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Abstract: Exclusive differential spectra in color-singlet processes at hadron colliders are

benchmark observables that have been studied to high precision in theory and experiment. We

present an effective-theory framework utilizing soft-collinear effective theory to incorporate

massive (bottom) quark effects into resummed differential distributions, accounting for both

heavy-quark initiated primary contributions to the hard scattering process as well as secondary

effects from gluons splitting into heavy-quark pairs. To be specific, we focus on the Drell-Yan

process and consider the vector-boson transverse momentum, qT , and beam thrust, T , as ex-

amples of exclusive observables. The theoretical description depends on the hierarchy between

the hard, mass, and the qT (or T ) scales, ranging from the decoupling limit qT � m to the

massless limit m� qT . The phenomenologically relevant intermediate regime m ∼ qT requires

in particular quark-mass dependent beam and soft functions. We calculate all ingredients for

the description of primary and secondary mass effects required at NNLL′ resummation order

(combining NNLL evolution with NNLO boundary conditions) for qT and T in all relevant

hierarchies. For the qT distribution the rapidity divergences are different from the massless

case and we discuss features of the resulting rapidity evolution. Our results will allow for a

detailed investigation of quark-mass effects in the ratio of W and Z boson spectra at small qT ,

which is important for the precision measurement of the W -boson mass at the LHC.
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1 Introduction

Differential cross sections for the production of color-singlet states (e.g. electroweak vector

bosons or the Higgs boson) represent benchmark observables at the LHC. For the Drell-Yan

process, the measurements of the transverse momentum (qT ) spectrum of the vector boson

(and related variables) have reached uncertainties below the percent level [1–6], allowing for

stringent tests of theoretical predictions from both analytic resummed calculations and parton-

shower Monte-Carlo programs. An accurate description of the qT spectrum is also a key

ingredient for a precise measurement of the W -boson mass at the LHC, which requires a

thorough understanding of the W -boson and Z-boson spectra and in particular their ratio [7–

10]. The associated uncertainties are one of the dominant theoretical uncertainties in the recent

mW determination by the ATLAS collaboration [11].

So far, mass effects from charm and bottom quarks in the initial state have been discussed

extensively for inclusive heavy-quark induced cross sections, leading to the development of

several variable-flavor number schemes in deep inelastic scattering and pp collisions (see e.g.

refs. [12–18]). On the other hand, analogous heavy-quark mass effects from initial-state radi-

ation have received little attention so far in the context of resummed exclusive (differential)

cross sections, i.e. where the measurement of an additional (differential) observable restricts

the QCD radiation into the soft-collinear regime requiring the resummation of the associated

logarithms. While e.g. for m� qT the mass effects in the resummed qT distribution are simply

encoded by the matching between the parton distribution functions across a flavor threshold

(e.g. matching four-flavor PDFs onto five-flavor PDFs including a b-quark PDF at the scale mb,

which happens much below the scale qT ), this description breaks down for qT ∼ m or qT � m.

A comprehensive treatment of these regimes in resummed predictions has been missing so far.

This concerns in particular also parton-shower Monte-Carlo generators, which include massive

quark effects primarily as kinematic effects and by using massive splitting functions. Since

heavy-quark initiated corrections are one of the main differences between the W and Z boson

spectra, this issue can play therefore an important role for mW measurements at the LHC.

In general, one can distinguish two types of mass effects as illustrated in fig. 1, which

have different characteristics: Contributions where the heavy-quark enters the hard interaction

process are called primary mass effects. Contributions from a gluon splitting into a massive

quark-antiquark pair with light quarks entering the hard interaction are called secondary. For

the qT spectrum, earlier treatments of the heavy-quark initiated primary contributions for

m . qT have been given in refs. [19–21], essentially combining the ACOT scheme with the

standard CSS qT resummation. A complete setup also requires to account for secondary mass

effects. Their systematic description for differential spectra in the various relevant hierarchies

between mass and other physical scales has been established in the context of event shapes in

e+e− collisions [22, 23] and for threshold resummation in DIS [24], see also refs. [25, 26] for

a recent utilization in the context of boosted heavy quark initiated jets. The application to

differential spectra in pp collisions will be part of the present paper.

We present a systematic effective-theory treatment of quark mass effects including both

types of mass effects and all possible scale hierarchies using soft-collinear effective theory

(SCET) [27–30]. We focus on the Drell-Yan process, pp → Z/γ∗ → `+`−, and consider two

types of observables that resolve additional QCD radiation and are used to constrain the

process to the exclusive region, namely the transverse momentum qT of the gauge boson and
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Figure 1. Primary (a) and secondary (b) heavy-quark mass effects for Z-boson production.

beam thrust [31],

qT = |~qT | = |~pT` + ~pT ¯̀| =
∣∣∣
∑

i

~pT i

∣∣∣ , T =
∑

i

min{na ·pi, nb ·pi} . (1.1)

Here, pi are all hadronic final-state momenta (i.e. excluding the color-singlet final state), and

nµa,b = (1,±ẑ) are lightlike vectors along the beam axes. Due to transverse momentum conser-

vation qT measures the total transverse momentum of the final state hadronic radiation, while

beam thrust measures the momentum projections of all hadronic particles onto the beam axis.

The exclusive regime we are interested in corresponds to qT � Q or T � Q, where Q =
√
q2

is the dilepton invariant mass. These two observables restrict the allowed QCD radiation into

the collinear and soft regime in different ways, leading to different effective-theory setups with

distinct factorization and resummation properties, which are well-known in the massless limit

up to high orders in the logarithmic counting (see e.g. refs. [32–42] and refs. [31, 43, 44]).

These two cases provide simple prototypical examples, which cover the essential features of

the factorization with massive quarks that will also be relevant for including massive quark

effects for other more complicated jet resolution variables whose factorization is known in the

massless limit. Throughout the paper we always consider the limit ΛQCD � qT , T allowing

for a perturbative description of the physics at these kinematic scales. We then consider all

relevant relative hierarchies between the heavy-quark mass m and the kinematic scales set by

the measurement of qT or T , respectively.

In the second part of the paper, we explicitly compute all required ingredients for incorpo-

rating mb effects at NNLL′ order, which combines NNLL evolution with the full NNLO singular

boundary conditions (hard, beam, and soft functions). For Z-boson production at NNLL′, pri-

mary effects contribute via O(αs) × O(αs) heavy-quark initiated contributions, illustrated in

fig. 1(a). Secondary effects contribute as O(α2
s) corrections to light-quark initiated hard in-

teractions, illustrated in fig. 1(b). Due to the strong CKM suppression primary mb-effects do

not play any significant role for W -production, which represents a key difference to Z-boson

production. Primary mc-effects enter W -production in the (sizeable) cs-channel, where they

start already at NLL′ via O(αs)×O(1) corrections. For this case, our explicit results for the

regime qT ∼ mc allows for up to NNLL resummation. (Here, the resummation at NNLL′ would

require the O(α2
s) primary massive contributions.)

The paper is organized as follows: We first discuss in detail the effective field theory setup

for the different parametric regimes for the case of qT in sec. 2 and for T in sec. 3. Here,

we elaborate on the relevant mode setup in SCET, the resulting factorization formulae, and
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all-order relations between the factorization ingredients in the different regimes. In sec. 4, we

give the O(αs) and O(α2
s) results for the various ingredients for NNLL′ resummation. We

also verify the consistency of our results with the associated results in the massless limit.

Further details on all calculations are given in the appendices, where we also give the analytic

results at fixed-order for the massive quark effects in the qT and T distributions in the singular

limit qT , T � Q. In sec. 5, we discuss the consequences of the secondary mass effects on the

rapidity evolution, in particular for the qT distribution in the regime qT ∼ mb. As an outlook

we provide in sec. 6 an estimate of the potential size of the bottom quark effects for low-qT
Drell-Yan measurements. In sec. 7 we conclude.

2 Factorization of quark mass effects for the qT spectrum

2.1 Factorization for massless quarks

Before discussing the massive quark corrections, we first briefly summarize the EFT setup and

factorization for massless quarks. The relevant modes for the measurement of qT in the limit

qT � Q are na-collinear, nb-collinear, and soft modes with the scaling

na-collinear: pµna ∼
(q2

T

Q
,Q, qT

)
,

nb-collinear: pµnb ∼
(
Q,

q2
T

Q
, qT

)
,

soft: pµs ∼ (qT , qT , qT ) , (2.1)

which we have written in terms of light-cone coordinates along the beam axis,

pµ = na ·p
nµb
2

+ nb ·p
nµa
2

+ pµ⊥ ≡ (na ·p, nb ·p, p⊥) ≡ (p+, p−, p⊥) , (2.2)

with n̄a ≡ nb. Besides these perturbative modes there are also nonperturbative collinear modes

with the scaling (Λ2
QCD/Q,Q,ΛQCD) and (Q,Λ2

QCD/Q,ΛQCD), which describe the initial-state

protons at the scale µ ∼ ΛQCD, and which are unrelated to the specific jet resolution mea-

surement. The typical invariant mass of the soft modes is parametrically the same as for the

collinear modes, p2
na ∼ p2

nb
∼ p2

s ∼ q2
T , which is the characteristic feature of a SCETII the-

ory. The soft and collinear modes are only separated in rapidity leading to the emergence of

rapidity divergences and associated rapidity logarithms. The traditional approach for their

resummation in QCD relies on the work by Collins, Soper, and Sterman [32–34]. In SCET the

factorization and resummation were devised in refs. [39–42].

Here we will use the rapidity renormalization approach of refs. [40, 41], where the rapidity

divergences are regularized by a symmetric regulator and are renormalized by appropriate

counterterms (by a MS-type subtraction). The rapidity logarithms are then resummed by

solving the associated rapidity renormalization group equations. Within this framework the
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factorized differential cross section with nf massless quarks reads1

dσ

dq2
T dQ2 dY

=
∑

i,j∈{q,q̄}

H
(nf )
ij (Q,µ)

∫
d2pTa d2pTb d2pTs δ(q

2
T − |~pTa + ~pTb + ~pTs|2) (2.3)

×B(nf )
i

(
~pTa, xa, µ,

ν

ωa

)
B

(nf )
j

(
~pTb, xb, µ,

ν

ωb

)
S(nf )(~pTs, µ, ν)

[
1 +O

(qT
Q

)]
,

where

ωa = QeY , ωb = Qe−Y , xa,b =
ωa,b
Ecm

, (2.4)

with Y denoting the rapidity of the color-singlet state.

In eq. (2.3), the superscript (nf ) on all functions indicates that the associated EFT opera-

tors and the strong coupling constant in these functions are renormalized with nf active quark

flavors, which matters for the evolution already at LL. Hij denotes the process-dependent (but

measurement-independent) hard function. It encodes the tree-level result and hard virtual cor-

rections of the partonic process ij → Z/W/γ∗ at the scale µ ∼ Q. Following refs. [31, 45, 46],

the renormalized transverse-momentum dependent (TMD) beam functions Bi, which are es-

sentially equivalent to TMDPDFs, can be matched onto PDFs as

B
(nf )
i

(
~pT , x, µ,

ν

ω

)
=
∑

k

∫ 1

x

dz

z
I(nf )
ik

(
~pT , z, µ,

ν

ω

)
f

(nf )
k

(x
z
, µ
)[

1 +O
(

Λ2
QCD

|~pT |2
)]

≡
∑

k

I(nf )
ik (~pT , x, µ,

ν

ω
)⊗x f (nf )

k (x, µ) , (2.5)

where the perturbative matching coefficients Iik describe the collinear initial-state radiation

at the invariant mass scale µ ∼ qT and rapidity scale ν ∼ Q, and the nonperturbative parton

distribution functions (PDFs) are denoted by fk. In the following, we abbreviate the Mellin-

type convolution in x as in the second line above. Finally, the soft function S describes the

wide-angle soft radiation at the invariant mass and rapidity scale µ ∼ ν ∼ qT . The matching

coefficients Iik and the soft function are process-independent and have been computed to

O(α2
s) in refs. [47–50] allowing for a full NNLL′ analysis of Drell-Yan for massless quarks. The

three-loop noncusp rapidity anomalous dimension required for the resummation at N3LL has

recently become available [51–53].

In eq. (2.3), the logarithms of qT /Q are resummed by evaluating all functions at their

characteristic renormalization scales and evolving them to common final scales µ and ν by

solving the set of coupled evolution equations

µ
d

dµ
H

(nf )
ij (Q,µ) = γ

(nf )
H (Q,µ)H

(nf )
ij (Q,µ) ,

µ
d

dµ
B

(nf )
i

(
~pT , x, µ,

ν

ω

)
= γ

(nf )
B

(
µ,
ν

ω

)
B

(nf )
i

(
~pT , x, µ,

ν

ω

)
,

µ
d

dµ
S(nf )(~pT , µ, ν) = γ

(nf )
S (µ, ν)S(nf )(~pT , µ, ν) ,

1In principle there is also a corresponding contribution for a gluon initiated hard interaction. However, taking

into account the decay of the electroweak boson into massless leptons this correction vanishes for onshell gluons

and only contributes to the power suppressed terms of O(qT /Q).
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µ
d

dµ
f

(nf )
i (x, µ) =

∑

k

γ
(nf )
f,ik (x, µ)⊗x f (nf )

k (x, µ) ,

ν
d

dν
B

(nf )
i

(
~pT , x, µ,

ν

ω

)
=

∫
d2kT γ

(nf )
ν,B (~pT − ~kT , µ)B

(nf )
i

(
~kT , x, µ,

ν

ω

)
,

ν
d

dν
S(nf )(~pT , µ, ν) =

∫
d2kT γ

(nf )
ν,S (~pT − ~kT , µ)S(nf )(~kT , µ, ν) . (2.6)

Only the evolution of the PDF leads to flavor mixing. Consistency of RG running implies that

γ
(nf )
H (Q,µ) + γ

(nf )
B

(
µ,

ν

ωa

)
+ γ

(nf )
B

(
µ,

ν

ωb

)
+ γ

(nf )
S (µ, ν) = 0 ,

2γ
(nf )
ν,B (~pT , µ) + γ

(nf )
ν,S (~pT , µ) = 0 ,

µ
d

dµ
γ

(nf )
ν,S (~pT , µ) = ν

d

dν
γ

(nf )
S (µ, ν) δ(~pT ) = −4Γ

(nf )
cusp[αs(µ)] δ(~pT ) . (2.7)

Note that in practice, the evolution is usually performed in Fourier space, such that one actually

resums the conjugate logarithms ln(bµ) where b = |~bT | ∼ 1/qT is the Fourier-conjugate variable

to qT . The qT spectrum is then obtained as the inverse Fourier transform of the resummed

b-spectrum. The exact solution and evolution directly in qT space, which directly resums the

(distributional) logarithms in qT , has been recently discussed in [54] (see also ref. [55]), and

turns out to be significantly more involved due to the intrinsic two-dimensional nature of ~qT .

In the following subsections, we discuss how the mode and factorization setup changes

when massive quark flavors are involved. These lead to the appearance of additional modes

related to fluctuations around the mass shell as discussed extensively in refs. [22, 23]. For the

different hierarchies between the mass scale m and the scales Q and qT the relevant modes

are illustrated in fig. 2. In the first case, qT � m ∼ Q, the massive flavor is integrated out at

the hard scale, which leads to the above massless case with nl massless flavors, as discussed in

sec. 2.2. The second case, qT � m� Q, where the quark mass is larger than the jet resolution

variable, is analogous to the corresponding case for thrust in e+e− → dijets in refs. [22, 23] and

DIS in the x → 1 limit [24]. We refer to these papers for details and only summarize briefly

the main features for this regime in sec. 2.3. Our main focus is on the hierarchies qT ∼ m� Q

and m� qT � Q, which are important for bottom and charm quark mass effects at the LHC,

and which are discussed in secs. 2.4 and 2.5.

2.2 Quark mass effects for m ∼ Q
If the quark mass represents a large scale ∼ Q (which concerns the top quark at the LHC), this

quark flavor does not play a dynamic role in the low-energy effective theory and is integrated

out at the hard scale in the matching from QCD to SCET. The relevant modes are shown in

fig. 2(a). The massive quark only contributes via mass-dependent contributions to the hard

function. This yields the factorization theorem

dσ

dq2
T dQ2 dY

=
∑

i,j∈{q,q̄}

Hij(Q,m, µ)

∫
d2pTa d2pTb d2pTs δ(q

2
T − |~pTa + ~pTb + ~pTs|2) (2.8)

×B(nl)
i

(
~pTa, xa, µ,

ν

ωa

)
B

(nl)
j

(
~pTb, xb, µ,

ν

ωb

)
S(nl)(~pTs, µ, ν)

[
1 +O

( q2
T

m2
,
qT
Q

)]
,

which is essentially equivalent to the massless case in the previous subsection with nl massless

flavors. The hard function Hij(Q,m, µ) can be evaluated either in the (nf = nl) or the

– 6 –
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c
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1
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Q
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(b) qT � m� Q

q2
T /Q

q2
T /Q

p+

p�

Q

QqT ⇠m

qT ⇠m

h, n
l +

1

c
+

M
M

s+
M

M

c+MM

(c) qT ∼ m� Q

q2
T /Q

q2
T /Q

p+

p�

Q

Q

h, n
l +

1

m2/Q

qT

qTm2/Q

s, n
l +

1

c, nl+1

c
.M

M

c
,
n

l +
1

c.MM

(d) m� qT � Q

Figure 2. Effective theory modes for the qT spectrum with massive quarks for qT � Q and m� ΛQCD.

(nf = nl + 1) flavor scheme for αs, where nl is the number of light (massless) quark flavors.

The associated massive quark corrections are directly related to the virtual contributions to

the quark form factors, e.g. given at O(α2
s) by the virtual diagrams in fig. 1(b). In general

both primary and secondary corrections contribute for initial (massless) quarks. Using the (nl)

flavor scheme for αs these vanish as O(Q2/m2) in the decoupling limit m� Q for the conserved

vector current. For the axial-vector current, contributing to Z-boson production, there are in

addition also anomaly corrections starting at O(α2
s) from the massive quark triangle in fig. 1(a)

that do not decouple.2 Since the massive quark does not appear as a dynamic flavor in the

EFT below the hard scale Q, the entire RG evolution to sum the logarithms of qT is performed

with nl massless flavors as in eq. (2.3).

2Instead, for m� Q the heavy quark can be integrated out around its mass scale and the axial current can

be evolved between m and Q to resum the associated logarithms ln(m/Q).
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2.3 Quark mass effects for qT � m� Q

Next, we consider the hierarchies where the quark mass is parametrically smaller than the hard

scale, m � Q. These require a different factorization setup than m ∼ Q since fluctuations

around the mass-shell are now parametrically separated from hard fluctuations, which would

lead to large unresummed logarithms inside the hard function Hij(Q,m, µ). In this subsection,

we start with the case where the transverse momentum is much smaller than the mass, qT �
m� Q, while qT ∼ m� Q and m� qT � Q are considered in the following subsections.

In a first step the QCD current is matched onto the SCET current with nl + 1 dynamic

quark flavors at the scale µ ∼ Q. Since m � Q this matching can be performed (at leading

order in the expansion parameter m/Q) only with massless quarks, leading to the hard function

with nl+1 massless flavors, H
(nl+1)
ij , with the strong coupling inside it renormalized with nl+1

flavors. The matching is performed onto SCET containing na-collinear, nb-collinear, and soft

mass modes with the scaling

na-collinear MM: pµm,na ∼
(m2

Q
,Q,m

)
,

nb-collinear MM: pµm,nb ∼
(
Q,

m2

Q
,m
)
,

soft MM: pµm,s ∼ (m,m,m) , (2.9)

as illustrated in fig. 2(b). These mass-shell fluctuations arise here purely from secondary virtual

contributions.

In a second step at the scale µ ∼ m, the mass modes are integrated out and the SCET with

nl massless and one massive flavor is matched onto SCET with nl massless flavors with the usual

scaling as in the massless case in eq. (2.1). Since the soft and collinear mass modes have the

same invariant mass set by the quark mass and are only separated in rapidity, there are rapidity

divergences in their (unrenormalized) collinear and soft contributions. Their renormalization

and the resummation of the associated logarithms can be again handled using the rapidity RG

approach in refs. [40, 41], which has been explicitly carried out in ref. [56].3 In addition, all

renormalized parameters like the strong coupling constant are matched at the mass scale from

nl + 1 to nl flavors taking into account that the massive flavor is removed as a dynamic degree

of freedom.

