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Abstract

The renormalization factors of local quark-bilinear operators are computed non-perturbatively

for Nf = 3 flavors of SLiNC fermions, with emphasis on the various procedures for the chiral and

continuum extrapolations. The simulations are performed at a lattice spacing a = 0.074 fm, and

for five values of the pion mass in the range of 290-465 MeV, allowing a safe and stable chiral

extrapolation. Emphasis is given in the subtraction of the well-known pion pole which affects the

renormalization factor of the pseudoscalar current. We also compute the inverse propagator and

the Green’s functions of the local bilinears to one loop in perturbation theory. We investigate

lattice artifacts by computing them perturbatively to second order as well as to all orders in the

lattice spacing. The renormalization conditions are defined in the RI′-MOM scheme, for both the

perturbative and non-perturbative results. The renormalization factors, obtained at different values

of the renormalization scale, are translated to the MS scheme and are evolved perturbatively to 2

GeV. Any residual dependence on the initial renormalization scale is eliminated by an extrapolation

to the continuum limit. We also study the various sources of systematic errors.

Particular care is taken in correcting the non-perturbative estimates by subtracting lattice ar-

tifacts computed to one loop perturbation theory using the same action. We test two different

methods, by subtracting either the O(g2 a2) contributions, or the complete (all orders in a) one-

loop lattice artifacts.

PACS numbers: 11.10.Gh, 11.15.Bt, 11.15.Ha, 12.38.Gc
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I. INTRODUCTION

To make contact between lattice QCD simulation results and phenomenological num-

bers, which usually are given in the MS scheme, we need to compute renormalization factors

relating the bare lattice operators to renormalized ones. This requires a non-perturbative

method, because low-order lattice perturbation theory is unreliable at present couplings.

One such method is the ‘Regularization Independent Momentum’ (RI-MOM) renormaliza-

tion scheme [1], which mimics the renormalization procedure used in continuum perturbation

theory. In practical applications a variant of the RI-MOM scheme is preferred, the so-called

RI′-MOM scheme, which differs from the RI-MOM scheme only in the quark field renormal-

ization factor. The results can be converted to the MS scheme using continuum perturbation

theory.

The method involves comparing lattice calculations of off-shell Green’s functions with

continuum perturbation theory results. This matching will work best at large virtualities

or short distances, where the running coupling constant is small, and the effects of non-

perturbative phenomena, such as chiral symmetry breaking, have died away. A drawback of

the method is that discretization effects grow rapidly at short distances. It is thus desirable

to remove the discretization errors in the off-shell lattice Green’s functions before making

the comparison with the continuum.

Two approaches have been pursued. In [2] the full one-loop perturbative correction has

been subtracted from the Green’s functions for operators with up to one covariant derivative,

for the plaquette action and Nf = 2 flavors of clover fermions. This procedure becomes

very elaborate for higher dimensional operators and more complex actions. An alternative

approach is to restrict oneself to one loop corrections of O(a2). The relevant expressions

have been computed in [3] for a variety of operators and actions. In [4] we have compared

the results of both methods using the Wilson action; we found agreement for that action to

be better than 1% for local operators and better than 2% for operators with one covariant

derivative.

In this work we compute renormalization factors for Nf = 3 flavors of SLiNC (Stout Link

Non-perturbative Clover) fermions [5, 6] and local quark-bilinear operators, studying the

effects of one-loop O(a2) subtraction, as well as the complete subtraction to one loop. The

particular clover action used here has a single iterated mild stout smearing for the hopping
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terms, together with thin links for the clover term. For the gauge fields we are using the

tree-level Symanzik action.

The paper is organized as follows: In Sec. II we explain our method of non-perturbative

renormalization and its numerical implementation, along with the data sets used in this

work and a precise determination of the lattice scale. In Sec. III we briefly outline our

perturbative computation and the different methods of subtraction. Then, in Sec. IV we

present our non-perturbative results in the RI′-MOM scheme, the chiral extrapolation and

the conversion to the MS-scheme. The continuum extrapolation appears in Sec. V, where

in Subsec. VA we give our final non-perturbative estimates in the schemes MS at 2GeV,

Renormalization Group Invariant (RGI), and RI′-MOM at a scale of 1/a. The quality of the

data upon subtraction of the perturbative terms is demonstrated in Subsec. VB, and finally,

in Sec. VI we present our final results and conclude. We also include three Appendices: A.

A summary of our perturbative results, B. The β-function and anomalous dimensions that

are necessary for the conversion to the MS and RGI schemes, and C. An alternative fitting

for the pion pole subtraction.

II. METHOD AND NUMERICAL IMPLEMENTATION

Operator Lorentz Structure Representation Operator Basis

OS q̄q τ
(1)
1 OS

OP q̄γ5q τ
(1)
1 OP

OV
µ q̄γµq τ

(4)
1 OV

1 , O
V
2 , O

V
3 , O

V
4

OA
µ q̄γµγ5q τ

(4)
1 OA

1 , O
A
2 , O

A
3 , O

A
4

OT
µν q̄σµνq τ

(6)
1 OT

12, O
T
13, O

T
14, O

T
23, O

T
24, O

T
34

TABLE I: The operators under study and their representations under the hypercubic group H(4) [7].

The operators which we study in this paper are listed in Table I, along with their rep-

resentations under the hypercubic group H(4) [7]. We work on lattices with spacing a and

volume V , gauge fixed to Landau gauge. Starting from the Green’s function

Gαβ(p) =
a12

V

∑

x,y,z

e−ip·(x−y)〈qα(x)O(z)q̄β(y)〉 , (1)

q = u, d or s, with operator insertion O, we obtain the vertex function (or amputated Green’s
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function)

Γ(p) = S−1(p)G(p)S−1(p) , (2)

where

Sαβ(p) =
a8

V

∑

x,y

e−ip·(x−y)〈qα(x)q̄β(y)〉 (3)

denotes the quark propagator. Following [1, 2, 4], we define the renormalized vertex function

by

ΓR(p) = Z−1
q Z Γ(p) (4)

and fix the renormalization factor Z by imposing the renormalization condition

1
12Tr

[

ΓR(p)Γ
−1
Born(p)

]

p2=µ2
= 1 , (5)

where µ is the renormalization scale. The renormalization function of the fermion field

(qR = Zq q) is given by

Zq(µ) = Λq(p)|p2=µ2 , Λq(p) =
Tr (−i

∑

λ γλ sin(apλ)aS
−1(p))

12
∑

λ sin
2(apλ)

(6)

where Λq(p) is the projection of the fermion propagator onto the tree level or Born massless

quark propagator. The renormalization factor Z is calculated from the condition

Z−1
q Z Λ(p)

∣

∣

p2=µ2
= 1 , Λ(p) =

1

12
Tr
[

Γ(p) Γ−1
Born(p)

]

(7)

where Λ(p) is the projected amputated Green’s function and ΓBorn(p) is the Born term of

the vertex function. Finally, Z has to be extrapolated to the chiral limit. Note that Eq. (7)

is not afflicted with O(a) lattice artifacts, which are associated with operators of opposite

chirality and drop out when the trace is taken.

