 + 2ifω2ω3

(6.5)

R7;τ1τ2τ4e
−iπδ124 = cos πωab − iπδ124 − 2i(fω2ω3

− eiπωacfω3
) (6.6)

R7;τ1τ3τ4e
−iπδ134 = cos πωbc − iπδ134 − 2ifω2ω3

− eiπωcafω2
) (6.7)

R7;τ1τ2τ3τ4e
iπδ1234 = eiπωbaeiπωbc + iπδ1234 + 2i(fω2ω3

− eiπωbcfω2
− eiπωbafω3

) (6.8)

The Regge cut amplitides fω2
, fω3

and fω2ω3
are explicitly given in (3.19) and in (4.23),

respectively. As stated before, these Regge cut contributionsare are valid only in the weak

coupling approximation: this restriction comes from the calculation of unitarity integrals

in which we have used leading order amplitudes Mn→m and from the use of bootstrap

relations. As explained at the end of the previous section, in next-to-leading order the long

cut amplitude fω2ω3
is expected to become complex. Since production vertices have been

calculated in NLO [35, 36] and bootstrap equations have been proven to be valid also in

NLO [37, 38], all ingredients for a complete NLO analysis are available.

7 In our previous paper [1] the remainder function was defined to include the sign changes due to the s

factors of the Born term. As a result, kinematic regions belonging to an odd number of τ -factors have a

global minus sign.
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It is important to note that recently both the n = 6 [32, 39] and n = 7 scattering

amplitudes [40–42] in multi-Regge kinematics have been investigated in the strong cou-

pling region. The results show a remarkable consistency between the structure at weak

and strong coupling, thus providing strong support for the AdS/CFT duality hypothesis.
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A Partial waves and multiparticle amplitudes

In this appendix we review and present further details of the Regge pole analysis, derived

from models [25] (scalar field theories and dual amplitudes) and from S-matrix theory

[27, 29].

We begin with a brief review of the simplest examples, namely the 2 → 3 and 2 → 4

scattering amplitudes in the multi-Regge limit, which have been discussed before. The

possible energy discontinuities of the 2 → 3 case are illustrated in Figs.10a.

a

b

j
1

j
2

n n
t

1
t

2 t
1

t
2

j
2 j

1

1 2 3

A B

Figure 11: (a) the two sets of energy discontinuities; (b) the corresponding hexagraphs

In a Regge pole description, one starts from multiple partial wave expansions in the crossed

channels. For the 2 → 3 case, such an expansion contains the triple sum over the angular

momenta in the t1 and t2 channels, j1 and j2, and the helicity variable n conjugated to

the Toller angle ω at the production vertex. As it was pointed out in [27], the definition

of the multiple partial wave and its subsequent analytic continuation to complex values

– 32 –



of angular momenta and helicity requires a decomposition of the scattering amplitude

into separate pieces (spectral components), which correspond to the two terms in Fig.11.

Each term allows us the construction of a Froissart-Gribov partial wave, and the analytic

continuation can be done in two of the three angular momentum variables j1, j2 and n.

The coupling of these variables is illustrated in hexagraphs, shown in Fig.11b. Disregarding

all complications which are unnecessary for the present discussion, we have

T2→3 =
∑

n

∑

j1≥n

∑

j2≥n

dj10n(cos θ1)u
ndj2n0(cos θ2)F (j1, j2, n; t1, t2), (A.1)

where u = eiω, and θ1 and θ2 denote the scattering angles in the t1 and t2 channels

respectively. As mentioned before, the Sommerfeld-Watson transformation and analytic

continuation in j1, j2 and n requires the decomposition into two terms. The first one (left

parts of Fig.11a and b) reads as:

T
(1)
2→3 =

1

(2πi)2

∫ ∫

dj1
sinπ(j1 − n)

dn

sinπn

∞
∑

N=0

dj10n(cos θ1)u
ndn+N

n0 (cos θ2)F
(1)(j1, j2, n; t1, t2),

(A.2)

i.e. we have put j2 = n + N , where N ∈ Z. Assuming the existence of Regge poles at

j1 = α1 and n = α2 − N with factorizing residues, we have for s1 ∼ cos θ1 → ∞ and

s2 ∼ cos θ2 → ∞, the Regge form

T
(1)
2→3 = sα1

1 sα2

2 uα2β(t1)Γ(−α1)
sinπα1ṼR(t1, t2, u)

sinπ(α1 − α2)
Γ(−α2)β(t2). (A.3)