After these steps, the factorization at the low scale ∼ qT proceeds as in the massless

case with all operator matrix elements depending on the nl massless flavors, which yields the

factorization theorem

dσ

dq2
T dQ2 dY

=
∑

i,j∈{q,q̄}

H
(nl+1)
ij (Q,µ)Hc

(
m,µ,

ν

ωa

)
Hc

(
m,µ,

ν

ωb

)
Hs(m,µ, ν)

×
∫

d2pTa d2pTb d2pTs δ(q
2
T − |~pTa + ~pTb + ~pTs|2)B

(nl)
i

(
~pTa, xa, µ,

ν

ωa

)

×B(nl)
j

(
~pTb, xb, µ,

ν

ωb

)
S(nl)(~pTs, µ, ν)

[
1 +O

(qT
Q
,
q2
T

m2
,
m2

Q2

)]
. (2.10)

3The matching in ref. [56] was performed with massive primary quarks yielding the matching functions

denoted as Hm,n, Hm,n̄ and Hm,s there. However, this does not affect the structure of the rapidity logarithms

arising from the secondary mass effects, which are independent of the primary quarks being massive or massless.
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Here Hc and Hs denote the hard functions that arise from the matching at the mass scale

µ ∼ m. Their natural rapidity scales are ν ∼ Q for the collinear contributions and ν ∼ m for

the soft ones. They can be evaluated in either the (nl) or (nl + 1) scheme for αs. We will

give their expressions at O(α2
s) in sec. 4.1. The resummation of all logarithms of ratios of qT ,

m, and Q is achieved by performing the evolution in µ and ν of all functions appearing in

eq. (2.10) from their natural scales.

In principle, the µ evolution can be performed by evolving all functions with their re-

spective number of quark flavors without switching the flavor scheme, i.e. with nl + 1 flavors

for H, nl flavors for B and S and an additional evolution for the collinear and soft match-

ing functions Hc and Hs. The consistency of RG running for the factorization theorems in

eqs. (2.10) and (2.8), and eq. (2.7) with nl massless flavors, implies that the µ-dependence of

the mass-dependent hard functions Hc and Hs is precisely given by the difference between nl
and nl + 1 active quark flavors in the evolution of the hard function Hij ,

γHc

(
m,µ,

ν

ωa

)
+ γHc

(
m,µ,

ν

ωb

)
+ γHs(m,µ, ν) = γ

(nl)
H (Q,µ)− γ(nl+1)

H (Q,µ) , (2.11)

where γ
(nf )
H is defined in eq. (2.6), and γHc and γHs are defined analogously. At two loops

this relation can be checked explicitly using the results in eqs. (4.11), (4.13) and (A.2). As a

result, the µ evolution for the hard functions can be conveniently implemented as illustrated

in fig. 3(a), by carrying out the µ evolution with nl active quark flavors below the matching

scale µm ∼ m and with nl + 1 flavors above µm, providing in this sense a “variable-flavor

number scheme” [23, 24]. (This effectively corresponds to using operator running for the hard

scattering current, which is renormalized with nl + 1 flavors above the mass scale and with nl
flavors below the mass scale.) In addition there is also a rapidity evolution, which is carried

out at µm = m, i.e. at the border between the (nl + 1) and (nl)-flavor theories (see ref. [56]),

which is governed by the mass-dependent rapidity anomalous dimensions for Hs and Hc,

γν,Hs(m,µ) = −2γν,Hc(m,µ) =
d

d ln ν
lnHs(m,µ, ν) . (2.12)

2.4 Quark mass effects for qT ∼ m� Q

If the qT scale is of the order of the quark mass, qT ∼ m, the massive quark becomes a

dynamic degree of freedom, which contributes to the qT spectrum via real radiation effects.

The mass modes in eq. (2.9) are now the same as the usual massless SCETII modes for the qT
measurement in eq. (2.1), since their parametrically scaling coincides for qT ∼ m, as illustrated

in fig. 2(c). In this case, there is only a single matching at the hard scale µ ∼ Q from QCD onto

SCET with these common soft and collinear modes. This hard matching gives again rise to

the (mass-independent) hard function H
(nl+1)
ij for nl + 1 massless flavors. The SCET operator

matrix elements at the scale µ ∼ qT , i.e. the beam and soft functions, now encode the effects

of the massive quark. They are now renormalized with nl + 1 quark flavors and contain an

explicit dependence on the quark mass. When integrating out the modes with the virtuality

qT also the massive quark is integrated out and the collinear matching functions Iik between

the beam functions and the PDFs thus also contain the effect from changing from nl + 1 to nl
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⇤QCD

qT m Q
⌫
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(b) qT ∼ m� Q
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Figure 3. Illustration of the renormalization group evolution for qT of the hard, beam, soft, and parton

distribution functions in invariant mass and rapidity. The anomalous dimensions for each evolution

step involve the displayed number of active quark flavors. The label m indicates that the corresponding

evolution is mass dependent.

flavors, i.e.

B
(nl+1)
i

(
~pT ,m, x, µ,

ν

ω

)
=

∑

k∈{q,q̄,g}

Iik
(
~pT ,m, x, µ,

ν

ω

)
⊗x f (nl)

k (x, µ)
[
1 +O

(Λ2
QCD

m2
,
Λ2

QCD

q2
T

)]
.

(2.13)

Written out explicitly, the factorization theorem reads

dσ

dq2
T dQ2 dY

=
∑

i,j∈{q,q̄,Q,Q̄}

H
(nl+1)
ij (Q,µ)

∫
d2pTa d2pTb d2pTs δ(q

2
T − |~pTa + ~pTb + ~pTs|2)

×
[ ∑

k∈{q,q̄,g}

Iik
(
~pTa,m, xa, µ,

ν

ωa

)
⊗x f (nl)

k (xa, µ)

]

×
[ ∑

k∈{q,q̄,g}

Ijk
(
~pTb,m, xb, µ,

ν

ωb

)
⊗x f (nl)

k (xb, µ)

]

× S(~pTs,m, µ, ν)

[
1 +O

(qT
Q
,
m2

Q2
,
Λ2

QCD

m2
,
Λ2

QCD

q2
T

)]
, (2.14)

where i, j = Q, Q̄ denotes the massive quark flavor in the sum over flavors. We stress that the

renormalization of the bare soft and beam function with nl massless and one massive flavor is

carried out in the nl + 1 flavor scheme for αs, while the strong coupling in the PDFs (which

are defined in the lower theory with nl massless flavors) is renormalized with nl flavors. The

renormalized soft function and beam function coefficients Iik can then be expressed in terms

of either the (nl + 1) or the (nl) flavor scheme for αs without introducing large logarithms.

In this hierarchy quark mass effects enter in eq. (2.14) at O(α2
s) in two ways: There are

secondary radiation effects appearing in the two-loop soft function S(2) and the flavor-diagonal

beam function matching coefficients I(2)
qq . In addition, there are primary mass effects arising

from a massive-quark initiated hard process. For Z/γ∗ production, this requires the production
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of the massive quarks via gluon splitting in both collinear sectors, which manifests itself in two

one-loop collinear matching coefficients I(1)
Qg × I

(1)

Q̄g
. For W -boson production, primary charm

quark effects enter already at O(αs) from a single I(1)
Qg with Q = c.

The resummation of logarithms ln(qT /Q) and ln(m/Q) is again obtained by performing

the RG evolution for eq. (2.14), which is illustrated in fig. 3(b). While the evolution of the

PDFs proceeds in nl flavors, the µ-evolution for the hard, beam, and soft functions above the

scale m is now carried out purely with nl + 1 flavors. Consistency of RG running for eq. (2.13)

implies that the matching coefficients Iik satisfy

µ
d

dµ
Iik
(
~pT ,m, z, µ,

ν

ω

)
=
[
γ

(nl+1)
Bi

× Iik
](
~pT ,m, z, µ,

ν

ω

)
−
∑

j∈q,q̄,g

[
Iij ⊗ γ(nl)

f,jk

](
~pT ,m, z, µ,

ν

ω

)
.

(2.15)

Since the renormalization of the beam functions does not involve parton mixing, the one-loop

primary mass contributions to I(1)
Qg cannot give rise to rapidity divergences and associated

logarithms. On the other hand, the secondary mass effects change the rapidity evolution. In

particular, the beam and soft ν-anomalous dimensions become mass dependent4,

ν
d

dν
B

(nl+1)
i

(
~pT ,m, µ,

ν

ω

)
=

∫
d2kT γ

(nl+1)
ν,B (~pT − ~kT ,m, µ)B

(nl+1)
i

(
~kT ,m, µ,

ν

ω

)
,

ν
d

dν
S(nl+1)(~pT ,m, µ, ν) =

∫
d2kT γ

(nl+1)
ν,S (~pT − ~kT ,m, µ)S(nl+1)(~kT ,m, µ, ν) . (2.16)

We discuss the implications of the mass dependence for the rapidity evolution in sec. 5.

2.5 Quark mass effects for m� qT � Q

If qT is much larger than the mass, the fluctuations around the mass-shell take place at a

different scale than the jet resolution measurement. There are no relevant soft fluctuations

scaling like pµm,s ∼ (m,m,m), since the measurement of qT is IR safe and is thus insensitive to

the lower mass scale. (In other words, if we were to explicitly distinguish such soft mass modes

their contribution would cancel as for an inclusive observable since they are not constrained by

the qT -measurement.) This means that the soft modes are described by a soft function with

nl + 1 massless flavors at the scale µ ∼ qT . Due to the collinear sensitivity of the initial-state

radiation there are still relevant collinear mass modes scaling like pµm,na ∼ (m2/Q,Q,m) and

pµm,nb ∼ (Q,m2/Q,m), as illustrated in fig. 2(d). Thus there are collinear modes in SCET at

different invariant mass scales, which can be disentangled by a multistage matching. First, the

beam functions are matched onto the PDFs with nl massless and one massive flavor. Since

this matching takes place at the scale µB ∼ qT � m this gives just the matching coefficients

Iik for nl + 1 massless flavors,

B
(nl+1)
i

(
~pT ,m, x, µ,

ν

ω

)
=

∑

k∈{q,q̄,Q,Q̄,g}

I(nl+1)
ik

(
~pT , x, µ,

ν

ω

)
⊗x f (nl+1)

k (x,m, µ)
[
1 +O

(m2

q2
T

)]
.

(2.17)

4The fact that quark masses can affect the evolution was already pointed out in ref. [34].
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In a second step, at the mass scale µm ∼ m, the PDFs including the massive quark effects are

matched onto PDFs with nl massless quarks, and with αs in the (nl) flavor scheme,

f
(nl+1)
i (x,m, µ) =

∑

k∈{q,q̄,g}

Mik(x,m, µ)⊗x f (nl)
k (x, µ)

[
1 +O

(Λ2
QCD

m2

)]
. (2.18)

The PDF matching functions Mik can be expressed in either the (nl) or the (nl + 1) flavor

scheme for αs.

In total, the factorization theorem reads

dσ

dq2
T dQ2 dY

=
∑

i,j∈{q,q̄,Q,Q̄}

H
(nl+1)
ij (Q,µ)

∫
d2pTa d2pTb d2pTs δ(q

2
T − |~pTa + ~pTb + ~pTs|2)

×
[ ∑

k∈{q,q̄,Q,Q̄,g}

∑

l∈{q,q̄,g}

I(nl+1)
ik

(
~pTa, xa, µ,

ν

ωa

)
⊗xMkl(xa,m, µ)⊗x f (nl)

l (xa, µ)

]

×
[ ∑

k∈{q,q̄,Q,Q̄,g}

∑

l∈{q,q̄,g}

I(nl+1)
jk

(
~pTb, xb, µ,

ν

ωb

)
⊗xMkl(xb,m, µ)⊗x f (nl)

l (xb, µ)

]

× S(nl+1)(~pTs, µ, ν)

[
1 +O

(qT
Q
,
m2

q2
T

,
Λ2

QCD

m2

)]
. (2.19)

As in sec. 2.4, massive quark corrections can arise at O(α2
s) either via primary mass effects

involving the product of two one-loop PDF matching correctionsM(1)
Qg (for Z/γ∗) generating a

massive quark-antiquark pair that initiates the hard interaction, or via secondary mass effects

involving one two-loop contribution M(2)
qq . Note that also the running of the light quark

and gluon PDFs above µm generates an effective massive quark PDF via evolution factors

U
(nl+1)
f,Qk (µB, µm), which for large hierarchies m� qT can give O(1) contributions.

The evolution of the hard, beam, and soft functions can be performed purely with nl + 1

massless flavors, while the PDFs are evolved with nl flavor below µm ∼ m and with nl + 1

flavors above µm ∼ m, see fig. 3(c), as usual in any variable-flavor number scheme. The µm
dependence is canceled order-by-order by the matching factors Mij ,

µ
d

dµ
Mik(m, z, µ) =

∑

j∈{q,q̄,Q,Q̄,g}

[
γ

(nl+1)
f,ij ⊗zMjk

]
(m, z, µ)−

∑

j∈{q,q̄,g}

[
Mij ⊗z γ(nl)

f,jk

]
(m, z, µ) .

(2.20)

The absence of soft mass modes in this regime implies there is no rapidity evolution at the

mass scale, while the rapidity evolution between beam and soft functions is the same as for

nl + 1 massless flavors.

In this regime, the mass dependence is thus fully contained in the collinear sectors. Within

each collinear sector, the EFT setup is completely analogous to that of the heavy-quark induced

inclusive cross section discussed in detail in ref. [18], with the beam functions here playing the

role of the inclusive cross section there and the qT scale here playing the role of the hard scale

there.

2.6 Relations between hierarchies

After discussing all hierarchies separately, we now show how the ingredients in each of the

associated factorization theorems are related to each other. This will also make it obvious how
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Figure 4. Relevant modes for the qT spectrum with qT � Q for different hierarchies between the

quark mass m and the scales qT and Q. The arrows indicate the relations between the modes and their

associated contributions.

the mass-dependent fixed-order corrections that are kept in one hierarchy but are dropped in

another can be combined with the resummation of logarithms to obtain a systematic inclusion

of the mass effects over the whole qT spectrum. The relations between the modes and their

contributions between the different regimes are summarized in fig. 4.

The hard functions appearing in the hierarchy qT � m � Q in eq. (2.10) are related to

the hard function for qT � m ∼ Q in sec. 2.2 as follows5

Hij(Q,m, µ) = H
(nl+1)
ij (Q,µ)Hc

(
m,µ,

ν

ωa

)
Hc

(
m,µ,

ν

ωb

)
Hs(m,µ, ν)

[
1 +O

(m2

Q2

)]
. (2.21)

In the product of functions on the right-hand side, which appear in eq. (2.10), the logarithms

ln(m/Q) can be resummed to all orders. One can construct a smooth description of the

cross section for qT � m that resums these logarithms and also includes the associated mass-

dependent O(m2/Q2) power corrections by simply adding the latter to the hard function

H(nl+1)(Q,µ) at the scale µ ∼ Q.

The fixed-order contributions to the operator matrix elements appearing in the hierarchy

qT � m are encoded in the ones for qT ∼ m. The mass-dependent beam function matching

coefficients for qT ∼ m are related to those for qT � m and the collinear mass-mode function

Hc by

Iik
(
~pT , x,m, µ,

ν

ω

)
= Hc

(
m,µ,

ν

ω

)
I(nl)
ik

(
~pT , x, µ,

ν

ω

)[
1 +O

( p2
T

m2

)]
. (2.22)

5Here and in the following it is implied that at a specific fixed order the functions on both sides have to be

expanded in the same renormalization scheme for αs. Since H
(nl+1)
ij is generically written with nl+1 (massless)

flavors, the (nl + 1)-flavor scheme is most convenient here and also to extract the O(m2/Q2) power corrections

on the right-hand side of eq. (2.21) from its fixed-order expansion.
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Similarly, the mass-dependent soft function for qT ∼ m is related to the one for qT � m and

the soft mass-mode function Hs by

S(~pT ,m, µ, ν) = Hs(m,µ, ν)S(nl)(~pT , µ, ν)

[
1 +O

( p2
T

m2

)]
. (2.23)

In the products on the right-hand sides, which appear in eq. (2.10), logarithms ln(qT /m) are

resummed to all orders in the limit qT � m. One can include the associated O(q2
T /m

2) power

corrections that are important for qT ∼ m, by obtaining them from the fixed-order expansions

of eqs. (2.22) and (2.23) and adding them to the (nl)-flavor beam function coefficients and soft

function at the scale µ ∼ qT .

Finally, the fixed-order contributions for the operator matrix elements appearing in the

hierarchy m � qT are also encoded in the corresponding ones for qT ∼ m. Hence, the mass-

dependent beam function matching coefficients are related to those for m� qT and the PDF

matching functions by

Iik
(
~pT ,m, x, µ,

ν

ω

)
=

∑

j=q,q̄,g

I(nl+1)
ij

(
~pT , x, µ,

ν

ω

)
⊗xMjk(m,x, µ)

[
1 +O

(m2

p2
T

)]
. (2.24)

Similarly, the mass-dependent and massless soft function are related by

S(~pT ,m, µ, ν) = S(nl+1)(~pT , µ, ν)

[
1 +O

(m2

p2
T

)]
, (2.25)

since there are no relevant soft IR fluctuations below the mass scale. In the functions on the

right-hand sides, which appear in eq. (2.19), logarithms ln(m/qT ) can be resummed to all orders

in the limit m � qT . This can be combined with the associated O(m2/q2
T ) power corrections

relevant for qT ∼ m, by obtaining them from the fixed-order expansions of eqs. (2.24) and

(2.25) and adding them to the (nl + 1)-flavor beam function matching coefficients and soft

function at the scale µ ∼ qT .

By including the various power corrections, one combines the factorization theorems in

the different hierarchies and obtains a theoretical description that is valid across the whole

qT spectrum and includes the resummation of logarithms in all relevant limits. This can be

considered a variable-flavor scheme for the resummed qT spectrum. (In addition one should

of course also include the usual qT /Q nonsingular corrections to reproduce the full fixed-order

result for qT ∼ Q.)

We stress that different specific ways of how to incorporate the various power corrections

are formally equivalent as long as the correct fixed-order expansion and the correct resum-

mation is reproduced in each limit. Any differences then amount to resummation effects at

power-suppressed level and are thus beyond the formal (leading-power) resummation accuracy.

A particular scheme (“S-ACOT”) to merge the m� qT and qT ∼ m regimes was discussed

in ref. [19] for the primary massive quark corrections. In practice, for the numerical study of

b-quark mass effects at low qT � m � Q the off-diagonal evolution factor Uf,bg and thus the

effective b-quark PDF at the scale qT are still quite small, so that one may effectively count

fb(µB) ∼ O(αs). In particular, this counting facilitates the seamless combination with the

nonsingular corrections for m ∼ qT encoded in the beam function matching coefficients in

eq. (2.14). This was discussed in ref. [18] in the context of the inclusive bb̄H production cross
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section, and the analogous discussion applies here as well. In refs. [23, 24], the power corrections

were included implicitly in the construction of the variable-flavor number schemes for thrust

in e+e− and DIS in the endpoint region by applying different renormalization schemes for the

massive quark contributions to the EFT operators above and below the mass scale.

3 Factorization of mass effects for beam thrust

3.1 Factorization for massless quarks

For the measurement of beam thrust with T � Q the relevant EFT modes are na-collinear,

nb–collinear and usoft modes with the scaling

na-collinear: pµna ∼ (T , Q,
√
QT ) ,

nb-collinear: pµnb ∼ (Q, T ,
√
QT ) ,

usoft: pµus ∼ (T , T , T ) . (3.1)

The usoft and collinear modes are now separated in invariant mass, p2
us ∼ T 2 � p2

na ∼ p2
nb
∼

QT , which is the characteristic feature of a SCETI theory. In this case, there are no rapidity

logarithms and the renormalization and evolution is solely in invariant mass. The resulting

factorization formula reads [31]

dσ

dQ2 dY dT =
∑

i,j∈{q,q̄}

H
(nf )
ij (Q,µ)

∫
dta dtbB

(nf )
i (ta, xa, µ)B

(nf )
j (tb, xb, µ)

× S(nf )
(
T − ta

ωa
− tb
ωb
, µ
)[

1 +O
(T
Q

)]
. (3.2)

This as well as the expressions including mass effects in the subsequent subsections are valid for

the primary hard scattering, and do not account for spectator forward (multiparton) scattering

effects, since the Glauber Lagrangian of ref. [57] has been neglected. (There are also corrections

from perturbative Glauber effects starting at O(α4
s) [58, 59], which are well beyond the order

we are interested in, but can be calculated and included using the Glauber operator framework

of ref. [57].) This is sufficient for our purposes of discussing the mass effects in a prototypical

SCETI scenario. Our results are also directly relevant to include massive quark effects in the

Geneva Monte-Carlo program [60, 61], which employs T as the jet resolution variable for the

primary interaction and where multiparton effects are included [62] via the combination with

Pythia8 and its MPI model [63–65].

