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Abstract

Lattice QCD simulations are now reaching a precision where isospin breaking effects
become important. Previously, we have developed a program to systematically investigate
the pattern of flavor symmetry beaking within QCD and successfully applied it to meson
and baryon masses involving up, down and strange quarks. In this Letter we extend the
calculations to QCD+ QED and present our first results on isospin splittings in thepseu-
doscalar meson and baryon octets. In particular, we obtainMπ+ − Mπ0 = 4.60(20) MeV and
Mn − Mp = 1.35(18) MeV.
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1 Introduction and general strategy

Isospin breaking effects are crucial for the existence of our Universe. Our Universe would not
exist in the present form if then − p mass difference would only be slightly different. If it would
be larger than the binding energy of the deuteron, no fusion would take place. If it would be
a little smaller, all hydrogen would have been burned. Isospin breaking in hadron masses has
two sources, the mass difference of up and down quarks, and electromagnetic interactions. Both
effects are of the same order of magnitude and cannot be separated unambiguously due to the
nonperturbative nature of the strong interactions. This makes a direct calculation from QCD+
QED necessary [1].

In [2, 3] we have outlined a program to systematically investigate the pattern of flavor sym-
metry breaking in three-flavor lattice QCD for Wilson-type fermions. Our strategy was to start
from the SU(3) symmetric point with all three quark masses equal, mu = md = ms, and ex-
trapolate towards the physical point keeping the average sea quark mass ¯m = (mu + md + ms) /3
constant. For this trajectory to reach the physical quark masses, ¯m is tuned to the physical value
of the average pseudoscalar meson massX2

π =
(

M2
K0 + M2

K+ + 2M2
π0 − M2

π+

)

/3. We denote the
distance from ¯m by

δmq = mq − m̄ , q = u, d, s . (1)

This impliesδmu + δmd + δms = 0 on our quark mass trajectory. To describe how physical
quantities depend on the quark masses, we Taylor expand about the symmetric point [3]. This
results in polynomials in ¯m andδmq, which we classify into representations of the SU(3) and S3

flavor groups. As we keep ¯m constant and change only the octet part of the mass matrix, tofirst
order inδmq flavor symmetry is broken by an SU(3) octet, leading to Gell-Mann–Okubo mass
relations. We follow a similar approach here with QED added [4].

The symmetry of the electromagnetic current is similar to the symmetry of the quark mass
matrix. The simplifications that come fromδmu+δmd+δms = 0 in the mass case are analogous to
the simplifications we get from the identityeu+ed+es = 0. A difference between quark mass and
electromagnetic expansions is that in the mass expansion wecan have both odd and even powers
of δmq, whereas only even powers of the quark chargeseq are allowed. We consider contributions
of O(e2

q) only. Hence, QED corrections can be simply read off from the mass expansion presented
in [3], dropping the linear terms and changing masses to charges.

For the masses of octet mesons with the flavor structureab̄, and all annihilation diagrams

Figure 1: Examples of Feynman diagrams contributing to the meson electromagnetic mass to
O(e2

q). Wavy lines are photons, curly lines are gluons.
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turned off, we find toO(δmq)

M2(ab̄) = M2
0 + α (δma + δmb) + β

EM
0 (e2

u + e2
d + e2

s) + β
EM
1 (e2

a + e2
b) + β

EM
2 (ea − eb)

2

+ γEM
0 (e2

uδmu + e2
dδmd + e2

sδms) + γ
EM
1 (e2

aδma + e2
bδmb)

+ γEM
2 (ea − eb)

2 (δma + δmb) + γ
EM
3 (e2

a − e2
b) (δma − δmb)

+ γEM
4 (e2

u + e2
d + e2

s) (δma + δmb) + γ
EM
5 (ea + eb) (euδmu + edδmd + esδms) .

