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Possibilities for reduction of transverse projected emittances

by partial removal of transverse to longitudinal beam correlations
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We show that if in the particle beam there are linear correlations between energy of particles and
their transverse positions and momenta (linear beam dispersions), then the transverse projected
emittances always can be reduced by letting the beam to pass through magnetostatic system with
specially chosen nonzero lattice dispersions. The maximum possible reduction of the transverse
projected emittances occurs when all beam dispersions are zeroed, and the values of the lattice
dispersions required for that are completely defined by the values of the beam dispersions and the
beam rms energy spread and are independent from any other second-order central beam moments.
Besides that, we prove that, alternatively, one can also use the lattice dispersions to remove linear
correlations between longitudinal positions of particles and their transverse coordinates (linear beam
tilts), but in this situation solution for the lattice dispersions is nonunique and the reduction of the
transverse projected emittances is not guaranteed.

I. INTRODUCTION

Careful control of the beam quality is essential for lin-
ear accelerators designed to deliver very high brightness
electron beams for short wavelength free electron lasers
(FELs). There are many beam properties which have to
be observed and manipulated such as suppression of mi-
crobunching instability, creation of needed peak current,
preservation of slice and projected emittances, etc.

In this paper we are interested in some aspects of the
control of transverse projected emittances. Among the
sources of the growth of transverse projected emittances
are the incoherent and coherent synchrotron radiation
(CSR) withing magnetic bunch compressors as well as
the other wake fields along the accelerator. A number of
approaches which could help to reduce emittance growth
due to CSR wake during bunch compression were devel-
oped during last decades including different optics tricks,
preparation of the initial beam current profile at the
bunch compressor entrance and etc. (see, for example,
[1–5] and references therein).

Still, because the suggested schemes provide reduction
but not complete cancellation of the emittance growth,
the beam considered downstream of the compression sys-
tem (or at the linac exit) could have nonzero transverse
to longitudinal coupling terms in the beam matrix and
therefore projected emittances could be further reduced
if these correlations will be removed.

In general, in order to make complete transverse to
longitudinal decoupling, it is necessary to have the pos-
sibility to act on particles depending on their longitu-
dinal position within the bunch (for example, one may
involve transverse deflecting cavities for this purpose),
which means that the system designed for the complete
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decoupling could be too complicated and somewhat dif-
ficult to operate in comparison with the benefit coming
from the achievable reduction of the transverse projected
emittances.
In this paper we consider a more simple and more prac-

tical question: what one can do having at hand a magne-
tostatic correction system? Because the transfer matrix
of a magnetostatic system could couple transverse and
longitudinal particle coordinates only when the disper-
sions of the underlying magnetic structure are nonzero,
the reduction of transverse projected emittances (if any
possible) will always be accompanied by the creation of
a potential source of beam transverse jitter due to the
beam energy jitter, and one has to look for an appropri-
ate balance of both.
We show, in the framework of linear particle dynam-

ics and with the self field effects neglected, that if in
the beam matrix there are nonzero correlation terms be-
tween energy of particles and their transverse positions
and momenta (beam dispersions), then the transverse
projected emittances can be reduced by letting the beam
pass through magnetostatic system (correction system)
with specially chosen nonzero lattice dispersions. The
maximum possible reduction of the transverse projected
emittances occurs when all beam dispersions are zeroed,
and the values of the lattice dispersions required for that
are completely determined by the values of the beam dis-
persions and the beam rms energy spread and are inde-
pendent from any other second-order central beam mo-
ments. Besides that, we prove that, alternatively, one
can also use the lattice dispersions to remove linear cor-
relations between longitudinal positions of particles and
their transverse coordinates (beam tilts), but in this sit-
uation solution for the lattice dispersions is nonunique
and the reduction of the transverse projected emittances
is not guaranteed.
Note that this paper is an extended version of the

unpublished note [6], which was written during discus-
sion of the influence of different dispersive effects on the
performance of the FLASH facility [7, 8], and recently,
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when we get acquainted with the paper [9], our interest
to this problem was renewed. Both papers, [6] and [9],
employ unclosed lattice dispersions as a tuning knob for
the control of the transverse projected emittances, but
have somewhat different points of view on the practical
realization of this idea and therefore the direct compar-
ison of their results and recommendations is not very
straightforward. As far as we are mostly discussing pos-
sibilities for correction which can be made downstream
of the emittance growth and coupling source either by
means of a dedicated correction system or even simply
by special (dispersive) beam steering, the paper [9] sug-
gests to create dispersion nonclosure already in the bunch
compressor, where the CSR effect is strongest and can
not be neglected.

II. VARIABLES AND NOTATIONS

We consider the linear beam dynamics in an electro-
magnetic system which conserves the reference beam en-
ergy and take the path length along the reference orbit
τ to be the independent variable. We use a complete set
of symplectic variables

z = (x, px, y, py, σ, ε)
⊤ (1)

as particle coordinates [10, 11]. Here x, y measure the
transverse (horizontal and vertical) displacements from
the ideal orbit and px, py are the corresponding canonical
monenta scaled with the constant kinetic momentum of
the reference particle p0. The variables σ and ε which
describe the longitudinal dynamics are

σ = c β0 (t0 − t), ε = (E − E0) / (β2

0
E0), (2)

where E0, β0 and t0 = t0(τ) are the energy of the refer-
ence particle, its velocity in terms of the speed of light c
and its arrival time at a certain position τ , respectively.
Let M be an m×m square matrix. Then |M | denote

the determinant of M . Let ω be a nonempty subset of
{1, 2, . . . ,m} with its elements listed in increasing order.
Then M{ω} denote the principal submatrix of M whose
entries are in the intersection of those rows and columns
of M specified by ω. If M is a symmetric matrix, we
denote by ΨM the associated with this matrix quadratic
form in m-variables u1, . . . , um

ΨM (u1, . . . , um) = (u1, . . . , um) ·M · (u1, . . . , um)⊤. (3)

Besides that, we denote by Im the m×m identity matrix
and by

J2m = diag

((
0 1
−1 0

)

, . . . ,

(
0 1
−1 0

)

︸ ︷︷ ︸

m

)

(4)

the 2m× 2m symplectic unit matrix.
As usual, we describe the properties of a collection of

points (a particle beam) in the three degrees of freedom

(3D) phase space by a 6 × 6 symmetric matrix (beam
matrix) of the second-order central beam moments