The hard function Hij in eq. (3.2) is measurement independent and the same as in

eq. (2.3). The beam and soft functions depend on the measurement and are different from

those in eq. (2.3). The virtuality-dependent beam functions Bi can be factorized into pertur-

bative matching coefficients Iik at the scale µ ∼ t ∼ √QT and the standard nonperturbative

PDFs [31, 66]

B
(nf )
i (t, x, µ) =

∑

k

I(nf )
ik (t, x, µ)⊗x f (nf )

k (x, µ)

[
1 +O

(
Λ2

QCD

t

)]
. (3.3)

The matching coefficients Iik have been calculated to O(α2
s) [67, 68]. The soft function at the

scale µ ∼ T is equivalent to the thrust soft function [69], which is known to O(α2
s) [70, 71].

The noncusp anomalous dimensions required at N3LL are available from existing results [66].
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The resummation of logarithms ln(T /Q) is performed by evaluating all functions at their

characteristic scales and evolving them to a common final scale µ using the solutions of the

RGEs

µ
d

dµ
B

(nf )
i (t, x, µ) =

∫
dt′ γ

(nf )
B (t− t′, µ)B

(nf )
i (t′, x, µ) ,

µ
d

dµ
S(nf )(`, µ) =

∫
d`′ γ

(nf )
S (`− `′, µ)S(nf )(`′, µ) . (3.4)

In contrast to eq. (2.3), there is no rapidity evolution in SCETI for massless quarks. Consistency

of the RG evolution implies that

ωaγ
(nf )
B (ωa`, µ) + ωbγ

(nf )
B (ωb`, µ) + γ

(nf )
S (`, µ) = γ

(nf )
H (Q,µ) δ(`) . (3.5)

For beam thrust the number of possible scale hierarchies with a massive quark is larger

due to the fact that the (massless) collinear and soft modes have different invariant mass

scales. The discussion for the hierarchies with
√
QT � m where the massive quark cannot be

produced via real emissions, is completely identical to qT � m, since the quark mass effects

in these cases are independent of the low-energy measurement. For m ∼ Q, all mass effects

are encoded by using the mass-dependent hard function from sec. 2.2 in eq. (3.2) together

with nf = nl everywhere else. Similarly, the case
√
QT � m � Q is described by using

eq. (3.2) with nf = nl, and replacing the hard function by the product of massless (nl + 1)-

flavor hard function and the soft and collinear mass-mode functions Hs and Hc, as for the case

qT � m � Q in sec. 2.3. We therefore proceed directly to the hierarchies m .
√
QT , where

the massive quark can be produced in collinear and/or soft real radiation. The four possible

hierarchies and the relevant EFT modes in the p+p−-plane are illustrated in fig. 5, and are

discussed in the following subsections.

3.2 Quark mass effects for
√
QT ∼ m� Q

For
√
QT ∼ m � Q massive quarks can be produced via collinear initial-state radiation, but

not via soft real radiation. After the hard matching, carried out with nl + 1 massless quark

flavors as discussed in sec. 2.3, the degrees of freedom in the EFT are collinear and soft modes

with the scaling

na-collinear + MM: pµna ∼ (T , Q,
√
QT ) ∼

(m2

Q
,Q,m

)
,

nb-collinear + MM: pµnb ∼ (Q, T ,
√
QT ) ∼

(
Q,

m2

Q
,m
)
,

soft MM: pµs ∼ (m,m,m) ,

usoft: pµus ∼ (T , T , T ) , (3.6)

as illustrated in fig. 5(a). While the usual usoft modes live at a lower virtuality scale than the

collinear modes, the soft mass-modes are separated from the collinear modes only in rapidity,

leading to a mix of SCETI and SCETII features. In particular, there will be mass-related

rapidity divergences.

At the scale µ ∼ √QT ∼ m this theory with nl + 1 dynamical quark flavors is matched

onto a theory with nl flavors integrating out also fluctuations related to initial-state collinear
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Figure 5. Effective theory modes for the beam thrust spectrum with massive quarks for m2/Q . T �
Q and m� ΛQCD.

radiation of massless particles. The matching in the collinear sectors leads to mass-dependent

beam function coefficients Iik,

B
(nl+1)
i

(
t,m, x, µ,

ν

ω

)
=

∑

k∈{q,q̄,g}

Iik
(
t,m, x, µ,

ν

ω

)
⊗x f (nl)

k (x, µ)

[
1 +O

(Λ2
QCD

m2
,
Λ2

QCD

t

)]
,

(3.7)

analogous to eq. (2.13). The dependence on the rapidity scale ν here arises due to virtual

secondary massive quark corrections and is the same as for the collinear mass-mode function

Hc in eq. (2.10), i.e.,

ν
d

dν
B

(nl+1)
i

(
t,m, x, µ,

ν

ω

)
= γν,Hc(m,µ)B

(nl+1)
i

(
t,m, x, µ,

ν

ω

)
. (3.8)

In the soft sector the soft mass modes are integrated out, leaving only the usoft modes. This

gives exactly the soft mass-mode function Hs in eq. (2.10), which encodes the effects of virtual
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secondary massive quark radiation. As usual, also the strong coupling constant has to be

matched from nl + 1 to nl flavors. The remaining contributions at the lower scales, the soft

function and the PDFs, are given in terms of nl massless flavors and in the (nl)-scheme for αs.

The resulting factorized cross section reads

dσ

dQ2 dY dT =
∑

i,j∈{q,q̄,Q,Q̄}

H
(nl+1)
ij (Q,µ)Hs(m,µ, ν)

∫
dta dtb

×
[ ∑

k∈{q,q̄,g}

Iik
(
ta,m, xa, µ,

ν

ωa

)
⊗x f (nl)

k (xa, µ)

]

×
[ ∑

k∈{q,q̄,g}

Ijk
(
tb,m, xb, µ,

ν

ωa

)
⊗x f (nl)

k (xb, µ)

]

× S(nl)
(
T − ta

ωa
− tb
ωb
, µ
)[

1 +O
(T
Q
,
m2

Q2
,
T 2

m2
,
ΛQCD

T
)]
. (3.9)

The resummation of logarithms in eq. (3.9) is obtained by evolving all functions from

their natural scales, as illustrated in fig. 6(a). The mass-dependent ν evolution, which resums

the rapidity logarithms ln(Q/m), is identical to the one for the hard functions Hc and Hs in

sec. 2.3. The µ evolution can be conveniently carried out by evolving the hard, beam, and

soft functions with nl + 1 active flavors above the mass scale and with nl active flavors below

the mass scale, which automatically takes into account the µ dependence of HS . To see this,

the consistency of RG running for eq. (3.9) together with the consistency relation for nl + 1

massless quarks in eq. (3.5) implies

ωaγ
(nl+1)
B,m

(
ωa`,m, µ,

ν

ωa

)
+ ωbγ

(nl+1)
B,m

(
ωb`,m, µ,

ν

ωb

)
+ γ

(nl)
S (`, µ) + γHs,µ(m,µ, ν) δ(`)

= ωaγ
(nl+1)
B (ωa`, µ) + ωbγ

(nl+1)
B (ωb`, µ) + γ

(nl+1)
S (`, µ) , (3.10)

where γ
(nl)
S , γ

(nl+1)
S , γ

(nl+1)
B are the anomalous dimensions for the soft and beam functions with

nl and nl + 1 massless flavors as defined in eq. (3.4), and γ
(nl+1)
B,m (t,m, µ, ν/ω) is the anomalous

dimension of the mass-dependent beam function,

µ
d

dµ
B

(nl+1)
i

(
t,m, x, µ,

ν

ω

)
=

∫
dt′ γ

(nl+1)
B,m

(
t− t′,m, µ, ν

ω

)
B

(nl+1)
i

(
t′,m, x, µ,

ν

ω

)
. (3.11)

The consistency relation in eq. (3.10) can be confirmed explicitly at two loops with the ex-

pressions in eqs. (A.10), (A.16), (4.11), and (4.25). Note that this relation does not imply

that γ
(nl+1)
B,m (t,m, µ, ν/ω) and γ

(nl+1)
B (t, µ) are the same, which is indeed not the case for the

massive quark corrections as we will see explicitly in sec. 4.2. The reason is that the presence

of the quark mass leads to a SCETII-type theory, in which the required rapidity regularization

redistributes the µ anomalous dimension between soft and collinear corrections with individ-

ually regularization scheme dependent pieces. Only their sum, as given on the left-hand side

of eq. (3.10), is independent of the regularization scheme and yields the combined running for

beam and soft functions with nl + 1 massless flavors above µm ∼ m, as on the right-hand side

of eq. (3.10).

3.3 Quark mass effects for T � m� √QT
When the beam scale becomes larger than the mass scale, but the soft scale is still larger

than the mass, which happens for m2/Q � T � m, the beam function matching coefficients
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Figure 6. Illustration of the renormalization group evolution for beam thrust of the hard, beam, soft,

and parton distribution function in invariant mass and rapidity. The anomalous dimensions for each

evolution step involve the displayed number of active quark flavors. The label m indicates that the

corresponding evolution is mass dependent.

Iik encode only fluctuations related to initial-state collinear radiation with nl + 1 massless

quarks. The EFT below
√
QT contains the usual collinear and soft mass modes scaling as

pµm,na ∼ (m2/Q,Q,m), pµm,nb ∼ (Q,m2/Q,m), and pµm,s ∼ (m,m,m), which do not contribute

to the beam thrust measurement. However, besides these there are also additional modes with

fluctuations around the mass scale which can have a dynamic impact on the T spectrum in

this hierarchy, as illustrated in fig. 5(b). Their scaling is precisely determined by this condition

and the on-shell constraint, yielding the scaling

na-csoft MM: pµcs,na ∼
(
T , m

2

T ,m
)
,

nb-csoft MM: pµcs,nb ∼
(m2

T , T ,m
)
. (3.12)

We refer to these intermediate modes as collinear-soft (csoft), since they are simultaneously

boosted (by a factor m/T ) but are softer than the standard collinear modes, thus coupling

to the latter via Wilson lines and leading to a SCET+ theory [72]. This type of intermediate

SCET+ modes have appeared in various contexts [72–75]. The setup here is similar to the

case of double-differential distributions with a simultaneous qT and beam thrust measurement

discussed in ref. [73]. Also there, several hierarchies are possible ranging from a SCETII regime

for qT ∼ T to a SCETI regime for qT ∼
√
QT with a SCET+ regime in between. The csoft

modes in their SCET+ regime are separated from the collinear modes only in rapidity. In our

case here, the csoft mass modes are separated in invariant mass from the standard SCETI soft

and collinear modes and in rapidity from their SCETII-type soft mass-mode cousins.

The matching in the collinear sector can be performed in two steps as in eqs. (2.17) and

(2.18). After integrating out all of the mass modes, the PDF and the soft function are still

given in a (nl)-flavor theory. Thus the factorization formula reads

dσ

dQ2 dY dT =
∑

i,j∈{q,q̄,Q,Q̄}

H
(nl+1)
ij (Q,µ)Hs(m,µ, ν)

∫
dka dkb Sc(ka,m, µ, ν)Sc(kb,m, µ, ν)
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×
∫

dta

[ ∑

k∈{q,q̄,Q,Q̄,g}

∑

l∈{q,q̄,g}

I(nl+1)
ik (ta, xa, µ)⊗xMkl(xa,m, µ)⊗x f (nl)

k (xa, µ)

]

×
∫

dtb

[ ∑

k∈{q,q̄,Q,Q̄,g}

∑

l∈{q,q̄,g}

I(nl+1)
jk (tb, xb, µ)⊗xMkl(xb,m, µ)⊗x f (nl)

n (xb, µ)

]

× S(nl)
(
T − ta

ωa
− tb
ωb
− ka − kb, µ

)[
1 +O

(T
Q
,
m2

QT ,
T 2

m2
,
ΛQCD

T
)]
. (3.13)

The functions Sc here are the csoft matching functions encoding the interactions of the collinear-

soft radiation at the invariant mass scale µ ∼ m and the rapidity scale ν ∼ m2/T . The Mij

correspond to the well-known PDF matching correction incorporating the effect of the collinear

mass modes, as in eq. (2.19). The virtual soft massive quark corrections are still described by

the function Hs at the rapidity scale ν ∼ m as in eq. (3.9).

The RG evolution for eq. (3.13) is illustrated in fig. 6(b). The csoft function satisfies the

same rapidity RGE as the collinear mass-mode function Hc in eq. (2.10) and the massive beam

functions in eq. (3.8), i.e.,

ν
d

dν
Sc(k,m, µ, ν) = γν,Hc(m,µ)Sc(k,m, µ, ν) . (3.14)

The only difference with respect to the rapidity evolution in eq. (3.9) is that it now happens

between Hs and Sc with νSc ∼ m2/T rather than between Hs and the beam functions with

νB ∼ Q, such that now the (smaller) rapidity logarithms ln(m/T ) are resummed. The µ

evolution can be performed with nl + 1 flavors for the hard function Hij , the beam and soft

function above the mass scale and with nl flavors below. This automatically accounts for the

µ dependence of Sc and Hs above µm ∼ m, which precisely gives the difference between the

evolution of the soft function with nl + 1 and nl flavors, as implied by the consistency of RG

running for eq. (3.13) and the relation in eq. (3.5) with nl + 1 massless quarks,

γ
(nl)
S (`, µ) + 2γSc(`,m, µ, ν) + δ(`) γHs(m,µ, ν) = γ

(nl+1)
S (`, µ) , (3.15)

where

µ
d

dµ
Sc(k,m, µ, ν) =

∫
dk′ γSc(k − k′,m, µ, ν)Sc(k,m, µ, ν) . (3.16)

At two loops, the consistency relation eq. (3.15) can be explicitly confirmed with the expressions

in eqs. (A.16), (4.32), and (4.11).

3.4 Quark mass effects for T ∼ m and m� T
For T ∼ m the csoft and soft mass modes in the previous section merge with the usual usoft

modes,

usoft: pµs ∼ (T , T , T ) ∼
(
T , m

2

T ,m
)
∼ (m,m,m) . (3.17)

In this hierarchy massive quarks can be also produced in soft real radiation leading to a soft

function at the scale µ ∼ T that depends on the quark mass. In addition, there are the usual

collinear modes as well as the collinear mass modes, as illustrated in fig. 5(c). Since we still
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Figure 7. Relevant modes for the beam thrust spectrum with T � Q for different hierarchies between

the quark mass m and the scales T ,
√
QT and Q. The arrows indicate the relations between the modes

and their associated contributions.

have m� √QT , the matching in the collinear sectors is the same as in the previous subsection.

The factorization formula reads

dσ

dQ2 dY dT =
∑

i,j∈{q,q̄,Q,Q̄}

H
(nl+1)
ij (Q,µ)

∫
dta dtb

×
[ ∑

k∈{q,q̄,Q,Q̄,g}

∑

l∈{q,q̄,g}

I(nl+1)
ik (ta, xa, µ)⊗xMkl(xa,m, µ)⊗x f (nl)

k (xa, µ)

]

×
[ ∑

k∈{q,q̄,Q,Q̄,g}

∑

l∈{q,q̄,g}

I(nl+1)
jk (tb, xb, µ)⊗xMkl(xb,m, µ)⊗x f (nl)

k (xb, µ)

]

× S
(
T − ta

ωa
− tb
ωb
,m, µ

)[
1 +O

(T
Q
,
m2

QT ,
ΛQCD

T ,
Λ2

QCD

m2

)]
. (3.18)

Now all rapidity divergences cancel within the soft function and do not leave behind any

potentially large rapidity logarithms. The RG evolution for this case is illustrated in fig. 6(c).

Finally, for m � T the mass dependence in the IR insensitive soft function vanishes, if

expressed in terms of the (nl+1)-flavor scheme for αs. Otherwise, eq. (3.18) remains unchanged,

such that now the only dependence on the mass scale arises in the PDF matching corrections

Mij . The hard, beam, and soft functions can now be always evolved with nl + 1 massless

flavors and only the evolution of the PDF changes, when crossing the flavor threshold.

3.5 Relations between hierarchies

We now discuss how the ingredients appearing in the different factorization formulae are related

to each other. The relations between the modes and their contributions are illustrated in fig. 7
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for the different possible hierarchies. As in sec. 2.6, these relations show how one can combine

the resummation of logarithms relevant in one regime with the power-suppressed fixed-order

content that becomes important in the neighboring regimes, enabling a systematic inclusion

of mass corrections across the entire T spectrum.

Similar to eq. (2.22), the mass-dependent beam function coefficients appearing for
√
QT ∼

m (incorporating massive quark fluctuation as discussed in sec. 3.2) are related to those for√
QT � m with nl massless quarks and the collinear mass-mode function Hc by

Iik
(
t,m, x, µ,

ν

ω

)
= Hc

(
m,µ,

ν

ω

)
I(nl)
ik (t, x, µ)

[
1 +O

( t

m2

)]
. (3.19)

At the same time, the mass-dependent beam function also encodes information about the

fixed-order content for T � m� √QT . Comparing eqs. (3.9) and (3.13), they are related to

those with nl + 1 massless flavors, the PDF matching functions, and the csoft function Sc by

Iik
(
t,m, x, µ,

ν

ω

)
=

∑

j={q,q̄,Q,Q̄,g}

∫
d` I(nl+1)

ij (t−Q`, x, µ)⊗xMjk(x,m, µ)Sc(`,m, µ, ν)

×
[
1 +O

(m2

QT
)]
. (3.20)

The mass-dependent soft function for T ∼ m in eq. (3.18) contains massive quark fluctu-

ations that for T � m get split into the massless soft function with nl flavors, the soft mass

mode function Hs, and the csoft function Sc in eq. (3.13) as

S(`,m, µ) = Hs(m,µ, ν)

∫
d`′ S(nl)(`− `′, µ)Sc(`′,m, µ, ν)

[
1 +O

( `2
m2

)]
. (3.21)

Finally, as already mentioned below eq. (3.18), the soft function approaches its massless limit

for m� T ,

S(`,m, µ) = S(nl+1)(`, µ)
[
1 +O

(m2

`2

)]
. (3.22)

3.6 Relation to previous literature

Here, we briefly comment on the connection of the factorization setup presented here for beam

thrust to the closely related SCETI setup in refs. [22, 23] for thrust in e+e−-collisions (or

similarly also for DIS with x → 1 [24]). Besides the fact that the jet functions appearing for

thrust in e+e− are replaced by virtuality-dependent beam functions for beam thrust in pp colli-

sions, there are also some differences in the description of the different regimes. While we have

discussed each possible hierarchy in a strict EFT sense identifying a single operator matrix

element or matching function with each EFT mode, refs. [22, 23] already set up their factor-

ization theorems in a way that they apply for neighboring hierarchies (e.g. T � m ∼ √QT
and T � m � √QT ). Using appropriate renormalization conditions, the mass dependent

corrections to the jet and soft functions were assigned such that they directly give the massless

results in the small mass limit and decouple in the infinite mass limit. In addition, the fac-

torization theorems contained mass mode matching functions for hard, jet, and soft function,

whenever the evolution of one of the matrix elements crossed the mass scale. In our setup this

essentially amounts to a specific practical choice how to incorporate the power corrections in

eqs. (3.19)–(3.22). Although the final outcome is thus essentially the same once the correct
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rapidity scales are chosen in the mass mode matching functions, it is perhaps more transparent

conceptionally to first distinguish all hierarchies with the associated modes as we do here, and

separately discuss the possible ways to add the nonsingular corrections later. In particular, for

the hierarchy T � m� √QT , this leads us to identify the csoft modes as a relevant degree of

freedom with a corresponding function evaluated naturally at the rapidity scale ν ∼ m2/T . In

contrast, refs. [22, 23] the corresponding corrections appeared inside the mass mode matching

functions as soft-bin contributions that had to be evaluated at this rapidity scale to minimize

large rapidity logarithms.

4 Results for massive quark corrections

In this section we present our results for the contributions from primary massive quarks at

O(αs) and from secondary massive quarks at O(α2
s) to all components of the various factoriza-

tion theorems discussed in secs. 2 and 3, providing all required ingredients for the Drell-Yan

spectrum at NNLL′. The results in this section are only given for a single massive quark flavor

and with the rapidity divergences regularized by the symmetric Wilson line regulator intro-

duced in refs. [40, 41]. The actual computations of the primary and secondary massive quark

corrections to the beam and soft functions are carried out in some detail in app. B. In sec. 4.4,

we show explicitly that the results satisfy the small and large mass limits, and illustrate the

numerical size of the mass-dependent corrections for the case of b quarks.