(2)

Several of the coefficients in (2) can be matched up with different classes of Feynman diagrams
shown in Fig. 1. The first diagram, with both ends of the photonattached to the same valence
quark, contributes to (βEM

1 + βEM
2 ). The second diagram, with the photon crossing between the

valence lines, contributes toβEM
2 . The last diagram, with the photon being attached to the sea

quarks, is an example of a diagram contributing toβEM
0 . It would be missed out if the elec-

tromagnetic field was quenched instead of dynamical. Similar assignments hold for the mixed
(charge squared times mass) terms. For a single choice of seaquark masses, theβEM

0 andγEM
4

terms can be absorbed into the constantM2
0 and theα term. However, for a combined fit of both

QCD and QCD+QED data we will need these coefficients. Similarly, for octet baryons with the
flavor structureaab we find

M2(aab) = M2
0 + α1 (2δma + δmb) + α2 (δma − δmb)

+ βEM
0 (e2

u + e2
d + e2

s) + β
EM
1 (2e2

a + e2
b) + β

EM
2 (ea − eb)

2 + βEM
3 (e2

a − e2
b) .

(3)

This excludes the case of baryons with three different quarks, as in theΣ0−Λ system [5]. Again,
theβEM

0 term can be absorbed into the mass termM2
0.

Our goal is to compute the mass splittings of pseudoscalar mesons and octet baryons at the
physical point for QCD+ QED. This amounts to determining the coefficientsα, βEM andγEM

in (2) and (3). It greatly helps to vary valence and sea quark masses independently [3], which
is referred to as partial quenching (PQ). In this case the seaquark masses remain constrained
by m̄ = constant, while the valence quark massesµu, µd andµs are unconstrained. Defining
δµq = µq − m̄, the resulting mass formula for PQ octet mesons is

M2(ab̄) = M2
0 + α (δµa + δµb) + β

EM
0 (e2

u + e2
d + e2

s) + β
EM
1 (e2

a + e2
b) + β

EM
2 (ea − eb)

2

+ γEM
0 (e2

uδmu + e2
dδmd + e2

sδms) + γ
EM
1 (e2

aδµa + e2
bδµb)

+ γEM
2 (ea − eb)

2 (δµa + δµb) + γ
EM
3 (e2

a − e2
b) (δµa − δµb)

+ γEM
4 (e2

u + e2
d + e2

s) (δµa + δµb) + γ
EM
5 (ea + eb) (euδmu + edδmd + esδms) .

(4)

For octet baryons the result is

M2(aab) = M2
0 + α1 (2δµa + δµb) + α2 (δµa − δµb)

+ βEM
0 (e2

u + e2
d + e2

s) + β
EM
1 (2e2

a + e2
b) + β

EM
2 (ea − eb)

2 + βEM
3 (e2

a − e2
b) .

(5)

The coefficientsα, βEM andγEM in (4) and (5) are identical to those in (2) and (3). Hence, PQ
calculations offer a computationally cheaper way of obtaining them.

In QCD+ QED there is some ambiguity in the definition of the symmetricpoint. The defi-
nition we have chosen is that the electrically neutral pseudoscalar mesons have the same masses,

M2(uū) = M2(dd̄) = M2(ss̄) = M2(ds̄) = M2(sd̄) = M2(nn̄) , (6)

3



wheren is a fictitious electrically neutral quark. As annihilationdiagrams are neglected, different
neutral mesons do not mix. We denote the Wilson hopping parameterκ (defined in (10) below)
marking the symmetric point by ¯κq. We then have

δmq = (mq − m̄) = 1/2κsea
q − 1/2κ̄q , δµq = (µq − m̄) = 1/2κval

q − 1/2κ̄q . (7)

It should be noted that even when all three quark masses are equal we do not have full SU(3)
symmetry. Due to the different charges, theu quark is always distinguishable from thed and s
quark.

2 Lattice matters

The action we are using is
S = S G + S A + S u

F + S d
F + S s

F . (8)

HereS G is the tree-level Symanzik improved SU(3) gauge action, andS A is the noncompact U(1)
gauge action [6, 7] of the photon,

S A =
1

2e2

∑

x,µ<ν

(

Aµ(x) + Aν(x + µ) − Aµ(x + ν) − Aν(x)
)2
. (9)

The fermion action for each flavor is

S̃ q
F =
∑

x

{1
2

∑

µ

[

q̄(x)(γµ − 1)e−ieq Aµ(x)Ũµ(x)q(x + µ̂) − q̄(x)(γµ + 1)eieq Aµ(x)Ũ†µ(x − µ̂)q(x − µ̂)
]

+
1

2κq
q̄(x)q(x) −

1
4

cS W

∑

µν

q̄(x)σµνFµν(x)q(x)
}

, (10)

whereŨµ is a single iterated mild stout smeared link [3]. The clover coefficient cS W has been
computed nonperturbatively [8]. The quark charges areeu = 2/3 anded = es = −1/3. We
presently neglect EM modifications to the clover term. This will leave us with corrections of
O(αEM a), which are presumably smaller than theO(a2) corrections from QCD.