Σ =
〈

(z − 〈z〉) (z − 〈z〉)⊤
〉

, (5)

where the brackets 〈 · 〉 denote an average over a distri-
bution of the particles in the beam.
Let R be the nondegenerated 6×6 matrix which prop-

agates particle coordinates from the state τ = s1 to the
state τ = s2, i.e let

z(s2) = R z(s1). (6)

Then from (5) and (6) it follows that the matrix Σ evolves
between these two states according to the congruence

Σ(s2) = RΣ(s1)R
⊤. (7)

In the following we assume that the beam transport ma-
trix R is symplectic, which is equivalent to say that it
satisfies the relation

R⊤J6 R = J6. (8)

By definition, the beam matrix Σ is symmetric positive
semidefinite and we restrict our considerations to the sit-
uation when this matrix is nondegenerated and therefore
positive definite. For simplification of notations we also
assume that the beam is proper centered and therefore
has vanishing first-order moments

〈
z

〉
= 0. With this

assumption the beam matrix takes on the form

Σ =










〈x2〉 〈xpx〉 〈xy〉 〈xpy〉 〈xσ〉 〈xε〉
〈xpx〉 〈p2x〉 〈ypx〉 〈pxpy〉 〈pxσ〉 〈pxε〉
〈xy〉 〈ypx〉 〈y2〉 〈ypy〉 〈yσ〉 〈yε〉
〈xpy〉 〈pxpy〉 〈ypy〉 〈p2y〉 〈pyσ〉 〈pyε〉
〈xσ〉 〈pxσ〉 〈yσ〉 〈pyσ〉 〈σ2〉 〈σε〉
〈xε〉 〈pxε〉 〈yε〉 〈pyε〉 〈σε〉 〈ε2〉










(9)

where the elements

〈xε〉, 〈pxε〉, 〈yε〉, 〈pyε〉 (10)

and the elements

〈xσ〉, 〈pxσ〉, 〈yσ〉, 〈pyσ〉 (11)

we call beam dispersions and beam tilts, respectively.
The matrix Σ has twenty-one different entries which

can be varied independently within the positive definite-
ness conditions. Of course, not all of them (or their com-
binations) are equally interesting for any particular accel-
erator physics application. In this paper we concentrate
on the study of the evolution of 1D horizontal, vertical
and longitudinal projected emittances

εx = |Σ {1, 2}|1/2 , (12)

εy = |Σ {3, 4}|1/2 , (13)
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εσ = |Σ {5, 6}|1/2 , (14)

and 2D transverse projected emittance

εt = |Σ {1, 2, 3, 4}|1/2 (15)

under the transformation rule (7) with the additional as-
sumption that the matrix R is the transport matrix of
a magnetostatic system. Besides that, we also pay at-
tention to the changes in the beam energy chirp 〈σε〉
(linear energy slope along the bunch length) and in the
rms bunch length squared 〈σ2〉.
Note that due to Hadamar’s determinantal inequality

εt ≤ εx εy, (16)

and the equality in (16) holds if and only if the transverse
degrees of freedom in the beam matrix are decoupled
from each other [12], i.e. if and only if

〈xy〉 = 〈xpy〉 = 〈ypx〉 = 〈pxpy〉 = 0. (17)

III. TRANSPORT OF BEAM MATRIX

THROUGH MAGNETOSTATIC SYSTEM

A. Matrix of a magnetostatic system

The most general form of the transport matrix of a
magnetostatic system is

R =










r11 r12 r13 r14 0 r16
r21 r22 r23 r24 0 r26
r31 r32 r33 r34 0 r36
r41 r42 r43 r44 0 r46
r51 r52 r53 r54 1 r56
0 0 0 0 0 1










, (18)

where the elements

r16, r26, r36, r46, r51, r52, r53, r54, r56 (19)

are (transverse and longitudinal) lattice dispersions.
The special form (18) of the matrix R allows to rewrite

the symplecticity condition (8) in the form of a system
of two equations

(R{1, 2, 3, 4})⊤ J4 (R{1, 2, 3, 4}) = J4 (20)

and






r16
r26
r36
r46




 = (R{1, 2, 3, 4})J4






r51
r52
r53
r54




 , (21)

and using condition (21) one can show that every matrix
R of the form (18) can be represented as a product

R = R1 R2, (22)

where

R1 =










r11 r12 r13 r14 0 0
r21 r22 r23 r24 0 0
r31 r32 r33 r34 0 0
r41 r42 r43 r44 0 0
0 0 0 0 1 0
0 0 0 0 0 1










(23)

is the dispersion-free part of the matrix R and

R2 =










1 0 0 0 0 r52
0 1 0 0 0 −r51
0 0 1 0 0 r54
0 0 0 1 0 −r53
r51 r52 r53 r54 1 r56
0 0 0 0 0 1










(24)

is its dispersive part.
Substituting the decomposition (22) into the beam ma-

trix propagation equation (7) one obtains

Σ(s2) = R1

(
R2 Σ(s1)R

⊤
2

)
R⊤

1
. (25)

This formula is a two step transformation. At first the
incoming beam matrix Σ(s1) is transported using the ma-
trix R2 and then this intermediate result is transformed
using the matrix R1. Because the action of the matrix
R1 does not alter longitudinal beam parameters, does not
couple transverse and longitudinal projected emittances,
and propagates the vector of beam dispersions and the
vector of beam tilts simply as transverse coordinates of
the particle trajectories (i.e. without possibilities to cre-
ate or to remove vectors of beam dispersions and beam
tilts, and even without possibility simply to mix the vec-
tor of the beam dispersions with the vector of the beam
tilts), the second step in the transport of the beam matrix
can be omitted without loss of generality for any result of
this paper. So, in the rest of this paper, we consider the
changes in properties of the incoming beam matrix Σ(s1)
which are of interest for us under the action of the matrix
R2 only. Because it is impossible to associate with this
action some certain position in the beam line, we write
it symbolically as follows

Σ ← R2 ΣR⊤
2 , (26)

and call this transformation as the beam passage through
the dispersive part of the correction system.
Note that the formulas obtained below for the sim-

plified propagation rule (26) can be translated into the
formulas for the complete transport equation (7) with the
help of the decomposition of the matrix R in the form of
a product

R = R3 R1, (27)

where
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R3 =










1 0 0 0 0 r16
0 1 0 0 0 r26
0 0 1 0 0 r36
0 0 0 1 0 r46

−r26 r16 −r46 r36 1 r56
0 0 0 0 0 1










, (28)

and the matrix R1 remains the same as given in (23).
To make such a translation in the selected formula one
has to make the following changes in its right hand side:
substitute the lattice dispersions r16, r26, r36, and r46
instead of the lattice dispersions r51, r52, r53, and r54
according to the rule

r51 → −r26, r52 → r16, r53 → −r46, r54 → r36, (29)

and substitute the elements of the matrix R1Σ(s1)R
⊤
1 in-

stead of the corresponding elements of the matrix Σ(s1).
Note that the decompositions (22) and (27) are still

valid if one simply shifts the element r56 from the ma-
trices R2 and R3 to the corresponding position in the
matrix R1. It gives an additional possibility to simplify
calculations if one cares about transport of the projected
emittances only, but because we are also interested in the
behavior of the rms bunch length and the beam energy
chirp, we prefer to keep the r56 coefficient in the matrices
R2 and R3.