The fixed-order results for the mass-dependent corrections can be expanded either in terms

of the (nl)-flavor or (nl + 1)-flavor scheme for αs. For definiteness we expand in this section

any function F (m) using α
(nl+1)
s ,

F (m) =

∞∑

n=0

(
α

(nl+1)
s (µ)

4π

)n
F (n)(m) . (4.1)

The different two-loop contributions to F (2)(m) are written as

F (2)(m) = TFnl F
(2,l) + TFF

(2,h)(m) + . . . , (4.2)

where F (2,h) contains all mass dependent two-loop corrections and F (2,l) the associated con-

tributions for massless flavors. The expansion of F in terms of α
(nl)
s can be easily obtained by

using the matching relation for αs,

α(nl+1)
s (µ) = α(nl)

s (µ)

[
1− α

(nl)
s (µ)TF

4π

4

3
Lm +O(α2

s)

]
, (4.3)

where here and in the following we abbreviate

Lm ≡ ln
m2

µ2
. (4.4)

4.1 Hard matching functions

All hard matching functions, i.e. the hard function H at the scale Q and the mass mode match-

ing functions Hc and Hs at the scale m� Q, are insensitive to the measurement performed at

a lower scale and are therefore the same for qT and beam thrust T . Since the QCD and SCET

currents are the same as for e+e− → 2 jets, the results can be read off from the corresponding

ones in refs. [23, 56].
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4.1.1 Massive quark corrections to the hard function

The secondary massive quark corrections to the hard function in eq. (2.8) read

H(2,h)(Q,m, µ) = H(0)(Q)

{
CFhvirt

(m2

Q2

)
+

4

3
LmH

(1)(Q,µ)

}
, (4.5)

where H(0) denotes the tree-level normalization and H(1) the massless one-loop contribution

given in eq. (A.1). The function hvirt contains the O(α2
sCFTF ) virtual massive quark bubble

correction in full QCD shown in fig. 1. It has been calculated in refs. [76, 77] and is given by

hvirt(x) =
(

16x2 − 8

3

)[
−4Li3

(r − 1

r + 1

)
− 1

3
ln3 r − 1

r + 1
+

2π2

3
ln
r − 1

r + 1
+ 4ζ3

]

+ r
(184

9
x+

76

9

)[
4Li2

(r − 1

r + 1

)
+ ln2 r − 1

r + 1
− 2π2

3

]
+
(880

9
x+

1060

27

)
lnx

+
1904

9
x+

6710

81
, (4.6)

with r =
√

1 + 4x. For m→∞ the massive quark decouples such that hvirt(x)→ 0 for x→∞.

For Z-boson production there is an additional primary massive quark contribution to the

axial vector current, namely the massive quark triangle correction in fig. 1, which we denote

by ∆haxial with the same prefactor as for hvirt using the narrow width approximation for

notational simplicity. It has been computed in refs. [78–80] and is given by

∆haxial(Q,m, µ) =
8aqaQ
v2
q + a2

q

[
3 ln

Q2

µ2
− 9 +

π2

3
+ θ(Q2 − 4m2)G1

(m2

Q2

)

+ θ(4m2 −Q2)G2

(m2

Q2

)]
, (4.7)

where the vector and axial vector couplings for up- and down-type quarks are proportional

to vu = 1 − 8/3 sin2 θW , vd = −1 + 4/3 sin2 θW , au = 1, ad = −1. The functions G1 and

G2 are given in eqs. (2.8) and (2.9) of ref. [79]. In the small mass limit m � Q the function

G1(m2/Q2) vanishes, such that ∆haxial gives the same result as for a massless flavor in the

loop,

∆haxial(Q,m, µ) =
8aqaQ
v2
q + a2

q

[
3 ln

Q2

µ2
− 9 +

π2

3
+O

(m2

Q2

)]
. (4.8)

For a massless isospin partner this correction is thus canceled within the SU(2)L doublet,

while for different masses (as for mb � mt) there is a (µ-independent) remainder. Note that

for Q� m the function ∆haxial gives a nonvanishing contribution

∆haxial(Q,m, µ) =
8aqaQ
v2
q + a2

q

[
3 ln

m2

µ2
+

3

2
+O

(Q2

m2

)]
. (4.9)

In this case one would integrate out the heavy quark at the scale µm ∼ m and evolve the axial

current to µH ∼ Q to resum logarithms ln(m2/Q2).
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4.1.2 Soft and collinear mass-mode matching functions

The contributions to the mass-mode matching functions originate only from secondary radi-

ation. The soft mass-mode function Hs appearing in eqs. (2.10), (3.9), and (3.13) has been

computed at two loops with the symmetric η-regulator in ref. [56]. It is given by

Hs(m,µ, ν) = 1 +
α2
sCFTF
16π2

[
−
(16

3
L2
m +

160

9
Lm +

448

27

)
ln
ν

µ
+

8

9
L3
m +

40

9
L2
m

+
(448

27
− 4π2

9

)
Lm +

656

27
− 10π2

27
− 56ζ3

9

]
+O(α3

s) . (4.10)

Since there are no O(αs) corrections, the flavor scheme for αs does not affect the results at

O(α2
s). Its anomalous dimensions are

γHs(m,µ, ν) =
α2
sCFTF
16π2

[(64

3
Lm +

320

9

)
ln
ν

µ
− 448

27
+

8π2

9

]
+O(α3

s) ,

γν,Hs(m,µ) =
α2
sCFTF
16π2

[
−16

3
L2
m −

160

9
Lm −

448

27

]
+O(α3

s) . (4.11)

The rapidity anomalous dimension is even known at O(α3
s), see ref. [24].

The result for the collinear mass-mode function Hc in eq. (2.10) can be inferred at O(α2
s)

from the computations in refs. [23, 56] and reads

Hc

(
m,µ,

ν

ω

)
= 1 +

α2
sCFTF
16π2

[(
8

3
L2
m +

80

9
Lm +

224

27

)
ln
ν

ω

+ 2L2
m +

(2

3
+

8π2

9

)
Lm +

73

18
+

20π2

27
− 8ζ3

3

]
+O(α3

s) . (4.12)

Its anomalous dimensions are

γHc

(
m,µ,

ν

ω

)
=
α2
sCFTF
16π2

[
−
(32

3
Lm +

160

9

)
ln
ν

ω
− 8Lm −

4

3
− 16π2

9

]
+O(α3

s) ,

γν,Hc(m,µ) =
α2
sCFTF
16π2

(
8

3
L2
m +

80

9
Lm +

224

27

)
+O(α3

s) . (4.13)

One can easily verify that the relation in eq. (2.21) between the massive hard function

in eq. (4.5), the hard function contribution for a massless flavor in eq. (A.1), and the two

mass-mode functions in eqs. (4.10) and (4.12) is satisfied,

H(2,h)(Q,m, µ) = H(2,l)(Q,µ) +H(2)
c

(
m,µ,

ν

ωa

)
+H(2)

c

(
m,µ,

ν

ωb

)
+H(2)

s (m,µ, ν) +O
(m2

Q2

)
.

(4.14)

4.2 Beam functions

Here we give our results for the massive quark beam function coefficient IQg at O(αs) and the

secondary massive quark corrections to the light-quark coefficients Iqq at O(α2
s), which appear

in eqs. (2.14) and (3.9) for the qT and beam thrust measurement. We also give the massive

quark contributions to the beam function anomalous dimensions. We also give the well-known

results for the corresponding PDF matching coefficients MQg at O(αs) and Mqq at O(α2
s)

appearing in eqs. (2.19), (3.13) and (3.18).
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Figure 8. Feynman diagram for the massive quark beam function at one loop.

m

(a)

m

(b)

m

(c)

Figure 9. Secondary massive quark corrections for the light-quark beam function atO(α2
s). In addition,

also the wave-function renormalization correction and the mirror diagrams for (b) and (c) have to be

included.

4.2.1 TMD beam function coefficients

The matching coefficient IQg generating a massive beam function from a gluon splitting is

calculated at O(αs) in sec. B.1 and corresponds to the diagram shown in fig. 8. The result

reads (p2
T = |~pT |2)

IQg(~pT ,m, z) = IQ̄g(~pT ,m, z) =
αsTF
4π2

θ(z) θ(1− z) 2

p2
T +m2

[
Pqg(z) +

2m2z(1− z)
p2
T +m2

]
+O(α2

s) ,

(4.15)

with the splitting function

Pqg(z) = z2 + (1− z)2 . (4.16)

This result is equivalent to the Fourier transform of the mass-dependent matching functions

Ch/G in ref. [19]. After performing an appropriate crossing it also agrees with the massive

final-state splitting functions [81, 82] or fragmenting jet function [83].

The contributions from secondary massive quarks to the matching coefficient Iqq are com-

puted in sec. B.3 at O(α2
s). The corresponding diagrams are shown in fig. 9. The result is

given by

I(2,h)
qq

(
~pT ,m, z, µ,

ν

ω

)

= θ(z)CF

{
δ(2)(~pT ) δ(1− z)

[(8

3
L2
m +

80

9
Lm +

224

27

)
ln
ν

ω
+ 2L2

m +
(2

3
+

8π2

9

)
Lm

+
73

18
+

20π2

27
− 8ζ3

3

]

+
16

9πp2
T

[
L0(1− z)− δ(1− z) ln

ν

ω

][
−5 + 12m̂2 + 3c(1− 2m̂2) ln

c+ 1

c− 1

]
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+
16

9πp2
T

θ(1− z)
[

3

2d(1− z)
[
(1 + z2)(1 + 2m̂2z) + 4m̂4z2(−5 + 6z − 5z2)

]
ln
d+ 1

d− 1

− 3c(1− 2m̂2)

1− z ln
c+ 1

c− 1
+ 1 + 4z + 3m̂2(−4 + z − 5z2)

]}

+
4

3
Lm I(1)

qq

(
~pT , z, µ,

ν

ω

)
, (4.17)

where

m̂ ≡ m

pT
, c =

√
1 + 4m̂2 , d =

√
1 + 4m̂2z , (4.18)

and the one-loop term I(1)
qq is given in eq. (A.4). Here Ln(1 − z) denotes the standard plus

distribution as defined in appendix D.

In the (nl + 1)-flavor scheme for αs there is also a correction from a virtual massive quark

loop to the flavor-nondiagonal matching coefficient I(2)
qg . This contribution is trivial, since it

factorizes into a vacuum polarization correction corresponding to the matching of αs between

the (nl) and (nl + 1)-flavor schemes, and the one-loop contribution, such that

I(2,h)
qg (~pT ,m, z, µ) =

4

3
Lm I(1)

qg (~pT , z, µ) , (4.19)

with I(1)
qg given in eq. (A.3). In the (nl)-flavor scheme for αs the I(2,h)

qg contribution vanishes.

The contributions from a massive flavor to the beam function anomalous dimensions are

γ
(2,h)
B

( ν
ω

)
= CF

(
−160

9
ln
ν

ω
− 4

3
− 16π2

9

)
,

γ
(2,h)
ν,B (~pT ,m, µ) = CF

{
−16

3
LmL0(~pT , µ) + δ(2)(~pT )

(8

3
L2
m +

80

9
Lm +

224

27

)

+
16

9πp2
T

[
5− 12m̂2 − 3c(1− 2m̂2) ln

c+ 1

c− 1

]}
. (4.20)

The L0(~pT , µ) distribution is defined in appendix D. The µ anomalous dimension here is the

same as for a massless quark flavor, γ
(2,h)
B = γ

(2,l)
B [see eq. (A.7)]. The rapidity anomalous

dimension is explicitly mass dependent and only reproduces the result for a massless flavor in

the limit m� pT .

4.2.2 Virtuality-dependent beam function coefficients

The massive quark-gluon virtuality beam function matching coefficient at O(αs) shown in fig. 8

is given by

IQg(t,m, z) =
αsTF

4π
θ(t) θ(z) θ

[
t(1− z)

z
−m2

]
2

t

[
Pqg(z) +

2m2z2

t

]
+O(α2

s) . (4.21)

The contributions from secondary massive quarks to the light-quark coefficient at O(α2
s)
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as shown in fig. 9 are given by

I(2,h)
qq

(
t,m, z, µ,

ν

ω

)

= θ(z)CF

{
δ(t) δ(1− z)

[(8

3
L2
m +

80

9
Lm +

224

27

)
ln
ν

ω
+ 2L2

m +
(2

3
+

8π2

9

)
Lm

+
73

18
+

20π2

27
− 8ζ3

3

]

+ θ

(
t− 4m2z

1− z

)
8

9t(1− z)

[
−3

u

[
(1 + z2)(1− 2m̂2

t z)− 4m̂4
t z

2(2− 3z + 5z2)
]

ln
u− v
u+ v

− 2v
[
4− 3z + 4z2 +

z(11− 21z + 29z2 − 15z3)

1− z m̂2
t

]]}
+

4

3
Lm I(1)

qq (t, z, µ) , (4.22)

with

m̂t =
m√
t

u =
√

1− 4m̂2
t z , v =

√
1− 4m̂2

t z

1− z , (4.23)

and the one-loop term I(1)
qq is given in eq. (A.8).

In the (nl + 1)-flavor scheme for αs there is also the analogous contribution to eq. (4.19)

to the flavor-nondiagonal coefficient

I(2,h)
qg (t,m, z, µ) =

4

3
Lm I(1)

qg (t, z, µ) , (4.24)

with I(1)
qg given in eq. (A.8). In the (nl)-flavor scheme for αs the I(2,h)

qg contribution vanishes.

The contribution from the massive flavor to the µ anomalous dimension at O(α2
s) is given

by

γ
(2,h)
B,m

(
t,
ν

ω

)
= CF δ(t)

(
−160

9
ln
ν

ω
− 4

3
− 16π2

9

)
. (4.25)

We emphasize that the massive quark contribution to the µ anomalous dimension is not the

same as for a massless flavor, but is in fact the same as for the TMD beam function in

eq. (4.20). This is required by consistency with the large mass limit QT , qT � m, where the

massive flavor can only contribute to the (local) running of the common current operators,

which are independent of the measurement. Only in combination with the soft mass-mode

function Hs and the soft function, the combined µ evolution above the mass scale is the same

as for nl + 1 massless flavors as discussed in eq. (3.10).

The secondary massive quarks introduce rapidity divergences and associated logarithms

also in the virtuality-dependent beam function. The ν anomalous dimension induced by the

secondary massive effects is the same as for the collinear mass-mode function, see eq. (3.8),

given in eq. (4.13).

4.2.3 PDF matching coefficients

The matching coefficients relating the PDFs in the (nl + 1) and the (nl)-flavor scheme are all

known at two loops [84] and partially beyond (see e.g. refs. [85–87] and references therein).
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Figure 10. Corrections from secondary massive quarks to the (c)soft function. Also the mirror diagrams

need to be included.

The matching coefficient for a primary massive quark originating from an initial-state gluon

at O(αs) is

MQg(m, z, µ) = −αsTF
4π

θ(1− z)θ(z) 2Pqg(z)Lm +O(α2
s) . (4.26)

The matching coefficient coming from secondary massive quark corrections to the light-quark

PDFs reads up to O(α2
s)

Mqq(m, z, µ) = 1 +
α2
sCFTF
16π2

θ(z)

{
L0(1− z)

(
8

3
L2
m +

80

9
Lm +

224

27

)

+ δ(1− z)
[
2L2

m +

(
2

3
+

8π2

9

)
Lm +

73

18
+

20π2

27
− 8ζ3

3

]

+ θ(1− z)
[
−4

3
L2
m(1 + z) + Lm

(
8

9
− 88

9
z +

8

3

1 + z2

1− z ln z

)
+

2

3

1 + z2

1− z ln2 z

+
ln z

1− z

(
44

9
− 16

3
z +

44

9
z2

)
+

44

27
− 268

27
z

]}
+O(α3

s) . (4.27)

The matching coefficient between the gluon PDF in the (nl) and (nl + 1)-flavor schemes at

O(αs), which is also required for Drell-Yan at O(α2
s), is equivalent to the matching relation

for αs

Mgg(m, z, µ) = δ(1− z) +
αsTF

4π
δ(1− z) 4

3
Lm +O(α2

s) . (4.28)

Note that taking into account the nondiagonal evolution of the PDFs the known O(α2
s) cor-

rections for all matching factors Mij become relevant at NNLL′.

4.3 Soft and collinear-soft functions

Here we give all massive quark corrections at O(α2
s) to the soft and csoft functions. They arise

exclusively from secondary radiation. Note that the soft functions satisfy Casimir scaling at

this order and can be thus applied also to color-singlet production in gluon-fusion by replacing

an overall CF → CA.

4.3.1 TMD soft function

The contributions from secondary massive quarks to the TMD soft function, which appears

in eq. (2.14) for qT ∼ m, are calculated in app. B.4 at O(α2
s) and correspond to the diagrams
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shown in fig. 10. The result reads

S(2,h)(~pT ,m, µ, ν) = CF

{
δ(2)(~pT )

[(
−16

3
L2
m −

160

9
Lm −

448

27

)
ln
ν

µ
+

8

9
L3
m +

40

9
L2
m

+
(448

27
− 4π2

9

)
Lm +

656

27
− 10π2

27
− 56ζ3

9

]

+
16

9πp2
T

[
2
[
−5 + 12m̂2 + 3c(1− 2m̂2) ln

c+ 1

c− 1

]
ln
ν

m

+ 3c(1− 2m̂2)

[
Li2

(
(c− 1)2

(c+ 1)2

)
+ 2 ln

c+ 1

c− 1
ln
m̂(c+ 1)

2c
− π2

6

]

+ c(5− 16m̂2) ln
c+ 1

c− 1
+ 8m̂2

]}
+

4

3
Lm S

(1)(~pT , µ, ν) , (4.29)

where m̂ = m/pT and c =
√

1 + 4m̂2 as in eq. (4.18) and the one-loop soft function S(1) given

in eq. (A.11).

The massive quark contributions to the anomalous dimensions of the soft function are

γ
(2,h)
S (~pT , µ, ν) = CF

(
320

9
ln
ν

µ
− 448

27
+

8π2

9

)
,

γ
(2,h)
ν,S (~pT ,m, µ) = CF

{
32

3
LmL0(~pT , µ) + δ(2)(~pT )

(
−16

3
L2
m −

160

9
Lm −

448

27

)

+
32

9πp2
T

[
−5 + 12m̂2 + 3c(1− 2m̂2) ln

c+ 1

c− 1

]}
. (4.30)

The µ anomalous dimension here is the same as for an additional massless flavor, γ
(2,h)
S = γ

(2,l)
S

[see eq. (A.13)]. The rapidity anomalous dimension is explicitly mass dependent and only

reduces to the result for a massless flavor in the limit m� pT .

4.3.2 Csoft function for beam thrust

The csoft function is a matching coefficient between an eikonal matrix element in the nl + 1

and nl flavor theories appearing for the hierarchy T � m� √QT in eq. (3.13). The relevant

diagrams at O(α2
s) are shown in fig. 10 and are calculated in sec. B.5. The result is given by

Sc(`,m, µ, ν) = δ(`) +
α2
sCFTF
16π2

{
ν

µ2
L0

(` ν
µ2

)(8

3
L2
m +

80

9
Lm +

224

27

)
(4.31)

+ δ(`)

[
−8

9
L3
m −

40

9
L2
m +

(
−448

27
+

4π2

9

)
Lm −

656

27
+

10π2

27
+

56ζ3

9

]}
+O(α3

s).

We can see that with the scale choices µ ∼ m and ν ∼ µ2/` ∼ m2/T all large logarithms

(including the implicit one inside the plus distribution) are minimized. The µ anomalous

dimensions of the csoft matching function is given by

γSc(`,m, µ, ν) =
α2
sCFTF
16π2

[
− ν

µ2
L0

(` ν
µ2

)(32

3
Lm +

160

9

)
+ δ(`)

(448

27
− 8π2

9

)]
+O(α3

s) .

(4.32)

The ν anomalous dimension is the same as for the collinear mass mode function in eq. (4.13),

γν,Sc = γν,Hc .
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4.3.3 (Beam) thrust soft function

The secondary massive quark corrections to the (beam) thrust soft function at O(α2
s) were

calculated in ref. [88] and are given by

S(2,h)(`,m, µ) = CF

{
1

µ
L0

( `
µ

)(16

3
L2
m +

160

9
Lm +

448

27

)

+ δ(`)

[
−8

9
L3
m −

40

9
L2
m +

(
−448

27
+

4π2

9

)
Lm −

656

27
+

10π2

27
+

56

9
ζ3

]

+ θ(`− 2m)
1

`

[
64

3
Li2

(w − 1

w + 1

)
+

16

3
ln2 1− w

1 + w
− 64

3
ln

1− w
1 + w

ln m̂`

− 160

9
ln

1− w
1 + w

− w
(896

27
+

256

27
m̂2
`

)
+

16π2

9

]}

+ ∆Sτ (`,m) +
4

3
Lm S

(1)(`, µ) , (4.33)

where

m̂` ≡
m

`
, w =

√
1− 4m̂2

` , (4.34)

and the one-loop soft function S(1) is given in eq. (A.14). The term ∆Sτ (`,m) contains

the correction from two real final-state emissions entering two opposite hemispheres, which

vanishes both for ` � m and m � ` and is currently only known numerically. The integral

expression for this numerically small contribution is given in eq. (61) of ref. [88], and a precise

parametrization can be found in ref. [23].