The calculations are done for five sets of mass-degenerate quarks, mu = md = ms, on

323 × 64 lattices at β = 5.50 [6], with the SLiNC action. The clover parameter, csw, was set

to 2.65, and the stout parameter, ω, to 0.1 [5]. The parameters of the corresponding gauge

field configurations are listed in Table II. In terms of the hopping parameter κq , the quark

masses are given by

amq =
1

2κq

−
1

2κ0 c
(8)

with κ0 c = 0.121099(3). We use momentum sources [8] to compute the Green’s functions of

Eq. (1) and discard quark-line disconnected contributions. Thus, unless stated otherwise,

our renormalization factors refer to flavor nonsinglet operators.
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To convert the renormalization factors to physical scales µ, we need to know the lattice

spacing a. Our strategy to set the scale is to use singlet quantities [9], which are flat in

δmq = mq − m̄ up to corrections of O(δm2
u + δm2

d + δm2
s) [6], where m̄ is the average

quark mass (m̄ = (2mℓ + ms)/3 in our case). We find a = 0.074(2) fm. With this choice

of the lattice spacing, the pion masses in Table II range from 290 to 465MeV, allowing a

controlled extrapolation to the chiral limit. The renormalization factors are converted to

the MS scheme at µ = 2 GeV.

The lattice momenta are chosen according to

Λ2
QCD ≪ p2 ≤

(π

a

)2

. (9)

On L3 × T lattices with periodic spatial and antiperiodic temporal boundary conditions

p =

(

2π

L
n1,

2π

L
n2,

2π

L
n3,

2π

T

(

n4 +
1

2

))

. (10)

To increase the number of momenta, we employ twisted boundary conditions to the quark

fields, p → p+B, with

B =

(

2π

L
θ1,

2π

L
θ2,

2π

L
θ3,

2π

T
θ4

)

. (11)

Thus for lattices with T = 2L then

p =
2π

L

(

n1 + θ1, n2 + θ2, n3 + θ3,
1

2

(

n4 +
1

2
+ θ4

))

. (12)

We choose a fixed direction and then let p2 vary. The optimal choice is along the diagonal,

which leaves us with overall O((a p)2) corrections only, but no directional correction [10].

Our momenta and twist angles are listed in Table III.

κℓ κs amπ

0.120900 0.120900 0.1757(10)

0.120920 0.120920 0.1647(4)

0.120950 0.120950 0.1508(4)

0.120990 0.120990 0.1285(7)

0.121021 0.121021 0.1089(21)

TABLE II: Parameters κl (l = u, d), κs and pion masses of our lattice ensembles at β = 5.50.
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θ =
(

0, 0, 0,−1
2

)

θ =
(

1
2 ,

1
2 ,

1
2 ,−

1
2

)

θ =
(

1
4 ,

1
4 ,

1
4 , 0
)

n (a p)2 n (a p)2 n (a p)2

(1, 1, 1, 2) 0.1542 (0, 0, 0, 1) 0.03855 (0, 0, 0, 0) 0.009638

(2, 2, 2, 4) 0.6169 (1, 1, 1, 3) 0.3470 (1, 1, 1, 2) 0.2410

(3, 3, 3, 6) 1.3879 (2, 2, 2, 5) 0.9638 (2, 2, 2, 4) 0.7807

(4, 4, 4, 8) 2.4674 (3, 3, 3, 7) 1.8891 (3, 3, 3, 6) 1.6289

(5, 5, 5, 10) 3.8553 (4, 4, 4, 9) 3.1228 (4, 4, 4, 8) 2.7855

(6, 6, 6, 12) 5.5517 (5, 5, 5, 11) 4.6649 (5, 5, 5, 10) 4.2505

(7, 7, 7, 14) 7.5564 (6, 6, 6, 13) 6.5155 (6, 6, 6, 12) 6.0239

(8, 8, 8, 16) 9.8696 (7, 7, 7, 15) 8.6745 (7, 7, 7, 14) 8.1058

TABLE III: Lattice momenta and twist angles in lattice units.

III. PERTURBATIVE RESULTS

Our perturbative computation for the renormalization factors is performed in one loop

perturbation theory using a variety of fermionic and gluonic actions. In this paper we focus

on the SLiNC action [11] providing the results for general gauge, α, (α = 0 (1) for Landau

(Feynman) gauge) and action parameters (csw, ω). The Feynman diagrams entering this

computation and the procedure for their evaluation are extensively described in Ref. [12].

For comparison with the non-perturbative renormalization factors, in the results shown

in this section we employ ω = 0.1 for the parameter appearing in the stout links of the

fermion part, and for the clover parameter we test both the tree-level value suggested by

one-loop perturbation theory, csw = 1 and the value employed in the simulations, that is [5]:

csw = 2.65. We have performed two separate computations to one loop, as described below:

A. up to second order in the lattice spacing, a, for which the results are given in a closed

form as a function of the external momentum p and well as a, α, csw and ω.

B. to all orders in a, for general values of a, α, csw and ω, but for specific choices for the

external momentum; we have computed these terms for all the momenta employed in

the non-perturbative computation.

Our results for each computation are discussed below.
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A. Subtraction of O(g2a2) contributions

We compute to one loop the inverse propagator, S−1(p), and the amputated two-point

Green’s functions of the local operators (scalar, pseudoscalar, vector, axial-vector, tensor),

ΓO(p). The Z-factors are extracted by applying the renormalization conditions given in Eqs.

