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Abstract

We present results on the pseudoscalar meson masses from a fully dynamical
simulation of QCD+QED. We concentrate particularly on violations of isospin sym-
metry. We calculate the π+-π0 splitting and also look at other isospin violating mass
differences. We have presented results for these isospin splittings in [1]. In this pa-
per we give more details of the techniques employed, discussing in particular the
question of how much of the symmetry violation is due to QCD, arising from the
different masses of the u and d quarks, and how much is due to QED, arising from
the different charges of the quarks. This decomposition is not unique, it depends
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on the renormalisation scheme and scale. We suggest a renormalisation scheme in
which Dashen’s theorem for neutral mesons holds, so that the electromagnetic self-
energies of the neutral mesons are zero, and discuss how the self-energies change
when we transform to a scheme such as MS, in which Dashen’s theorem for neutral
mesons is violated.

1 Introduction

Lattice calculations of the hadronic spectrum are now reaching a precision where it is
essential to resolve the influence of isospin breaking effects. These have two sources, a
QCD effect arising from the fact that the u and d quarks have different masses, and
an electromagnetic effect due to the u and d having different electric charges. The two
effects are comparable in magnitude, so a reliable calculation of isospin breaking requires
simulating both the gluon and photon gauge fields.

Lattice studies of electromagnetic effects in the pions go back to [2]. In recent years
the interest in QCD+QED has grown, and the pace of work accelerated [3–9].

We are carrying out simulations in QCD+QED [1]. Both gauge theories are fully
dynamical, so that the electrical charges of sea-quark loops are included via the fermion
determinants. We use a non-compact action for the photon field. Our calculations are
carried out with three clover-like quarks. Details of our lattice action will be given in
section 4, and can be found in [1, 10].

In the real world, with αEM = 1/137, electromagnetic effects on masses are at the 1%
level, or smaller. This would make them hard to measure on the lattice. Therefore we
simulate with a QED coupling stronger than in real world, so that we can see effects easily,
and then scale back to physical αEM . Our simulations are carried out with βQED = 0.8,
equivalent to e2 = 1.25, αEM = e2/(4π) ≈ 0.10 . We will see that this is a good choice,
electromagnetic signals are clearly visible, much larger than our statistical errors, but we
are also in a region where they still scale linearly in e2, and we do not need to consider
higher-order terms.

We generate configurations with dynamical u, d and s quarks, and then increase our
data range by carrying out partially quenched calculations, with valence u, d, s quarks
having different masses from the quarks used in the generation of the configurations. In
addition to the u, d, s quarks, we also introduce a fictitious n quark, an extra flavour with
electrical charge zero. The n quark is particularly useful for checking that we are in the
region where electromagnetic effects are still linearly proportional to e2.

In this work we present results on the pseudoscalar mesons. Our meson propagators
are calculated from connected graphs only. Because we have no fermion-line disconnected
graphs, the uū, dd̄, ss̄ and nn̄ states do not mix, so we can measure M2(uū),M2(dd̄) and
M2(ss̄). In the real world, these states do not exist, they mix strongly to form the π0, η
and η′. To compare our data with the real world, we will need to extract a mass for the
π0, with wave-function proportional to (uū− dd̄)/

√
2. We use the relation

M2
π0 ≈ 1

2

[

M2(uū) +M2(dd̄)
]

(1)
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which is a very good approximation, with corrections proportional to the small quantity
(md−mu)

2 [11]. This issue does not arise for the flavour non-diagonal mesons, π+, K0, K+,
which have no disconnected contribution.

In the first part of this paper, sections 2 to 7, we discuss theoretical questions. First we
describe how our constant singlet mass procedure [11,12] can be applied to QCD+QED.
We derive a mass formula for pseudoscalar mesons in this framework. This is all that is
needed to calculate physical mass splittings, in particular the π+-π0 splitting. It also gives
us the lattice masses for the u, d, s quarks at the physical point, needed to predict mass
splittings in the baryons. A particularly delicate number is the mass difference mu −md

(or mu/md mass ratio), which is difficult to extract reliably from a pure QCD simulation,
and is much better defined in QCD+QED simulations.

We also want to dissect the meson mass into a QCD part and a QED part, to find
the electromagnetic ǫ parameters, which express the electromagnetic contributions to the
meson masses [13]. We find that there are theoretical subtleties in this separation, leading
to scheme and scale dependence in the result.

What is the physics behind this scheme dependence? In QCD+QED, each hadron will
be surrounded by a photon cloud. As in pure QED, the total energy in the cloud will be
ultra-violet divergent. Crudely, we can think of two components of the cloud:

• Short wave-length photons, with wave-lengths small compared with a hadron radius.
These can be associated with particular quarks. If we look at the hadron with
some finite resolution the photons with wavelengths shorter than this resolution are
incorporated into the quark masses as self energies.