B. Transformation of 1D projected emittances

In order to obtain convenient representation for the
emittance transport problem, let us introduce a 4 × 4
symmetric matrix

A = 〈ε2〉Σ {1, 2, 3, 4}−






〈xε〉
〈pxε〉
〈yε〉
〈pyε〉











〈xε〉
〈pxε〉
〈yε〉
〈pyε〉






⊤

. (30)

Because leading principal minors of this matrix can be
expressed through the principal minors of the positive
definite matrix Σ as follows

|A {1}| = |Σ {1, 6}| , (31)

|A {1, 2}| = |Σ {6}| |Σ {1, 2, 6}| , (32)

|A {1, 2, 3}| = |Σ {6}|2 |Σ {1, 2, 3, 6}| , (33)

|A {1, 2, 3, 4}| = |Σ {6}|3 |Σ {1, 2, 3, 4, 6}| , (34)

all leading principal minors of the matrix A are positive,
which means that the matrixA is positive definite accord-
ing to the Sylvester criterion [12]. Note that the elements
of this matrix (similar to the elements of the matrix B
given below in (41)) do not depend on the second-order
beam moments involving the longitudinal variable σ.

With the help of the positive definite quadratic form
ΨA associated with the matrix A, the evolution of the
1D projected emittances through the dispersive part of
the correction system can be expressed as follows:

ε2x ← ε2x + ΨA(r
x
51
− r51, r

x
52
− r52, 0, 0)

− ΨA(r
x
51, r

x
52, 0, 0), (35)

where

rx51 =
〈pxε〉
〈ε2〉 , rx52 = −〈xε〉〈ε2〉 . (36)

ε2y ← ε2y + ΨA(0, 0, r
y
53
− r53, r

y
54
− r54)

− ΨA(0, 0, r
y
53
, ry

54
), (37)

where

ry
53

=
〈pyε〉
〈ε2〉 , ry

54
= −〈yε〉〈ε2〉 . (38)

ε2σ ← ε2σ

+ΨA(r
σ
51
− r51, r

σ
52
− r52, r

σ
53
− r53, r

σ
54
− r54)

−ΨA(r
σ
51, r

σ
52, r

σ
53, r

σ
54), (39)

where

A






rσ
51

rσ
52

rσ
53

rσ
54




 = 〈σε〉






〈xε〉
〈pxε〉
〈yε〉
〈pyε〉




− 〈ε2〉






〈xσ〉
〈pxσ〉
〈yσ〉
〈pyσ〉




 . (40)

One sees from the propagation rules obtained that while
the beam tilts and the beam energy chirp can influence
the evolution of the longitudinal projected emittance εσ
through the solution of the equation (40), they do not
enter the formulas for the evolution of the transverse pro-
jected emittances εx and εy at all.

C. Transformation of 2D transverse projected

emittance and transverse coupling terms

In the previous subsection the evolution of all three
1D projected emittances was expressed using the single
quadratic form ΨA. Unfortunately, to describe the evo-
lution of the 2D transverse projected emittance another,
different from ΨA, quadratic form is needed. We denote
this form ΨB and associated it with the positive definite
symmetric matrix

B = |(−J6ΣJ6) {1, 2, 3, 4, 5}|
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·
[
(−J6ΣJ6) {1, 2, 3, 4, 5}

]−1 {1, 2, 3, 4} . (41)

With the help of this new quadratic form the evolution of
the 2D transverse projected emittance can be expressed
as follows:

ε2t ← ε2t

+ ΨB(r
x
51
− r51, r

x
52
− r52, r

y
53
− r53, r

y
54
− r54)

− ΨB(r
x
51
, rx

52
, ry

53
, ry

54
), (42)

where rx
51
, rx

52
, ry

53
, and ry

54
are the same as given by the

formulas (36) and (38).
Note that though one may accept without additional

questions the fact that the right hand sides of the formu-
las (35) and (37) are the second order polynomials with
respect to the lattice dispersions, the same property of
the right hand side of the formula (42) might be some-
what more surprising. For example, let us assume that
the beam matrix is transversely uncoupled at the exit of
the dispersive part of the correction system. Then the
right hand side of the formula (42) must coincide with
the product of the right hand sides of the formulas (35)
and (37) and therefore should contain a polynomial of the
fourth order with respect to the variables r51, r52, r53,
and r54. Because the formula (42) does not provide such
a possibility, our assumption must be wrong and, during
the passage of the dispersive part of the correction sys-
tem, the coupling between transverse degrees of freedom
in the beam matrix must be created. This coupling is
described by the following propagation rules

〈xy〉 ← 〈xy〉 + 〈yε〉r52 + 〈xε〉r54 + 〈ε2〉r52r54, (43)

〈xpy〉 ← 〈xpy〉+ 〈pyε〉r52 − 〈xε〉r53 − 〈ε2〉r52r53, (44)

〈ypx〉 ← 〈ypx〉 − 〈yε〉r51 + 〈pxε〉r54 − 〈ε2〉r51r54, (45)

〈pxpy〉 ← 〈pxpy〉 − 〈pyε〉r51 − 〈pxε〉r53 + 〈ε2〉r51r53,(46)

and, as it can be shown by direct calculations, it really
does not allow to the terms of the order higher than two
with respect to the variables r51, r52, r53, and r54 to
appear in the right hand side of the formula (42).