(6) - (7). The tree-level values for the fermion operators O = S, P, V, A and T are

ΓBorn(p) = −i 11, −i γ5, −i γµ, −i γ5 γµ, −i γ5 σµν , (13)

respectively. In the mass-independent schemes which we consider, the bare quark masses

must be set to zero. For the appropriate evaluation of the Z-factor, the O(g2 a2) terms are

omitted from the Green’s function entering Eqs. (6) - (7), obtaining:

Zq = 1 +
g2CF

16 π2

(

−13.0233 + 4.79201α+ csw(2.01543− 4.67344ω) + 1.24220 c2sw

+152.564ω − 541.381ω2 − α log(a2 µ2)
)

, (14)

ZS = 1 +
g2CF

16 π2

(

−13.6067− α + csw(18.2213ω − 6.83528) + 1.36741 c2sw

+140.264ω − 481.361ω2 + 3 log(a2 µ2)
)

, (15)

ZP = 1 +
g2CF

16 π2

(

−21.7334− α + csw(2.01543− 4.67344ω)− 1.74485 c2sw

+201.198ω − 649.867ω2 + 3 log(a2 µ2)
)

, (16)

ZV = 1 +
g2CF

16 π2

(

−16.5029 +
α

2
+ csw(4.2281− 10.3971ω) + 0.46414 c2sw

+168.263ω − 584.846ω2
)

, (17)

ZA = 1 +
g2CF

16 π2

(

−12.5396 +
α

2
+ csw(1.05025ω − 0.19725) + 2.02027 c2sw

+137.796ω − 500.593ω2
)

, (18)

ZT = 1 +
g2CF

16 π2

(

−13.5383 + α+ csw(3.49054− 8.48923ω) + 1.71918 c2sw

+147.129ω − 535.088ω2 − log(a2 µ2)
)

, (19)

where CF = (N2 − 1)/(2N).

The O(g2 a2) contributions of the Green’s functions are useful in non-perturbative com-

putations of the Z-factors, since they may be subtracted from the non-perturbative values;
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these terms are reliable up to a limited range of the lattice spacing.

As an example we show the expression for the projected quark-antiquark Green’s function

Λq defined in Eq. (6):

Λq = Zq + Λ(2)
q (20)

using tree-level Symanzik gluons, Landau gauge csw = 2.65 and ω = 0.1. The O(g2 a0)

contribution gives Zq, while the O(g2 a2) terms are denoted by Λ
(2)
q ; the latter is given by:

Λ(2)
q = a2

g2CF

16 π2

[

p2
(

−0.8825 + 0.3972 log(a2 p2)
)

+
p4

p2

(

1.9141−
157

180
log(a2 p2)

)

]

. (21)

Beyond O(a0), the terms depend not only on the length, but also on the direction of the

four-vector p, due to the appearance of the Lorentz noninvariant terms p4 ≡
∑

ρ p
4
ρ.

In the left panel of Fig. 1 we plot Λ
(2)
q of Eq. (21). In the figure we highlight (in green) the

values of the momenta which we actually employ in the non-perturbative evaluation of the Z-

factors. An immediate observation from the plot is that Λ
(2)
q is significantly large (especially

for the diagonal momenta) as compared to the one-loop perturbative estimate of Zq at the

same action parameters (Zq = 1.148). This is in contrary to the case of Nf = 2 calculated

for Wilson fermions and plaquette action, in which csw = 1, and thus, to understand better

the behavior of Λ
(2)
q we plot it in the right panel of Fig. 1 for csw = 1 and ω = 0.1. Indeed,

the O(g2 a2) terms in this case are one order of magnitude smaller compared to the case of

csw = 2.65, and thus under control (Zq = 0.99401 for csw = 1). By analogy with Eq. (21)

and Fig. 1, we also plot in Fig. 2 the O(g2 a2) terms for ZA, Λ
(2)
A (ΛA ≡ ZA + Λ

(2)
A ):

Λ
(2)
A = a2

g2CF

16 π2

[

p2
(

−0.8337 + 0.5806 log(a2 p2)
)

+
p4

p2

(

2.3481−
157

180
log(a2 p2)

)

]

. (22)

In this case, the effect of Λ
(2)
A on the one-loop perturbative value of ZA=1.156, is even

more pronounced at csw=2.65. Another difference between the Nf=2 and Nf=3 cases is

that in the latter the diagonal momenta do not lead to the smallest O(g2 a2) effect. As a

consequence, the pure non-perturbative data (estimated with diagonal momenta) and the

O(a2) subtracted data have a significant numerical difference. On the other hand, for Wilson

fermions, the diagonal momenta lead to suppressed O(g2 a2) effects; we had taken that

observation on the Nf=2 case as supporting evidence for the choice of diagonal momenta.
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323x 64  actual momenta

FIG. 1: Λ
(2)
q as a function of (a p)2 for ω = 0.1 and: i) csw = 2.65 (left); ii) csw = 1 (right). For

comparison, to one loop: Zq = 1.14807 for csw = 2.65 and Zq = 0.99401 for csw = 1.
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(a p,0,0,0)

323x 64  actual momenta
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2π/32 (nt/2,nx,ny,nz)
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(a p,0,0,0)

323x 64  actual momenta

FIG. 2: Similar to Fig. 1 for Λ
(2)
A . For comparison, to one loop: ZA = 1.15623 for csw = 2.65 and

ZA = 0.97179 for csw = 1.

It is also interesting to investigate the csw dependence of Λ
(2)
q for various values of (a p)2.

For this testing we set ω = 0.1 and the dependence is shown in Fig. 3. The left panel

corresponds to diagonal momenta (equal components), while the right panel to momenta

with a nonzero component in a single direction. We observe that for csw < 1.5 the O(g2 a2)

terms are very small, while for csw > 2 these contributions increase very fast.

Although we have tested both csw = 1 and csw = 2.65, we choose to employ the tree-level

value csw = 1 for consistency to one loop perturbation theory. This will be the value used

in the subtraction of lattice artifacts from the non-perturbative estimates (Subsec. VB).

A collection of the perturbative results for the O(g2 a2) terms is given in Appendix A.
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FIG. 3: Λ
(2)
q as a function of csw for ω = 0.1 and for representative values of diagonal

((a p)/2 (1, 1, 1, 1), left) and non-diagonal momenta ((a p, 0, 0, 0), right).

B. Complete subtraction of one-loop lattice artifacts

Here we present our results for the one-loop computation including all orders in the

lattice spacing. The main motivation for such a calculation comes from the observation that

at high values of (a p)2 the O(g2 a2) terms are no longer under control and become large.

