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Abstract
The problem of an efficiency increase of an FEL amplifier is nbgreat practical importance. Technique
of undulator tapering in the post-saturation regime is useithe existing x-ray FELs LCLS and SACLA
[1,12], and is planned for use at the European XFEL, Swiss FiEld, PAL XFEL [3+-5]. There are also
discussions on the future of high peak and average power Kilscientific and industrial applications.
In this paper we perform detailed analysis of the taperirgtesies for high power seeded FEL ampilifiers.

Application of similarity techniques allows us to derivevarsal law of the undulator tapering.
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INTRODUCTION

Efficiency of FEL amplifier with untapered undulator is detingy the value of the FEL pa-
rameterp. Application of the undulator taperingl [6] allows to incseaconversion efficiency to
rather high values. In the framework of the one-dimensitmabry the status of the problem of
tapering has been settled, and it is generally accepteatiamum law of the undulator tapering
is quadratic with the linear correction for optimizationtbé particle’s capture in the decelerating
potential [7+-14]. Similar physical situation occurs in &L amplifier with waveguide with small
waveguide parameter. In this case radiation is confined tvélwaveguide. Physical parameters
of FEL amplifiers operating in infrared, visible, and x-ragpwelength range are such that these
devices are described in the framework of three dimensibtealy with an “open” electron beam,
i.e. physical case of pure diffraction in a free space. I8 t@se diffraction of the radiation is
essential physical effect influencing optimization of thpdring process. Discussions and studies
on optimum law of the undulator tapering in 3D case are in tlogess for more than 20 years.
Our previous studies were mainly driven by occasional datmns of perspective FEL systems
for high power scientific (for instance, FEL based - collider ) and industrial applications (for
instance, for isotope separation, and lithography|[15y-T'fjeir parameter range corresponded to
the limit of thin electron beam (small value of the diffractiparameter). In this case linear undu-
lator tapering works well from almost the very beginning][1Comprehensive study devoted to
the global optimization of tapered FEL amplifier with “opeslectron beam has been presented
in [9]. It has been shown that tapering law should be lineatHe case of thin electron beam, op-
timum tapering at the initial stage should follow quadralependence, and tapering should start
approximately two field gain length before saturation. Neawgvof interest to the undulator ta-
pering came with x-ray free electron lasers. It is used nobonty as demonstration tool [20], but
as a routine tool at operating x-ray FEL facilities LCLS am&CRA [1, 2]. Practical calculations
of specific systems yielded in several empirical laws usitfigrént polynomial dependencies,
application of tricks with detuning jumps, etc (seel [18, 48 references therein).

In this paper we perform global analysis of the parametecespd seeded FEL amplifier and

derive universal law of the undulator tapering defined byathky diffraction parameter.



BASIC RELATIONS

We consider axisymmetric model of the electron beam. It ssiaeed that transverse distribu-
tion function of the electron beam is Gaussian, so rms tenss\size of matched beanvis= \/¢/3
\Wheree = ¢,/v is rms beam emittance, is relativistic factor, and is focusing beta-function.
In the following we consider rectified case of the “cold” éfec beam and neglect space charge
effects. Under this assumptions the FEL amplifier is desecriby the diffraction parametées

[14], and detuning parametér:

B =2Tcw/c, C=cr, (1)

wherel’ = [[w?62A2,/(Ixc?y2y)]"? is the gain parametef; = 27 /A, —w/(2c72) is the detuning
of the electron with the nominal enerd@y. In the following electron energy is normalized as
P = (E—Ey)/(pEy), wherep = 72T /w is the efficiency parameter (note that it differs from 1-D
definition by the facto3'/3 [14]). The following notations are used hetkis the beam current,
w = 2mc/ X is the frequency of the electromagnetic walller= Ks/7, Kims iS the rms undulator
parametery;? = y72 + 62, k, = 27/ ), is the undulator wavenumbei, = 17 kA is the Alfven
current,Ay; = 1 for helical undulator andl;; = Jo(K2,./2(1+ K2,.)) — Ji(K2,../2(1+ K2..))
for planar undulator. Herd, and.J; are the Bessel functions of the first kind.

