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Abstract

Large field inflation in supergravity requires an approximate global symmetry to ensure

flatness of the scalar potential. In helical phase inflation, a U(1) symmetry of the Kähler

potential is used, the phase part of the complex scalar of a chiral superfield plays the

role of inflaton, and the radial part is strongly stabilized. The original model of helical

phase inflation, proposed by Li, Li and Nanopoulos (LLN), employs an extra (stabilizer)

superfield. We propose a more economical and new class of the helical phase inflationary

models without the stabilizer superfield. As the examples, the quadratic, the natural, and

the Starobinsky-type inflationary models are studied in our approach.ar
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1 Introduction

Inflation well explains the origin of the primordial density fluctuations as well as flatness and

homogeneity of the universe. The general idea is so far quite successful, and inflationary mod-

els are confronted with precise observational data [1, 2]. Because inflation is a high-energy

phenomenon, it is important to study inflation in a more fundamental framework such as

supergravity [3] which is motivated by particle (or string) physics. In particular, if tensor per-

turbations are detected in a near future, it would imply large field excursions of the inflaton [4].

In that case, the Planck suppressed corrections cannot be neglected. Even if supersymmetry

is broken at a higher scale than that of inflation, supergravity corrections have substantial

impact on the scalar potential.

As is well known, a generic scalar potential in supergravity tends to be very steep in the

large field region, because of the exponential factor of the Kähler potential. Accordingly, it

is hard to tune the flatness of the scalar potential along the whole inflaton trajectory in the

case of large field models. Therefore, some symmetries are imposed in the inflationary model

building in supergravity. A good example is the axion-like shift symmetry in the non-SUSY

model [5] and in the supergravity-based ones [6, 7].

Another example is given by the U(1) symmetry that is equally ubiquitous as the shift

symmetry in particle physics. The inflation with U(1) symmetry and the monodromy structure

of the superpotential is known under the name of helical phase inflation, because its inflaton

is the phase component of a complex scalar field that rolls down a helicoid potential [8–11].

Similarly to the standard approach in the shift symmetric case, a stabilizer superfield is used in

the known helical phase inflationary models. As a matter of fact, the models based on U(1) and

the shift symmetric models with a stabilizer superfield are equivalent, since they are related

by field redefinition. However, a minimal U(1) symmetric Kähler potential corresponds to the

infinite shift symmetric series with specific coefficients. Therefore, certain formulae become

simple in a particular formalism, and it is worth studying the helical phase inflation separately.

In the context of the shift symmetric approach, the stabilizer superfield is needed to ensure

the positivity of the potential. In our previous work [12, 13] (see also Ref. [14]), we proposed

the alternative framework to ensure the positivity by stabilizing the scalar superpartner of the

inflaton. In our approach, a shift symmetric quartic term is added to the Kähler potential.

In this paper, we study a helical phase inflation without a stabilizer superfield. The radial

part is stabilized in Section 2 by employing a higher order term in the Kähler potential,

similarly to Refs. [12,13]. Particular models are studied in Section 3. We conclude in Section 4.

Throughout the paper, we take the natural (reduced) Planck units, c = ~ = MP/
√

8π = 1.
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2 Stabilization of the radial component of complex inflaton

Since the inflationary trajectory is supposed to be in the phase direction in the helical phase in-

flation, the radial direction has to be constant during inflation. For example, in the LLN model

of helical phase inflation, it is achieved by taking the superpotential proportional to a negative

power of the inflaton. Balancing the superpotential contribution diverging at the origin with

the exponentially rising contribution due to the Kähler potential results in stabilization of the

radial part at a value of the order of the Planck scale.

In our case without a stabilizer superfield, the inflaton potential includes both the superpo-

tential itself and its derivative, and the formulae become rather complicated. Therefore, instead

of dealing with a numerical minimization of the radial part, we employ a strong stabilization

mechanism by using a higher order term in the Kähler potential,

K =
(
Φ̄Φ− Φ2

0

)
− ζ

4

(
Φ̄Φ− Φ2

0

)4
. (1)

The first term is the usual minimal Kähler potential. The constant term is added so that

the expectation value of the Kähler potential approximately vanishes. The second term is

introduced for the purpose of stabilization. Thanks to that term, the radial part is stabilized

at |Φ| ' Φ0. More general Kähler potentials with similar features may exist, but we find the

above example to be simple and efficient. Similar stabilization mechanisms are used in the

literature [12–17].