• Long wave-lengths photons, which can’t be associated with particular quarks. These
photons must be thought of as the photon cloud of the hadron as a whole, these are
the photons that we include when we talk of the electromagnetic contribution to the
hadron mass. We expect to see many more really long wave-length photons (large
compared to the hadron radius) around a charged hadron than around a neutral
hadron.

Clearly, in this picture, the value we get for the electromagnetic contribution to the
hadron energy is going to depend on our resolution, i.e. on the scheme and scale that we
use for renormalising QED.

In the final part, section 8, we summarise our lattice results for the π+-π0 splitting
and for the scheme-dependent ǫ parameters, which parameterise the electromagnetic part
of the meson masses.

We have already published an investigation into the QCD isospin breaking arising
from md −mu alone in [15], and the first results of our QCD+QED program in [1], which
we discuss at greater length here.
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2 Extrapolation Strategy

In pure QCD we found that there are significant advantages in expanding about a sym-
metric point with mu = md = ms = m [11, 12]. In particular, this approach simplifies
the extrapolation to the physical point, and it decreases the errors due to partial quench-
ing. We want to follow a similar approach with QED added, even though the symmetry
group is smaller (the u quark is always different from the other two flavours because of
its different charge).

First we find a symmetric point, with all three quark masses equal, chosen so that the
average quark mass,

m ≡ 1
3
(mu +md +ms) , (2)

has its physical value. To do this, we have defined our symmetric point in terms of the
masses of neutral pseudoscalar mesons

M2(uū) = M2(dd̄) = M2(ss̄) = M2(nn̄) = X2
π . (3)

Here Xπ is an average pseudoscalar mass, defined by

X2
π = 1

3

[

2(M⋆
K)

2 + (M⋆
π)

2
]

(4)

where ⋆ denotes the real-world physical value of a mass. The n is a fictitious electrically
neutral quark flavour. We have not included disconnected diagrams, so the different
neutral mesons of (3) do not mix.

We also define the critical κc
q for each flavour as the place where the corresponding

neutral meson is massless 1

M2(qq̄) = 0 ⇔ mq = 0 . (5)

Chiral symmetry can be used to argue that neutral mesons are better than charged ones
for defining the massless point [14].

We then make a Taylor expansion about this point, using the distance from m as our
parameter to specify the bare quark masses

aδmq ≡ a(mq −m) =
1

2κ
−

1

2κsym
q

, (6)

aδµq ≡ a(µq −m) =
1

2κ
−

1

2κsym
q

, (7)

where mq denotes the simulation quark mass (or sea quark mass), while µq represents the
masses of partially quenched valence quarks. Note that keeping the average quark mass
constant, (2), implies the constraint

δmu + δmd + δms = 0 . (8)

1The critical κ defined in eq. (5) is the critical κ in the mu +md +ms = const surface, i.e. if mu = 0,
we must have md+ms = 3m. The κc for the chiral point with all three quarks massless will be different.
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In [11] we wrote down the allowed expansion terms for pure QCD, taking flavour
blindness into account. QCD+QED works very much like pure QCD. Since the charge
matrix Q is a traceless 3× 3 matrix,

Q =





+ 2
3

0 0
0 − 1

3
0

0 0 − 1
3



 , (9)

electric charge is an octet, so we can build up polynomials in both charge and mass
splitting in a way completely analogous to the pure QCD case. The main difference is
that we can only have even powers of the charge, so the leading QED terms are ∼ e2,
while the leading QCD terms are ∼ δm.

One very important point to note is that even when all three quarks have the same
mass, we do not have full SU(3) symmetry. The different electric charge of the u quark
means that it is always distinguishable from the d and s quarks.

3 Meson mass formula

From these considerations we find the following expansion for the mass-squared of an ab̄
meson, incorporating both the QCD and electromagnetic terms

M2(ab̄) = M2 + α(δµa + δµb) + c(δmu + δmd + δms) (10)

+ β0
1
6
(δm2

u + δm2
d + δm2

s) + β1(δµ
2
a + δµ2

b) + β2(δµa − δµb)
2

+ βEM
0 (e2u + e2d + e2s) + βEM

1 (e2a + e2b) + βEM
2 (ea − eb)

2

+ γEM
0 (e2uδmu + e2dδmd + e2sδms) + γEM

1 (e2aδµa + e2bδµb)

+ γEM
2 (ea − eb)

2(δµa + δµb) + γEM
3 (e2a − e2b)(δµa − δµb)

+ γEM
4 (e2u + e2d + e2s)(δµa + δµb)

+ γEM
5 (ea + eb)(euδmu + edδmd + esδms) .

As well as the terms needed in the constant m surface we have also included the term
c(δmu+δmd+δms), the leading term describing displacement from the constantm surface.
Including this term will be useful when we come to discuss renormalisation and scheme
dependence, it could also be used to make minor adjustments in tuning.

The QCD terms have been derived in [11]. We will now discuss briefly the origins of
the electromagnetic terms.