D. Transformation of transverse to longitudinal

coupling terms

Transformation of the transverse to longitudinal cou-
pling terms in accordance with the transport rule (26)
produces the following changes in the beam dispersions






〈xε〉
〈pxε〉
〈yε〉
〈pyε〉




←






〈xε〉
〈pxε〉
〈yε〉
〈pyε〉




+ 〈ε2〉J4






r51
r52
r53
r54




 , (47)

and the following changes in the beam tilts






〈xσ〉
〈pxσ〉
〈yσ〉
〈pyσ〉




←






〈xσ〉
〈pxσ〉
〈yσ〉
〈pyσ〉




+ r56






〈xε〉
〈pxε〉
〈yε〉
〈pyε〉






+ (Σ {1, 2, 3, 4}+ λJ4)






r51
r52
r53
r54




 , (48)

where the parameter λ is defined by the expression

λ =






〈xε〉
〈pxε〉
〈yε〉
〈pyε〉






⊤




r51
r52
r53
r54




+ 〈σε〉+ r56〈ε2〉. (49)

E. Transformation of longitudinal moments

The transformation of the beam energy chirp 〈σε〉 is
given by the above introduced parameter λ

〈σε〉 ← λ, (50)

and for the description of the change in the rms bunch
length squared 〈σ2〉 the new quadratic form is needed
again. This time it must be quadratic form not in four
but in five variables, because as far as the evolution of
the projected emittances does not depend from the r56
matrix coefficient, the evolution of the bunch length cer-
tainly does. So, let us introduce quadratic form ΨE as-
sociated with the positive definite matrix

E = Σ {1, 2, 3, 4, 6} (51)

and represent the evolution of 〈σ2〉 in the form

〈σ2〉 ← 〈σ2〉+ΨE(r
s
51 − r51, r

s
52 − r52,

rs
53
− r53, r

s
54
− r54, r

s
56
− r56)

−ΨE(r
s
51
, rs

52
, rs

53
, rs

54
, rs

56
), (52)

where

Σ {1, 2, 3, 4, 6}








rs
51

rs52
rs
53

rs54
rs
56








= −








〈xσ〉
〈pxσ〉
〈yσ〉
〈pyσ〉
〈σε〉








. (53)

Note that, if for some reasons the variation of the r56
coefficient is not allowed and it can be treated as a given
parameter, then one can return to the usage of quadratic
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form in four variables and rearrange the formulas (52)
and (53) as follows:

〈σ2〉 ← 〈σ2〉+ 2 〈σε〉 r56 + 〈ε2〉 r256

+ΨE(r̃
s
51
− r51, r̃

s
52
− r52, r̃

s
53
− r53, r̃

s
54
− r54, 0)

−ΨE(r̃
s
51
, r̃s

52
, r̃s

53
, r̃s

54
, 0), (54)

where now

Σ {1, 2, 3, 4}






r̃s
51

r̃s52
r̃s
53

r̃s54






= −






〈xσ〉
〈pxσ〉
〈yσ〉
〈pyσ〉




− r56






〈xε〉
〈pxε〉
〈yε〉
〈pyε〉




 . (55)

IV. OPTIMAL SOLUTION FOR

MINIMIZATION OF TRANSVERSE PROJECTED

EMITTANCES AND ITS PROPERTIES

With the formulas developed in the previous section for
the emittance transport the problem of optimization of
transverse projected emittances by an appropriate choice
of the lattice dispersions becomes (at least from the the-
oretical point of view) fairly simple and straightforward.
For example, the formula (35) tell us that the change in
the horizontal projected emittance εx after the system
passage is the same for all lattice dispersions r51 and r52
belonging to the same level set

ΨA(r
x
51 − r51, r

x
52 − r52, 0, 0) = const ≥ 0. (56)

Because the function ΨA is a positive definite quadratic
form its level sets for const > 0 are ellipses all centered
at the same point

r51 = rx51, r52 = rx52 (57)

and contracting to this point as const→ 0. The level set

ΨA(r
x
51 − r51, r

x
52 − r52, 0, 0) = ΨA(r

x
51, r

x
52, 0, 0) (58)

plays a special role. It separates the lattice dispersions
which lead to the emittance increase from the lattice dis-
persions which provide emittance reduction or preserva-
tion. The level surface (58) is an ellipse if at least one
horizontal beam dispersion is nonzero at the correction
system entrance and it is a point coinciding with the
common center (57) of all ellipses (56) otherwise. In any
case there exists unique optimal choice (optimal solu-
tion) for the horizontal lattice dispersions which is given

by the equation (57) and which provides the largest pos-
sible reduction of the horizontal projected emittance εx
(the largest possible reduction is zero if both horizontal
beam dispersions are equal to zero).
By analogy, the optimal solution for the transport of

the vertical projected emittance εy is reached in the point

r53 = ry
53
, r54 = ry

54
, (59)

and the optimal solution for the transport of the com-
plete 2D transverse projected emittance εt is given by
the union of the solution for the horizontal motion (57)
and the solution for the vertical motion (59), which is a
very pleasant fact (in general, if the chosen lattice dis-
persions are different from the optimal solution, then the
reduction of both εx and εy does not guarantee the re-
duction of εt, and vice versa).
One sees that the values of the lattice dispersions re-

quired for the simultaneous minimization of all transverse
projected emittances are completely determined by the
values of the beam dispersions and the beam rms energy
spread, but, even if these quantities are unknown and
there is no appropriate diagnostics to measure them, the
projected emittances still can be optimized if there is a
possibility to measure the horizontal and vertical pro-
jected emittances downstream of the correction system.
In this situation, minimization of emittances can be done
iteratively (and independently for horizontal and vertical
degrees of freedom) employing one of the many available
effective algorithms for minimizing a convex quadratic
objective function of two variables.

A. Effect of the optimal solution on the beam

transport

The optimal solution for all four lattice dispersions r51,
r52, r53, and r54 can be written in the form






r51
r52
r53
r54




 =

1

〈ε2〉J4






〈xε〉
〈pxε〉
〈yε〉
〈pyε〉




 (60)

and therefore satisfies the orthogonality condition






〈xε〉
〈pxε〉
〈yε〉
〈pyε〉






⊤




r51
r52
r53
r54




 = 0. (61)

With the optimal choice of the lattice dispersions (60)
the beam dispersions are zeroed at the correction system
exit and the tilts are transformed according to the rule






〈xσ〉
〈pxσ〉
〈yσ〉
〈pyσ〉




←






〈xσ〉
〈pxσ〉
〈yσ〉
〈pyσ〉





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+
Σ {1, 2, 3, 4}J4 − 〈σε〉I4

〈ε2〉






〈xε〉
〈pxε〉
〈yε〉
〈pyε〉




 , (62)

where, as one sees, the dependence from the r56 ma-
trix coefficient presented in the formula (48) disappeared,
though no assumptions were made about this coefficient
and the optimal lattice dispersions (60) also do not de-
pend on it.
The transport of the transverse coupling terms is given

now by the formulas

〈xy〉 ← 〈xy〉 − 〈xε〉〈yε〉〈ε2〉 , (63)