Equations, describing motion of the particles in the poodw®tive potential well of electro-

magnetic wave and undulator get simple form when writtenrdownormalized form (see, e.g.

[14]):

AW dP
dz dz
wherez = I'z, andU and ¢y are amplitude and phase of effective potential. Energy ghan

=C+P,

= U cos(¢y + V), (2)

of electrons is small in the exponential stage of amplifaati® < 1, and process of electron
bunching in phas& lasts for long distance;, > 1. Situation changes drastically when electron
energy changé approaches to the unity. The change of phase on the scalé of 1 becomes

to be fast, particles start to slip in phagewhich leads to the debunching of the electron beam
modulation, and growth of the radiation power is saturatgeration. Undulator tapering [6], i.e.
adjustment of the detuning according to the energy lossesfieins,C'(3) = —P(%), allows to

keep synchronism of electrons with electromagnetic wadkierease output power.



Radiation of modulated electron beam

FEL radiation is coherent radiation of the electron beamctvlis modulated at the resonance
wavelength during amplification process. It is reasonalelee io remember properties of the
radiation of the modulated electron beam. Radiation podweranlulated beam in helical undulator

is given by [21]:

w02wia? 2 1 4AN?
p = s~ 07n" t _ N1 o 3
dnc? {MC an <2N) +A (4N2 n 1)} ’ 3)
where a;, is amplitude of modulation of the electron beam currehtz(t) = Iy[1 +

aim cosw(z/v, — t)]), and N = ko?/z is Fresnel number. We note here that expression (3) is
a crucial element for understanding the optimum law of thdulator tapering. Indeed, in the
deep tapering regime some fraction of the particles is &dpp the regime of coherent decelera-
tion. Thus, beam modulation is fixed, and asymptoticallyatoin power should be described by
3). One can easily find that both asymptotes of undulatartag discussed in the introductory
section: 1D model of (wide electron beam), and thin beam a$yta are well described by this
expression. Asymptote of wide electron beam correspontisde values of Fresnel numbat,

and it follows from [(3) that radiation power scales/asx 2. Asymptote of thin electron beam
corresponds to small values of the Fresnel Numeand radiation power becomes linearly pro-
portional to the undulator lengtl®, « z. Undulator tapering should adjust detuning according to
the energy loss by electrons, and we find that tapering lawldhx® quadratic for the case of wide

electron beam(’ x —P  z2, and linear - for the case of thin electron bedyx —P 2.

GLOBAL OPTIMIZATION

We start with global optimization of the parameter spacenutations have been performed
with three-dimensional, time-dependent FEL simulatiodec&AST [22]. In the framework of
the accepted model (cold electron beam) both, field Bain /T" and efficiency in the saturation,
nsat = Psat/(pPy) Of the FEL amplifier tuned to exact resonance are defined byrtlyadiffraction
parameterB (see Fid.ll). Operation of the FEL amplifier before saturaisoalso defined by the
diffraction paramete3. One can clearly observe this from Hg. 2. Here longitudowardinate
is normalized to the gain length, = 1/(ReA/T"), and radiation power is normalized to the

saturation power. When amplification process enters neatistage, output power is function of



two parameters, diffraction parameter and reduced unoiulegth.

Now we come to the problem of efficiency increase with undaulgpering. First, we solve
this problem using approach of straightforward globalmptation. The function of optimization
is to find maximum of the output power at the undulator lengtteeding ten field gain lengths.
We divide undulator into many pieces and change detuningl pfexes independently. We apply
adiabatic (smooth) tapering, i.e. we prevent jumps of therdeg on the boundary of the sections.
Number of sections is controlled to be large enough to pethe result which is independent on
the number of sections. Then we choose taperingdd\®, ) corresponding to the maximum
power at the exit of the whole undulator. This global optiatian procedure has been performed
in the practically important range of diffraction paramettom B = 1 to B = 40. Results of this
global optimization are summarized in Fig. 3. Ratio of thenmalized power to the normalized
detuning gives us the value of trapping efficiency of elatdrimto the regime of coherent deceler-
ation, Ky,.qp = P/C. This universal function of diffraction parametBris plotted on Figill. We
find that optimum trapping factor approaches values of 809fe- 1, and falls down to 45% for
B = 40. It is interesting to notice that faB > 5 it scales roughly a$—'/3, similar to other FEL

characteristics like FEL gain and saturation efficiency.
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FIG. 1. Universal characteristics of FEL amplifier. Colodes are: black - trapping efficiendy;,,
for globally optimized undulator; red - fitting coefficient global optimizationa;l},; blue - FEL field gain