The action (8) is invariant under U(1) gauge transformations

Aµ(x)→ Aµ(x) + ∆µ α(x) , q(x)→ eieqα(x) q(x) . (11)

This is not the case for propagators of charged particles, which demands fixing the gauge, as in
perturbation theory. We choose the Landau gauge, which is defined by the condition

∆̄µAµ(x) = 0 . (12)

∆µ (∆̄µ) is the forward (backward) lattice derivative. The Landau gauge does not eliminate all
gauge degrees of freedom, but allows for shifts∆µα(x) of the photon field with [7]

∆2α(x) = 0 , (13)
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where∆2 = ∆µ∆̄µ. To maintain (anti-)periodicity of the quark fields,α(x) must be of the form

eqα(x) =
∑

µ

2π
Lµ

nµxµ , nµ ∈ Z ,

whereLµ is the extent of the lattice inµ direction. This gauge field redundancy can be eliminated
by adding multiples of 2π/eqLµ to Aµ(x), such that

−
π

|eq|Lµ
< Bµ ≤

π

|eq|Lµ
, Bµ =

1
V

∑

x

Aµ(x) . (14)

Takingeq = −1/3 in (14) serves both charges. This procedure leaves Polyakov loops and fermion
determinants unchanged for all quarks.

In a constant background fieldBµ the correlator of a single hadronH becomes [7]

〈0|H(t)H̄(0)|0〉 ≃ |ZH |
2 e−

√

M2
H+
(

~p+eH ~B
)2

t e−ieH B4t , (15)

whereMH, ~p andeH are mass, three-momentum and electric charge of the hadron.This amounts
to a shift of the rest mass of the charged hadrons,M2

H → M2
H+e2

H
~B2. The BMW collaboration [9]

puts
∑

~x Aµ(~x, x4) = 0 for all x4, µ [10], which would mean that valence and sea quarks feel
different U(1) fields.

The strategy is to simulate at an artificial couplinge2 = 1.25, and then interpolate between
this point and pure QCD to the physical fine structure constant αEM = 1/137. This value is
chosen so that electromagnetic effects can be easily seen, but is still small enough thatO(e4)
effects are negligible. The strong coupling constant is chosento beβ = 5.50, where we have our
largest sample of dynamical QCD configurations [11].

In this Letter we restrict ourselves to simulations at the symmetric point,δmu = δmd = δms =

0, which we define asX2
π/X

2
N = 0.126, whereX2

N =
(

M2
n + M2

p + M2
Σ− + M2

Σ+ + M2
Ξ− + M2

Ξ0

)

/6.
We may use eitherXπ or XN to set the scale. After several tuning runs carried out on 243 × 48
lattices we arrived at theκ values

κ̄u = 0.124362, κ̄d = κ̄s = 0.121713. (16)

Our present ensembles are listed in Table 1, withO(2000) toO(500) trajectories. On these
ensembles we have computed PQ pseudoscalar meson and octet baryon masses for a variety of
quark masses ranging frommPS /mN = 0.22 to 0.5, with eq = −1/3, 0 and+2/3. This gave us
about 40 pseudoscalar masses and 70 baryon masses per ensemble. The baryons include several
artificial states containing the fictitiousn quark and charge 2 baryons with flavor structureuuu′.