3.1 Leading order terms

In what follows we use the following notation:

e2 = 1/βQED , eq = Qqe (11)

where
Qu = + 2

3
, Qd = Qs = − 1

3
. (12)
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The leading order EM terms were written down in [10],

M2
EM(ab̄) = βEM

0 (e2u + e2d + e2s) + βEM
1 (e2a + e2b) + βEM

2 (ea − eb)
2 . (13)

Let us discuss these terms in detail, one-by-one.

Because all our simulations have the same choice of sea quark charges, even if we vary
the sea quark masses, (e2u + e2d + e2s) is a constant, and we can simply absorb this term
into M2 of (10). The βEM

0 term just stands for the fact that M2 measured in QCD+QED
might be different from M2 measured in pure QCD. As we have tuned our expansion
point so that the pseudoscalars have the same symmetric-point mass as in pure QCD, the
βEM
0 for the pseudoscalar mesons will be zero, but we will still have to allow M2 for other

particles to be different in QCD+QED than in pure QCD.

Consider (10) at the symmetric point, for the case of a flavour-diagonal meson, aā. At
the symmetric point, nearly all terms vanish because δmq and δµq are zero. In addition,
the electromagnetic terms simplify because eb = ea. All we are left with is

M2(aā) = M2 + βEM
0 (e2u + e2d + e2s) + 2βEM

1 e2a (14)

at the symmetric point. However, since we have defined our symmetric point by (3),
equation (14) must give the same answer whether ea = − 1

3
, 0 or +2

3
, so βEM

1 must be
zero (because it would split the masses of the different mesons, according to the charge
of their valence quarks). However, having βEM

1 = 0 for the pseudoscalar mesons does not
mean that this term will also vanish for other mesons, for example the vector mesons. If
we tune our masses so that the pseudoscalar uū, dd̄ and ss̄ all have the same mass, we
would still expect to find that the vector uū meson would have a different mass from the
vector dd̄ and ss̄, because there is no symmetry in QCD+QED which can relate the u to
the other two flavours.

Finally, we observe that the contribution from βEM
2 is zero for neutral mesons, ea = eb.

However, this is the leading term contributing to the π+-π0 mass splitting, so it is of
considerable physical interest.

3.2 Next Order

We now briefly discuss the higher order terms of the form e2δmq, e
2δµq.

• Sea charge times sea mass, γEM
0

After imposing the constraints that m is kept constant and eu + ed + es = 0, there
is only one completely symmetric sea-sea polynomial left,

e2uδmu + e2dδmd + e2sδms . (15)

• Valence charge times sea mass

At this order all polynomials of this type are killed by the m = const constraint.
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• Valence charge times valence mass, γEM
1 , γEM

2 , γEM
3

This time there are three independent allowed terms. One convenient basis for the
valence-valence terms is

e2aδµa + e2bδµb , (ea − eb)
2(δµa + δµb) , (e2a − e2b)(δµa − δµb) , (16)

though other choices are possible.

• Sea charge times valence mass, γEM
4

The only polynomial of this type is

(e2u + e2d + e2s)(δµa + δµb) . (17)

Since (e2u + e2d + e2s) is held constant, this term can simply be absorbed into the
parameter α of (10).

• Mixed charge times sea mass, γEM
5

At the symmetric point we can not have mixed charge terms (valence charge times
sea charge), because such terms would be proportional to (eu + ed + es) which is
zero. However, away from the symmetric point

(ea + eb)(euδmu + edδmd + esδms) (18)

is allowed.

4 Lattice setup

We are using the action
S = SG + SA + Su

F + Sd
F + Ss

F . (19)

Here SG is the tree-level Symanzik improved SU(3) gauge action, and SA is the noncom-
pact U(1) gauge action of the photon,

SA = 1
2
βQED

∑

x,µ<ν

[Aµ(x) + Aν(x+ µ̂)− Aµ(x+ ν̂)−Aν(x)]
2 . (20)

The fermion action for flavour q is

Sq
F =

∑

x

{

1
2

∑

µ

[

q(x)(γµ − 1)e−ieqAµ(x)Ũµ(x)q(x+ µ̂)

−q(x)(γµ + 1)eieqAµ(x−µ̂)Ũ †
µ(x− µ̂)q(x− µ̂)

]

+
1

2κq

q(x)q(x)− 1
4
cSW

∑

µ,ν

q(x)σµνFµν(x)q(x)

}

, (21)

where Ũµ is a singly iterated stout link. We use the clover coefficient cSW with the value
computed non-perturbatively in pure QCD, [16]. We do not include a clover term for the
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electromagnetic field. We simulate this action using the Rational Hybrid Monte Carlo
(RHMC) algorithm [17].

We have carried out simulations on three lattice volumes, 243×48, 323×64 and 483×96.
The 243 × 48 calculations show clear signs of finite size effects. The differences between
323 × 64 and 483 × 96 are quite small, leading us to believe that finite size effects on our
largest volume are under control. In this paper we present results from the two largest
volumes, which usually are in close agreement. In the few cases where there is a difference,
we would favour the results from the largest volume, 483 × 96.