Here we have used the fact that for large z,

djon(z) ∼
zj

Γ(1 + j)
(A.4)

and
1

Γ(1 + j)
=

− sinπj

π
Γ(−j). (A.5)

The Γ-function on the rhs contains the particle pole in t-channel. The vertex function VR

(for a massive theory) is analytic in η = u−1 near η = 0. Moreover, since in the multi-Regge

limit η = u−1 ∼ s1s2
s

, we can also write

T
(1)
2→3 = sα1−α2

1 sα2β(t1)Γ(−α1)
sinπα1ṼR(t1, t2, u)

sinπ(α1 − α2)
Γ(−α2)β(t2). (A.6)

Here the energy factors are in accordance with the singularity structure illustrated in the

upper line of Fig.11a (left part). In the same way, the right part of Fig.11 corresponds to

the second part of the scattering amplitude:

T
(2)
2→3 =

1

(2πi)2

∫ ∫

dj2
sinπ(j2 − n)

dn

sinπn

∞
∑

N=0

dn+N
0n (cos θ1)u

ndj2n0(cos θ2)F
(2)(j1, j2, n; t1, t2).

(A.7)
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With Regge poles at j2 = α2 and n = α1 −N we arrive at

T
(2)
2→3 = sα2−α1

2 sα1β(t1)Γ(−α1)
sinπα2ṼL(t1, t2, u)

sinπ(α2 − α1)
Γ(−α2)β(t2). (A.8)

In the following it will be convenient to define

sinπα1ṼR(t1, t2, u) = VR(t1, t2, u) (A.9)

and

sinπα2ṼL(t1, t2, u) = VL(t1, t2, u). (A.10)

Note that this definition of the production vertices (apart from constant factors) is in

accordance with the notation used in the main part of our paper.

We generalize this to higher order amplitudes. Let us consider the 2 → 4 case. Turning

to the 2 → 4 process, we only emphasize the new feature. Obviously, we now have five

different ways of drawing maximal sets of non-overlapping energy variables, and each such

diagram has its own hexagraph:

1 2 3 4 5

Figure 12: the five sets of energy discontinuities (upper row) and the corresponding

hexagraphs (lower row)

Focusing on the terms ”3” and ”4”, we have:

T
(3)
2→4 =

1

(2πi)3

∫ ∫ ∫

dj2
sinπ(j2 − n1)

dn1

sinπ(n1 − n2)

dn2

sinπn2
× (A.11)

×
∑

N1

∑

N2

un1

1 un2

2 dn1+N1

0n1
(cos θ1)d

j2
n1
(cos θ2)d

n2+N2
n2

(cos θ3)F
(3)(j1, j2, j3, t1, t2, t3, n1, n2).

Assuming the existence of Regge poles at

j2 = α2, n1 = α1 −N1, n2 = α3 −N2 (A.12)

we obtain:

T
(3)
2→4 = sα1

1 sα2

2 sα3

3 uα1

1 uα3

2

× β(t1)Γ(−α1)
sinπα1 sinπα2ṼL(t1, t2, u1)Γ(−α2)ṼR(t2, t3, u2)

sinπ(α2 − α1) sinπ(α1 − α3)
Γ(−α3)β(t3). (A.13)
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Here the energy factors in the first line can also be written as

sα1

1 sα2

2 sα3

3 uα1

1 uα3

2 = sα2−α1

2 sα1−α3

123 sα3 , (A.14)

which is in agreement with the energy singularity structure of this term. Similarly, the

fourth term corresponds to

T
(4)
2→4 =

1

(2πi)3

∫ ∫ ∫

dj2
sinπ(j2 − n2)

dn1

sinπ(n2 − n1)

dn2

sinπn1
× (A.15)

×
∑

N1

∑

N2

×un1

1 un2

2 dn1+N1

0n1
(cos θ1)d

j2
n1
(cos θ2)d

n2+N2
n2

(cos θ3)F
(4)(j1, j2, j3, t1, t2, t3, n1, n2)

and

T
(4)
2→4 = sα1

1 sα2

2 sα3

3 uα1

1 uα3

2 × (A.16)