β e2 V κu κd κs ~B2

5.50 1.25 243 × 48 0.124362 0.121713 0.121713 0.024
5.50 1.25 323 × 64 0.124362 0.121713 0.121713 0.0079
5.50 1.25 483 × 96 0.124362 0.121713 0.121713 0.000095

Table 1: Parameters of our data ensembles, together with thebackground field.
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3 Results

In contrast to QCD, equal meson masses at the symmetric pointno longer mean equal bare quark
masses. We renormalize the quark masses to remove this defect. We do so by absorbing the
QED terms of the neutral pseudoscalar mesons into the quark self-energies. On our symmetric
background,δmu = δmd = δms = 0, this is achieved by replacingδµq by the ‘Dashen’ scheme
mass [12]

δµD
q = [1 + (γEM

1 /α) e2
q] δµq . (17)

Substituting (17) into (4), and absorbingβEM
0 into M2

0 andγEM
4 into α, we obtain in the ‘Dashen’

scheme

M2(ab̄) = M2
0 + α (δµD

a + δµ
D
b ) + βEM

2 (ea − eb)
2

+ γEM
2 (ea − eb)

2 (δµD
a + δµ

D
b ) + γEM

3 (e2
a − e2

b) (δµD
a − δµ

D
b ) .

(18)

Note thatβEM
1 = 0 by definition, eq. (6). We define the crtical point to be the point where the

masses of the neutral pseudoscalar mesons vanish. It is theneasily seen that the ‘Dashen’ scheme
quark masses are all equal at the symmetric point, ¯µD

q = M2
0/2α, q = u, d, s andn. It follows that

the electromagnetic contributions to the neutral pseudoscalar meson masses,Mπ0 andMK0, are
zero. To be consistent, we also expand the baryon masses in terms of the ‘Dashen’ masses,

M2(aab) = M2
0 + α1 (2δµD

a + δµ
D
b ) + α2 (δµD

a − δµ
D
b )

+ βEM
1 (2e2

a + e2
b) + β

EM
2 (ea − eb)

2 + βEM
3 (e2

a − e2
b) .

(19)

The background fieldB may give rise to significant finite size effects, which need to be
corrected for before fitting the data. In Fig. 2 we compare theeffect with finite volume QED
corrections from effective field theory [13] on the 323 × 64 lattice. Both effects turn out to be of
the same order of magnitude, but of opposite sign. Similar results hold for the 243 × 48 lattice,
while the effect is practically negligible on the 483 × 96 lattice. We correct for this effect by
subtractinge2

H
~B2 from each lattice mass before fitting.
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Figure 2: Finite volume corrections to the pion mass as a function of Mπ on the 323 × 64 lattice
caused by the background field (Table 1), compared to the NNLOprediction of Davoudi and
Savage [13].
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Figure 3: Fan plots of pseudoscalar meson (top) and baryon masses (bottom) on the 483 × 96
lattice as a function ofδµu + δµd. The baryon masses are the averages of the isospin doublets.

It turns out that theκ values (16) do not quite satisfy the constraint (6). A more accurate
estimate can be determined from a fit to the pseudoscalar meson masses. On the 483 × 96 lattice
we obtain

κ̄u = 0.124382, κ̄d = κ̄s = 0.121703, κ̄n = 0.120814, (20)

which is only a small displacement. We shall expand about theseκ values in our subsequent fits.
For the total contribution of QCD+ QED it does not matter which scheme we use to define the
quark masses, but for the individual contributions of QCD and QED it will make a difference.
The fits of (18) and (19) to the lattice data are quite robust, giving χ2/dof = 0.7− 1.2. To obtain
physical numbers we extrapolate the coefficientsβEM

i andγEM
i to αEM = 1/137 by scaling them

with a factor 10/137. In our extrapolation to the physical point we keep the sum of the quark
masses constant. We chooseM2

π0 andM2
K0 −M2

K+ +M2
π+ −M2

π0 to determine the physicalκ values.
In Fig. 3 we show the result of the fit to the meson and baryon masses on the 483×96 lattice. We
obtainX2

π/X
2
N = 0.128(3), which is to be compared with the physical value, 0.126. This tells us

that we have hit the symmetric point with remarkable precision. The lattice spacing turns out to
bea = 0.068(2) fm. The baryon masses extrapolate nicely to their experimental values. Similarly
good results are found on the 323 × 64 lattice. Having found theκ values of the physical point
and the point where the ‘Dashen’ scheme masses vanish (the critical point), we can determine the
quark masses. For the quark mass ratios we find on the 483 × 96 lattice in the ‘Dashen’ scheme

mu

md
= 0.52(2),

ms

md
= 19.7(9). (21)

In this Letter we are primarily interested in the isospin splittings of pseudoscalar meson and
octet baryon masses. As it is well known that QED will induce additional finite size effects, we
present in Fig. 4 our results for the isospin splittings as a function of lattice size. The difference
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Figure 4: Mass splittings of pseudoscalar meson (top) and baryon masses (bottom) as a function
of the spatial size of the lattice. The numbers on the largestvolume have been extrapolated to
infinite volume using [13].