5 Critical κ

Having discussed the theory, let us now turn to the data.

After several tuning runs we have been carrying out our main simulations at the point

βQCD = 5.50 , βQED = 0.8 , (22)

κu = 0.124362 , κd = κs = 0.121713

which lies very close to the ideal symmetric point defined in (3) (but with a much stronger
QED coupling than the real world, αQED = 0.099472 · · ·, instead of the true value 1/137).

The flavour dependence of the meson masses is more complicated in QCD+QED than
in pure QCD. We illustrate some of these differences in the sketch Fig. 1, showing the
way that the flavour-diagonal mesons depend on the quark mass. As well as the physical
charge +2

3
and −1

3
quarks, we also have a fictional charge 0 quark. In QCD+QED we

still have the relationship M2(qq̄) ∝ mq for flavour-diagonal (neutral) mesons, but the
gradients of the uū, dd̄, nn̄ mesons differ. So, in contrast to pure QCD, equal meson mass
at the symmetric point no longer means equal bare quark mass. The bare mass at the
symmetric point depends on the quark charge. This situation is illustrated in the left
panel of Fig. 1, (though the differences between the flavours has been exaggerated for
clarity).

We rescale (renormalise) the quark masses to remove this effect, making the renor-
malised quark masses at the symmetric point equal. The situation after renormalising
in this way is illustrated in the right panel of Fig. 1. All the flavour-diagonal mesons,
nn̄, dd̄, ss̄ and uū now line up, depending in the same way on the new mass µD, which
we call the “Dashen scheme” mass, for reasons which should become clear later 2. We
will see that using this quark mass also simplifies the behaviour of the mixed flavour
mesons, and helps us understand the splitting of a hadron mass into a QCD part and an
electromagnetic part.

One way to interpret the behaviour in Fig. 1 is to consider a u and d quark with the
same bare lattice mass. The u quark will have a stronger photon cloud, because of its
larger charge, so it will be physically more massive, which is why the mass of the uū

2Here, to introduce the idea, we just make a simple multiplicative renormalisation. In fact, the mass
renormalisation matrix is not diagonal, there are also terms which mix flavours. We will include these
additional terms in section 6.
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Figure 1: Sketch illustrating the transformation from bare masses (left panel) to Dashen
scheme masses (right panel). In the left panel all the flavour diagonal mesons have the
same mass at the symmetric point (δµq = 0), but have different critical points (M2

PS = 0).
In the Dashen scheme (right panel) we rescale the masses horizontally, so that all the
critical points are the same. The different mesons now all depend on δµD

q in the same
way.

meson rises more steeply than the dd̄ meson, when plotted against bare mass. When we
plot against the Dashen mass, we have effectively added the extra mass of the photon
cloud to the quark mass. Two quarks with the same Dashen mass are physically similar
in mass, and so they form mesons of the same mass, as seen in the right-hand panel of
Fig. 1.

Let us now see how this idea works out with real data. In Fig. 2 we show how the
symmetric κsym and critical κc are determined, using the dd̄ meson as an example. κc is
defined from the point where the partially-quenched meson mass extrapolates to zero, (5),
while κsym is defined by the point where the fit line crosses M2

PS = X2
π, (3).

In Fig. 3 we show how the symmetric κ and critical κ depend on the charge of the
quark. We see that in both cases 1/κ depends linearly on Q2

q .

Despite appearances, the two lines are not quite parallel. In Fig. 4 we plot the bare
mass at the symmetric point,

amsym
q =

1

2κsym
q

−
1

2κc
q

. (23)

κc
q for each flavour is defined as the point at which the flavour-diagonal qq̄ meson becomes

massless. We see that our data show the behaviour shown in the left-hand panel of Fig. 1,
with each meson reaching the axis at a different point.

The factors needed to bring the charged bare masses into agreement with the neutral
bare mass, as in the right-hand panel of Fig. 1, are

ZQED
md

= ZQED
ms

= 1.023, ZQED
mu

= 1.096 . (24)

As seen in Fig. 4 this Z factor depends linearly on the quark charge squared, we can write

δµD
q = (1 +Ke2q)δµq = (1 +KQ2

qe
2)δµq , (25)
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Figure 2: Determination of κc and κsym for the d quark. κc is defined from the point
where the dd̄ meson mass extrapolates to zero, (5), while κsym is defined by the point
where the fit line crosses M2

PS = X2
π, (3).

Figure 3: 1/κc (red squares) and 1/κsym (blue circles) plotted against quark charge
squared, Q2

q .

for some constant K. By construction, this simplifies the neutral mesons, they will all lie
on the same line, see Fig. 1. What does it do to the charged mesons?