×β(t1)Γ(−α1)
sinπα2 sinπα3ṼL(t1, t2, u1)Γ(−α2)ṼR(t2, t3, u2)

sinπ(α2 − α3) sinπ(α3 − α1)
Γ(−α3)β(t3)

with

sα1

1 sα2

2 sα3

3 uα1

1 uα3

2 = sα2−α3

2 sα3−α1

234 sα1 . (A.17)

In order to exhibit Regge factorization we use the definitions (A.9) and (A.10) and rewrite

(A.13) and (A.16) as follows

T
(3)
2→4 = sα1

1 sα2

2 sα3

3 uα1

1 uα3

2 × (A.18)

×β(t1)Γ(−α1)
sinπα1 sinπ(α2 − α3)

sinπα2 sinπ(α1 − α3)

VL(t1, t2, u1)

sinπ(α2 − α1)
Γ(−α2)

VR(t2, t3, u2)

sinπ(α2 − α3)
Γ(−α3)β(t3)

and

T
(4)
2→4 = sα1

1 sα2

2 sα3

3 uα1

1 uα3

2 × (A.19)

×β(t1)Γ(−α1)
sinπα3 sinπ(α2 − α1)

sinπα2 sinπ(α3 − α1)

VL(t1, t2, u1)

sinπ(α2 − α1)
Γ(−α2)

VR(t2, t3, u2)

sinπ(α2 − α3)
Γ(−α3)β(t3).

The trigonometric prefactors in (A.18) and (A.19) agree with those of (3.9) and (3.10). The

denominators sinπαi result from the definitions (A.9) and (A.10), i.e from the requirement

that each production vertex can be written in the form

VL(t1, t2, u1)

sinπ(α2 − α1)
=

VL(t1, t2, u1)

Ω21
(A.20)

or
VR(t1, t2, u1)

sinπ(α1 − α2)
=

VR(t1, t2, u1)

Ω12
, (A.21)

where Ωij = sinπ(ωi − ωj). Let us generalize the construction of these trigonometric

prefactors to general 2 → n − 2 amplitudes. We find it convenient to first draw the

hexagraphs. For the example of the 2 → 5 case, the 14 terms with energy discontinuities

have been presented in Figs.1 - 3. Here we list the corresponding hexagraphs:
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LLL RRR RRL RLL

(43)(32)(21) (12)(23)(34) (12)(23)(43) (43)(32)(12)

((21)(13)(43)

LRL(2)

(23)(43)(31)

LRL(1)

(34)(42)(12)

RLR(2)

(12)(32)(24)

RLR(1)

LLR(3)

(34)(42)(21)

(23)(34)(41) (23)(31)(14) (21)(13)(34)

LRR(1) LRR(2) LRR(3)

LLR(2)

(32)(21)(14)

LLR(1)

(32)(24)(41)

Figure 13: the helicity structure of the 14 terms in Figs.1 - 3

As suggested in the discussion of A.R.White [27, 29], we note a one-to-one correspondence

between the decomposition (2.1) illustrated in Figs.1 - 3 and different sequences of analytic

continuation in the complex helicity variables. A connection between these two seemingly

different arguments can be seen as follows. As an example, we consider the first hexagraph

graph in Fig.13 which we redraw in Fig.14:

1 2 3 4 5

A B

1

2

3

4

Figure 14: interpretation of the helicity graphs in Fig.4

.

We can interpret Fig.14 as a sequence of reggeon scattering subprocesses:

(i) the lowest horizontal line ”1” can be attributed to the reggeon exchange between the
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incoming particle ”1” and the outing cluster ”2+3+4+5” At the same time, this exchanged

reggeon can be viewed as an ”incoming reggeon” for the subprocess: reggeon 1 + particle

B → cluster ”2+3+4+5”. Next, within this subprocess, the horizontal line ”2” denotes the

exchange between the incoming reggeon ”1” and the cluster ”3+4+5”; at the same time,

it describes the ”incoming reggeon” for the subprocess: reggeon 2 + particle B → particles

”3+4+5”.

(ii) for each production vertex, it is either the left or the right reggeon which plays the role

of the ”incoming” reggeon: correspondingly, the vertex carries the subscript ”L” or ”R”.