The massive quark contribution to the anomalous dimension is the same as for a massless

flavor, γ
(2,h)
S (`, µ) = γ

(2,l)
S (`, µ), given in eq. (A.16).

4.4 Small and large mass limits

In secs. 2.6 and 3.5 we explained how the ingredients in the factorization theorems for different

hierarchies are related to each other. Here we verify these relations for the beam and soft

functions up to O(α2
s). We also scrutinize the numerical impact of the power corrections for

these functions. We focus in particular on the O(m2/q2
T ) corrections the qT spectrum for b

quarks, which are contained in the factorization theorem eq. (2.14) for qT ∼ m but not in the

massless limit for m� qT in eq. (2.19), as these are phenomenologically important hierarchies

for b-quark mass effects at the LHC.

For the numerical results we use the MMHT2014 NNLO PDFs [89] and evaluate the

contributions for µ = mb = 4.8 GeV, ω = mZ , and Ecm = 13 TeV. The main qualitative

features of the results do not depend on these specific input parameters.

4.4.1 Limiting behavior for qT

We first consider the primary mass effects at one loop, which are encoded in the TMD beam

function matching coefficient I(1)
Qg in eq. (4.15). In the limit pT � m the primary massive

quarks decouple, which is manifest in the result,

I(1)
Qg (~pT ,m, z) = O

( p2
T

m2

)
. (4.35)
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Figure 11. Massive b-quark beam function (left panel) and its cumulant (right panel) together with

its m→ 0 limit. The input parameters are described in the text.

On the other hand, in the opposite limit m� pT it becomes

I(1)
Qg (~pT ,m, z)

= TF θ(1− z)θ(z)
{

2Pqg(z)L0(~pT , µ) + δ(2)(~pT )
[
−2Pqg(z)Lm + 4z(1− z)

]
+O

(m2

p2
T

)}

= I(1)
qg (~pT , z, µ) + δ(2)(~pT )M(1)

Qg(m, z, µ) +O
(m2

p2
T

)
, (4.36)

confirming that the relation in eq. (2.24) is satisfied at O(αs). The massless one-loop matching

coefficient I(1)
qg can be found in eq. (A.3) and the PDF matching coefficientM(1)

Qg in eq. (4.26).

To account for the correct distributive structure in ~pT that emerges in the massless limit,

one can integrate the expressions with massive quarks and identify the distributions at the

cumulant level.

In fig. 11 we show the result for the massive quark beam function B
(1)
Q = I(1)

Qg ⊗x fg at

O(αs) as function of pT using the full massive matching coefficient I(1)
Qg (solid orange) and

its small mass limit in eq. (4.36). Note that the results differential in pT are not explicitly

µ-dependent at O(αs). In the right panel we show the corresponding results for the cumulant

BQ(pcut
T ,m) ≡

∫

|~pT |<pcut
T

d2pT BQ(~pT ,m) , (4.37)

which also includes the δ(2)(~pT ) constant contribution. We can see that in both cases the small

mass limit is correctly approached for p
(cut)
T � mb, while for p

(cut)
T � mb the primary mass

effects decouple with the result going to zero. The corrections to the small mass limit become

sizeable for pT ∼ mb and vanish quite fast for larger pT .

In fig. 12 we show the result for the convolution between two massive quark beam functions,

B
(1)
Q ⊗B

(1)
Q (~pT ,m) ≡

∫
d2p′T B

(1)
Q (~pT − ~p ′T ,m)B

(1)
Q (~p ′T ,m) , (4.38)

which enters the result for Z-boson production at O(α2
sT

2
F ) and NNLL′. The analytic ex-

pression for the convolution between the two one-loop mass-dependent coefficients is given in

eq. (C.6). We see that now the corrections to small-mass limit remain nonnegligible even for
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Figure 12. Convolution of two massive b-quark beam functions together with the result in the m→ 0

limit differential in the total pT ≡ |~pT | (left panel) and the corresponding cumulant (right panel). This

is proportional to the primary massive quark correction to the Z-boson spectrum at O(α2
s).

larger values of pT . This is due to the fact that the ~pT -convolution generates a logarithmic

dependence in the spectrum, such that the power corrections of O(m2
b/p

2
T ) become enhanced

by logarithms ln(p2
T /m

2
b).

Next, we consider the secondary massive quark corrections at O(α2
sCFTF ). The result for

the mass-dependent TMD beam function coefficient I(2,h)
qq (~pT ,m, z) is given in eq. (4.17). In

the decoupling limit pT � m all its terms without distributions in ~pT give O(p2
T /m

2) power-

suppressed contributions. Combining its remaining distributional terms with the contributions

arising from changing the αs scheme from nl + 1 to nl flavors yields

I(2,h)
qq

(
~pT ,m, z, µ,

ν

ω

)
− 4

3
LmI(1)

qq

(
~pT , z, µ,

ν

ω

)
= δ(2)(~pT ) δ(1− z)H(2)

c

(
m,µ,

ν

ω

)
+O

( p2
T

m2

)
,

(4.39)

confirming the relation in eq. (2.22) at this order. The massless one-loop coefficient I(1)
qq and

the collinear mass-mode function H
(2)
c can be found in eqs. (A.4) and (4.12), respectively. On

the other hand, in the limit m� pT we get

I(2,h)
qq

(
~pT ,m, z, µ,

ν

ω

)
= I(2,l)

qq

(
~pT , z, µ,

ν

ω

)
+ δ2(~pT )M(2)

qq (m, z, µ) +O
(m2

p2
T

)
, (4.40)

such that all infrared mass dependence is given by the PDF matching, as required by the

relation in eq. (2.24). The results for the massless coefficient and the PDF matching coefficient

are given in eqs. (A.6) and (4.27), respectively.

For the coefficient I(2,h)
qg at O(α2

sT
2
F ) the limiting behavior is trivial, since it vanishes

identically in the (nl)-flavor scheme for αs, and in the (nl+1)-flavor scheme for αs it is exactly

TF I(2,h)
qg (~pT ,m, z, µ) = I(1)

qg (~pT , z, µ)⊗zM(1)
gg (m, z, µ) . (4.41)

The mass-dependent TMD soft function is given in eq. (4.29). In the limit pT � m all its

terms without distributions in ~pT become O(p2
T /m

2) power suppressed, just as for the beam

function. Combining its remaining distributional terms with the contributions arising from

changing the scheme of the strong coupling from nl + 1 to nl flavors yields

S(2,h)(~pT ,m, µ, ν)− 4

3
LmS

(1)(~pT , µ, ν) = δ(2)(~pT )H(2)
s (m,µ, ν) +O

( p2
T

m2

)
, (4.42)
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Figure 13. Secondary massive bottom quark corrections to the u-quark beam function (left panel)

and its cumulant (right panel) at O(α2
sCFTF ) (including the square-root of the soft function here) for

µ = mb as a function of qT .

confirming the relation in eq. (2.23). The massless one-loop TMD soft function S(1) and the

softmass-mode function H
(2)
s are given in eqs. (A.11) and (4.10), respectively. Since the soft

function is free of IR singularities, the limit m � pT just yields the massless soft function in

eq. (A.12),

S(2,h)(~pT ,m, µ, ν) = S(2,l)(~pT , µ, ν) +O
(m2

p2
T

)
. (4.43)

We now discuss the numerical impact of the O(m2/p2
T ) terms from secondary mass effects.

Since the individual results for the beam and soft functions depend on the specific regularization

scheme, we consider their symmetrized combination

B̃q(~pT ,m, ω, x, µ) =

∫
d2p′T Bq

(
~pT − ~p ′T ,m, x, µ,

ν

ω

)√
S(~p ′T ,m, µ, ν) , (4.44)

which is independent of ν.6 The O(α2
sCFTF ) corrections explicitly depend on µ and the flavor-

number scheme, but the difference between the full result and the small mass limits given in

eqs. (4.40) and (4.43) do not. In fig. 13 we show the result for the O(α2
sCFTF ) corrections

(with αs = α
(nl+1)
s ) to the u-quark beam function, both differential in pT and the corresponding

cumulant. We see that the full mass dependent results correctly reproduce the small and large

mass limits. The corrections to the massless are much larger than for the primary mass effects.

In particular, they are still of O(100%) for p
(cut)
T ∼ 10 GeV. This clearly indicates that for

secondary radiation involving two massive quarks in the final state the corrections are rather

of O(4m2/p2
T ), as one might expect.

4.4.2 Limiting behavior for T
We carry out the discussion for beam thrust in close analogy. The virtuality-dependent massive

quark beam function coefficient at one loop is given in eq. (4.21). In the limit t � m2 the

6This combination is sometimes used as definition of a TMD PDF. B̃q contains large rapidity logarithms,

which are resummed once the soft and beam functions are evaluated at their natural rapidity scales and evolved

to a common scale ν. For demonstrating the size of the power corrections here, we evaluate it at fixed order.

– 34 –



primary massive quarks correctly decouple,

I(1)
Qg (t,m, z) = O

( t

m2

)
. (4.45)

In the opposite limit m2 � t we get

I(1)
Qg (t,m, z) = TF θ(1− z)θ(z)

{
2Pqg(z)

1

µ2
L0

( t

µ2

)
+ δ(t)

[
2Pqg(z)

(
−Lm + ln

1− z
z

)

+ 4z(1− z)
]}

+O
(
m2

t

)

= I(1)
qg (t, z, µ) + δ(t)M(1)

Qg(m, z, µ) +O
(m2

t

)
, (4.46)

as required by the relation (3.20). The massless one-loop matching coefficient I(1)
qg and the

PDF matching coefficient M(1)
Qg are given in eqs. (A.8) and (4.26), respectively.

The secondary massive quark corrections to the virtuality-dependent beam function are

given in eq. (4.22). In the decoupling limit t � m2 all its nondistributional terms become

O(t/m2) power suppressed. Combining the remaining distributional terms in t with the con-

tributions arising from changing the scheme of the strong coupling from nl + 1 to nl flavors

yields

I(2,h)
qq

(
t,m, z, µ,

ν

ω

)
− 4

3
LmI(1)

qq (t, z, µ) = δ(t)δ(1− z)H(2)
c

(
m,µ,

ν

ω

)
+O

( t

m2

)
, (4.47)

in agreement with eq. (3.19). The massless result for I(1)
qq and the collinear mass-mode function

H
(2)
c are given in eqs. (A.8) and (4.12), respectively. In the limit m2 � t we get

I(2,h)
qq

(
t,m, z, µ,

ν

ω

)

= I(2,l)
qq (t, z, µ) + δ(t)M(2)

qq (m, z, µ) + δ(1− z) 1

ω
S(2)
c

( t
ω
,m, µ, ν

)
+O

(m2

t

)
. (4.48)

All infrared mass dependence is contained in the PDF matching coefficient and the csoft

function, as required by eq. (3.20). The functions on the right-hand side are given in eqs. (A.9),

(4.27), and (4.31), respectively.

The mass-dependent corrections to the (beam) thrust soft function are given in eq. (4.33).

In the limit `� m all its nondistributional terms become O(`2/m2) power suppressed. Com-

bining the remaining distributional terms with the contributions arising from changing the

scheme of the strong coupling from nl + 1 to nl flavors yields

S(2,h)(`,m, µ)− 4

3
LmS

(1)(`, µ) = δ(`)H(2)
s (m,µ, ν) + S(2)

c (`,m, µ, ν) +O
( `2
m2

)
, (4.49)

in agreement with eq. (3.21). The massless one-loop thrust soft function S(1), the soft mass-

mode function H
(2)
s , and the csoft function S(2)

c can be found in eqs. (A.14), (4.10), and (4.31),

respectively. For m� ` the correct massless result is recovered,

S(2,h)(`,m, µ) = S(2,l)(`, µ) +O
(m2

`2

)
, (4.50)

which was already checked in ref. [88].
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Figure 14. Massive b-quark beam function (left panel) and the convolution between two of these (right

panel) together with the m→ 0 limit as a function of
√
t ∼ √QT .
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Figure 15. Secondary massive b-quark corrections to the u-quark beam function for Y = 0 (left panel)

and the soft function (right panel) at O(α2
sCFTF ) for µ = mb as functions of

√
t ∼ √QT and ` ∼ T ,

respectively.

In fig. 14, we show the numerical results for the one-loop massive beam function and the

convolution between two of these (which is the leading order correction from primary massive

quarks for the Z-boson production) as a function of
√
t ∼ √QT . The mass effects become

relevant for
√
t ∼ mb ∼ 5 GeV (corresponding to T . 1 GeV for Q = mZ). The corrections

to the massless limit for the convolution of two beam functions is nonnegligible also for larger

values. In fig. 15, we show the result for the secondary O(α2
sCFTF ) corrections to the beam

and soft function. The corrections to the massless limit for the beam function remain sizeable

even for
√
t & 2mb. For the soft function, the mass effects are important for T ∼ ` ∼ mb

and become small for ` > 10 GeV ∼ 2mb. Note that the small bump in the soft function in

fig. 15 originates from the correction term ∆Sτ in eq. (4.33). The associated correction in the

massless limit is fully contained in the δ(`) term.

5 Rapidity evolution

Here, we discuss the solutions of the rapidity RGEs in eq. (2.12), or equivalently eqs. (3.8)

and (3.14), and in particular the rapidity evolution for the mass-dependent soft function in

eq. (2.16) for qT ∼ m, where the massive quark corrections give rise to a different running than
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for massless flavors. Our primary aim here is to highlight the different features with respect

to the massless case, while leaving the practical implementation for future work.

The rapidity evolution for the mass-mode matching functions Hs and Hc according to

eq. (2.12) has been discussed in ref. [56]. The evolution for the beam thrust beam function

and csoft function according to eqs. (3.8) and (3.14) is completely analogous. For example,

the ν-evolved soft matching function Hs is given by

Hs(m,µ, ν) = V (m,µ, ν, ν0)Hs(m,µ, ν0) , (5.1)

V (m,µ, ν, ν0) = exp

{[
4η

(nl)
Γ (µ0(m), µ)− 4η

(nl+1)
Γ (µ0(m), µ) + γν,Hs(m,µ0(m))

]
ln
ν

ν0

}
.

The evolution function ηΓ is defined by

η
(nf )
Γ (µ0, µ) =

∫ µ

µ0

dµ′

µ′
Γ

(nf )
cusp[α

(nf )
s (µ′)] , (5.2)

and resums the µ-dependent logarithms inside the ν anomalous dimension as required by

consistency with the µ evolution to maintain the path independence in µ-ν-space [41]. With

the canonical scale choice

µ0(m) = m, (5.3)

all logarithmic terms in the boundary condition γν,Hs(m,µ0(m)) are minimized.

The solution of the rapidity RGE for the soft function is substantially more involved due

to its two-dimensional convolution structure on ~pT . The formal solution of the rapidity RGE

for massless quarks in eq. (2.6) is most conveniently found by Fourier transforming to impact

parameter space with b = |~b|, where the rapidity RGE becomes multiplicative

ν
d

dν
S̃(nf )(b, µ, ν) = γ̃

(nf )
ν,S (b, µ) S̃(nf )(b, µ, ν) . (5.4)

The consistency (path independence) between µ and ν evolution requires the rapidity anoma-

lous dimension in Fourier space to satisfy

µ
d

dµ
γ̃

(nf )
ν,S (b, µ) = −4 Γcusp[α

(nf )
s (µ)] . (5.5)

Its solution is given by

γ̃
(nf )
ν,S (b, µ) = −4η

(nf )
Γ (µ0(b), µ) + γ̃

(nf )
ν,S (b, µ0(b)) . (5.6)

The logarithms of ln(µ b eγE/2) in the second boundary term are eliminated by the canonical

scale choice

µ
(l)
0 (b) =

2 e−γE

b
. (5.7)

With this choice, the ν evolution of the soft function in Fourier space at any given scale µ is

given by

S̃(b, µ, ν) = S̃(b, µ, ν0) exp

[
γ̃

(nf )
ν,S (b, µ) ln

ν

ν0

]
. (5.8)
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As is well known, the rapidity evolution kernel becomes intrinsically nonperturbative at 1/b�
ΛQCD [32–34]. This nonperturbative sensitivity appears through the resummed rapidity anoma-

lous dimension, which with the canonical scale choice in eq. (5.7) gets evaluated at αs(1/b).

It is important to note that this is not an artefact of performing the evolution in Fourier

space. Rather this is a physical effect, which also happens when the ν evolution is consistently

performed in momentum space. As shown in ref. [54], in this case the appropriate resummed

result for γν,S(~pT , µ) explicitly depends on αs(pT ), which means it becomes nonperturbative

for pT . ΛQCD.

For the massive quark corrections in the regime qT ∼ m the µ dependence of the rapidity

anomalous dimension is the same as for the massless quarks, i.e. eq. (5.5), such that

γ̃
(h)
ν,S(b,m, µ) = 4η

(nl)
Γ (µ0(b,m), µ)− 4η

(nl+1)
Γ (µ0(b,m), µ) + γ̃

(h)
ν,S(b,m, µ0(b,m)) . (5.9)

Here γ̃
(h)
ν,S denotes only the contributions of the massive flavor to the full anomalous dimen-

sion. The explicit mass dependence arises in the µ-independent boundary contribution, which

depends on both b and m. From the relations in eqs. (2.25) and (2.23) we can directly infer

the limiting behavior to the anomalous dimension,

γ̃ν,S(b,m, µ) = γ̃
(nl+1)
ν,S (b, µ) +O(m2b2) ,

γ̃ν,S(b,m, µ) = γ̃
(nl)
ν,S (b, µ) + γν,Hs(m,µ) +O

( 1

m2b2

)
. (5.10)

This means that the massive quark corrections γ̃
(h)
ν,S are the same as for a massless flavor in the

limit m � 1/b and are the same as the rapidity anomalous dimension of the soft mass mode

function Hs in the limit 1/b� m, provided one uses the (nl+1) and (nl)-flavor scheme for αs,

respectively. To eliminate the logarithms inside γ̃
(h)
ν,S , the canonical scale choice µ0(b,m) should

behave like the massless case for m � 1/b and like the choice for the mass-mode matching

functions for m� 1/b,

µ
(h)
0 (b,m) ∼ µ(l)

0 (b) =
2 e−γE

b
for 1/b→∞ ,

µ
(h)
0 (b,m) ∼ m for 1/b→ 0 . (5.11)

Since µ
(h)
0 (b,m) freezes out naturally at the perturbative mass scale for 1/b→ 0, the nonper-

turbative sensitivity in the ν evolution gets regulated by the quark mass for the massive quark

contributions.

We first illustrate this behavior in a simple one-loop toy example: We consider the radiation

of a massive gluon (with mass M) having the same couplings as a (massless) gluon in QCD,

which exhibits the main features of the full results for secondary massive quarks. The associated

corrections are obtained in the calculations of app. B.4.1 as intermediate results for the two-

loop case. In b-space the one-loop rapidity anomalous dimensions for massless and massive

gluons are given by

γ̃
(1)
ν,S(b, µ) = −CF 8Lb ,

γ̃
(1)
ν,S(b,M, µ) = CF

[
8LM + 16K0(bM)

]
, (5.12)
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(h)
0 (b,M) for the massive case (red, solid) and µ

(l)
0 (b) = µ0(b,M = 0)

for the massless case (blue, dashed) with M = 5 GeV.

where K0 denotes the modified Bessel function of the second kind and

Lb ≡ ln
b2µ2e2γE

4
, LM ≡ ln

M2

µ2
. (5.13)

The mass-dependent result has the limiting behavior

γ̃
(1)
ν,S(b,M, µ) = −CF 8Lb +O(M2b2) ,

γ̃
(1)
ν,S(b,M, µ) = CF 8LM +O

( 1

M2b2

)
, (5.14)

in close analogy to eq. (5.10). A natural choice to eliminate any large terms in eq. (5.12) in

both limits is

µ
(h)
0 (b,M) = M eK0(bM) . (5.15)

for which γ̃
(1)
ν,S(b,M, µ

(h)
0 (b,M)) just vanishes. The behavior of this choice as a function of b

compared to the massless result is shown in fig. 16.