First, we look at the uū, dd̄ and ud̄ (π+) meson masses plotted as a function of bare

10



Figure 4: The bare mass at the symmetric point, amsym
q , as a function of quark charge.

We see that the bare mass is not constant, there is about a 10% difference between the
neutral n quark and the u quark. The open red circles show the quark masses after
renormalising to remove this charge dependence.

Figure 5: Pseudoscalar M2
PS plotted against bare mass for the π+ (red), uū (blue) and

dd̄ (black) mesons. The lines simply connect the points. Error bars are small compared
with the points. Data are from a 323 × 64 lattice.

quark mass, Fig. 5. We see that in this plot the two neutral mesons, uū and dd̄, lie on
different lines. We also see that the π+ data do not lie on a smooth curve. This is not
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due to statistical errors (which are much too small to see in this plot). It is because the
π+ meson mass depends both on δmu + δmd, as in pure QCD, but also has a significant
dependence on δmu−δmd, which causes those mesons containing quarks with very unequal
masses to deviate from the trend.

Figure 6: The same data as in Fig. 5, but this time plotted against Dashen-scheme quark
mass.

In Fig. 6 we see that the graph looks significantly different plotted against Dashen-
scheme quark masses. The uū and dd̄ mesons now lie on the same straight line (this
is essentially by construction, since equal Dashen-scheme quark mass ⇔ equal neutral
meson mass). More interesting is the fact that the “jiggles” in the π+ mass are largely
removed by plotting against Dashen-scheme mass, making it much easier to estimate the
EM shift in the π+ mass.

6 Dashen scheme quark mass formula

Let us now look in more detail at the Dashen scheme, working from the meson mass
formula (10).

We can absorb the QED terms for the neutral pseudoscalar mesons into the quark
self-energy by making the definition

δµD
q = δµq +

{

1
2
c(δmu + δmd + δms) +

1
2
γEM
0 (e2uδmu + e2dδmd + e2sδms) (26)

+ γEM
1 e2qδµq + γEM

4 (e2u + e2d + e2s)δµq + γEM
5 eq(euδmu + edδmd + esδms)

}

/α .

At present we are neglecting γEM
0 and γEM

5 because we are working on a symmetric
background, δmq = 0, and neglecting γEM

4 because it can be absorbed into the coefficient
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α if we only have data at one value of βQED. This means that only the γEM
1 term is

used in calculating δµD
a , giving a simple multiplicative transformation from bare mass to

Dashen scheme mass. Most of the other terms in (26) represent off-diagonal terms in the
quark mass Z matrix. There are many more mixing terms possible in QCD+QED than
in pure QCD, but most of them first occur in diagrams with a large number of loops, so
they are probably rather small.

Substituting (26) into (10) we are left with the simpler formula

M2(ab̄) = M2 + α(δµD
a + δµD

b ) + β0
1
6
(δm2

u + δm2
d + δm2

s) (27)

+ β1((δµ
D
a )

2 + (δµD
b )

2) + β2(δµ
D
a − δµD

b )
2 + βEM

2 (ea − eb)
2

+ γEM
2 (ea − eb)

2(δµD
a + δµD

b ) + γEM
3 (e2a − e2b)(δµ

D
a − δµD

b ) .

In (27) all the EM terms vanish for neutral mesons (ea = eb), leaving

M2
neut(ab̄) = M2 + α(δµD

a + δµD
b ) + β0

1
6
(δm2

u + δm2
d + δm2

s) (28)

+ β1

(

(δµD
a )

2 + (δµD
b )

2
)

+ β2

(

δµD
a − δµD

b

)2

which clearly has no references to any EM coefficient, or to any charges eq. So, by
construction, the mass of the neutral pseudoscalar mesons comes purely from the quark
masses, and has no electromagnetic contribution. The formula simplifies even further if
we consider a flavour-diagonal meson

M2(aā) = M2 + 2αδµD
a + β0

1
6
(δm2

u + δm2
d + δm2

s) + 2β1(δµ
D
a )

2 . (29)

This agrees with what we see in Figs. 1,6, with the different flavour-diagonal mesons all
lying on the same curve when plotted against the Dashen quark mass.

In the Dashen scheme the electromagnetic contribution to the meson mass is

M2
γ (ab̄) = βEM

2 (ea − eb)
2 + γEM

2 (ea − eb)
2(δµD

a + δµD
b ) (30)

+ γEM
3 (e2a − e2b)(δµ

D
a − δµD

b ) ,

while the QCD contribution is

M2
QCD(ab̄) = M2 + α(δµD

a + δµD
b ) + β0

1
6
(δm2

u + δm2
d + δm2

s) (31)

+ β1((δµ
D
a )

2 + (δµD
b )

2) + β2(δµ
D
a − δµD

b )
2 .