This does not necessarily indicate large artifacts, since there might be cancellations with

higher order artifacts. We illustrate that this is indeed the case in this work, demonstrating

the possible complicated dependence of observables on the lattice spacing and showing the

intrinsic O(a) improvement of the SLiNC action. Since the O(g2 a2) artifacts cannot be

trustworthy for the whole range of employed momenta, it is unnatural to subtract them

from the non-perturbative estimates. Due to the nature of the computation to all orders

in a, the dependence on the external momentum cannot be given in a closed form since it

is included in the propagators. Thus, we compute the one-loop expression separately for

each value of the external momentum used in the simulations. From the latter expression

one must omit the O(a0) contributions; this is achieved by subtracting the O(g2 a0) terms,

computed analytically in Subsection IIIA (Eqs. (14) - (19)). It is interesting to compare the

O(a2) terms and the total one-loop lattice artifacts, and thus we plot the two contributions

in Figs. 4 - 6 for csw = 1, and for two values of the stout parameter, ω = 0, 0.1. To

match our non-perturbative computation we choose diagonal momenta. A comparison of

the lattice artifacts to all orders in a for ω = 0 and ω = 0.1 confirms that the presence of

the stout parameter suppresses them. Concentrating on ω = 0.1, one observes that for small

values of (a p)2 the two computations (blue line, green points) lead to compatible results, as
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expected. TheO(a2) contribution increases with (a p)2, while the complete one-loop artifacts

are much smaller (except for Zq). Nevertheless, both results are relatively small compared

to the Nf = 2 case presented in Ref. [4], and this is presumably due to the improvement of

the action using the stout smearing. This is an indication of suppressed lattice artifacts.
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FIG. 4: Terms of all O(a) and O(a2) for Zq (left) and ZT (right) as a function of (a p)2.
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FIG. 5: Similar to Fig. 4 for ZS (left) and ZP (right).
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FIG. 6: Similar to Fig. 4 for ZV (left) and ZA (right).
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IV. NON-PERTURBATIVE RESULTS

We shall present our raw results now, including the extrapolation to the chiral limit, the

conversion to the MS scheme and subtraction of the pion pole in case of the pseudoscalar

density.

A. RI′-MOM and chiral extrapolation

In Fig. 7 we show Zq, ZS, ZV , ZA and ZT as a function of the renormalization scale for

our various pion masses. The dependence on the pion mass is found to be very weak, as

shown in Fig. 8 for a particular value of the scale, and well represented by a linear curve.

In the following we extrapolate the Z-factors linearly to the chiral limit for each value of

(ap)2. The Z-factor of the pseudoscalar density, ZP , needs to be treated separately, because

it suffers from the pion pole in the Green’s function of Eq. (1). This we will deal with in

Sec. IVC.
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FIG. 7: Results on the Z-factors for all pion masses versus the renormalization scale in lattice

units. Different colors and shapes denote different ensembles (see also legend of Fig. 8): black

up triangles, blue diamonds, red circles, green squares and yellow left triangles stand for mπ =

465, 439, 402, 345, and 290 MeV, respectively.
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FIG. 8: The dependence of the Z-factors on the pion mass at (a p)2 ∼ 2.5, together with a linear

fit.

B. Conversion to MS

Although RI′-MOM is a convenient scheme to compute the renormalization factors, our

aim is to present them in the MS scheme. Starting from the results in RI′-MOM at various

scales, µ, we convert them to the MS scheme at a reference scale; we will set that scale to 2

GeV. The conversion factors do not depend on the regularization scheme (and, thus, they

are independent of the lattice discretization) when expressed in terms of the renormalized

coupling constant. However, expressing them in terms of the bare coupling constant intro-

duces a dependence on the action. The conversion factors, CRI′-MOM,MS
O

, and the expression

for running the scale to 2 GeV in MS, R(µ, 2GeV), are defined such that:

ZMS
O (2GeV) = R(µ, 2GeV)CRI′-MOM,MS

O
ZRI′-MOM

O (µ) , (23)

and their perturbative expressions are available up to three loops. For the relation between

the renormalized coupling constant, gR, and the bare one, g: gR=Z−1
g g, we use the two-loop

results of Ref. [13] for Zg corresponding to clover fermions and Wilson gluons. R(µ, 2GeV)

is expressed in terms of ΛMS which for Nf=3 was estimated to be 339 MeV [14]. The conver-

sion factors we use are adapted from Ref. [15] and are applicable to the naive dimensional

regularization (NDR) of the MS scheme [16], in which CP=CS. Moreover, the conversion
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factor from the RI′-MOM to the MS scheme for the vector and axial-vector operators is 1.

In an alternative procedure the RGI scheme is used as an intermediate scheme to obtain

the conversion factors for the operators. Those factors CRI′-MOM,MS are found from relating

the renormalization function in MS (at 2 GeV) and RI′-MOM (at a scale µ):

ZRGI
O

= ZMS
O

(2GeV)∆ZMS
O

(2GeV) = ZRI′-MOM
O

(µ)∆ZRI′-MOM
O

(µ) , (24)

and thus

ZMS
O

(2GeV) = CRI′-MOM,MS
O,RGI (µ, 2GeV)ZRI′-MOM

O
(µ) ,

CRI′-MOM,MS
O,RGI (µ, 2GeV) =

∆ZRI′-MOM
O

(µ)

∆ZMS

O
(2GeV)

. (25)

The quantity ∆ZS

O
(µ) in scheme S is expressed in terms of the β−function and the anomalous

dimension of the operator under study, γS
O
≡ γS:

∆ZS

O
(µ) =

(

2β0
gS(µ)

2

16π2

)−
γ0
2β0

exp

{

∫ gS(µ)

0

dg′
(

γS(g′)

βS(g′)
+

γ0
β0 g′

)

}

. (26)

To three-loop approximation ∆ZS

O
(µ) takes the form:

∆ZS

O
(µ) =

(

2β0
gS(µ)

2

16π2

)−
γ0
2β0

(

1 +
gS(µ)2

16π2

β1γ0 − β0γ
S
1

2β2
0

+ (27)

gS(µ)
4

(16π2)2
−2β3

0γ
S
2 + β2

0(γ
S
1 (2β1 + γS

1 ) + 2β2γ0)− 2β0β1γ0(β1 + γS
1 ) + β2

1γ
2
0

8β4
0

)

.

The expressions for the coupling gS(µ) in the MS and in the RI′-MOM schemes coincide to

three loops and read [17]:

gS(µ)
2

16π2
=

1

β0 L
−

β1

β3
0

logL

L2
+

1

β5
0

β2
1 log

2 L− β2
1 logL+ β2β0 − β2

1

L3
, L = log

µ2

Λ2
MS

. (28)

In Appendix B we give the definitions of the β−function and the anomalous dimension for

the fermion field and local operators, as well as their perturbative coefficients to three loops.