For the full secondary massive quark corrections atO(α2
s) the Fourier transform of eq. (4.30)

reads (expanded in terms of α
(nl+1)
s as in eq. (4.1))

γ̃
(2,h)
ν,S (b,m, µ) = CF

{
−32

3
LbLm −

16

3
L2
m −

160

9
Lm −

448

27

+
8
√
π

3

[
2G 3,0

1,3

(
3
2

0,0,0

∣∣∣m2b2
)

+G 3,0
1,3

(
5
2

0,0,1

∣∣∣m2b2
)]}

, (5.16)

where G denotes a Meijer G function. This result has the limiting behavior

γ̃
(2,h)
ν,S (b,m, µ) = CF

(
16

3
L2
b +

160

9
Lb +

448

27

)
+O(m2b2) ,

γ̃
(2,h)
ν,S (b,m, µ)− 4

3
Lmγ̃

(1)
ν,S(b, µ) = CF

(
−16

3
L2
m −

160

9
Lm −

448

27

)
+O

( 1

m2b2

)
. (5.17)

Hence, the correct massless limit is recovered, while in the large-mass limit one obtains the

anomalous dimension in eq. (4.11). Note that one needs to perform a change for the strong

– 39 –



coupling between the nl + 1 and nl flavor schemes to obtain both limits correctly. To minimize

the logarithms for any regime one should thus adopt a canonical scale choice that satisfies

eq. (5.11), as for example in eq. (5.15).

6 Outlook: Phenomenological impact for Drell-Yan

Our results can be applied to properly take into account bottom quark mass effects for the

Drell-Yan qT spectrum at NNLL′. While a full resummation analysis is beyond the scope

of this paper, we can estimate the potential size of the quark-mass effects by looking at the

fixed-order qT spectrum.

In fig. 17, we show separately the contributions from primary and secondary massive

quarks to the cross section at O(α2
s), normalized to the O(αs) spectrum dσ(1) including all

flavors (treating the charm as a massless flavor). We utilize the MMHT2014 NNLO PDFs [89]

and evaluate the contributions for µ = mb = 4.8 GeV, Q = mZ , Y = 0, and Ecm = 13 TeV.

Note that the secondary mass contributions at O(α2
s) are explicitly µ-dependent and scheme-

dependent, the nonsingular mass correction, i.e. the difference between the full massive result

for µ ∼ mb and the massless limit (encoded partially in a massive PDF), is µ independent at

this order. As can be seen, the relative contribution of the bb̄-initiated channel grows with larger

qT , while the impact of the secondary contributions including the full mass dependence is at

the sub-percent level throughout the spectrum. As expected, the nonsingular mass corrections

are very small for mb � qT , but can reach the order of percent for qT ∼ mb, which roughly

corresponds to the peak region of the distribution where the cross section is largest.

The same can also be seen in fig. 18, where we show the mass nonsingular corrections to

the massless limit for primary and secondary contributions as well as their sum. They are

shown for µ = mb on the left and for µ = qT on the right. We see that these corrections are (at

fixed order) indeed only weakly dependent on the value of µ (for qT & 2 GeV). All in all, the

bottom quark mass can have a relevant effect for high precision predictions of the qT -spectrum

at the order of percent around the peak of the distribution (∼ 5 GeV). Below the peak of the

distribution the fixed-order result is of course not expected to give a reliable quantitative result,

and furthermore nonperturbative corrections become important in this regime. Nevertheless,

we expect the qualitative features like the sign and order of magnitude of the mass effects to

provide an indication for the behaviour of the full resummed result.

For W production sizable corrections from bottom quark effects arise only through sec-

ondary contributions (due to the strong CKM suppression of the primary contributions), which

have a similar impact as for Z-production. On the other hand, charm-initiated production plays

an important role and enters already at O(αs). Estimating the nonsingular mass corrections

for qT ∼ mc is more subtle, since higher-order corrections in the strong coupling and nonper-

turbative effects are likely to dominate the effect from the known beam function at O(αs) at

these low scales. Thus, we do not attempt to determine their characteristic size here and leave

this to future work. An analysis based on the leading-order matrix element and its potential

impact on the determination of mW can be found in ref. [20].
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Figure 17. Primary (left panel) and secondary (right panel) massive bottom quark contributions for

the Z-boson qT spectrum at fixed O(α2
sT

2
F ) and O(α2

sCFTF ), respectively. The results are given relative

to the full O(αs) result including all flavors.
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Figure 18. Different types of mass nonsingular corrections for Z-boson production at µ = mb (left

panel) and µ = qT (right panel).

7 Conclusions

Massive quark effects provide a challenge for high-precision predictions at colliders. Using

a SCET-based factorization framework, we have discussed how to systematically incorpo-

rate massive quark corrections into exclusive differential cross sections at the LHC, using

the measurement of the transverse momentum qT and beam thrust for Drell-Yan production

as prototypical examples. We have discussed the relevant factorization setup for the different

hierarchies between the mass scale and the other relevant kinematic scales. We find that the

presence of (secondary) massive quarks can lead to the emergence or alteration of rapidity

logarithms thus changing the resummation structure in a nontrivial way.

The generic framework for the description of mass effects generalizes to other exclusive

cross sections with different jet-resolution measurements and final-state kinematic cuts, which

will require additional calculations of the relevant factorization ingredients. Our results for the

beam thrust spectrum allow for a systematic inclusion of massive quark effects into the Geneva

Monte-Carlo program [60, 61] at NNLL′+NNLO in its underlying jet resolution variable. Sev-

eral of our results are also immediately relevant for other processes besides Drell-Yan. The
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massive quark beam functions are relevant for any heavy-quark initiated process, for example

exclusive bb̄H-production. The mass-dependent soft function and rapidity anomalous dimen-

sion at O(α2
s) satisfy Casimir scaling and can be therefore also utilized for the description of

gluon-fusion processes, e.g. the Higgs qT -spectrum.

An important application of our framework is to the precise theoretical description of the

Drell-Yan qT spectrum. To this end, we have computed all required mass-dependent beam

and soft functions up to O(α2
s) allowing for the description of massive quark effects in the

Drell-Yan qT spectrum at NNLL′. In particular, our results provide an important ingredient

for a detailed investigation of quark-mass effects in the ratio of W and Z boson spectra at

small qT , which is important for the precision measurement of the W -boson mass at the LHC.

Acknowledgments

We thank Markus Ebert and Maximilian Stahlhofen for useful discussions. This work was sup-

ported by the German Science Foundation (DFG) through the Emmy-Noether Grant No. TA

867/1-1 and the Collaborative Research Center (SFB) 676 Particles, Strings and the Early Uni-

verse. D.S. is supported by the Austrian Science Fund (FWF) under the Doctoral Program

No. W1252-N27 Particles and Interactions. We also thank the Erwin-Schrödinger Institute

(ESI) for partial support in the framework of the ESI program Challenges and Concepts for

Field Theory and Applications in the Era of LHC Run-2.

A Results for massless quarks

Here we summarize the relevant results with massless quarks for the hard, beam, and soft

functions.

A.1 Hard function

The massless quark hard function is directly related to the QCD form factor and has been

computed at O(α2
s) in ref. [90]. The O(αs) and O(α2

sCFTF ) corrections read in an expansion

in terms of αs = α
(nf )
s (µ) in analogy to eq. (4.1) (with LQ = ln(Q2/µ2))

H(1)(Q,µ) = H(0)(Q)CF

(
−2L2

Q + 6LQ − 16 +
7π2

3

)
, (A.1)

H(2,l)(Q,µ) = H(0)(Q)CF

[
−8

9
L3
Q +

76

9
L2
Q −

(836

27
− 16π2

9

)
LQ +

4085

81
− 182π2

27
+

8ζ3

9

]
,

where H(0) is the tree-level contribution. Note that for a single quark flavor there is in addition

a nonvanishing correction to the axial current contribution relevant for Z-boson production,

but cancels within an isospin doublet for massless quarks.

The anomalous dimensions are

γ
(1)
H (Q,µ) = CF (8LQ − 12) ,

γ
(2,l)
H (Q,µ) = CF

(
−160

9
LQ +

520

27
+

8π2

3

)
. (A.2)
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A.2 Beam functions

A.2.1 TMD beam function

The matching coefficients entering the TMD beam function have been computed at O(α2
s) in

various schemes [47–49, 91] and are obtained for the symmetric η-regulator in ref. [50]. The

results at O(αs) are

I(1)
qg (~pT , z, µ) = θ(z)θ(1− z)TF

[
2Pqg(z)L0(~pT , µ) + 4z(1− z)δ(2)(~pT )

]
, (A.3)

I(1)
qq

(
~pT , z, µ,

ν

ω

)
= θ(z)CF

{
L0(~pT , µ)

[
−
(

4 ln
ν

ω
+ 3
)
δ(1− z) + 2Pqq(z)

]

+ 2δ(2)(~pT ) θ(1− z)(1− z)
}
. (A.4)

The splitting functions are

Pqg(z) = z2 + (1− z)2 , Pqq(z) = 2L0(1− z) +
3

2
δ(1− z)− θ(1− z)(1 + z) . (A.5)

At O(α2
sCFTF ) the massless matching coefficient is given by

I(2,l)
qq

(
~pT , z, µ,

ν

ω

)
= θ(z)CF

{
L1(~pT , µ)

[
16

3
L0(1− z)− 16

3
ln
ν

ω
δ(1− z)− 8

3
θ(1− z)(1 + z)

]

+ L0(~pT , µ)

[
−80

9
L0(1− z) +

80

9
ln
ν

ω
δ(1− z)

+ θ(1− z)
(
−8

3

1 + z2

1− z ln z +
16

9
+

64z

9

)]

+ δ(2)(~pT )

[
224

27
L0(1− z)− 224

27
ln
ν

ω
δ(1− z)

+ θ(1− z)
(

2

3

1 + z2

1− z ln2 z +
20

9

1 + z2

1− z ln z − 148

27
− 76z

27

)]}
. (A.6)

The anomalous dimensions of the massless quark TMD beam function, as defined in eq. (2.6),

are given at O(αs) and O(α2
sCFTF ) by

γ
(1)
B

( ν
ω

)
= CF

(
8 ln

ν

ω
+ 6
)
,

γ
(2,l)
B

( ν
ω

)
= CF

(
−160

9
ln
ν

ω
− 4

3
− 16π2

9

)
,

γ
(1)
ν,B(~pT , µ) = −CF 4L0(~pT , µ) ,

γ
(2,l)
ν,B (~pT , µ) = CF

[
−16

3
L1(~pT , µ) +

80

9
L0(~pT , µ)− 224

27
δ(2)(~pT )

]
. (A.7)

A.2.2 Virtuality-dependent beam function

The virtuality-dependent beam functions for massless quarks are known to two loop order

[67, 68]. The matching coefficients at O(αs) read

I(1)
qg (t, z, µ) = θ(z)θ(1− z)TF

{
2Pqg(z)

1

µ2
L0

( t

µ2

)
+ δ(t)

[
2Pqg(z) ln

1− z
z

+ 4z(1− z)
]}

,

I(1)
qq (t, z, µ) = θ(z)CF

{
4

µ2
L1

( t

µ2

)
δ(1− z) +

1

µ2
L0

( t

µ2

)[
2Pqq(z)− 3δ(1− z)

]
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+ δ(t)

[
4L1(1− z)− π2

3
δ(1− z)

+ θ(1− z)
[
2(1− z − 2(1 + z) ln(1− z)− 2

1 + z2

1− z ln z
]]}

. (A.8)

The massless matching coefficient at order O(α2
sCFTF ) for one quark flavor reads

I(2,l)
qq (t, z, µ) (A.9)

= θ(z)CF

{
8

3

1

µ2
L2

( t

µ2

)
δ(1− z)

+
1

µ2
L1

( t

µ2

)[16

3
L0(1− z)− 80

9
δ(1− z)− 8

3
θ(1− z)(1 + z)

]

+
1

µ2
L0

( t

µ2

)[16

3
L1(1− z)− 80

9
L0(1− z) + δ(1− z)

(224

27
− 8π2

9

)

+ θ(1− z)
(
−8

3
(1 + z) ln(1− z)− 16(1 + z2)

3(1− z) ln z +
16

9
+

64z

9

)]

+ δ(t)

[
8

3
L2(1− z)− 80

9
L1(1− z) + L0(1− z)

(224

27
− 8π2

9

)

+ δ(1− z)
(
−656

81
+

10π2

9
+

40ζ3

9

)
+ θ(1− z)

(
−8(1 + z2)

3(1− z) Li2(1− z)

− 4

3
(1 + z) ln2(1− z)− 16(1 + z2)

3(1− z) ln(1− z) ln z +
10
(
1 + z2

)

3(1− z) ln2 z

+
(16

9
+

64z

9

)
ln(1− z) +

4(5− 2z + 7z2)

3(1− z) ln z − 148

27
− 76z

27
+

4π2

9
(1 + z)

)]}
.

The anomalous dimension of the massless quark beam function at order O(αs) and O(α2
sCFTF )

are given by

γ
(1)
B (t, µ) = CF

[
− 8

µ2
L0

( t

µ2

)
+ 6δ(t)

]
,

γ
(2,l)
B (t, µ) = CF

[
160

9

1

µ2
L0

( t

µ2

)
+ δ(t)

(
−484

27
− 8π2

9

)]
. (A.10)

A.3 Soft functions

A.3.1 TMD soft function

The TMD soft function for massless quarks with the symmetric η-regulator has been computed

at two loops in ref. [50]. At O(αs) and O(α2
sCFTF ) it is given by

S(1)(~pT , µ, ν) = CF

[
−4L1(~pT , µ) + 8 ln

ν

µ
L0(~pT , µ)− π2

3
δ(2)(~pT )

]
, (A.11)

S(2,l)(~pT , µ, ν) = CF

[
−16

3
L2(~pT , µ) + L1(~pT , µ)

(32

3
ln
ν

µ
+

80

9

)
− L0(~pT , µ)

(160

9
ln
ν

µ
+

8π2

9

)

+ δ(2)(~pT )
(448

27
ln
ν

µ
− 656

81
+

10π2

9
− 8ζ3

9

)]
. (A.12)
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The corresponding anomalous dimensions are

γ
(1)
S (µ, ν) = −CF 16 ln

ν

µ
,

γ
(2,l)
S (µ, ν) = CF

(
320

9
ln
ν

µ
− 448

27
+

8π2

9

)
,

γ
(1)
ν,S(~pT , µ) = CF 8L0(~pT , µ) ,

γ
(2,l)
ν,S (~pT , µ) = CF

[
32

3
L1(~pT , µ)− 160

9
L0(~pT , µ) +

448

27
δ(2)(~pT )

]
. (A.13)

A.3.2 Thrust soft function

The thrust soft function is known to two loops [70, 71]. At O(αs) and O(α2
sCFTF ) it is given

by

S(1)(`, µ) = CF

[
−16

1

µ
L1

( `
µ

)
+
π2

3
δ(`)

]
, (A.14)

S(2,l)(`, µ) = CF

[
−64

3

1

µ
L2

( `
µ

)
+

320

9

1

µ
L1

( `
µ

)
+

1

µ
L0

( `
µ

)(
−448

27
+

16π2

9

)

+ δ(`)
(80

81
+

74π2

27
− 232

9
ζ3

)]
. (A.15)

The corresponding µ anomalous dimension is given by

γ
(1)
S (`, µ) = 16CF

1

µ
L0

( `
µ

)
,

γ
(2,l)
S (`, µ) = CF

[
−320

9

1

µ
L0

( `
µ

)
+ δ(`)

(448

27
− 8π2

9

)]
. (A.16)

B Calculations of massive quark corrections

We calculate the quark mass dependent beam and soft functions for primary and secondary

contributions at one and two loops, respectively. The final renormalized results are given

and discussed in sec. 4. For the computation of the collinear massive quark corrections we

use the Feynman rules determined from the collinear massive quark Lagrangian [92–94]. For

the secondary corrections we use in practice regular QCD Feynman rules, since the collinear

sector is essentially just a boosted version of QCD. (The interactions of the massive quarks in

the soft sector are anyway given by the usual QCD Feynman rules.) First, we calculate the

massive quark beam function in sec. B.1, before discussing the computation of the secondary

corrections for the massless quark beam and soft functions in secs. B.2 – B.5. All computations

are carried out in Feynman gauge.

B.1 Massive quark beam function at O(αs)

The massive quark beam function operator for a measurement function M is defined as (see

e.g. refs. [31, 41, 66, 95])

OQ({M}, ω,m) = χn,m(0)M(Pµ, p̂+)
/̄n

2

[
δ(ω − Pn)χn,m(0)

]
, (B.1)
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Figure 19. One-loop diagram contributing to the massive quark beam function.

where χn,m indicates a massive collinear quark field, Pµ is the label momentum operator, and

p̂+ extracts the residual momentum component n ·k. For the transverse momentum dependent

(TMD), virtuality dependent, and fully differential case the measurement functions are

M⊥ = δ(2)(~pT − ~P⊥) , Mp+ = δ(t− ωp̂+) , M⊥,p+ = δ(2)(~pT − ~P⊥) δ(t− ωp̂+) . (B.2)

For convenience we discuss also the fully differential case here, from which the other two cases

can be obtained by an integration over the respective other variable. The beam functions

are proton matrix elements of the operators OQ. To compute the (perturbative) matching

coefficients onto the PDFs, we take matrix elements with partonic states, denoting e.g.

BQg

(
{M},m, z =

ω

p−

)
≡ 〈gn(p)|OQ({M}, ω,m)|gn(p)〉 , (B.3)

for an initial collinear gluon state with momentum pµ = p−nµ/2.

At O(αs) the only contribution to the massive quark beam function originates from an

initial collinear gluon splitting into a heavy quark-antiquark pair. The corresponding diagram

is given in fig. 19. The kinematics of the on-shell final state is fully constrained at one loop, so

that the diagram can be evaluated without performing any integration. For the fully differential

case we obtain

BQg(t, ~pT ,m, z)
∣∣∣
O(αs)

= 8παsTF θ(ω) θ(t)

∫
d4k

(2π)4

|~k⊥|2
[
(p−)2 − 2(p− − k−)k−

]
+m2(p−)2

(p−)2(k+)2k−

× δ(ω − p− + k−) δ(b+ − k+) δ(2)(~pT − ~k⊥) 2πδ(k2 −m2)

=
αsTF
4π2

θ(z) θ(t) δ
(
p2
T −

t(1− z)
z

+m2
)2

t

(
Pqg(z) +

2m2z2

t

)

=
αs
4π
I(1)
Qg (t, ~pT ,m, z) , (B.4)

where Pqg(z) = z2 +(1−z)2 is the leading-order gluon-quark splitting function. The correction

BQg at O(αs) is UV and IR finite. It corresponds directly to the matching coefficient I(1)
Qg ,

given as the one-loop coefficient in an expansion in terms of αs as in eq. (4.1). The matching

coefficients for the TMD and virtuality-dependent beam functions can be obtained here by a

trivial integration of this result,

I(1)
Qg (~pT ,m, z) =

∫
dt I(1)

Qg (t, ~pT ,m, z) , I(1)
Qg (t,m, z) =

∫
d2pT I(1)

Qg (t, ~pT ,m, z) , (B.5)

which yields the results in eqs. (4.15) and (4.21). Note that in general, this integration has to

be performed for the bare result with the full dependence on the UV and rapidity regulator.

However, in this case all matrix elements are finite and do not require any renormalization at

this order.
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B.2 Dispersive technique for secondary massive quark corrections

For observables where only the sum over the final-state hadronic momenta enters the mea-

surement, one can use dispersion relations to obtain the results for secondary massive quark

radiation at O(α2
s) from the corresponding results for massive gluon radiation at O(αs). This

has been discussed in detail in ref. [23]. The key relation is that the insertion of a vacuum

polarization function for massive quarks Πµν(m2, p2) between two gluon propagators can be

written as

− i gµρ
p2 + iε

Πρσ(m2, p2)
− i gσν
p2 + iε

=
1

π

∫
dM2

M2

− i
(
gµν − pµpν

p2

)

p2 −M2 + iε
Im
[
Π(m2,M2)

]

−
− i
(
gµν − pµpν

p2

)

p2 + iε
Π(m2, 0) . (B.6)

The first term contains a gluon propagator with effective mass M and the absorptive part of

the vacuum polarization function, which reads in d = 4− 2ε dimensions

Im
[
Π(m2, p2)

]
= θ(p2 − 4m2)

αsTF
4π

(4µ2eγE )επ3/2

Γ(5
2 − ε)

(
1− ε+

2m2

p2

)
(p2)−ε

(
1− 4m2

p2

)1/2−ε
.

(B.7)

To obtain the first term on the right-hand side in eq. (B.6) the vacuum polarization function

(and thus the strong coupling) was renormalized in the on-shell scheme, i.e., with nl active

quark flavors. The second term in eq. (B.6) translates back to an unrenormalized strong

coupling and consists of a massless gluon propagator and the O(αs) vacuum polarization

function at zero momentum transfer, which is given by

Π(m2, 0) =
αsTF

4π

4

3
Γ(ε)

(
µ2eγE

m2

)ε
≡ αsTF

4π
Π(1)(m2, 0) . (B.8)

In the following we will first carry out the computation of the beam and soft functions at

O(αs) for the radiation of a “massive gluon” and in a second step use the relation in eq. (B.6)

to obtain the associated results for massive quarks at O(α2
sCFTF ). In our calculations we drop

the contributions from the terms proportional to pµpν , which vanish in total due to gauge

invariance.