The stabilization parameter ζ in eq. (1) is a real positive parameter. Some comments on its

magnitude are in order. For too large ζ with a fixed Φ0, the Kähler metric (the coefficient at

the kinetic term) may change its sign before reaching the symmetric phase, 〈Φ〉 = 0. In such a

case, the above Kähler potential should be regarded as the effective description of the Higgsed

phase, 〈Φ〉 6= 0. It is enough for our purpose, since the radial part is stabilized throughout

the process of inflation and we do not have to consider its dynamics. Conversely, if ζ becomes

small for a fixed Φ0, the stabilized position of the radial part shifts inward, |Φ| < Φ0 and

eventually moves to the origin for ζ → 0. Depending on the value of ζ, the inflaton may

move inward to the origin during inflation by the classical dynamics, quantum fluctuation, or

quantum tunneling. To avoid this situation, we take values of ζ at least slightly smaller than

the critical value for KΦΦ̄ ≤ 0.1

As regards the strength of the stabilization, we obtain an expression for the mass of the

radial part. We assume the potential can be approximated as (KΦKΦ − 3)|W |2 = (Φ2
0 −

1 For example, in the cases of Φ0 = 1.8 (cf. Figs. 1 and 2) and Φ0 = 5 (cf. Fig. 3), the field region with

KΦΦ̄ < 0 appears when ζ & 0.12 and ζ & 2.5 × 10−4, and we take ζ = 0.11 and ζ = 0.03 in the Figures,

respectively. The situation with the radial part stabilized at |Φ| ' 5 without the region of KΦΦ̄ < 0 inside the

disk (|Φ| ≤ 5) can be realized e.g. with Φ0 = 7 and ζ = 3.399× 10−5.
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3)|W |2, and neglect derivatives of the superpotential since they are proportional to the slow-

roll parameters. At |Φ| = Φ0, the canonically normalized squared mass of the radial part

is

m2
radial '

3(12ζΦ6
0 + 2Φ4

0 − Φ2
0 − 2)

Φ2
0 − 3

H2 & 20H2. (2)

In the last inequality, we assume ζ ≥ 0 and Φ2
0 > 3. Thus, it is not difficult to strongly stabilize

the radial part. As long as the radial component is stabilized with its mass much larger than

the Hubble scale, the following discussion is independent of the detailed mechanism of the

stabilization.

3 Helical phase inflationary models in our approach

Having stabilized the radial mode at |Φ| = Φ0, let us consider typical inflationary models, with-

out introducing a stabilizer superfield. Let us parametrize the inflaton field as Φ = Φ0e
iθ/
√

2Φ0 .

The phase is scaled so that it is canonically normalized. The superpotential breaks the U(1)

symmetry in the Kähler potential, and generates the inflaton (scalar) potential. We study

chaotic inflation with the quadratic potential, the Starobinsky-like plateau potential, and a

sinusoidal potential in this Section.

3.1 Quadratic helical-phase inflation

The logarithmic singularity in the superpotential is the heart of the helical phase inflation,

which is needed to realize a nontrivial spiral shape. Let us take the simplest Ansatz

W = m log
Φ

f
, (3)

where m sets the scale of inflation, and f ≡ f0e
iθ0/
√

2Φ0 (with f0 and θ0 real) is the dimensional

parameter controlling the cosmological constant.

After stabilization, the inflaton potential becomes

V =
1

2
m2

inf (θ − θ0)2 + Λ, (4)

with

minf =
|m|
√

Φ2
0 − 3

Φ0
, (5)

Λ =|m|2
(

1

Φ2
0

+ 2 log
Φ0

f0
+
(
Φ2

0 − 3
) ∣∣∣∣log

Φ0

f0

∣∣∣∣2
)
. (6)
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Thus, the quadratic scalar potential is obtained under the condition Φ0 >
√

3. The cosmolog-

ical constant can be eliminated by choosing

f0 = Φ0e
1

Φ0(Φ0±
√

3) . (7)

The full potential is shown in Fig. 1 for a limited field range. As is clear from the Figure,

the radial part is strongly stabilized, while its mass increases with the potential. This is also

implied by Eq. (2).

In this model, the gravitino mass at the vacuum is

m3/2 =
|m|

Φ0(Φ0 ±
√

3)
. (8)

On the one hand, in the case of (Φ0 −
√

3) � 1, the inflaton becomes much lighter than the

gravitino, minf � m3/2. On the other hand, in the large Φ0 limit, the inequality is reversed,

m3/2 � minf, and one gets the cosmological gravitino problem.

Though the quadratic potential is already excluded by Planck observations, some modifi-

cations or coupling to other sectors may make the quadratic model consistent with the data

(see e.g., Ref. [18]). Instead of studying such possibilities, we directly construct some viable

inflationary models in the next subsections.

Figure 1: The quadratic potential for helical phase inflation. The parameters are chosen as

Φ0 = 1.8 and ζ = 0.11.
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3.2 Starobinsky-like helical-phase inflation

In the previous Subsection, the logarithm log Φ = log Φ0 + iθ/(
√

2Φ0) in the superpotential

leads to the quadratic potential. A plateau-type potential consists of the exponential factors

like e−θ, so let us consider the exponential of the logarithm, ei log Φ = Φi which is equivalent to

the imaginary power of the superfield. In other words, let us take the following superpotential:

W = m
(
c+ Φi

)
, (9)

where m and c are the constant parameters that determine the scale of inflation and the

cosmological constant (see below).

After stabilization, the inflaton potential becomes

V = |m|2
(
A+Be−θ/

√
2Φ0 + Ce−2θ/

√
2Φ0

)
, (10)

with the coefficients

A =|c|2
(
Φ2

0 − 3
)
, (11)

B =2|c|
[(

Φ2
0 − 3

)
cos (log Φ0 − ϕ)− sin (log Φ0 − ϕ)

]
, (12)

C =Φ2
0 − 3 +

1

Φ2
0

, (13)

where the phase ϕ is defined by c = |c|eiϕ.