Dashen’s theorems [18] say that “the QED contribution to the energy of the neutral
pseudoscalar mesons is zero” and “the QED contribution to the mass-squared of the
charged pseudoscalar mesons is constant”. In our “Dashen scheme” the first statement is
automatically true, the second needs testing. The βEM

2 term in (30) respects the charged
meson part of Dashen’s theorem, while the higher order γEM terms violate it.

7 Scheme dependence

We can calculate electromagnetic contributions to the meson masses from (30) in our
scheme, but we would also like to give the QED contribution in other schemes, in particular
MS.
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To illustrate the issue of scheme dependence, let us consider the splitting between
the K0 and K+ mesons. In the real world the K0-K+ splitting comes partly from QED
effects, and partly from the md, mu mass difference, which we consider to be the QCD
part of the splitting. The ordering of the physical states, with the K0 heavier than the
K+ suggests that the quark mass effect dominates, but we expect that there is still a
QED contribution of comparable magnitude.

How might we determine this QED contribution? Naively, one might think this is
quite easy. Since we can use unphysical parameters in lattice simulations, we could do a
simulation with mu = md. Now, there will be no splitting from QCD, so the result will
give the splitting due to QED alone.

In pure QCD, setting mu = md is unproblematic as equal bare mass implies equal
renormalised mass, regardless of scale or scheme. However in QED+QCD, mass ratios
between quarks of different charges are not invariant. The anomalous dimension of the
quark mass now depends on the quark charge; at one-loop

γm = 6CFg
2 + 6Q2

fe
2 + · · · (32)

so the u mass runs faster than d mass. If mu = md in one scheme, this will not be true in
another. This also implies that there is no good way to compare masses at the physical
e2 with pure QCD masses at e2 = 0.

7.1 Changing Scheme

To calculate the electromagnetic part of the meson mass we take the difference between
the mass calculated in the full theory, QCD+QED, (g2 and e2 both non-zero) and subtract
the mass calculated in pure QCD, (e2 = 0):

M2
γ = M2(g2, e2⋆, m

⋆
u, m

⋆
d, m

⋆
s)−M2(g2, 0, mQCD

u , mQCD
d , mQCD

s ) . (33)

where e⋆ is the physical value of the electromagnetic coupling, corresponding to αEM =
1/137. In the full theory the physical quark masses are well defined: we can fix the three
physical quark masses by using three physical particle masses (the π0, K0 and K+ would
be a suitable choice). In the full theory we should use the physical quark masses, m⋆, but
we also have to specify which quark masses we are going to use in the pure QCD case,
(which is, after all, an unphysical theory). Different ways of choosing the mQCD will give
different values for the electromagnetic part of the meson mass.

One prescription for choosing the quark masses in the (unphysical) pure QCD case is
to use the neutral meson masses. We could tune mQCD by requiring

M2
qq̄(g

2, e2⋆, m
⋆
u, m

⋆
d, m

⋆
s) = M2

qq̄(g
2, 0, mQCD

u , mQCD
d , mQCD

s ) (34)

Since the QCD+QED mass matches the QCD mass, this scheme has zero EM contribution
to neutral pseudoscalars by definition. This is our Dashen scheme, discussed above. In
this scheme, M2

γ is zero for neutral pseudoscalar mesons, and is given by the simple
formula (30) for charged mesons.
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A more conventional choice is to choose m⋆ and mQCD the same in MS at some
particular scale. What would fixed MS mass mean for masses in other schemes (e.g. the
Dashen scheme)? We would calculate the Dashen quark masses by renormalising from
MS to the Dashen scheme:

mD(g2, e2⋆) = Zm(g
2, e2⋆, µ

2)mMS(µ2) , (35)

mD(g2, 0, µ2) = Zm(g
2, 0, µ2)mMS(µ2) .

But, because the renormalisation factor Zm depends on both g2 and e2, the Dashen mass
in pure QCD would not be the same as the Dashen mass in the physical QCD+QED
theory:

mD
QCD ≡ mD(g2, 0, µ2) =

Zm(g
2, 0, µ2)

Zm(g2, e2⋆, µ
2)
mD(g2, e2⋆) ≡ Ym(g

2, e2⋆, µ
2)mD(g2, e2⋆) , (36)

so the Dashen mass is rescaled by this renormalisation constant ratio which we call Ym.

Now, we know in principle what the QCD mass we should subtract is, it is the mass
we get substituting e2 = 0, mD = mD

QCD into our fit formula.

Can we estimate the ratio Ym in (36)? We know the renormalisation factor from bare
lattice mass to Dashen mass, equation (25) and (26):

Y latt→D
m = 1 +

γEM
1

α
e2Q2

q (37)

= 1 + αEMQ2
q 2.20(9) .