In Fig. 9 we demonstrate the effects in the Z-factors resulting from the use of the two- and

three-loop expressions for CRI′-MOM,MS
O

and R(µ, 2GeV), and the corresponding expressions

for the alternative conversion (via RGI) as given by Eq. (27). The ensemble used for this

Figure corresponds tomπ = 465 MeV. We find that the discrepancies are at 8% maximum for

ZS (and consequently ZP discussed later). For the standard conversion factors CRI′-MOM,MS
O
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the difference in the two-loop values of Zg between the Wilson and tree-level Symanzik

gluons is expected to be (based on their one-loop difference) within this systematic error.

The conversion via the RGI scheme has the property that it uses continuum results; in the

rest of the paper we use the intermediate RGI scheme and employ the three-loop result

of Eq. (27) for all the conversions. In the final results presented in Sec. V we also give a

systematic error due to differences in the conversion factor.
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FIG. 9: ZMS
q , ZMS

S , ZMS
T (mπ=465 MeV) using two-loop (red up triangles) and three-loop (blue

down triangles) expressions for CRI′-MOM,MS
O

R(µ, 2GeV). Green right triangles (yellow left tri-

angles) correspond to the two- (three-) loop expressions of Eq. (27) using the intermediate RGI

scheme.

Another systematic error could result from the ambiguity in the value of ΛMS needed in

Eq. (28). Having this in mind, it is interesting to see how the conversion factors are affected

by any variation of the value of ΛMS. This is demonstrated in Fig. 10. We observed that the

conversion factors of Zq and ZT are not affected by variations of ΛMS. On the other hand,

ZS shows some sensitivity on ΛMS in the range form 275 to 375 MeV. Nevertheless, this

dependence on ΛMS is smaller than the one due to the order of gS(µ) used in the conversion

factors.
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FIG. 10: Zq, ZS , ZT in the MS scheme using different values of ΛMS.

C. Chiral extrapolation of ZP and ZP /ZS

To obtain ZP in the chiral limit, we must subtract the pion pole from the pseudoscalar

vertex function ΛP (p,mπ). To do so we consider as ansatz a two-parameter fit function for

each momentum p

f (2)(p, mπ) = aP (p) +
cP (p)

m2
π

(29)

or a three-parameter fit function

f (3)(p, mπ) = aP (p) + bP (p)m
2
π +

cP (p)

m2
π

, (30)

and fit Eq. (29) or Eq. (30) to the ratio

R(p, mπ) =
ΛP (p, mπ)

Zq(p, mπ)C
RI′-MOM,MS
P,RGI (p, 2GeV)

. (31)

The coefficient aP (p) is the number we are looking for, the continuum limit of which corre-

sponds to (ZMS
P )−1 . In Fig. 11 we show the result of both local fits. The coefficient bP (p)

turns out to be rather small. In fact, it is compatible with zero. The two-parameter fit of

Eq. (29) leads to significantly smaller errors on aP (p). In the following we shall employ the

local two-parameter fit to subtract the pion pole and extrapolate ZP to the chiral limit. The

results will be shown in Sec. V. The stability of the fit is discussed in Appendix C using

alternatives for the pion pole subtraction, along with an assessment of systematic errors.

17



In some applications a precise value of ZP/ZS is needed, which suggests a direct fit of the

ratio. In this ratio the factors Zq and CRI′-MOM,MS
O

drop out. To subtract the pion pole from

ΛP (p,mπ), we proceed as before and fit Eq. (29) and Eq. (30), respectively, with coefficients

aPS(p), bPS(p) and cPS(p) to

R(p,mπ) =
ΛP (p,mπ)

ΛS(p,mπ)
. (32)

In the chiral limit ZS/ZP = aPS(p). Again, the parameter bPS(p) has little effect on the re-

sult. As before, we shall adopt the local two-parameter fit and show results of the continuum

extrapolation in Sec. V.
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FIG. 11: Red triangles: The parameters aP , cP extracted from the 2-parameter fit. Blue circles:

The parameters aP , bP , cP extracted from the 3-parameter fit.

V. CONTINUUM EXTRAPOLATIONS

We now come to the main topic of this paper, the subtraction of lattice artifacts. Clearly,

the renormalization factors ZV , ZA and ZMS
S , ZMS

P and ZMS
T show some residual dependence

on (a p)2, which we will address now. The final aim is to extrapolate the data to (a p)2 = 0.
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A. Unsubtracted data

Let us first look at the raw data, extrapolated to the chiral limit and converted to the

MS scheme in Sec. IV. In Figs. 12 - 13 we plot ZV , ZA and ZP/ZS as a function of (a p)2.

Similarly, in Figs. 14, 15, 16 and 17 we plot Zq, ZS, ZP and ZT in the RI′-MOM and MS

scheme, respectively, at µ = 2GeV. We find ZV , ZA and ZP/ZS and ZMS
S , ZMS

P and ZMS
T

to lie approximately on a linear curve for (a p)2 & 2, which allows a fit to a straight line.

The dashed lines show a fit to the interval (a p)2 ∈ [2, 10].

While statistical errors are small, there are some systematic errors, which should be

carefully examined. One source of error is the accuracy of the conversion factors. Another

source arises from the choice of fit interval. We have also done fits to the intervals [1, 10],

[3.7, 10] and [2, 6]. The difference in results will give us an estimate of the systematic error.
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FIG. 12: The dependence of ZV and ZA on the renormalization scale, for the chirally extrapolated

data. Dashed lines represent the continuum extrapolation and filled points the extrapolated value.
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FIG. 14: The dependence of ZRI′-MOM
q and ZMS

q on the momentum scale, for the chirally extrapo-

lated non-perturbative data. Dashed lines represent the continuum extrapolation and filled points

the extrapolated value.
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FIG. 15: Similar to Fig. 14 for ZS .
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FIG. 16: Similar to Fig. 14 for ZP .
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FIG. 17: Similar to Fig. 14 for ZT .