For any Φ0 larger than
√

3, A and C are positive definite, and the sign of B depends on ϕ.

There exists a solution of ϕ such that B is negative and, moreover, the cosmological constant

vanishes. The potential is a generalization of the Starobinsky potential. Such potentials are

often called “Starobinsky-like” in the literature. Our Starobinsky-like scalar potential is shown

in Fig. 2.

The masses of inflaton and gravitino are given by

minf =
|mc|
Φ0

√
Φ2

0 − 3 , (14)

m3/2 =|mc|

∣∣∣∣∣eiϕ − ei log Φ0

√
Φ2

0(Φ2
0 − 3)

Φ2
0(Φ2

0 − 3) + 1

∣∣∣∣∣ . (15)

Similarly to the previous case, minf � m3/2 for small (Φ2
0 − 3), whereas the opposite relation

takes place for large Φ2
0.

The spectral index is the same as that of the Starobinsky model, but the tensor-to-scalar

ratio is different:

1− ns =
2

N
and r =

16Φ2
0

N2
, (16)

in the leading order of N−1. With Φ2
0 > 3, the tensor-to-scalar ratio is enhanced, when being

compared to the Starobinsky model (r = 12/N2). With an arbitrary imaginary power Φbi

5



instead of Φi in Eq. (9), where b is a real parameter, the tensor-to-scalar ratio is divided by |b|
as r = 16Φ2

0/|b|N2.

Figure 2: The Starobinsky-like potential for helical phase inflation. The parameters are chosen

as Φ0 = 1.8, ζ = 0.11 and ϕ = 3.85.

3.3 Natural helical-phase inflation

The previous examples are based on the superpotentials having the singularity at the origin.

However, it is not the necessary feature of our mechanism because of the super-Planckian value

of the radial component. Let us take the superpotential of the previous Subsection and replace

its imaginary power by a real power as

W = m (c+ Φ) . (17)

This is simply a linear function without the monodromy structure. In this case, a large value of

|Φ| is required not only by the positivity of the stabilized potential but also by the observational

status of natural inflation.

After stabilization, the inflaton potential becomes

V = |m|2
[
D + E cos

(
θ√
2Φ0

− ϕ
)]

, (18)
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with the coefficients

D =|c|2(Φ2
0 − 3) + Φ4

0 − Φ2
0 + 1 , (19)

E =2|c|Φ0(Φ2
0 − 2) , (20)

and ϕ is again the argument of c, c = |c|eiϕ. The cosmological constant vanishes when

|c| = Φ0(Φ2
0 − 2)±

√
3

Φ2
0 − 3

. (21)

In this case, the potential is positive when Φ2
0 > 3 (2) for the upper (lower) sign, and the

sinusoidal scalar potential of natural inflation is obtained. The potential is shown in Fig. 3.

The masses of inflaton and gravitino are given by

minf =|m|

√
Φ2

0 − 2

Φ0
, (22)

m3/2 =
|m|

Φ0 ∓
√

3
. (23)

Again, if the absolute value of the field is barely larger than the critical value
√

2 (this is for the

lower sign), the inflaton is much lighter than the gravitino. In the large VEV case, gravitino

becomes much lighter than the inflaton.

The parameter of the natural inflation is tightly constrained by the CMB observations.

The decay constant (in our case
√

2Φ0) must be larger than 6.9 at 95% confidence level [2], so

that the lower bound on the absolute value is obtained as Φ0 & 4.9.

4 Conclusion

In this paper we studied helical phase inflation with a single chiral superfield in supergravity,

i.e. without the stabilizer superfield used in the known versions of helical phase inflation in

the literature.

In order to ensure positivity of the scalar potential and avoid computational complexity, we

introduced a stabilization term to the Kähler potential that fixes the radial component of the

inflaton complex scalar at a sufficiently large value. It results in technical simplification also.

After the stabilization, a slow-roll inflation occurs in the direction of the phase component.

We exemplified our findings on the three simple models of the single-superfield helical-phase

inflation. It implies that there should be many more possibilities to obtain viable inflationary

potentials in our approach. One such noticeable generalization is a hybrid version of the models

in Subsections 3.2 and 3.3. Let us take an arbitrary complex power of the inflaton superfield,

W = m(c+Φa+ib) with a and b real. This model interpolates between the natural inflation and
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Figure 3: The sinusoidal potential for helical phase inflation. The parameters are chosen as

Φ0 = 5 and ζ = 0.03, and the upper sign is taken in Eq. (21).

the Starobinsky-like inflation. A similar model was studied in the presence of the stabilizer

superfield in Ref. [11].

In summary, we proposed the new type of inflationary mechanism in supergravity, com-

bining the ideas of helical phase inflation [8–11] and single-superfield inflation with the higher

dimensional stabilization term in the Kähler potential [12,13]. Our models are simple: the ki-

netic term is approximately canonical, the superpotential is very economical, and no stabilizer

superfield (or extra d.o.f.) is present.
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