We also need the renormalisation factor from bare lattice mass to MS. This we can
estimate from lattice perturbation theory [19]. Fortunately, all diagrams with only gluons
and quarks cancel, the leading contribution comes from the 1-loop photon diagram, giving

Y latt→MS
m = 1 +

e2Q2
q

16π2
(−6 ln aµ+ 12.95241)

= 1 + αEMQ2
q 1.208 (38)

using µ = 2 GeV, a−1 = 2.9 GeV (which is the lattice spacing of our simulations, see
Table 2). However, the one-loop result is not the full answer, there will be higher order di-
agrams, with one photon plus any number of gluons, giving contributions ∼ e2g2, e2g4, . . .
To account for these unknown terms we add an error ∼ ±30% to the coefficient, giving

Y latt→MS
m = 1 + αEMQ2

q 1.2(4) . (39)

Combining this with (37) gives us the conversion factor

Y D→MS
m = 1− αEMQ2

q 1.0(5) ≡ 1 + αEMQ2
qΥ

D→MS . (40)

We are now ready to write the transformation formula from Dashen scheme Mγ to Mγ

in MS. In the Dashen scheme

[

M2
γ

]D
= M2(g2, e2, [m⋆

u]
D, [m⋆

d]
D, [m⋆

s]
D)−M2(g2, 0, [m⋆

u]
D, [m⋆

d]
D, [m⋆

s]
D) (41)
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with the same Dashen-scheme quark masses in both terms. In MS

[

M2
γ

]MS
= M2(g2, e2, [m⋆

u]
D, [m⋆

d]
D, [m⋆

s]
D)−M2(g2, 0, [m̃u]

D, [m̃d]
D, [m̃s]

D) (42)

where [m̃q]
D is given by (36)

[m̃q]
D =

(

1 + αEMQ2
qΥ

D→MS
)

[m⋆
q ]

D . (43)

Taking the difference between (42) and (41) gives

[

M2
γ

]MS−
[

M2
γ

]D
= M2(g2, 0, [m⋆

u]
D, [m⋆

d]
D, [m⋆

s]
D)−M2(g2, 0, [m̃u]

D, [m̃d]
D, [m̃s]

D) (44)

which holds for the electromagnetic contribution to any hadron. If we are specifically
interested in pseudoscalar mesons, we can use the leading order mass formula M2(ab̄) =
α(ma +mb) to give

[

M2
γ (ab̄)

]MS
=

[

M2
γ (ab̄)

]D − αEMΥD→MSα
[

Q2
a[m

⋆
a]

D +Q2
b [m

⋆
b ]

D
]

=
[

M2
γ (ab̄)

]D − αEMΥD→MS 1
2

[

Q2
aM

2(aā) +Q2
bM

2(bb̄)
]

. (45)

This is a rather simple formula, the only difficulty is that at present we only have a rather
rough value for the constant Υ.

8 Lattice Results

The first question to consider is how close our simulation is to the symmetric line, where
M(uū) = M(dd̄) = M(ss̄). We find that at the simulation point, M(uū) is about 6%
heavier than the other two mesons, so we are not quite at the desired point. In Table 1
we show the κsym

q values determined on our two large-volume ensembles. In our fits we
make a Taylor expansion about the symmetric point of Table 1, not about our simulation
point. (The displacement is rather small, the difference is in the 5th significant figure.)

flavour 323 × 64 483 × 96 simulation
n 0.1208142(14) 0.1208135(9)
d, s 0.1217026(5) 0.1217032(3) 0.121713
u 0.1243838(10) 0.1243824(6) 0.124362

Table 1: The κ values of the symmetric point, determined from fits to the pseudoscalar
meson data.

The next question is whether we have the value of m correctly matched to the physical
value. This is checked by comparing the averaged pseudoscalar mass squared, X2

π, (4),
with the corresponding baryon scale

X2
N = 1

3

[

(M⋆
N )

2 + (M⋆
Σ)

2 + (M⋆
Ξ)

2
]

. (46)

We find XN/Xπ = 2.79(3), very close to the correct physical value, 2.81, showing that
our tuning has found the correct m value very successfully.
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8.1 The splitting of the π+ and π0 masses.

The first quantity we want to look at is the mass difference between the π+ and π0 mesons.
Since in this case we are calculating a physically observable mass difference there is no
scheme dependence in the result.

First we need to find the κ values corresponding to the physical quark masses. Since
we have three quark masses to determine we need three pieces of physical input, we choose
the masses of the π0 and of the two kaons

Mπ0 = 134.977 MeV,

MK0 = 497.614 MeV, (47)

MK+ = 493.677 MeV

at αEM = 1/137. This determines the physical point given in Table 2. We see very close
agreement between the lattice scale determined on the two lattice volumes.

323 × 64 483 × 96
aδm⋆

u −0.00834(8) −0.00791(4)
aδm⋆

d −0.00776(7) −0.00740(4)
aδm⋆

s 0.01610(15) 0.01531(8)
a−1/GeV 2.89(5) 2.91(3)

Table 2: Bare quark mass parameters at the physical point, and inverse lattice spacing,
defined from Xπ. These masses have been tuned to reproduce the real-world π0, K0 and
K+ when αEM = 1/137.