In Table IV we present the Z-factors, after chiral and continuum extrapolation, from

a fit to the interval (a p)2 ∈ [2, 10]. The number in the first bracket indicates the purely

statistical error. The number in the second bracket states the systematic error, which is

taken from the difference of the fit to (a p)2 ∈ [2, 10] and [2, 6]. The third number, wherever

it applies, reflects the difference of two- and three-loop conversion factors.
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ZMS
q (2 GeV) 0.9239(001)(003)(028)

ZMS
S (2 GeV) 0.7356(053)(155)(277)

ZMS
P (2 GeV) 0.4915(025)(125)(184)

ZP /ZS 0.6643(032)(023)

ZV 0.8317(005)(021)

ZA 0.8547(0008)(036)

ZMS
T (2 GeV) 0.9566(013)(054)(101)

TABLE IV: Continuum extrapolated values on ZMS
q , ZMS

S , ZMS
P , ZMS

T , ZV , ZA and ZP /ZS . The

number in the first (second) bracket is the statistical (systematic) error, and where applicable, the

one in the third bracket comes from the difference in using the two- and three-loop results for the

conversion factor via RGI.

B. Subtraction of one-loop perturbative lattice artifacts

We now turn to the subtraction of lattice artifacts. There are two kinds of subtractions

we employ (see Sec. III), the subtraction of one-loop O(a2) corrections and the complete

subtraction of one-loop lattice artifacts. For each case we use both the bare, g, and boosted

coupling,

g2b =
g2

P (g)
, (33)

where P (g) is the plaquette at β = 5.50 and for the ensembles used in this work we find:

P (β = 5.5) ∼ 0.52. For the improvement coefficient csw we take the tree-level value, csw = 1.

The effect of the subtraction is demonstrated as examples in Figs. 18 - 20 for the chirally

extrapolated data. For Zq (Fig. 18) we find no clear preference for any kind of subtraction.

In case of the quark-bilinear operators (Figs. 19 -20) the O(g2 a2) corrections are very small

for (a p)2 < 4, but beyond that they get out of control and show significant O((a p)4) effects.

Complete subtraction of one-loop lattice artifacts, on the other hand, has a small, albeit

appreciable, effect on the Z-factors. In case of ZV , ZA (not shown here) and ZT the data is

brought on a perfectly straight line for (a p)2 ∈ [2, 10], using the boosted coupling g2b .
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FIG. 18: Chirally extrapolated values for ZMS
q before the perturbative subtraction (black circles)

and after subtraction of: a. O(g2 a2) terms using bare coupling, g (green plus points), b. O(g2b a
2)

terms using boosted coupling, gb (orange crosses), c. complete subtraction using g (blue squares),

and d. complete subtraction using gb (red diamonds).
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FIG. 19: Similar to Fig. 18 for ZS .
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FIG. 20: Similar to Fig. 18 for ZT .
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VI. FINAL RESULTS AND DISCUSSION

We take the lattice data of Sec. IV, improved by complete subtraction of one-loop lattice

artifacts with boosted coupling gb, as our final result. In Figs. 21 - 27 we show the Z-factors

before and after the subtraction, together with a linear extrapolation to the continuum.
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FIG. 21: Chirally extrapolated values for ZMS
q prior the perturbative subtraction (black circles)

and after the complete subtraction of one-loop lattice artifacts using gb (red diamonds).
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FIG. 22: Similar to Fig. 21 for ZS .
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FIG. 23: Similar to Fig. 21 for ZP .
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FIG. 24: Similar to Fig. 21 for ZP /ZS .
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FIG. 25: Similar to Fig. 21 for ZV .
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FIG. 26: Similar to Fig. 21 for ZA.
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FIG. 27: Similar to Fig. 21 for ZT .

In Table V we give our final numbers, corresponding to the solid diamonds in Figs. 21 -

27. The corrected numbers differ by up to 8% from the unsubtracted results in Table IV.

ZMS
q 0.9408(008)(024)

ZMS
S 0.6822(061)(176)

ZMS
P 0.4948(026)(128)

ZP/ZS 0.7075(036)(068)

ZV 0.8574(002)(007)

ZA 0.8728(006)(027)

ZMS
T 0.9945(010)(035)

TABLE V: Continuum results for Zq, ZS , ZP , ZP /ZS , ZV , ZA and ZT in the MS scheme at

µ = 2GeV, where it applies. The numbers refer to the fit interval (a p)2 ∈ [2, 10]. The first number

in brackets is the statistical error, the second number the systematic error due to the fit range.

The conversion factors to the RGI scheme and the RI′-MOM scheme at µ = 1/a are given

by

ZRGI
q = 0.9461ZMS

q , ZRI′-MOM
q = 1.0004ZMS

q ,

ZRGI
S = 0.7503ZMS

S , ZRI′-MOM
S = 0.9211ZMS

S ,

ZRGI
P = 0.7503ZMS

P , ZRI′-MOM
P = 0.9211ZMS

P ,

ZRGI
T = 1.0604ZMS

T , ZRI′-MOM
T = 0.9870ZMS

T .

(34)

To recapitulate, in a previous work [4] we have computed renormalization factors of

quark-bilinear operators for Nf = 2 flavors of dynamical clover fermions. We have refined

the original procedure [1] in several aspects, including the use of momentum sources and
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the perturbative subtraction of lattice artifacts. In this work we extended the calculation

to Nf = 3 flavors of SLiNC fermions [6]. Using twisted boundary conditions, the lattice

momenta were chosen to lie strictly on the diagonal, pµ =
√

p2/4, ∀µ.

Complete subtraction of one-loop lattice artifacts has brought ZV , ZA, Z
MS
S , ZMS

P and

ZMS
T onto a straight line for (a p)2 ∈ [2, 10],

Z(p) = Z(0) + Z ′(0) (a p)2 , (35)

with the continuum value being given by Z(0). The origin of the remaining (a p)2-dependence

is not completely clear to us. The corrections are found to be substantial. In case of ZS

they amount to 8%. The renormalization factor of the local vector current, ZV , can be

determined independently from the Dirac form factor of the proton at zero momentum

transfer by demanding that F p
1 (0) = 1. In [18] we found ZV = 0.857(1) at a pion mass of

mπ = 220MeV, which is in perfect agreement with our final number in Table V. This gives

support for our procedure of subtracting lattice artifacts.

It helped that the unsubtracted data were approximately linear in (a p)2 already for

(a p)2 & 2, in contrast to the case of Nf = 2 flavors of clover fermions and the plaquette

action [4]. We attribute that to the Symanzik and stout-link improved action employed

here, which appears to suppress lattice artifacts in quark Green’s functions; see e.g., Figs. 4

- 6 demonstrating that the stout smearing leads to smaller lattice artifacts compared to the

non-smeared case (ω = 0).
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Appendix A: Perturbative Results

In this section we summarize the perturbative results for the O(g2 a2) contributions Λ
(2)
q

and Λ
(2)
O

as defined in Sec. III (see Eq. (20)). For simplicity, we restrict to the case of the

SLiNC action, which uses tree-level Symanzik gluons. The expressions, evaluated at ω = 0,

correspond to the usual clover action. Our results are given as a function of the momentum

p and general values for the action parameters csw, ω. The gauge fixing parameter α is 0(1)

for the Landau (Feynman) gauge.