B.3 Secondary mass effects in light-quark beam functions

We compute the massive quark corrections to the TMD and virtuality-dependent light-quark

beam function at O(α2
sCFTF ) starting with the massive gluon case at O(αs). Only the con-

tributions to the matching coefficient Iqq are nontrivial, so we consider only diagrams with a

quark in the initial state.

B.3.1 Quark beam function with a massive gluon at O(αs)

Contributions to the fully-differential beam function As in sec. B.1 we start also

here with the computation of the corrections for the fully-differential beam function. The

contributing one-loop diagrams to the matrix element Bqq with massless quarks in the initial
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Figure 20. Light-quark beam function diagrams for massive gluon radiation at one loop. In addition,

also the wave function renormalization correction and the mirror diagrams for (b) and (c) have to be

included in the calculation.

state, defined in analogy to eq. (B.3), are displayed in fig. 20. They consist of a purely virtual

and a real-radiation part,

B(1,bare)
qq (t, ~pT ,M, ω, z) = δ(1− z) δ(t) δ(2)(~pT )B

(1,bare)
qq,virt (M,ω) +B

(1,bare)
qq,real (t, ~pT ,M, ω, z) .

(B.9)

The virtual massive gluon contributions in fig. 20(c) are the same as for other collinear

quark operators like the current or the PDF and have been computed e.g. in ref. [41]. Including

the wave function renormalization diagrams the d-dimensional result reads [24]

B
(1,bare)
qq,virt (M,ω) = CF

(µ2eγE

M2

)ε
Γ(ε)

{
4

η
+ 4 ln

ν

ω
+ 4H1−ε −

2(1− ε)
2− ε +O(η)

}
, (B.10)

where Hα = ψ(1 + α) + γE is the Harmonic number. Here the rapidity divergences have

been regulated using the symmetric η regulator acting on the Wilson lines [40, 41], while UV

divergences are regulated with dimensional regularization as usual. Furthermore, the gluon

mass provides an IR cutoff.

The real radiation contributions in figs. 20(a) and 20(b) can be easily evaluated, since all

momentum components are fully determined by the measurement. For the first diagram we

get

B(a) = 8παsCF p
−θ(ω) θ(t)

∫
d4k

(2π)4

|~k⊥|2[
(p− k)2 + iε

]2 δ(ω − p− + k−) δ(t− ωk+)

× δ(2)(~pT − ~k⊥) 2πδ(k2 −M2)

=
αsCF
4π2

θ(z) θ(t) δ
(
p2
T −

t(1− z)
z

+M2
) 2
(
t(1− z)− zM2

)

(t− zM2)2
. (B.11)

Since UV divergences do not appear for the real radiation corrections and the gluon mass

regulates all IR divergences we do not need to employ dimensional regularization here. The

second diagram in fig. 20(b) yields

B(b) = −8παsCF p
−θ(ω) θ(t)

∫
d4k

(2π)4

(p− − k−)

(p− k)2 + iε

νη

(k−)η
δ(ω − p− + k−) δ(t− ωk+)

× δ(2)(~pT − ~k⊥) 2πδ(k2 −M2)

=
αsCF
4π2

θ(z) θ(t) δ
(
p2
T −

t(1− z)
z

+M2
)( ν

ω

)η 2z1−η

(t− zM2)(1− z)η . (B.12)
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While the fully-differential quark beam function itself does not contain any rapidity divergences,

we have included here the η regulator, since we will use this result to obtain the TMD beam

function by integrating over the virtuality, which results in rapidity divergences for this real

radiation correction. The full real radiation contributions at one loop yield

αs
4π
B

(1,bare)
qq,real (t, ~pT ,M, ω, z) = B(a) + 2B(b)

=
αsCF

4π

1

π
θ(z) θ(t) δ

(
p2
T −

t(1− z)
z

+M2
)

× 2

t− zM2

[( ν
ω

)η 2z1−η

(1− z)η +
t(1− z)− zM2

t− zM2

]
. (B.13)

For both virtual and real radiation corrections all soft-bin subtractions are parametrically

power suppressed or scaleless and therefore do not contribute.

Contributions to the TMD beam function The corrections for the TMD beam function

with a massive gluon can be obtained by integrating the fully-differential beam function in

eq. (B.9) over the virtuality t. We write them again as

B(1,bare)
qq (~pT ,M, z) = δ(1− z) δ(2)(~pT )B

(1,bare)
qq,virt (M,ω) +B

(1,bare)
qq,real (~pT ,M, ω, z) , (B.14)

where B
(1,bare)
qq,virt is given in eq. (B.10) and

B
(1,bare)
qq,real (~pT ,M, ω, z) =

∫
dtB

(1,bare)
qq,real (t, ~pT ,M, z) (B.15)

= CF θ(z) θ(1− z)
1

π

2

p2
T + zM2

[
p2
T (1− z)
p2
T + zM2

+
2z1−η

(1− z)1+η

( ν
ω

)η]
.

Here it is necessary to keep a nonvanishing value for η in the second term to regularize the

rapidity divergence for z → 1. Expanding for η → 0 we get

B
(1,bare)
qq,real (~pT ,M, ω, z) = CF θ(z)

1

π

{
4

p2
T +M2

[
−δ(1− z)

(1

η
+ ln

ν

ω

)
+ L0(1− z)

]

+ θ(1− z) 2p2
T

p2
T + zM2

[ 1− z
p2
T + zM2

− 2

p2
T +M2

]}
+O(η) . (B.16)

Contributions to the virtuality-dependent beam function The virtuality-dependent

beam function with a massive gluon can be obtained by integrating the results for the fully-

differential beam function over ~pT . We decompose the corrections again into a virtual and real

radiation part,

B(1,bare)
qq (t,M, z) = δ(1− z) δ(t)B(1,bare)

qq,virt (M,ω) +B
(1,bare)
qq,real (t,M, z) , (B.17)

where B
(1,bare)
qq,virt is given in eq. (B.10) and

B
(1)
qq,real(t,M, z) =

∫
d2~pT B

(1,bare)
qq,real (t, ~pT ,M, ω, z) (B.18)

= CF θ(z) θ(t) θ
( t(1− z)

z
−M2

) 2

t− zM2

( 2z

1− z +
t(1− z)− zM2

t− zM2

)
,

with the fully-differential real radiation contributions in eq. (B.13). Here the η regulator has

already been dropped, since for the virtuality-dependent beam function no rapidity divergences

arise from the real radiation contributions.
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B.3.2 Secondary massive quark effects in the TMD beam function

To obtain the secondary massive quark corrections from the one-loop results with a massive

gluon, we first convolve the one-loop results with the imaginary part of the vacuum polarization

function according to eq. (B.6) and define

αsTF
4π

B
(2,h,bare)
qq,virt (m,ω) =

1

π

∫
dM2

M2
Im
[
Π(m2,M2)

]
×B(1,bare)

qq,virt (M,ω) ,

αsTF
4π

B
(2,h,bare)
qq,real (~pT ,m, ω, z) =

1

π

∫
dM2

M2
Im
[
Π(m2,M2)

]
×B(1,bare)

qq,real (~pT ,M, ω, z) . (B.19)

The results from these dispersion integrations are

B
(2,h,bare)
qq,virt (m,ω) = CF

{(1

η
+ ln

ν

ω

)[ 8

3ε2
− 1

ε

(16

3
Lm +

40

9

)
+

16

3
L2
m +

80

9
Lm +

224

27

+
4π2

9
+O(ε)

]
+

2

ε2
− 1

ε

(
4Lm +

1

3
+

4π2

9

)
+ 4L2

m +
(2

3
+

8π2

9

)
Lm

+
73

18
+

29π2

27
− 8ζ3

3

}
, (B.20)

B
(2,h,bare)
qq,real (~pT ,m, ω, z) = CF

1

πp2
T

{
16

9η
δ(1− z)

[
5− 12m̂2 − 3c(1− 2m̂2) ln

(c+ 1

c− 1

)]

+ bqTreal

(m2

p2
T

, z,
ν

ω

)}
, (B.21)

with

bqTreal

(
m̂2, z,

ν

ω

)
= θ(z)

16

9

{[
5− 12m̂2 − 3c(1− 2m̂2) ln

(c+ 1

c− 1

)]

×
(
δ(1− z) ln

ν

ω
− L0(1− z)

)

+ θ(1− z)
[

3

2d(1− z)
[
1 + z2 + 2m̂2z(1 + z2) + 4m̂4z2(−5 + 6z − 5z2)

]
ln
(d+ 1

d− 1

)

− 3c(1− 2m̂2)

1− z ln
(c+ 1

c− 1

)
+ 1 + 4z + 3m̂2(−4 + z − 5z2)

]}
, (B.22)

and m̂, c, d defined in eq. (4.18). Using eq. (B.19) entails that the massive quark corrections

to the strong coupling are renormalized in the on-shell scheme, i.e., the expansion is in terms

of αs = α
(nl)
s . Since the beam function matrix element has to be renormalized entirely in the

nl + 1 flavor theory, we need to account for the second term in eq. (B.6) (which switches back

to an unrenormalized αs) and renormalize the massive quark corrections to the strong coupling

in the MS scheme, such that the expansion is in terms of αs = α
(nl+1)
s . The beam function

operator is renormalized according to

O(bare)
q (~pT ,m, ω) =

∫
d2p′T ZB

(
~pT − ~p ′T ,m, µ,

ν

ω

)
Oq(~p ′T ,m, ω, µ, ν) , (B.23)

where the counterterm encodes also the rapidity divergences. This yields for the renormalized

matrix element with initial state quarks at O(α2
sCFTF ) in terms of αs = α

(nl+1)
s

B(2,h)
qq

(
~pT ,m, z, µ,

ν

ω

)
= δ(2)(~pT ) δ(1− z)B(2,h,bare)

qq,virt (m,ω) +B
(2,h,bare)
qq,real (~pT ,m, ω, z) (B.24)

−
(

Π(1)(m2, 0)− 4

3ε

)
B(1,bare)
qq (~pT , ω, z)︸ ︷︷ ︸

= B
(1)
qq (~pT , z, µ,

ν
ω

) + Z
(1)
B (~pT , µ,

ν
ω

) δ(1− z)

−δ(1− z)Z(2,h)
B

(
~pT ,m, µ,

ν

ω

)
.
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where the (bare) vacuum polarization function Π(1)(m2, 0) is given in eq. (B.8). The one-loop

counterterm reads

Z
(1)
B

(
~pT , µ,

ν

ω

)
= CF

{
δ(2)(~pT )

[
1

η

(4

ε
+O(ε)

)
+

1

ε

(
3 + 4 ln

ν

ω

)]
− 1

η

(
4 +O(ε)

)
L0(~pT , µ)

}
.

(B.25)

The two-loop counterterm Z
(2)
B absorbs all remaining UV and rapidity divergences in eq. (B.24)

and is given by

Z
(2,h)
B

(
~pT ,m, µ,

ν

ω

)
= CF

{
δ(2)(~pT )

[
1

η

( 8

3ε2
− 40

9ε
+

8

3
L2
m +

80

9
Lm +

224

27
+O(ε)

)

+
1

ε2

(
2 +

8

3
ln
ν

ω

)
− 1

ε

(1

3
+

4π2

9
+

40

9
ln
ν

ω

)]
− 1

η

(16

3
Lm +O(ε)

)
L0(~pT , µ)

+
1

η

16

9πp2
T

[
5− 12m̂2 − 3c(1− 2m̂2) ln

c+ 1

c− 1

]}
. (B.26)

This yields the anomalous dimensions in eq. (4.20). The renormalized one-loop partonic beam

function B
(1)
qq still contains IR divergences, so its exact form depends on the choice of the IR

regulator.

The beam function matching coefficient Iqq as defined in (2.13) can be now easily obtained.

Note that the PDFs are renormalized in an nl-flavor theory with αs = α
(nl)
s in contrast to the

beam function. Thus, there is a contribution coming from the scheme change of αs to nl + 1

flavors for the (renormalized) one-loop PDF correction, i.e.

I(2,h)
qq

(
~pT ,m, z, µ,

ν

ω

)
= B(2,h)

qq

(
~pT ,m, z, µ,

ν

ω

)
− δ(2)(~pT )

4

3
Lmf

(1)
qq (z, µ)

= δ(2)(~pT ) δ(1− z)B(2,h,bare)
qq,virt (m,ω) +B

(2,h,bare)
qq,real (~pT ,m, ω, z)

− δ(1− z)
[(

Π(1)(m2, 0)− 4

3ε

)
Z

(1)
B

(
~pT , µ,

ν

ω

)
+ Z

(2,h)
B

(
~pT ,m, µ,

ν

ω

)]

+
4

3
Lm

(
B(1)
qq

(
~pT , z, µ,

ν

ω

)
− δ(2)(~pT )f (1)

qq (z, µ)

)

︸ ︷︷ ︸
= I(1)

qq (~pT ,z,µ,
ν
ω

)

. (B.27)

Here the IR divergences cancel between the one-loop beam function and the PDF to give the fi-

nite one-loop matching coefficient I(1)
qq , which is given in eq. (A.4). Using eqs. (B.20), (B.21), (B.25)

and (B.26) we obtain the full result for the secondary massive quark corrections to the beam

function matching coefficient given in eq. (4.17).

B.3.3 Secondary massive quark effects in the virtuality-dependent beam function

We proceed with the virtuality-dependent beam function. While the virtual contributions are

the same as for the TMD beam function given in eq. (B.20), the dispersion integration for the

real radiation terms yields

αsTF
4π

B
(2,h)
qq,real(t,m, z) =

1

π

∫
dM2

M2
Im
[
Π(m2,M2)

]
×B(1)

qq,real(t,M, z)

=
αsTF

4π

CF
t
bTreal

(m2

t
, z
)
, (B.28)

– 51 –



with

bTreal(m̂
2, z) = θ(z) θ(v)

8

9(1− z)

{
−3

u
ln
u− v
u+ v

[
1 + z2 − 2m̂2

t z(1 + z2)− 4m̂4
t z

2(2− 3z + 5z2)

]

− 2v

[
4− 3z + 4z2 +

z(11− 21z + 29z2 − 15z3)

1− z m̂2
t

]}
, (B.29)

and m̂t, u, v as in eq. (4.23).

To obtain the quark mass dependent matching coefficient I(2,h)
qq we carry out our calculation

using a gluon mass Λ � √QT ∼ m as IR regulator. Although the result is independent of

the regulator, this is technically most convenient, since this allows us to match two SCETII

theories with each other in a straightforward way.7 While the SCETII theory with nl + 1

flavors (i.e. above the mass scale) contains collinear modes, the SCETII theory with nl flavors

(i.e. below the mass scale) contains collinear and csoft modes like in the mode setup of sec. 3.3.

The matching relation reads

B(nl+1)
qq

(
t,m, z, µ,

ν

ω

)
=

∫
d` Iqq

(
t− ω`,m, z, µ, ν

ω

)
⊗z f (nl)

qq (z, µ) S (nl)(`, µ, ν) , (B.30)

where B
(nl+1)
qq corresponds to the pure SCETII beam function matrix element and S (nl) rep-

resents the csoft matrix element.

In close analogy to eq. (B.24) the renormalized SCETII matrix element B
(nl+1)
qq is given

at O(α2
sCFTF ) by

B(2,h)
qq

(
t,m, z, µ,

ν

ω

)
= δ(t) δ(1− z)B(2,h,bare)

qq,virt (m,ω) +B
(2,h)
qq,real(t,m, z) (B.31)

−
(

Π(1)(m2, 0)− 4

3ε

)
B(1,bare)
qq (t, z)
︸ ︷︷ ︸

= B
(1)
qq (t, z, µ, ν

ω
) + Z

(1)
B (t, µ, ν

ω
) δ(1− z)

− δ(1− z)Z(2,h)
B

(
t,m, µ,

ν

ω

)
.

To separate UV, rapidity, and IR divergences properly from each other, we also employ the

SCETII-type IR regulator (here a gluon mass Λ) for the one-loop expressions, and at this stage

the renormalized matrix elements and the counterterms still depend on this IR regulator. The

matching coefficient Iqq can now be calculated as (in an expansion in terms of α
(nl+1)
s )

I(2,h)
qq

(
t,m, z, µ,

ν

ω

)
= B(2,h)

qq

(
t,m, z, µ,

ν

ω

)
− 4

3
Lm

[
δ(t)f (1)

qq (z, µ) + δ(1− z) 1

ω
S (1)

( t
ω
, µ, ν

)]

= δ(t)δ(1− z)B(2,h,bare)
qq,virt (m,ω) +B

(2,h)
qq,real(t,m, z)− Z

(2,h)
B

(
t,m, µ,

ν

ω

)
δ(1− z)

−
(

Π(1)(m2, 0)− 4

3ε

)
Z

(1)
B

(
t, µ,

ν

ω

)
δ(1− z)

+
4

3
Lm

[
B(1)
qq (t, z, µ)− δ(t)f (1)

qq (z, µ)− δ(1− z) 1

ω
S (1)

( t
ω
, µ, ν

)]

︸ ︷︷ ︸
=I(1)

qq (t,z,µ)

.

(B.32)

7Alternatively, one can also perform the matching between theories where the fluctuations related to the nl
massless flavors are described within a SCETI theory. In this setup, there is no csoft function on the right-hand

side of the matching relation in contrast to eq. (B.30). However, in this case the zero-bin subtractions for the

collinear fields with respect to the ultrasoft modes in the SCETI nl flavor theory yield a nontrivial contribution

to the beam-function matrix element on the left-hand side of the matching relation. Their contribution is

equivalent to the inverse of the csoft function in eq. (B.30), such that the resulting matching coefficient Iqq is

the same.
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Here the IR divergences cancel between the one-loop beam function, the PDF, and the csoft

matrix element and yield the finite one-loop matching coefficient I(1)
qq given in eq. (A.8). The

counterterm ZB in SCETII is defined via

B(bare)
qq (t,m, z) =

∫
dt′ Z

(nl+1)
B

(
t− t′,m, µ, ν

ω

)
B(nl+1)
qq

(
t′,m, z, µ,

ν

ω

)
. (B.33)

Using the results in eqs. (B.17) and (B.10) for a massive gluon gives the associated expression

for Z
(1)
B (expanded in η and ε)

Z
(1)
B

(
t, µ,

ν

ω

)
= CF δ(t)

{
4

η

[
1

ε
− ln

Λ2

µ2
+O(ε)

]
+

1

ε

[
4 ln

ν

ω
+ 3

]}
. (B.34)

The two-loop counterterm Z
(2,h)
B cancels all divergences in eq. (B.32) and reads8

Z
(2,h)
B

(
t,m, µ,

ν

ω

)
= CF δ(t)

{
1

η

( 8

3ε2
− 40

9ε
− 16

3
Lm ln

Λ2

µ2
+

8

3
L2
m +

80

9
Lm +

224

27
+O(ε)

)

+
1

ε2

(8

3
ln
ν

ω
+ 2
)
− 1

ε

(40

9
ln
ν

ω
+

1

3
+

4π2

9

)}
. (B.35)

Using eqs. (B.10), (B.28), (B.34), (B.35) and (A.8) in eq. (B.32) we obtain the full two-loop

result for the matching coefficient in eq. (4.22).

B.4 Secondary mass effects in the TMD soft function

The TMD soft function is defined as

S(~pT ) =
1

Nc
tr 〈0|T

[
S†n(0)Sn̄(0)

]
δ(2)(~pT − ~P⊥)T

[
S†n̄(0)Sn(0)

]
|0〉 , (B.36)

with the soft Wilson line Sn given by [41]

Sn =
∑

perms

exp

[
− g

n · P
νη/2

|2P3|η/2
n ·As

]
, (B.37)

and in analogy for the others. Again we will first calculate the one-loop corrections to the soft

function with a massive gluon, which is used in a second step to obtain the corrections from

secondary massive quarks at O(α2
sCFTF ).

B.4.1 TMD soft function with a massive gluon at O(αs)

We decompose the soft function with a massive gluon at one loop in terms of virtual and real

radiation corrections,

S(1)(~pT ,M, µ, ν) = δ(2)(~pT )S
(1)
virt(M,µ, ν) + S

(1)
real(~pT ,M, ν) . (B.38)

The virtual contributions from the diagram in fig. 21(a) (and its mirror diagram) are the

same as for the Sudakov form factor computed in ref. [41] and yield

S
(1,bare)
virt (M) = CF

(µ2eγE

M2

)ε
Γ(ε)

[
−8

η
− 8 ln

ν

M
− 4Hε−1

]
+O(η) . (B.39)

8While the 1/η-divergences in the counterterm of the beam function matrix element still contain IR sensitivity,

this also happens for the counterterm of the csoft matrix element in eq. (B.30), such that the resulting rapidity

anomalous dimension for the running at the boundary between the nl + 1 and nl theory is IR finite.
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Figure 21. Soft function corrections for a massive gluon at one-loop. The associated mirror diagrams

need to be included in addition.