Using these quark masses we now have a prediction for the one remaining meson mass,
the π+. Our values on the two lattice spacings are given in Table 3.

323 × 64 483 × 96 Real World
Mπ+ 140.3(5) 139.6(2) 139.570

Mπ+ −Mπ0 5.3(5) 4.6(2) 4.594

Table 3: The predicted value of the π+ mass, and π+-π0 splitting, in MeV.

8.2 The ǫ parameters

The π+-π0 mass splitting is a physically measurable quantity, so it is independent of
renormalisation.

We now turn to the problem of dividing our hadron masses into a QCD part and
a QED part. As explained earlier, this is a scheme-dependent concept. When we look
with greater resolution we see more short wavelength photons, which had previously been
counted as part of the quark mass, and therefore part of the QCD contribution to the
mass.
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The traditional way of expressing the electromagnetic contributions is through the ǫ
parameters, which measure M2

γ in units of

∆π ≡ M2
π+ −M2

π0 , (48)

a natural choice because it is a quantity of a similar origin, and similar order of magnitude.

The ǫ parameters are defined by [13]

M2
γ (π

0) = M2
π0(g2, e2)−M2

π0(g2, 0) = ǫπ0∆π ,

M2
γ (K

0) = M2
K0(g2, e2)−M2

K0(g2, 0) = ǫK0∆π ,

M2
γ (π

+) = M2
π+(g2, e2)−M2

π+(g2, 0) = [1 + ǫπ0 − ǫm]∆π , (49)

M2
γ (K

+) = M2
K+(g2, e2)−M2

K+(g2, 0) = ǫK+∆π = [1 + ǫ+ ǫK0 − ǫm]∆π .

ǫK+ is defined in this way so that the electromagnetic contribution to the following quan-
tity has a simple expression

[M2
K+ −M2

K0 −M2
π+ +M2

π0 ]γ = ǫ∆π . (50)

From now on we will neglect the small quantity ǫm, the QCD contribution to the π+-π0

splitting, which comes largely from annihilation diagrams.

In the Dashen scheme the ǫ parameters are fairly simple,

ǫDπ0 = 0, ǫDK0 = 0, ǫDπ+ = 1 , (51)

and the only non-trivial quantity, ǫD, is given by

ǫD =
M2

γ (K
+)

M2
γ (π

+)
− 1 = ǫDK+ − 1 (52)

in the Dashen scheme. On our two ensembles we find

ǫD = 0.38(10) 323 × 64 ,

ǫD = 0.49(5) 483 × 96 , (53)

which agree within error bars. In what follows, we use the 483×96 value in our calculations.

We can use (45) to transform these numbers into MS with the scale µ = 2 GeV:

ǫπ0 = −αEMΥD→MS 1
2

[

4
9
M2(uū) + 1

9
M2(dd̄)

]

/∆π = 0.03± 0.02 ,

ǫπ+ = ǫDπ+ − αEMΥD→MS 1
2

[

4
9
M2(uū) + 1

9
M2(dd̄)

]

/∆π = 1.03± 0.02 ,

ǫK0 = −αEMΥD→MS 1
2

[

1
9
M2(dd̄) + 1

9
M2(ss̄)

]

/∆π = 0.2± 0.1 , (54)

ǫK+ = ǫDK+ − αEMΥD→MS 1
2

[

4
9
M2(uū) + 1

9
M2(ss̄)

]

/∆π = 1.7± 0.1 ,

ǫ = ǫD − αEMΥD→MS 1
2

[

4
9
M2(uū)− 1

9
M2(dd̄)

]

/∆π = 0.50± 0.06 .

In all cases we are resolving more photons in MS, and so converting some fraction of the
quark mass into electromagnetic energy. This has very little effect in the pions because
both quarks are very light, but a much larger effect in the kaons because the strange
quark is heavier, and the photon cloud has a mass proportional to the quark mass.
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9 Conclusions

We have investigated isospin breaking in the pseudoscalar meson sector from lattice cal-
culations of QCD+QED. This allows us to look simultaneously at both sources of isospin
breaking, the quark mass differences, and the electromagnetic interaction, which are of
comparable importance.

The physical mass differences between the different particles are directly observable,
and so must be independent of the renormalisation scheme and scale used. When we try
to go beyond this, to say what fraction of a hadron’s mass-squared comes from QCD,
and from QED, this no longer holds — changing our resolution changes the fraction. We
understand this effect, both formally, in terms of the dependence of the mass renormal-
isation constant on the electromagnetic coupling, and physically, in terms of the quark
mass gaining a contribution from its associated photon cloud.

With this understanding, we calculate the electromagnetic contributions to hadron
masses in the Dashen scheme, which is easy to implement on the lattice, and then convert
these values into the more conventional MS scheme.

We are also investigating the isospin violating mass splittings in the baryon sector [1],
as well as the decomposition of these mass differences into QCD and QED parts, both in
the Dashen scheme, and in MS.
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