Re A/T'; green - FEL efficiency in the saturation,: = Psat/(pP).



UNIVERSAL TAPERING LAW

It comes from global optimization that in the whole parames@ge undulator tapering starts
from the value oAz ~ 2L, before saturation. This is not surprising if we look on EigCbtimum
undulator tapering should compensate loss of the electrergg which is in fact follows identical
parametric dependence on the gainfor all values of diffraction parameter. Next observations
come from the analysis of the beam modulation. The first easien is that the beam modulation
at the initial stage of the nonlinear regime follows simtt@havior for all diffraction parameters
(see Fig[#). This gives a hint that initial capture of thetighes is performed in a similar way
in the whole parameter range. The second observation ishtdeam modulation after trapping
of the electrons to the coherent deceleration process nsncanstant along the undulator, and it
is universal function of the diffraction parametBr(see Fig[4). This is gives us the main hint
which we discussed in the previous section. l.e., exclutiagping transition stage, we deal with
radiation of the modulated electron bedm (3). Main essehoarcstudy is to apply parametrical
dependence likd {3) to fit optimum detuning pattern in Eigu8hsthat condition of optimum

tapering is preserved:

R o 1 4N?
C = Ozmp<Z — Zo> {arctan (ﬁ) + Nln (m)] s (4)

with Fresnel numben fitted by N = 3,,,/(2 — %). Thus, we try to fit optimum detuning with
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FIG. 2: Evolution of the radiation power along the undulatantapered case). Color codes: black, red,

green curves correspond to the value of diffraction paraniet= 1, 10, and 40.



three parameters, a.,, andj,,. Here undulator length is normalized to the gain parameter,
z = I'z. One parameter of this fit, start of the undulator tapering firmly fixed by the global
optimization procedurey, = z,,; — 2L,. Another parameter of the problers,,, is rather well

approximated with the linear dependency on diffractiorapeater,5,,, = 8.5 x B. Remaining
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FIG. 3: Evolution along the undulator of the output powelli(sourves) and detuning (dashed curves) for
FEL amplifier with global optimization of the undulator tajmgy. Color codes: black, red, green curves

correspond to the value of diffraction parametee 1, 10, and 40.
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FIG. 4: Evolution along the undulator of the squared valuthefbeam bunching for FEL amplifier with
global undulator tapering. Color codes: black, red, greemweas correspond to the value of diffraction

paramete3 = 1, 10, and 40.
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FIG. 5: Evolution along the undulator of the output poweri¢(sourves) and detuning (dashed curves)
Color codes: black - FEL with global optimization of undaiatapering, red - fit with formuld {4), green -

fit with rational function [(b) Here the value of diffractiommmeter isB = 10.
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FIG. 6: Coefficients: (black line) and (red line) of the rational fit of the tapering laid (5).

parameterqy,, is plotted in Fig[lL. It is slow function of the diffraction ganeterB, and scales
approximately ta3'/3 as all other important FEL parameters presented irlJFig. tis Tapplication
of similarity techniques gives us an elegant way for gengaaametrical fit of such complicated
phenomena as optimum undulator tapering. Actually, acyuséthis fit is pretty good giving the
results for optimum detuning which are close to the globainopm. We illustrate with Figl 5

tapering law[(#) for specific value of the diffraction paraere3 = 10. Curves in black color are
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normalized power and detuning derived from global optirtiita Red dashed curve is detuning
C given by (@) withay,, = 3.6 (see Fig[lL, and,,, = 85 (according to relatiors,,, = 8.5 x B).
The solid curve in red color is normalized FEL efficiency slated using detunind {4). We see
good agreement of the fit with global optimization. The sam&ton occurs in the whole range
of traced values of diffraction parametBr Such a good agreement is not surprising since fitting
is based on very clean parametric dependencies, and nargnwlations just provided relevant

numerical factors.