Λ(2)
q = a2

g2CF

16 π2

(

p2
(

1.14717− 1.51605α+ csw(−0.653431 + 0.505886ω)− 0.497834 c2sw

−12.0983ω + 28.0799ω2 + log(a2 p2)

(

−
73

360
+

3α

8
+

c2sw
4

+
csw
4

+ ω

)

)

+
p4

p2

(

2.10650 + 0.395834α+ csw(0.284537− 0.362507ω) + 0.128381c2sw

−4.08165ω − 16.0889ω2 −
157

180
log(a2 p2)

)

(A1)

Λ
(2)
S = a2

g2CF

16 π2

(

p2
(

−1.20757 + 0.75755α+ csw(3.19935− 4.79168ω)− 0.69430 c2sw

−0.64987ω + 0.71144ω2 + log(a2 p2)

(

17

360
−

3α

8
−

5 csw
4

+
c2sw
4

+ ω

)

)

+
p4

p2

(

1.6065 + 0.52083α+ csw(0.28454− 0.36251ω) + 0.12838 c2sw

−4.08165ω − 16.0889ω2 −
157

180
log(a2 p2)

)

)

(A2)

Λ
(2)
P = a2

g2CF

16 π2

(

p2
(

0.44076− 0.67794α+ csw(0.50589ω − 0.65343)− 0.22227 c2sw

−5.59237ω − 1.17320ω2 + log(a2 p2)

(

17

360
+

α

8
+

csw
4

+
c2sw
4

+ ω

)

)

+
p4

p2

(

1.6065 + 0.52083α+ csw(0.28454− 0.36251ω) + 0.12838 c2sw

−4.08165ω − 16.0889ω2 −
157

180
log(a2 p2)

)

)

(A3)
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Λ
(2)
V = a2

g2CF

16 π2

(

p2
(

0.44724− 0.79717α+ csw(1.83028ω − 1.61663)− 0.14183 c2sw

−1.02045ω + 1.46637ω2 + log(a2 p2)

(

47

360
+

3α

16
+

5 csw
8

−
c2sw
8

−
ω

2

)

)

+
p4

p2

(

2.54053 + 0.23958α+ csw(0.28454− 0.36251ω) + 0.12838 c2sw

−4.08165ω − 16.0889ω2 −
157

180
log(a2 p2)

)

)

(A4)

Λ
(2)
A = a2

g2CF

16 π2

(

p2
(

−0.37692− 0.07942α+ csw(0.30976− 0.81851ω)− 0.85384 c2sw

+1.45079ω + 2.40868ω2 + log(a2 p2)

(

47

360
−

α

16
−

csw
8

+
5 c2sw
8

−
ω

2

)

)

+
p4

p2

(

2.54053 + 0.23958α+ csw(0.28454− 0.36251ω) + 0.12838 c2sw

−4.08165ω − 16.0889ω2 −
157

180
log(a2 p2)

)

)

(A5)

Λ
(2)
T = a2

g2CF

16 π2

(

p2
(

0.17468− 0.59766α+ csw(1.38881ω − 1.29556)− 0.51102 c2sw

+1.32727ω + 2.66032ω2 + log(a2 p2)

(

19

120
+

α

8
+

csw
2

+
c2sw
4

− ω

)

)

+
p4

p2

(

2.85187 + 0.14583α+ csw(0.28454− 0.36251ω) + 0.12838 c2sw

−4.08165ω − 16.0889ω2 −
157

180
log(a2 p2)

)

)

(A6)

Appendix B: β−function and anomalous dimensions

In this Appendix we give the definitions of the β−function and the anomalous dimension

for the fermion field and the local operators. The perturbative coefficients up to three loops

are given in SU(3) and in the Landau gauge.

The scale dependence of the renormalized operator is encoded in the anomalous dimension

and is defined as:

γS = −µ
d

dµ
logZS = γ0

gS(µ)2

16π2
+ γS

1

(

gS(µ)2

16π2

)2

+ γS

2

(

gS(µ)2

16π2

)3

+ · · · (B1)
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where S is the renormalization scheme. The β−function is defined as:

βS = µ
d

dµ
gS(µ) = −β0

gS(µ)3

16π2
− β1

gS(µ)5

(16π2)2
− βS

2

gS(µ)7

(16π2)3
+ · · · . (B2)

The coefficients of the β−function in the MS and the RI′-MOM schemes coincide up to three

loops and are given by [15, 22]:

β0 = 11−
2

3
Nf , (B3)

β1 = 102−
38

3
Nf , (B4)

β2 =
2857

2
−

5033

18
Nf +

325

54
N2

f . (B5)

The coefficients of the anomalous dimension for the quark field in the MS and RI′-MOM

schemes are [23]:

γ0 = 0 , (B6)

γ1 =
134

3
−

8

3
Nf , (B7)

γMS
2 =

20729

18
− 79ζ3 −

1100

9
Nf +

40

27
N2

f , (B8)

γRI′-MOM
2 =

52321

18
− 79ζ3 −

1100

9
Nf +

40

27
N2

f , (B9)

for the scalar/pseudoscalar operators [24, 25]:

γ0 = −8 , (B10)

γMS
1 = −

404

3
+

40

9
Nf , (B11)

γRI′-MOM
1 = −252 +

104

9
Nf , (B12)

γMS
2 = −2498 +

(

4432

27
+

320

3
ζ3

)

Nf +
280

81
N2

f , (B13)

γRI′-MOM
2 = −

40348

3
+

6688

3
ζ3 +

(

35176

27
−

256

9
ζ3

)

Nf −
1712

81
N2

f , (B14)

(ζ3 = 1.20206...) and for the tensor [15, 26]:

γ0 =
8

3
, (B15)

γ1 =
724

9
−

104

27
Nf , (B16)

γMS
2 =

105110

81
−

1856

27
ζ3 −

(

10480

81
+

320

9
ζ3

)

Nf −
8

9
N2

f , (B17)

γRI′-MOM
2 =

359012

81
−

26144

27
ζ3 +

(

−
39640

81
+

512

27
ζ3

)

Nf +
2288

243
N2

f . (B18)
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Appendix C: An alternative for the pion pole subtraction