Fig.14 has only vertices of a single type ”L”. One easily sees that, for the assignments

LRL and RLR there exist two possibilities, whereas for LLR and LRR we have even three

terms.

(iii) Each horizontal dashed lines denotes an ”intermediate” state which belongs to a certain

energy variable. In our example, the sequence of energies corresponds to s, s2345, s345, and

s45 = s4, in agreement with the energy discontinuity structure of the first graph of Fig.1.

These hexagraphs allow for an easy understanding of the labeling ”LLL” etc. As

discussed before, for the Regge poles we have two types of production vertices, denoted

by VL and VR. As it can be seen easily from the ”hexagraphs” in fig.13, each production

vertex has a sloped ”incoming” line and horizontal ”exchange” line: a vertex VL has the

incoming line on the left, the ”exchange” line on the rhs. In our example of fig.14, all

vertices are of the type ”L”. One easily translates this also into the other diagrams of

Fig.12: for a production vertex of the type ”L” , energy discontinuity line enters to the left

of the produced particle. In this way, each of the 14 terms has a uniquely defined sequence

of subscripts. On the other hand, a given sequence ”LR” may belong to several terms.

Next one writes down the corresponding multiple Sommerfeld-Watson integrals; the

examples of the 2 → 3 and the 2 → 4 processes suggest a correspondence between a given

hexagraph and the trigonometric denominators of the Sommerfeld-Watson integral. Let

us, once more, consider the term ”LR(1)” of the 2 → 4 process. For the Regge pole

contribution to this partial wave we had the following collection of trigonometric factors:

1

Ω21Ω13Ω3
Ω1Ω2Ω3

1

Ω2
2

VL(a)VR(b) =
Ω1

Ω2

Ω23

Ω13

VL(a)

Ω21

VR(b)

Ω23
. (A.22)

Here the first group of trigonometric factors on the lhs results from the three 1/ sin factors

in the Sommerfeld-Watson integrals, the second group from the three d functions. The

third group arises from the production vertices, if we agree to write each production vertex

in the form (A.20) or (A.21): for a vertex of type ”L” we insert a factor 1/ sin παright, for

a vertex of type ”R” a factor 1/ sinπαleft. In this way we obtain the trigonometric factors

of Regge pole factors used in Sec. III.

For the Regge cut in the t2 channel we modify (A.22) as follows. Since there is no

particle pole in the t2 channel, we leave the d-function of the t2-channel as in (A.4) and

do make use of (A.5): this eliminates the factor Ω2 in the second group. Next, instead of

the two production vertices of the particles ”a” and ”b” (which led to the factor 1/Ω2
2), we

put a new factor
Ω2i

Ωi
, i = 1. (A.23)
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Here the label ”i” refers to one of the two t-channel neighboring the t2-channel containing

the Regge cut: it is the t-channel to which, in the Sommerfeld-Watson integral, the angular

momentum j2 couples. In our case: the t1 channel. Combining all these factors we arrive

at

FLR(1) =
1

Ω21Ω13Ω3
Ω1Ω3

Ω21

Ω1
WΩ2

=
WΩ2

Ω13
. (A.24)

This leads to the trigonometric factor of the Regge cut used in Sec. III.

Let us generalize our rules for the Regge poles to the 2 → 5 case. Fig.13 contains those

trigonometric factors which follow from the Sommerfeld-Watson integral. As an example,

in the first term the notation (43)(32)(21) stands for the factors

1

Ω43Ω32Ω21
, (A.25)

where Ωlm = sinπ(ωl − ωm) = sinπ(jl − jm). To make contact with (A.22), we still need

to add the last factor 1/Ω1. The remaining groups in (A.22) are easily generalized to the

2 → 5 case. In this way one derives the trigonometric factors for the Regge poles listed in

Sec. II.

Turning to Regge cuts, the above rules for 2 → 4 case can be used directly. As an

example, we consider in Fig.13 the term ”LLR(1)” and derive the factors for the short

Regge cut in the ω3 channel. We find:

1

Ω32Ω21Ω14Ω4
Ω1Ω2Ω4

1

Ω2

Ω32

Ω2
VL(a)Wω3

=
Ω1

Ω2Ω21Ω14
VL(a)Wω3

=
Ω1

Ω2

Ω24

Ω14

VL(a)

Ω21

Wω3

Ω24
, (A.26)

in agreement with (2.51) in Sec. II.