〈xpy〉 ← 〈xpy〉 −
〈xε〉〈pyε〉
〈ε2〉 , (64)

〈ypx〉 ← 〈ypx〉 −
〈yε〉〈pxε〉
〈ε2〉 , (65)

〈pxpy〉 ← 〈pxpy〉 −
〈pxε〉〈pyε〉
〈ε2〉 , (66)

and one sees that if both, horizontal and vertical, beam
dispersion vectors are nonzero at the entrance, then the
interplay between them during the passage of the disper-
sive part of the correction system becomes a source of
the transverse coupling. This coupling could be removed
by adding to the correction system an appropriate set of
the skew quadrupoles and, therefore, the 1D transverse
projected emittances can be reduced even further.
In order to find better expressions for the reduction of

the transverse projected emittances than the expressions
which one can obtain by the direct substitution of the
optimal solution (60) into the emittance propagation for-
mulas, let us introduce positive definite quadratic forms
ΨC and ΨD associated with the positive definite matrices

C = |Σ {1, 2, 3, 4}| (Σ {1, 2, 3, 4})−1
(67)

and

D = −J4 (Σ {1, 2, 3, 4})J4, (68)

respectively. The advantage of these quadratic forms over
the quadratic forms ΨA and ΨB is that the elements of
their matrices C and D are functions of the transverse
beam moments only and do not depend on the beam
moments involving the longitudinal variable ε as do the
elements of the matrices A and B. Besides that

ΨD(u1, u2, 0, 0) = Ixcs(u1, u2), (69)

ΨD(0, 0, u3, u4) = Iycs(u3, u4), (70)

where

Ixcs(u1, u2) = 〈p2x〉u2

1 − 2 〈xpx〉u1u2 + 〈x2〉u2

2, (71)

Iycs(u3, u4) = 〈p2y〉u2

3 − 2 〈ypy〉u3u4 + 〈y2〉u2

4 (72)

are the familiar (but nonnormalized) horizontal and ver-
tical Courant-Snyder quadratic forms.
With the help of the quadratic forms ΨC and ΨD the

evolution of the transverse projected emittances for the
optimal choice of the lattice dispersions can be expressed
as follows:

ε2x ← ε2x −
1

〈ε2〉 ·ΨD(〈xε〉, 〈pxε〉, 0, 0)

= ε2x −
1

〈ε2〉 · I
x
cs(〈xε〉, 〈pxε〉), (73)

ε2y ← ε2y −
1

〈ε2〉 ·ΨD(0, 0, 〈yε〉, 〈pyε〉)

= ε2y −
1

〈ε2〉 · I
y
cs(〈yε〉, 〈pyε〉), (74)

ε2t ← ε2t −
1

〈ε2〉 ·ΨC(〈xε〉, 〈pxε〉, 〈yε〉, 〈pyε〉), (75)

and for the longitudinal projected emittance one obtains:

ε2σ ← ε2σ +
1

〈ε2〉 ·
[
ΨD(dσx − 〈xε〉, dσpx

− 〈pxε〉,

dσy − 〈yε〉, dσpy
− 〈pyε〉)−ΨD(dσx , d

σ
px
, dσy , d

σ
py
)
]

, (76)

where






dσx
dσpx

dσy
dσpy







= 〈ε2〉J4 (Σ {1, 2, 3, 4})−1






〈xσ〉
〈pxσ〉
〈yσ〉
〈pyσ〉




 . (77)

One sees that the influence of the energy chirp 〈σε〉 on
the propagation of the longitudinal projected emittance,
which was presented in the formula (39) through the solu-
tion of the equation (40), is now canceled. As concerning
the transport of the energy chirp itself, it is simplified
owing to the orthogonality condition (61) to the form

〈σε〉 ← 〈σε〉+ r56〈ε2〉, (78)

and the propagation formula for the rms bunch length
squared 〈σ2〉, if needed, can be obtained using the equa-
tions (76) and (78), and the relation

〈σ2〉 = ε2σ + 〈σε〉2
〈ε2〉 . (79)
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B. Transversely uncoupled beam at the correction

system entrance

The formulas (75) and (76) for the transport of the 2D
transverse projected emittance εt and the longitudinal
projected emittance εσ can be further simplified if one
assumes that the conditions (17) hold and the transverse
degrees of freedom in the beam matrix Σ are decoupled
from each other at the correction system entrance. With
this assumption matrices C and D become block diago-
nal, quadratic forms ΨC and ΨD get representations

ΨD(u1, u2, u3, u4) = Ixcs(u1, u2) + Iycs(u3, u4), (80)

ΨC(u1, u2, u3, u4) = ε2yI
x
cs(u1, u2) + ε2xI

y
cs(u3, u4), (81)

and, as the result, one obtains

ε2t ← ε2t

− 1

〈ε2〉 ·
[
ε2yI

x
cs (〈xε〉, 〈pxε〉) + ε2xI

y
cs (〈yε〉, 〈pyε〉)

]
, (82)

ε2σ ← ε2σ

+
1

〈ε2〉I
x
cs(〈xε〉, 〈pxε〉) +

1

〈ε2〉I
y
cs(〈yε〉, 〈pyε〉)

+ 2

∣
∣
∣
∣

〈xσ〉 〈xε〉
〈pxσ〉 〈pxε〉

∣
∣
∣
∣
+ 2

∣
∣
∣
∣

〈yσ〉 〈yε〉
〈pyσ〉 〈pyε〉

∣
∣
∣
∣
. (83)

Note that the formula (83) also can be obtained from
equations (63)-(66), (73)-(74) and conditions (17) using
conservation of the Lysenko invariant [13, 14]

Ils = ε2x + ε2y + ε2σ + 2

∣
∣
∣
∣

〈xy〉 〈xpy〉
〈ypx〉 〈pxpy〉

∣
∣
∣
∣

+ 2

∣
∣
∣
∣

〈xσ〉 〈xε〉
〈pxσ〉 〈pxε〉

∣
∣
∣
∣
+ 2

∣
∣
∣
∣

〈yσ〉 〈yε〉
〈pyσ〉 〈pyε〉

∣
∣
∣
∣

(84)

during symplectic transport of the beam matrix.