Here we mention an alternative in handling the pion pole subtraction to determine the

renormalization factors for ZP . We can perform a global fit to the ratio of Eq. (31) taking

into account the data at all pion masses and all scales simultaneously. Since in the same

fit we combine both correlated and uncorrelated data extracted from different ensembles,

we use the super-jackknife procedure [27] for the error estimation of the fit parameters. We

employ a fit function with four, five and six parameters, of the form:

f (4)(p, mπ) = a0 + a2 p
2 +

c0 + c2 p
2

m2
π

, (C1)

f (5)(p, mπ) = a0 + a2 p
2 + b0 m

2
π +

c0 + c2 p
2

m2
π

, (C2)

f (6)(p, mπ) = a0 + a2 p
2 + (b0 + b2 p

2)m2
π +

c0 + c2 p
2

m2
π

. (C3)

In the above functions the parameters ai, bi, ci are constants, but their estimation depends on

the range of momenta that we take into account. Since the data at (a p)2 < 1 do not exhibit

any plateau behavior, they are entirely excluded from the fit. In fact, in the application

of each fit shown in Eqs. (C1) - (C3) we use data corresponding to various momentum

ranges, (a p)2 (see text below). Similarly to the case of the two- and three-parameter fit,

we are interested in extracting ZP in MS with a single fit which is related to a0, through

ZMS
P = (a0)

−1. To summarize, we have a total of 12 estimates for ZMS
P extracted from the

global fits, which correspond to all combinations between the three fit functions (Eqs. (C1)

- (C3)) and the four momentum ranges in (a p)2 ∈ [1 : 10], [2 : 6], [2 : 10] and [3.7− 10]. We

find that the six-parameter fit is not very stable, while the four- and five-parameter global

fits give compatible results with the local two- and three-parameter local fits applied to each

momentum squared individually. An interesting observation is that the results obtained

using the interval [2 : 10] are compatible for all types of fits discussed here (see Table VI).

The same global fitting has been tested to find ZP/ZS.
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4-parameter fit 5-parameter fit 6-parameter fit

ZMS
P 0.4917(022) 0.4921(078) 0.4852(176)

TABLE VI: Estimates for ZP in the MS scheme using the global fits of Eq. (C1) - (C3) and the

data in the momentum range [2 : 10]. Statistical errors are shown in parentheses.

We find that the four-, five- and six-parameter global fits are, in general, more unstable

compared to the two- and three-parameter local fits and will not be used as final estimates.

Moreover, the restriction of the global fitting functions to have quadratic dependence with

respect to the momentum (Eqs. (C1) - (C3)) is not based on any theoretical arguments.

Nevertheless, agreement within errorbars between different fits gives confidence on the final

estimate.

As résumé of these studies we use in Sec. V the local two-parameter fit to remove the

pion pole and combine it with a linear fit in the (a p)2 interval [2 : 10] counting for a

remaining momentum dependence in the non-pole term after chiral extrapolation. The

resulting constant is then the inverse of the renormalization function in the MS scheme.
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[8] M. Göckeler, R. Horsley, H. Oelrich, H. Perlt, D. Petters, et al., Nucl.Phys. B544, 699 (1999),

[hep-lat/9807044].

[9] R. Horsley, J. Najjar, Y. Nakamura, H. Perlt, D. Pleiter, et al., PoS LATTICE 2013, 249

(2013), [arXiv:1311.5010].

[10] R. Arthur and P. Boyle (RBC Collaboration, UKQCD Collaboration), Phys.Rev. D83, 114511

(2011), [arXiv:1006.0422].

[11] R. Horsley, H. Perlt, P. Rakow, G. Schierholz, and A. Schiller, Phys. Rev. D78, 054504 (2008),

[arXiv:0807.0345].

[12] C. Alexandrou, M. Constantinou, T. Korzec, H. Panagopoulos, and F. Stylianou, Phys.Rev.

D86, 014505 (2012), [arXiv:1201.5025].

[13] A. Bode and H. Panagopoulos, Nucl. Phys. B625, 198 (2002), [hep-lat/0110211].

[14] P. D. Group, J. Beringer, et al., Phys. Rev. D 86, 010001 (2012).

[15] J. Gracey, Nucl. Phys. B662, 247 (2003), [hep-ph/0304113].

[16] A. J. Buras and P. H. Weisz, Nucl. Phys. B333, 66 (1990).

[17] A. I. Alekseev, Few Body Syst. 32, 193 (2003), [hep-ph/0211339].

[18] P. Shanahan, A. Thomas, R. Young, J. Zanotti, R. Horsley, et al. (2014), [arXiv:1403.1965].

[19] Y. Nakamura and H. Stuben, PoS LATTICE2010, 040 (2010), [arXiv:1011.0199].

[20] P. A. Boyle, Comput. Phys. Commun. 180, 2739 (2009).

[21] R. G. Edwards and B. Joo (SciDAC Collaboration, LHPC Collaboration, UKQCD Collabo-

ration), Nucl.Phys.Proc.Suppl. 140, 832 (2005), [hep-lat/0409003].

[22] T. van Ritbergen, J. Vermaseren, and S. Larin, Phys. Lett. B400, 379 (1997), [hep-

ph/9701390].

[23] K. Chetyrkin and A. Retey, Nucl. Phys. B583, 3 (2000), [hep-ph/9910332].

[24] K. Chetyrkin, Phys. Lett. B404, 161 (1997), [hep-ph/9703278].

[25] J. Vermaseren, S. Larin, and T. van Ritbergen, Phys. Lett. B405, 327 (1997), [hep-

ph/9703284].

[26] J. Gracey, Phys. Lett. B488, 175 (2000), [hep-ph/0007171].

[27] J. Bratt et al. (LHPC Collaboration), Phys. Rev. D82, 094502 (2010), [arXiv:1001.3620].

33


	I Introduction
	II Method and numerical implementation
	III Perturbative results
	A Subtraction of O(g2 a2) contributions
	B Complete subtraction of one-loop lattice artifacts

	IV Non-Perturbative results
	A RI'-MOM and chiral extrapolation
	B Conversion to MS
	C Chiral extrapolation of ZP and ZP/ZS

	V Continuum extrapolations
	A Unsubtracted data
	B Subtraction of one-loop perturbative lattice artifacts

	VI Final results and discussion
	 Acknowledgements
	A Perturbative Results
	B -function and anomalous dimensions
	C An alternative for the pion pole subtraction
	 References