MK0 − MK+ is not expected to depend much on the volume, as it was used to fix the κ values.
The curves represent the finite size corrections predicted by the chiral effective theory [13]. They
have been drawn through the points on the 483 × 96 lattice. Assuming that the predictions are
valid up to this volume, we use these expressions to extrapolate our results to the infinite volume.
The results on the smaller volumes show some convergence towards these curves. In Table 2 we
give our results for the mass splittings in the infinite volume, for the total and the QED contri-
bution separately. The QED contribution refers to the ‘Dashen’ scheme. The traditional way of
expressing the electromagnetic contributions is through∆π = M2

π+ − M2
π0 and theǫ parameter,

(M2
K+ − M2

K0)QED− M2
π+ + M2

π0 = ǫ ∆π . (22)

On the 483 × 96 lattice we find
ǫ = 0.49(3). (23)

In Table 2 we also quote the experimental mass splittings, where we observe good agreement
for the pion, kaon and nucleon. The mass splittings ofΣ andΞ turn out to be somewhat lower
than experiment (in absolute terms), but still agree withinthe errors. Both, the total and the
electromagnetic contributions satisfy the Coleman-Glashow relation [14]. So do the experimental
numbers, which a posteriori supports our ansatz (19). The QED contribution to then − p mass
splitting turns out to be significantly larger (in absolute terms) than expected from the Cottingham
formula [15].

As discussed in the introduction, the existence of the Universe as we know it is highly sen-
sitive to the size of then − p mass difference. Having an analytic expression for the nucleon
mass as a function of the quark masses andαEM, we can visualize the allowed region, as shown
in Fig. 5. It appears that bothαEM and the light quark masses are finely tuned to each other. On
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∆M QCD+ QED QED Experiment

Mπ+ − Mπ0 4.60(20) 4.60(20) 4.59

MK0 − MK+ 4.09(10) −1.66(6) 3.93

Mn − Mp 1.35(18) −2.29(21) 1.30

MΣ− − MΣ+ 7.60(73) −0.63(6) 8.08

MΞ− − MΞ0 6.10(57) 1.26(12) 6.85

Table 2: Mass splittings in the infinite volume, in units of MeV.

the horizontal axis (Mn − Mp)QCD ∝ (md − mu). This excludesmu = md and puts a lower bound
on mu. When expressed in terms of the mass ratiomu/md, the allowed region translates into a
narrow band aroundmu/md = 0.5. This fits in with previous results from QCD. The region be-
tween the two vertical lines in Fig. 5 is the prediction of [16] for (Mn − Mp)QCD. The kaon mass
difference that enters the calculation has been taken from Table2. Comparing this result with
our present calculation, indicated by the solid circle, we find good agreement between the two
results, which supports a rather larger electromagnetic contribution toMn − Mp than predicted
by effective theory.

4 Conclusion and outlook

We have outlined a program to systematically investigate the flavor structure of hadrons in QCD
+QED, and successfully computed the isospin splittings of pseudoscalar meson and octet baryon
masses. To corroborate our results, we plan to do simulations along the ¯m = const line towards
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Figure 5: The mass difference of neutron and proton divided into pure QCD and QED contri-
butions. The dashed line is the experimental value, the solid circle is our result. The shaded
region of noβ decay is to the bottom left, the no fusion region to the top right. The shaded region
between the vertical lines is the prediction of pure QCD.

9



the physical point and at smaller lattice spacing in the nearfuture.
Our results on three different volumes indicate that finite size effects cannot be accounted for

correctly by the chiral effective theory [13] forL . 2.5 fm. This is also not to be expected, as the
zero modes are not removed completely in our case, nor can they be removed in a gauge invariant
manner, but keep residing in the background field. An appropriate description of finite volume
corrections in periodic QED is still missing.
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