Rational fit

Analysis of expressiori{4) shows that it has quadratic deégece inz for small values of:
(limit of wide electron beam), and linear dependencefor large values of (limit of thin electron
beam). Natural idea comes to try fit with rational functioniethsatisfies both asymptotes. The
simplest rational fit is:

A CL(,% - 20)2

C=Troa) )

Coefficientsa andb are universal functions of diffraction paramefey and are plotted in Fid.] 6.
Start of the undulator tapering is set to the valye= z,,, — 2L, suggested by the global opti-
mization procedure. Analysis of plots presented in Eig. &shthat fit of the universal tapering

law with rational also works well.

Trapping process

We finish our paper with illustration of the trapping proceBsipping efficiencys,, ., = P/C

is plotted in Fig[lL. Trapping efficiency falls down with d#ftion parameteB. This is natural
consequence of diffraction effects discussed earlier ésge[14], Chap. 4). For small value of the
diffraction parameteB gradient of the field of the beam radiation mode across tharelebunch

is smaller than for large values of diffraction parametetthie latter case we obtain situation when
electrons located in the core of the electron beam are alfedlg bunched while electrons on the
edge of the beam are not bunched yet. As a result, numberatfais with similar positions on
the energy-phase plane falls down with the growth of thealition parameter, as well as trapping

efficiency into the regime of coherent deceleration. Thpghag process is illustrated with phase
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FIG. 7: Phase space distribution of electrons (left coluammj Population of electrons in energy (right
column) at different stages of trapping process. Color saderespond to different location of the particles
in the beam (black - core of the beam, blue - edge of the beaerk #iffraction parameter B8 = 10. Top,

middle, and bottom plots correspond(to— zs.:)/L, = 2.5, 3.9 and 5.3, respectively (see Fib: 5).

space plots presented on Hig). 7 for the value of diffractiarameterB = 10. Top, middle, and
bottom plots correspond to the points(ef— z,,:)/L, = 2.5, 3.9 and 5.3 on Fifl 3. Different color
codes (black to blue) correspond to different locationshef particles across the beam (core to
edge. We see that particles in the core of bunch (black panesrapped most effectively. Nearly
all particles located in the edge of the electron beam (bbiuletp) leave stability region very soon.
Trapping process lasts for several field gain length whepptd particles become to be isolated

in the trapped energy band for which undulator tapering t8yaped further. For specific value of
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the diffraction parameteB = 10 it is not finished even at three field gain lengths after sétma
and non-trapped particles continue to populate low enengpftthe energy distribution (see right
column of Fig.L¥). Recently we have been invited to the disimmson the details of trapped
particles distribution in the phase space observed expeatatly at LCLS[23]. Graphs presented
in Fig.[7 give a hint on the origin of energy bands which arefed by non-trapped particles. This
is consequence of nonlinear dynamics of electrons leati@gegion of stability. Actually, similar

effect can be seen in the early 1D studies [12, 13].

DISCUSSION

In this paper we derived general law for optimum undulatpetang in the presence of diffrac-
tion effects[(4). Purified case of “cold” electron has beensidered. This allowed us to isolate
diffraction effects in the most clear form. It has been fotimat universal function of the undulator
tapering depends on the only diffraction parameter. Fihefuniversal tapering law with rational
function (3) requires fulfillment of two asymptotes of th@eaing law: quadratic at the initial
stage (wide beam asymptote), and linear for very long tagesection (thin beam asymptote). It
is essentially simple, and can be very convenient for oatnon of practical systems. Tapering
law is described with simple analytical expressions with fiiting coefficients. Extension of this
approach to practical life (including energy spread andtamgce) is pretty much straightforward
and will result in corrections to the fitting coefficients aut changing general law given by
(). The same law is evidently applicable to SASE FEL as wéh welevant correction of fitting

coefficients.
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