V. MISCELLANEOUS

A. Optimization of longitudinal projected

emittance

As the formulas (39) and (40) show, the problem of
optimization of the longitudinal projected emittance by
the proper choice of the lattice dispersions (when consid-
ered alone) has the same geometry as the corresponding
problems for the transverse projected emittances. The

resulting εσ increase or reduction depends on the posi-
tioning of the chosen lattice dispersions r51, r52, r53, and
r54 with respect to the four dimensional ellipsoid

ΨA(r
σ
51 − r51, r

σ
52 − r52, r

σ
53 − r53, r

σ
54 − r54)

= ΨA(r
σ
51
, rσ

52
, rσ

53
, rσ

54
), (85)

and the optimal solution is obviously reached in the point

r51 = rσ
51
, r52 = rσ

52
, r53 = rσ

53
, r54 = rσ

54
. (86)

But, in contrast to the transport of the transverse pro-
jected emittances, the longitudinal projected emittance
can be reduced even when all beam dispersions are equal
to zero at the correction system entrance, because (ac-
cording to the equation (40)) the optimal solution (86)
depends also on the values of the beam tilts.
It is outside of the purpose of this paper to make a

detailed study of the influence of the solution (86) on the
propagation of the other beam parameters and let us only
note that it makes the vector of the beam dispersions and
the vector of the beam tilts linearly dependent (parallel)
at the exit of the dispersive part of the correction sys-
tem. It comes from the fact that the choice of the lattice
dispersions according to the equations (86) gives us the
following transport rule for the beam dispersions






〈xε〉
〈pxε〉
〈yε〉
〈pyε〉




←






〈xε〉
〈pxε〉
〈yε〉
〈pyε〉




 + 〈ε2〉J4






rσ51
rσ
52

rσ53
rσ
54




 , (87)

and the following transport rule for the beam tilts






〈xσ〉
〈pxσ〉
〈yσ〉
〈pyσ〉




←

λσ

〈ε2〉











〈xε〉
〈pxε〉
〈yε〉
〈pyε〉




 + 〈ε2〉J4






rσ
51

rσ
52

rσ
53

rσ
54









 ,(88)

where the parameter λσ is defined by the expression

λσ =






〈xε〉
〈pxε〉
〈yε〉
〈pyε〉






⊤




rσ
51

rσ52
rσ
53

rσ
54




+ 〈σε〉+ r56〈ε2〉. (89)

Thus, what is important for our further considerations,
both solutions (60) and (86) zero the last two terms in
the Lysenko invariant (84) at the exit of the correction
system.

B. Conditions for simultaneous optimization of

transverse and longitudinal projected emittances

With our approach, the problem of the simultaneous
optimization of the selected projected emittances by a
proper choice of the lattice dispersions becomes a geo-
metrical problem. For example, emittances εx and εσ
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can be decreased simultaneously if and only if the sur-
faces (85) and (58) are non-degenerate (i.e. they are not
points but real ellipsoids) and the projection of the inner
points of the ellipsoid (85) onto the plane r53 = r54 = 0
has nonempty intersection with the set of the inner points
of the ellipse (58).
The optimal solutions (60) and (86) will be equal to

each other and therefore the maximal possible reductions
will be achieved for all, horizontal and vertical, projected
emittances simultaneously, if and only if the following
relations between the elements of the beam matrix Σ
hold





〈xσ〉
〈pxσ〉
〈yσ〉
〈pyσ〉




 =

〈σε〉I4 − Σ {1, 2, 3, 4}J4
〈ε2〉






〈xε〉
〈pxε〉
〈yε〉
〈pyε〉




 .(90)

We will discuss these relations in more detail in the fol-
lowing subsections and now let us only point out that
the requirement for solution (60) to coincide with the
first four components of the vector

(rs51, r
s
52, r

s
53, r

s
54, r

s
56)

⊤, (91)

which is defined in the equation (53), gives us the same
relation (90) and also fixes the choice for the r56 coeffi-
cient to the value

r56 = −〈σε〉〈ε2〉 , (92)

which corresponds to the complete chirp removal at the
correction system exit. Note that the choice of the lattice
dispersions (including setting of the r56 coefficient) to be
equal to the values (91) minimizes the rms bunch length
squared 〈σ2〉 after the correction system passage.

C. Possibilities for zeroing beam tilts

According to the relations (48) and (49) the beam tilts
can be zeroed at the correction system exit by an appro-
priate choice of the correction lattice dispersions if and
only if the system of equations

(Σ {1, 2, 3, 4}+ λJ4)






r51
r52
r53
r54






= −






〈xσ〉
〈pxσ〉
〈yσ〉
〈pyσ〉




− r56






〈xε〉
〈pxε〉
〈yε〉
〈pyε〉




 , (93)

where

λ =






〈xε〉
〈pxε〉
〈yε〉
〈pyε〉






⊤




r51
r52
r53
r54




+ 〈σε〉+ r56〈ε2〉 (94)

has at least one real solution with respect to the variables
r51, r52, r53, r54, and r56. In general, it is a nonlinear
system. Nevertheless, as we prove below, it always has
at least one real solution for every fixed real value of
the r56 coefficient, which therefore can be treated as a
parameter. To show this, let us assume first that λ in
the system (93) is not simply a notation introduced for
brevity, but is an additional real-valued variable, and let
us consider an extended system consisting of equations
(93) and (94). Now we want to apply the method of
successive elimination of variables to the system obtained
and with this purpose in mind let us observe that

|Σ {1, 2, 3, 4}+ λJ4| = |Σ {1, 2, 3, 4}J4 − λI4| . (95)

Because the matrix Σ {1, 2, 3, 4}J4 is similar to the non-
degenerated skew symmetric matrix

(Σ {1, 2, 3, 4})1/2J4(Σ {1, 2, 3, 4})1/2 (96)

which has only pure imaginary nonzero eigenvalues, the
right hand side of the equality (95) is nonzero for all real
values of λ and therefore the matrix

Σ {1, 2, 3, 4}+ λJ4 (97)

is invertible. It means that for every real value of λ equa-
tions (93) can be solved with respect to the variables r51,
r52, r53, r54 and the solution is unique. Substituting this
solution into equation (94) and multiplying both sides of
the result by

|Σ {1, 2, 3, 4}+ λJ4| = λ4

− 1

2
tr
[

(Σ {1, 2, 3, 4}J4)2
]