This completes our formulation of rules for the determination of the trigonometric

factors. It is straightforward to apply these rules to the 2 → 5 amplitude and to verify all

the trigonometric factors listed in Sec. II. In a forthcoming paper we will make use of these

rules for the investigation of the 2 → 6 scattering amplitude. As we have said before, the

rules for the Regge cuts are partly heuristic and a more systematic derivation is needed.

At present, their justification comes from the results which are obtained with these rules.

B Comparison with the results of the previous paper

In our previous paper we have started from the Regge pole expressions, and we have

determined the phases and the analytic expressions of the subtraction terms inside the

Regge cut contribution. They were derived from the condition that the remaining Regge

pole terms are finite and conformal invariant. Following these requirements we were led to

introduce, for the long Regge cuts, linear combinations of partial waves which slighty differ

from the one used in the present paper.
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In order to see the connection with our present paper, we summarize a few results.

For the short cut in ω3, for which we used the same partial wave decomposition as in the

present paper, we found the subtraction

δfω3
= − sinπ(ωb + ωc) + 2 cos πω3

ΩbΩc

Ω3
. (B.1)

This should be compared with the subtraction in 2Wω3
found in (4.10): the latter coincides

with the weak coupling limit of (B.1).

For the long cut we found it convenient to use a decomposition which differs from the

one used in the present paper. Let us list the phase structures of the four participating

kinematic regions:

τ1τ4 : ie−π(ω2+ω3)
(

eiπωaδfa
ω2ω3

+ eiπωcδf c
ω2ω3

)

(B.2)

τ1τ2τ4 : ie−iπω3
(

eiπωaδfa
ω2ω3

+ eiπωcδf c
ω2ω3

− eiπωaδfω3

)

(B.3)

τ1τ3τ4; ie−iπω2
(

eiπωaδfa
ω2ω3

+ eiπωcδf c
ω2ω3

− eiπωcδfω2

)

(B.4)

τ1τ2τ3τ4 : i
(

e−iπωaδfa
ω2ω3

+ e−iπωcδf c
ω2ω3

− e−iπωaδfω3
− e−iπωcδfω2

)

. (B.5)

For the subtractions we found the expressions:

δfa
ω2ω3

= − Ωc

Ωac

Ω2aΩbΩ3c

Ω2Ω3
+ δfω3

(B.6)

and

δf c
ω2ω3

= − Ωc

Ωac

Ω2aΩbΩ3c

Ω2Ω3
+ δfω2

. (B.7)

With these subtractions we have shown that, after combination with the Regge pole terms,

all unwanted pole contributions cancel, and for the remainder function we were left with

the conformally invariant Regge pole terms:

τ1τ4 : cosπωac (B.8)

τ1τ2τ4 : − cos πωab (B.9)

τ1τ3τ4 : − cos πωbc (B.10)

τ1τ2τ3τ4 : e
iπωbaeiπωbc (B.11)

All these expressions are valid to all orders in the coupling constant. Let us now compare

(B.2) - (B.5) with (5.30) - (5.33). We introduce

W̃ω2ω3;L

Ω32
=

Wω2ω3;L

Ω32
+

ΩaWω3

Ω2
(B.12)

W̃ω2ω3;L

Ω23
=

Wω2ω3;L

Ω32
+

Wω2
Ωc

Ω3
(B.13)

and denote the subtraction terms inside W̃ω2ω3;L, W̃ω2ω3;R by δW̃ω2ω3;L, δW̃ω2ω3;R . Obvi-

ously we need the identity:

2

(

eiπω2
δW̃ω2ω3;L

Ω32
+ eiπω3

δW̃ω2ω3;R

Ω23

)

= eiπωaδfa
ω2ω3

+ eiπωcδf c
ω2ω3

. (B.14)
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One easily verifies that this equation is fulfilled if we impose the following relations between

the subtraction terms δW̃ω2ω3;L, δW̃ω2ω3;R and δfa
ω2ω3

, δf c
ω2ω3

:

2δW̃ω2ω3;L = Ω3aδf
a
ω2ω3

+Ω3cδf
c
ω2ω3

(B.15)

2δW̃ω2ω3;R = Ω2aδf
a
ω2ω3

+Ω2cδf
c
ω2ω3

. (B.16)

Inserting (B.6) and (B.7) we find:

2δW̃ω2ω3;L = ΩbaΩa − Ω3a sinπ(ωb + ωc) + 2 cos πω2
Ω3aΩbΩc

Ω2Ω3
, (B.17)

which in the weak coupling limit becomes:

2δW̃ω2ω3;L ≈ π2

(

(ωb − ω3)(ωa + ωc) + 2ωaωc − 2
ωaωbωc

ω3

)

. (B.18)

For the subtraction 2δW̃ω2ω3;R we find analogous results, and in the weak coupling limit

the combination becomes

2
δW̃ω2ω3;L − δW̃ω2ω3;R

πω32
= π

(

−(ωa + ωc) + 2
ωaωbωc

ω2ω3

)

. (B.19)

It agrees with the subtraction term obtained in (4.27).

We thus have shown that the results of our previous paper are fully consistent with

those of the present paper. Moreover, as discussed in Sec. VI, they can be used to generalize

some of our weak coupling results beyond leading order.
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Phases for the 2 → 5 scattering amplitude

a1 a2 c1 c2 c3

e−iπ(ω1−ω2+ω3) e−iπ(ω1−ω2+ω3) e−iπω3 e−iπω3 e−iπω3

e−iπ(−ω2+ω3) e−iπ(−ω2+ω3) e−iπ(−ω1+ω3) e−iπ(−ω1+ω3) e−iπ(−ω1+ω3)

e−iπ(ω1−2ω2+ω3) e−iπ(ω1−2ω2+ω3) e−iπ(−ω2+ω3) e−iπ(−ω2+ω3) e−iπ(−ω2+ω3)

e−iπ(ω1−ω2) e−iπ(ω1−ω2) 1 1 1

e−iπ(ω1−ω2+ω3−ω4) e−iπ(ω1−ω2+ω3−ω4) e−iπ(ω3−ω4) e−iπ(ω3−ω4) e−iπ(ω3−ω4)

e−iπ(ω1−ω2+ω3−ω4) e−iπ(ω1−ω2+ω3−ω4) e−iπ(ω3−ω4) e−iπ(ω3−ω4) e−iπ(ω3−ω4)

e−iπω2 e−iπω2 e−iπω1 e−iπω1 e−iπω1

e−iπω3e−iπ(ω2−ω4) e−iπω3eiπ(ω2−ω4) e−iπω3e−iπ(−ω1+ω4) e−iπω3e−iπ(ω1−ω4) e−iπω3e−iπ(ω1−ω4)

–
43

–



a1 a2 c1 c2 c3

e−iπω1 e−iπω1 e−iπω2 e−iπω2 e−iπω2

e−iπω3e−iπ(ω1−ω4) e−iπω3e−iπ(ω1−2ω2+ω4) e−iπω3e−iπ(−ω2+ω4) e−iπω3e−iπ(−ω2+ω4) e−iπω3e−iπ(ω2−ω4)

e−iπ(ω1−ω2+ω4) e−iπ(ω1−ω2+ω4) e−iπω4 e−iπω4 e−iπω4

1 1 e−iπ(ω2−ω1) e−iπ(ω2−ω1) e−iπ(ω2−ω1)

e−iπ(ω3−ω4) e−iπ(ω3−ω4) e−iπω3e−iπ(ω1−ω2−ω4) e−iπω3e−iπ(−ω1−ω2+ω4) e−iπω3e−iπ(−ω1+ω2−ω4)

eiπ(ω2−ω4) e−iπ(ω2−ω4) e−iπ(ω1−ω4) eiπ(ω1−ω4) eiπ(ω1−ω4)

e−iπ(ω1−2ω2+ω4) e−iπ(ω1−ω4) e−iπ(ω2−ω4) e−iπ(ω2−ω4) eiπ(ω2−ω4)

e−iπω4 e−iπω4 e−iπ(−ω1+ω2+ω4) e−iπ(ω1+ω2−ω4) e−iπ(ω1−ω2+ω4)

–
44
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