λ2 + |Σ {1, 2, 3, 4}| , (98)

we obtain the polynomial equation of the fifth degree
with respect to the single variable λ (consistency equa-
tion) and, because the order of this equation is odd, it
always must have at least one real root.
So we proved that the zeroing of the beam tilts by an

appropriate choice of the correction lattice dispersions is
always possible. At least one solution can be found for
all real values of the r56 matrix coefficient and, for the
fixed r56 value, the number of solutions can vary from
one to five.
To be more specific, let us consider a numerical ex-

ample and take as a beam matrix the positive definite
matrix

Σ =










1 0 0 0 0 2
0 1 0 0 2 0
0 0 1 0 0 0
0 0 0 1 0 0
0 2 0 0 6 0
2 0 0 0 0 6










(99)

in which the vertical degree of freedom is decoupled from
the two others. For this matrix Σ the solution of the
equation (93) with λ and r56 taken as parameters gives
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FIG. 1: Effect of the beam tilts removal on the horizontal
projected emittance εx as a functions of the r56 coefficient.

r51 = −2(r56 − λ)

1 + λ2
, r52 = −2(1 + r56λ)

1 + λ2
, (100)

r53 = r54 = 0, (101)

and the fifth order consistency equation for the determi-
nation of the real values of λ

(
λ2 + 1

) (
λ3 − 6 r56 λ

2 − 3λ− 2 r56
)
= 0 (102)

reduces to the cubic equation

λ3 − 6 r56 λ
2 − 3λ− 2 r56 = 0. (103)

The discriminant of this cubic equation

∆ = 108
[
1− (2 r56)

2 − (2 r56)
4
]

(104)

is positive inside the interval

|r56| <
1

2

√√
5− 1

2
≈ 0.393, (105)

is equal to zero at the interval endpoints and is negative
outside, which corresponds to the existence of three, two
and one distinct real roots, respectively.
The effect of the zeroing of the beam tilts in the matrix

(99) on projected emittances is presented at figures 1
and 2, where the resulting emittances are shown for all
possible real solutions of the equation (103). One has to
compare these emittances with the emittances εx = 1,
εσ = 6 of the original beam matrix (99) and with the
emittances εx ≈ 0.577, εσ ≈ 5.354 which can be obtained
after removal of the beam dispersions.

D. Conditions for complete transverse to

longitudinal decoupling

The example considered in the previous subsection tells
us that zeroing of the beam tilts does not necessarily im-
plies reduction of the transverse projected emittances.
The situation, of course, will be different if zeroing of the

-1.0 -0.5 0.0 0.5 1.0
r56

3.5

4.0

4.5

5.0

5.5

6.0
¶
Σ

FIG. 2: Effect of the beam tilts removal on the longitudinal
projected emittance εσ as a functions of the r56 coefficient.

beam tilts will simultaneously remove the beam disper-
sions, i.e. if the longitudinal and transverse degrees of
freedom in the beam matrix Σ will be decoupled from
each other at the correction system exit. The necessary
and sufficient conditions for the complete transverse to
longitudinal decoupling can be obtained by the require-
ment that the solution for the lattice dispersions (60)
which removes the beam dispersions also zeros the beam
tilts, and substituting (60) into the equations (93) and
(94) we obtain (without big surprise) again the equations
(90), which were derived as conditions for the simultane-
ous minimization of all projected emittances.

The most difficult question, for which we do not have
any good answers yet, is the question of the physical
interpretation of the conditions (90). It is clear, for ex-
ample, that if the distortions to the initially uncoupled
beam matrix Σ were produced by a magnetostatic sys-
tem, then the decoupling also can be done by a mag-
netostatic system, but how such beam matrices can be
described more intuitively and what are the other pos-
sibilities? Currently, as more physical example in the
comparison with the conditions (90) description, we only
can state that all beam matrices with equal eigenemit-
tances (definition and properties of eigenemittances can
be found in [15, 16]) always can be decoupled by a mag-
netostatic system. It follows from the observation that
the conditions (90) are equivalent to the property of the
matrix (ΣJ6)

2 to have zeros in the positions

(ΣJ6)
2 =










∗ ∗ ∗ ∗ 0 ∗
∗ ∗ ∗ ∗ 0 ∗
∗ ∗ ∗ ∗ 0 ∗
∗ ∗ ∗ ∗ 0 ∗
∗ ∗ ∗ ∗ ∗ ∗
0 0 0 0 ∗ ∗










, (106)

and from the fact proven in [17] that if the matrix Σ has
all eigenemittances equal to each other, then the matrix
(ΣJ6)

2 is a diagonal matrix.
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E. Illustrative example

We have seen that if in the beam matrix Σ there are
nonzero correlations between energy of particles and their
transverse positions and momenta, then the values of the
transverse projected emittances can be reduced, but how
these reduced emittances are related to the emittances
of the particle beam before it was damaged by the CSR
wake (or by some other effects) remains, of course, com-
pletely unclear. So, let us consider an example which
would give at least some insights into this problem.
Let us assume that we have in the beginning a particle

beam with the beam matrix Σ in which all degrees of
freedom are decoupled from each other

Σ =










〈x2〉 〈xpx〉 0 0 0 0
〈xpx〉 〈p2x〉 0 0 0 0
0 0 〈y2〉 〈ypy〉 0 0
0 0 〈ypy〉 〈p2y〉 0 0
0 0 0 0 〈σ2〉 〈σε〉
0 0 0 0 〈σε〉 〈ε2〉










, (107)

and then this beam passes through a beamline described
by the matrix

T =










1 0 0 0 0 0
0 1 0 0 a 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
a 0 0 0 b 1










, a 6= 0. (108)

Our choice of the matrix T as a source of the growth
of the projected emittances and also as a source of the
transverse to longitudinal coupling is motivated by the
following reasons: The matrix T , from one side, is sym-
plectic and therefore all changes which it introduces are
reversible, but it is not the matrix of a magnetostatic
system and it is interesting to see up to what extend the
original projected emittances of the matrix (107) can be
recovered afterwards by a magnetostatic correction sys-
tem. From the other side, this matrix, similar to the
wake field action, provides transverse kick and energy
loss to the particle depending on its longitudinal posi-
tion within the bunch. Note that if parameters a and
b in this matrix are related to each other in some spe-
cial way, then the matrix T becomes equal to the matrix
of the thick-lens horizontally deflecting cavity when it is
sandwiched between two drifts of equal negative lengths
(see, for example, [18]).
The passage of the beam matrix (107) through the

system described by the matrix T gives equal increase
of horizontal and longitudinal projected emittances (the
vertical degree of freedom remains decoupled from the
others and is ignored in the following considerations)

ε2x ← ε2x + a2 〈x2〉 〈σ2〉, (109)

ε2σ ← ε2σ + a2 〈x2〉 〈σ2〉, (110)

and generates horizontal to longitudinal coupling terms
(beam dispersions and beam tilts)

〈xε〉 ← a 〈x2〉, (111)

〈pxε〉 ← a
(
〈xpx〉 + 〈σε〉 + b 〈σ2〉

)
, (112)

〈xσ〉 ← 0, (113)

〈pxσ〉 ← a 〈σ2〉. (114)

The rms bunch length squared 〈σ2〉 is conserved, but the
rms energy spread evolves according to the formula

〈ε2〉 ← æ, (115)

where

æ = 〈ε2〉 + a2 〈x2〉 + 2 b 〈σε〉 + b2 〈σ2〉 > 0, (116)

and the beam energy chirp also experiences some change

〈σε〉 ← 〈σε〉 + b 〈σ2〉. (117)

The equations (90), when applied to the matrix TΣT⊤,
are reduced to the single relation

εx = εσ (118)

among the elements of the matrix Σ. It means that
both projected emittances can be recovered by a mag-
netostatic correction (and also the beam matrix can be
decoupled) if and only if horizontal and longitudinal pro-
jected emittances were equal in the beginning before the
passage through the system described by the matrix T .
But let us see what can be done if they were not. So, as
the next step, let the beam pass through the dispersive
part of the downstream correction system and, because
we would like to express the final results using the ele-
ments of the original matrix (107), let us consider the
transformation

Σ← (R2T )Σ (R2T )
⊤, (119)

instead of the transformation (26).
The formulas (35) and (39) for the transport of the

horizontal and longitudinal projected emittances, when
adapted to the transport equation (119), can be rewritten
as follows:

ε2x ← ε2x + ΨF (r
x
51
− r51, r

x
52
− r52) − Ψx

F , (120)

where

rx51 = a
〈xpx〉+ 〈σε〉+ b 〈σ2〉

æ
, (121)

rx
52

= −a 〈x
2〉
æ

, (122)
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and

Ψx
F = −a2〈x2〉

æ

(
ε2σ − ε2x

)
. (123)

ε2σ ← ε2σ + ΨF (r
σ
51 − r51, r

σ
52 − r52) − Ψσ

F , (124)

where

rσ
51

= a

(
〈σε〉+ b 〈σ2〉

)
ε2x + 〈xpx〉 ε2σ

κ

, (125)

rσ
52

= −a 〈x
2〉 ε2σ
κ

, (126)

Ψσ
F =

a2〈x2〉 ε2σ
κ

(
ε2σ − ε2x

)
, (127)

and

κ = a2〈x2〉
(
ε2σ − ε2x

)
+æ ε2x > 0. (128)

Note that in the above formulas ΨF is a positive def-
inite quadratic form in two variables obtained from the
quadratic form ΨA, and the exact expression for the 2×2
matrix associated with the quadratic form ΨF is unim-
portant for the further consideration.
From the equation (120) one sees that the original hor-

izontal projected emittance εx can be recovered if and
only if

Ψx
F ≥ 0 ⇔ εx ≥ εσ, (129)

and the condition for the recovering of εσ coming from
the equation (124) is

Ψσ
F ≥ 0 ⇔ εσ ≥ εx. (130)

So, as one sees, if εx 6= εσ, then only the larger of the
two can be repaired and even can be further reduced,
but only on expense of the increase of the other. Never-
theless, even if the horizontal (or longitudinal) projected
emittance cannot be recovered to its original value, the
distorted value (109) (or (110)) always can be reduced,
as follows from the theory developed in this paper.
Let us now consider three extreme cases: solution for

the lattice dispersions which minimizes εx, solution which
minimizes εσ and solution which zeros beam tilts. Even
before making any calculations, one can state that in all
these three cases the sum

ε2x + ε2σ (131)

will be conserved, which follows from the preservation of
the Lysenko invariant (84) and the fact that all these so-
lutions make the vector of the beam dispersions and the
vector of the beam tilts linearly dependent at the correc-
tion system exit. Note also that due to the conservation
of the sum (131) and due to the extremum properties of
the solutions which minimize projected emittances, any
solution which zeros beam tilts will give the final value
of the transverse projected emittance which must lie be-
tween the values given by the solution which zeros beam

dispersions and the solution which minimizes longitudi-
nal projected emittance.
The setting of the lattice dispersions to the values

r51 = rx
51

and r52 = rx
52

which minimize the horizontal
projected emittance εx gives us

ε2x ← ε2x +
a2〈x2〉

æ

(
ε2σ − ε2x

)
, (132)

ε2σ ← ε2σ −
a2〈x2〉

æ

(
ε2σ − ε2x

)
, (133)

and minimization of the longitudinal projected emittance
εσ by the setting r51 = rσ

51
and r52 = rσ

52
produces

ε2x ← ε2x +
a2〈x2〉 ε2σ

κ

(
ε2σ − ε2x

)
, (134)

ε2σ ← ε2σ −
a2〈x2〉 ε2σ

κ

(
ε2σ − ε2x

)
. (135)

Unfortunately, it is practically impossible to find the gen-
eral solutions for the lattice dispersions which are re-
quired for the zeroing of the beam tilts in the analytical
form, and we will give it only for the partial case when
r56 = b = 0. With this assumption the solution for the
zeroing of the beam tilts is unique and is given by the
following formulas

r51 =
a〈σ2〉 (〈xpx〉+ 〈σε〉)

κ
, (136)

r52 = −a〈x2〉〈σ2〉
κ

, (137)

where

κ = ε2x + a2〈x2〉〈σ2〉 + 〈σε〉2, (138)

and the resulting formulas for the transport of the pro-
jected emittances are

ε2x ← ε2x +
a2〈x2〉〈σ2〉

κ

(
ε2σ − ε2x

)
, (139)

ε2σ ← ε2σ −
a2〈x2〉〈σ2〉

κ

(
ε2σ − ε2x

)
. (140)

One can check that while for a 6= 0 the result of (132)
is always smaller than the result of (109) (as expected),
the values produced by the formulas (134) and (139) for
εx 6= εσ can reduce the distorted emittance (109) only
under specific conditions.
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