The UV-finite and IR-finite real radiation diagram in Fig. 21(b) gives

S(b) = 8παsCF

∫
d4k

(2π)4

1

k+k−
νη

|k+ − k−|η δ
(2)(~pT − ~k⊥) 2πδ(k2 −M2)

=
αsCF

4π

2 Γ(η2 )Γ(1−η
2 )

π
3
2 (p2

T +M2)

(
ν

2
√
p2
T +M2

)η
. (B.40)

After expanding in η and adding the mirror diagram, the real radiation contribution to the

TMD soft function at one loop then reads

αs
4π
S

(1,bare)
real (~pT ,M) = 2S(b) =

αsCF
4π

4

π(p2
T +M2)

[
2

η
+ ln

( ν2

p2
T +M2

)]
+O(η) . (B.41)

B.4.2 Secondary corrections at O(α2
sCFTF )

To obtain the secondary massive quark corrections from the one-loop results with a massive

gluon, we first convolve the one-loop results with the imaginary part of the vacuum polarization

function,

αsTF
4π

S
(2,h,bare)
virt (m) =

1

π

∫
dM2

M2
Im
[
Π(m2,M2)

]
× S(1,bare)

virt (M) ,

αsTF
4π

S
(2,h,bare)
real (~pT ,m) =

1

π

∫
dM2

M2
Im
[
Π(m2,M2)

]
× S(1,bare)

real (~pT ,M) . (B.42)

The results from these dispersion integrations are

S
(2,h,bare)
virt (m) = CF

{[
− 16

3ε2
+

1

ε

(32

3
Lm +

80

9

)
− 32

3
L2
m −

160

9
Lm −

448

27
− 8π2

9
+O(ε)

]

×
(1

η
+ ln

ν

µ

)
+

4

ε3
− 1

ε2

(16

3
Lm +

20

9

)
+

1

ε

(8

3
L2
m −

112

27
+

2π2

3

)
+

40

9
L2
m

+
(448

27
− 8π2

9

)
Lm +

656

27
− 10π2

27
− 8ζ3

}
, (B.43)

S
(2,h,bare)
real (~pT ,m) =

CF
πp2

T

{
32

9η

[
−5 + 12m̂2 + 3c(1− 2m̂2) ln

c+ 1

c− 1

]
+ sqTreal

(m2

p2
T

,
ν

m

)}
, (B.44)
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with

sqTreal

(
m̂2,

ν

m

)
=

16

9

{
2

[
−5 + 12m̂2 + 3c(1− 2m̂2) ln

c+ 1

c− 1

]
ln
ν

m

+ 3c(1− 2m̂2)

[
Li2

(
(c− 1)2

(c+ 1)2

)
+ 2 ln

c+ 1

c− 1

(
ln
c+ 1

2c
+ ln m̂

)
− π2

6

]

+ 8m̂2 + c(5− 16m̂2) ln
c+ 1

c− 1

}
, (B.45)

and m̂ and c as in eq. (4.18). Using eq. (B.42) entails that the massive quark corrections to

the strong coupling are renormalized in the on-shell scheme, i.e., the expansion is in terms of

αs = α
(nl)
s . Since the soft function matrix element has to be renormalized entirely in the nl+1

flavor theory, we need to account for the second term in eq. (B.6) (which switches back to

an unrenormalized αs) and renormalize the massive quark corrections to the strong coupling

in the MS scheme, such that the expansion is in terms of αs = α
(nl+1)
s . The soft function is

renormalized according to

S(bare)(~pT ,m) =

∫
d2p′T ZS

(
~pT − ~p ′T ,m, µ, ν

)
S(~p ′T ,m, µ, ν) . (B.46)

This yields for the renormalized matrix element with initial state quarks at O(α2
sCFTF ) in

terms of αs = α
(nl+1)
s

S(2,h)(~pT ,m, µ, ν) = δ(2)(~pT )S
(2,h,bare)
virt (m) + S

(2,h,bare)
real (~pT ,m) (B.47)

−
(

Π(1)(m2, 0)− 4

3ε

)
S(1,bare)(~pT , µ, ν)︸ ︷︷ ︸

= S(1)(~pT , µ, ν) + Z
(1)
S (~pT , µ, ν)

−δ(1− z)Z(2,h)
S (~pT ,m, µ, ν) ,

where the (bare) vacuum polarization function Π(1)(m2, 0) is given in eq. (B.8) and the renor-

malized one-loop soft function S(1) is given in eq. (A.11). The one-loop counterterm reads

Z
(1)
S (~pT , µ, ν) = CF

{
δ(2)(~pT )

[
1

η

(
−8

ε
+O(ε)

)
+

4

ε2
− 8

ε
ln
ν

µ

]
+

1

η

(
8 +O(ε)

)
L0(~pT , µ)

}
,

(B.48)

The two-loop counterterm Z
(2)
S absorbs all remaining UV and IR divergences in eq. (B.47) and

is given by

Z
(2,h)
S (~pT ,m, µ, ν) = CF

{
δ(2)(~pT )

[
1

η

(
− 16

3ε2
+

80

9ε
− 16

3
L2
m −

160

9
Lm −

448

27
+O(ε)

)

+
4

ε3
− 1

ε2

(20

9
+

16

3
ln
ν

µ

)
+

1

ε

(
−112

27
+

2π2

9
+

80

9
ln
ν

µ

)]
+

1

η

(32

3
Lm +O(ε)

)
L0(~pT , µ)

+
1

η

32

9πp2
T

(
−5 + 12m̂2 + 3c(1− 2m̂2) ln

c+ 1

c− 1

)}
. (B.49)

This yields the anomalous dimensions in eq. (4.30). Using eqs. (B.43), (B.44), (B.48), and (B.49)

we obtain the full result for the secondary massive quark corrections to the TMD soft function

in eq. (4.29).
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B.5 Csoft function at two loops

We compute the csoft function Sc for beam thrust appearing in the hierarchy T � m� √QT .

As in the computation for the beam function matching coefficient in app. B.3.3 we carry out

the calculation using a SCETII IR regulator (a gluon mass Λ� m). In this context the csoft

function is the matching coefficient between the csoft matrix elements in the nl + 1 and nl
flavor SCETII theories,

S (nl+1)(`,m, µ, ν) =

∫
d`′ Sc(`− `′,m, µ, ν) S (nl)(`′, µ, ν) . (B.50)

The latter are defined for any direction n as

S (`,m) =
1

Nc
tr 〈0|T

[
X(0)†
n (0)V (0)

n (0)
]
δ(`− n · p̂)T

[
V (0)†
n (0)X(0)

n (0)
]
|0〉 , (B.51)

with the csoft Wilson lines given by (see e.g. refs. [72, 73])

Xn =
∑

perms

exp

[
− g

n · P
νη/2

(n̄ · P)η/2
n ·Acs

]
, Vn =

∑

perms

exp

[
− g

n̄ · P
νη/2

(n̄ · P)η/2
n̄ ·Acs

]
,

(B.52)

Besides replacing the soft fields by csoft fields we have also expanded the η regulator according

to the soft scaling as in ref. [24].9

B.5.1 Csoft function with a massive gluon at O(αs)

We will first calculate the one-loop corrections to the csoft matrix elements S with a massive

gluon, that can then be used to obtain the two-loop corrections with secondary massive quarks

using the dispersion technique described in sec. B.2. The one-loop results for the csoft matrix

elements can be written as

S (1,bare)(`,M) = δ(`) S
(1,bare)
virt (M) + S

(1,bare)
real (`,M) . (B.53)

The relevant contributions at one loop are displayed in the diagrams in fig. 21, with the

soft Wilson lines Sn and Sn̄ replaced by the csoft Wilson lines Xn and Vn. With the choice

of regularization in eq. (B.52) the virtual diagram leads to a scaleless integral, such that

S
(1,bare)
virt = 0. The real radiation diagram corresponding to fig. 21(b) yields

S (b) = 8παsCF µ̃
2ε

∫
ddk

(2π)d
1

k−k+

( ν

k−

)η
δ(`− k+) 2πδ(k2 −M2)

=
αsCF

4π

2 Γ(ε+ η)

Γ(1 + η)

(µ2eγE

M2

)ε( ν

M2

)η θ(`)
`1−η

. (B.54)

Including also the mirror diagram and expanding in η the total real radiation contribution to

the csoft matrix element with a massive gluon is

αs
4π

S
(1,bare)
real (`,M) = 2S (b) (B.55)

=
αsCF

4π

(µ2eγE

M2

)ε
Γ(ε)

[
δ(`)

(1

η
− ln

M2

µ2
+Hε−1

)
+

ν

µ2
L0

(` ν
µ2

)
+O(η)

]
.

9If the regulator is not expanded, nonvanishing soft-bin subtraction appear which eliminate the overlap with

soft mass mode momentum regions, see ref. [96].
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B.5.2 Csoft function at O(α2
s)

We convolve the one-loop results with the imaginary part of the vacuum polarization function,

which yields for the nonvanishing contributions

αsTF
4π

S
(2,h,bare)
real (`,m) =

1

π

∫
dM2

M2
Im
[
Π(m2,M2)

]
×S

(1,bare)
real (`,M) . (B.56)

The result of this dispersion integral is

S
(2,h,bare)
real (`,m) = CF

{[
8

3ε2
− 1

ε

(16

3
Lm +

40

9

)
+

16

3
L2
m +

80

9
Lm +

224

27
+

4π2

9
+O(ε)

]

×
[

1

η
δ(`) +

ν

µ2
L0

(` ν
µ2

)]
+ δ(`)

[
− 4

ε3
+

1

ε2

(16

3
Lm +

20

9

)

+
1

ε

(
−8

3
L2
m +

112

27
− 2π2

3

)
− 40

9
L2
m +

(
−448

27
+

8π2

9

)
Lm

− 656

27
+

10π2

27
+ 8ζ3

]}
. (B.57)

Using eq. (B.56) entails that the massive quark corrections to the strong coupling are renor-

malized in the on-shell scheme, i.e., the expansion is in terms of αs = α
(nl)
s . To obtain the

csoft function Sc we need to switch to α
(nl+1)
s and furthermore subtract the correction S (2,nl)

(with a strong coupling in the nl flavor scheme) according to eq. (B.50). All purely massless

contributions cancel each other and we obtain for the O(α2
s) corrections in an expansion in

terms of α
(nl+1)
s

S(2)
c (`,m, µ, ν) = S (2,h)(`,m, µ, ν)− 4

3
LmS (1)(`, µ, ν) (B.58)

= S
(2,h,bare)
real (`,m)−

(
Π(1)(m2, 0)− 4

3ε

)
S (1,bare)(`)

− Z(2,h)
S (`,m, µ, ν)− 4

3
LmS (1)(`, µ, ν)

= S
(2,h,bare)
real (`,m)−

(
Π(1)(m2, 0)− 4

3ε

)
Z

(1)
S (`, µ, ν)− Z(2,h)

S (`,m, µ, ν) .

Here the SCETII counterterm is defined via

S (bare)(`,m) =

∫
d`′ Z

(nl+1)
S (`− `′,m, µ, ν) S (nl+1)(`′,m, µ, ν) . (B.59)

Employing a gluon mass the associated expression for Z
(1)
S can be read off from eq. (B.55) and

is given by (expanded in η and ε)

Z
(1)
S (`, µ, ν) = 4CF

{
δ(`)

[
1

η

(1

ε
− ln

Λ2

µ2
+O(ε)

)
− 1

ε2

]
+

ν

µ2
L0

( `ν
µ2

)1

ε

}
. (B.60)

The counterterm Z
(2,h)
S absorbs all divergences and is given by10

Z
(2,h)
S (`,m, µ, ν) = CF

{
δ(`)

[
1

η

( 8

3ε2
− 40

9ε
− 16

3
Lm ln

Λ2

µ2
+

8

3
L2
m +

80

9
Lm +

224

27
+O(ε)

)

− 4

ε3
+

20

9ε2
+

1

ε

(112

27
− 2π2

9

)]
+

ν

µ2
L0

(` ν
µ2

)[ 8

3ε2
− 40

9ε

]}
. (B.61)

10The anomalous dimension for the csoft function Sc can be obtained from the ratio of Z
(nl+1)
S and Z

(nl)
S ,

upon which the IR sensitivity cancels.
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Using eqs. (B.57), (B.60) and (B.61) in eq. (B.58) we obtain the full result for the renormalized

csoft function at two loops in eq. (4.31).

C Massive quark effects at fixed order

The factorization formulae in the secs. 2 and 3 contain together all information about the

singular massive quark corrections to the differential cross sections in QCD at fixed order (for

any given hierarchy between the mass and qT /T ). Here we provide the results at O(α2
s) for

Drell-Yan for both primary and secondary corrections. We write for each of these contributions

(e = q2
T , T )

dσ

de dQ2 dY
(e,Q,m, xa, xb) =

∑

i,j=q,q̄,g

∫
dza
za

dzb
zb

dσ̂ij
de dQ2 dY

(e,Q,m, za, zb, µ) fi

(xa
za
, µ
)
fj

(xb
zb
, µ
)
,

(C.1)

and expand the partonic result in the nl-flavor scheme for αs as

dσ̂ij
de dQ2 dY

=
dσ̂

(0)
ij

dQ2 dY
δ(q2

T ) +
α

(nl)
s (µ)

4π

dσ̂
(1)
ij

de dQ2 dY

+

(
α

(nl)
s (µ)

4π

)2[
TFnl

dσ̂
(2,l)
ij

de dQ2 dY
+ TF

dσ̂
(2,h)
ij

dedQ2 dY
+ . . .

]
+O(α3

s) , (C.2)

where dσ
(0)
qq̄ /(dQ

2dY ) denotes the Born cross section for the corresponding Drell-Yan process

qq̄ → Z/γ∗ → `¯̀. In this context dσ
(0)

QQ̄
/(dQ2dY ) indicates the Born cross section for a massless

quark q with the same charge and isospin as the heavy quark Q.

C.1 Fixed-order result for the qT spectrum

The singular fixed-order corrections for the qT -spectrum (i.e. for qT � Q) at O(α2
sCFTF )

consist of the virtual (full QCD) contributions encoded in eqs. (4.6) and (4.7) and the secondary

collinear and soft real radiation corrections contained in eqs. (4.17) and (4.29). Setting common

scales µ = µH = µB = µS and ν = νB = νS yields for the corrections to virtual photon

production

dσ̂
(2,h)
qq̄

dq2
T dQ2 dY

=
dσ̂

(0)
qq̄

dQ2 dY
CF

{
hvirt

(m2

Q2

)
δ(q2

T ) δ(1− za) δ(1− zb)

+
1

q2
T

bqTreal

(m2

q2
T

, za,
ν

ωa

)
δ(1− zb) +

1

q2
T

bqTreal

(m2

q2
T

, zb,
ν

ωb

)
δ(1− za)

+
1

q2
T

sqTreal

(m2

q2
T

,
ν

m

)
δ(1− za) δ(1− zb) +O

(qT
Q

)}
, (C.3)

where hvirt, b
qT
real and sqTreal are given in eqs. (4.6), (B.22) and (B.45). For Z-boson production

one has to include in addition the anomalous axial current correction in eq. (4.7) as contribution

to the δ(q2
T )-term (which gives in conjunction with the isospin partner a µ-independent result).
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Writing out the nontrivial terms in the spectrum explicitly we get

dσ̂
(2,h)
qq̄

dq2
T dQ2 dY

(q2
T , Q,m, za, zb) =

dσ̂
(0)
qq̄

dQ2 dY
θ(za) θ(zb)CF

{
hvirt

(m2

Q2

)
δ(q2

T ) δ(1− za) δ(1− zb)

+
δ(1− zb)

q2
T

[(
−80

9
+

64

3
m̂2 +

16

3
(1− 2m̂2) ln

c+ 1

c− 1

)(
L0(1− za) + δ(1− za) ln

Q

m

)

+ θ(1− za)
(

8

3da(1− za)
[
1 + z2

a + 2m̂2za(1 + z2
a) + 4m̂4z2

a(−5 + 6za − 5z2
a)
]

ln
da + 1

da − 1

− 16c(1− 2m̂2)

3(1− za)
ln
c+ 1

c− 1
+

16

9
+

64

9
za +

16

3
m̂2(−4 + za − 5z2

a)

)

+ δ(1− za)
(

8

3
c(1− 2m̂2)

[
Li2

((c− 1)2

(c+ 1)2

)
+ 2 ln

c+ 1

c− 1
ln
m̂(c+ 1)

2c
− π2

6

]

+
8

9
c(5− 16m̂2) ln

c+ 1

c− 1
+

64

9
m̂2

)]

+
δ(1− za)

q2
T

[
(za ↔ zb)

]
+O

(qT
Q

)}
, (C.4)

where

m̂ =
m

qT
, c =

√
1 + 4m̂2 , da =

√
1 + 4m̂2za . (C.5)

The singular fixed-order corrections for the qT spectrum at O(α2
sT

2
F ) consist of the primary

collinear real radiation corrections in eq. (4.15) for both beam directions,

dσ̂
(2,h)
gg

dq2
T dQ2 dY

(q2
T , Q,m, za, zb) = 2

dσ̂
(0)

QQ̄

dQ2 dY
× π

TF

∫
d2pT I(1)

Qg (~qT − ~pT ,m, za) I(1)
Qg (~pT ,m, zb)

=
dσ̂

(0)

QQ̄

dQ2 dY
θ(za) θ(zb) θ(1− za) θ(1− zb)

8TF
q2
T c

4

{
2(1− za − zb + 2zazb)(za + zb − 2zazb)

+ 8m̂2[za(1− za) + zb(1− zb)− 3zazb(1− za − zb + zazb)]− 16m̂4zazb(1− za − zb + zazb)

+
1

c
ln

(
1 + c+ 2m̂2(2 + c) + 2m̂4

2m̂4

)[
(1− 2za + 2z2

a)(1− 2zb + 2z2
b )

+ 2m̂2
(

4− 7za(1− za)− 7zb(1− zb) + 12zazb(1− za − zb + zazb)
)

+ 8m̂4
(

2− 3za(1− za)− 3zb(1− zb) + 6zazb(1− za − zb + zazb)
)

+ 16m̂6zazb(1− za)(1− zb)
]

+O
(qT
Q

)}
. (C.6)

Depending on the hierarchy between m and qT and Q some of the contributions in

eqs. (C.4) and (C.6) are power-suppressed and therefore only appear via nonsingular cor-

rections in the factorization formula for the associated parametric regime in sec. 2. Note also

that virtual corrections are reshuffled among the components of the factorization theorem,

which are in addition evaluated with αs in different flavor number schemes. This essentially

allows for a consistent factorization and the resummation of logarithms at higher orders.
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C.2 Fixed-order result for the beam thrust spectrum

The singular fixed-order corrections for the T spectrum (i.e. for T � Q) at O(α2
sCFTF )

consist of the virtual (full QCD) contributions encoded in eqs. (4.6) and (4.7) and the secondary

collinear and soft real radiation corrections contained in eqs. (4.22) and (4.33). Setting common

scales µ = µH = µB = µS yields for the corrections to virtual photon production

dσ̂
(2,h)
qq̄

dT dQ2 dY
=

dσ̂
(0)
qq̄

dQ2 dY
CF

{
hvirt

(m2

Q2

)
δ(T ) δ(1− za) δ(1− zb)

+
1

T bTreal

( m2

ωaT
, za

)
δ(1− zb) +

1

T bTreal

( m2

ωbT
, zb

)
δ(1− za)

+
1

T sTreal

(m2

T 2

)
δ(1− za) δ(1− zb) +O

(T
Q

)}
, (C.7)

where hvirt and bTreal are given in eqs. (4.6) and (B.29), respectively, and sTreal is given implicitly

by the nondistributive terms in eq. (4.33). Again, for Z-boson production the anomalous axial

current correction in eq. (4.7) has to be included in the δ(T ) term. Writing out the nontrivial

terms in the spectrum we get

dσ̂
(2,h)
qq̄

dT dQ2 dY
(T , Q,m, za, zb) =

dσ̂
(0)
qq̄

dQ2 dY
θ(za) θ(zb)CF

{
δ(T ) δ(1− za) δ(1− zb)hvirt

(m2

Q2

)

+
δ(1− zb)
T

[
θ(va)

1− za

(
−16

9
va

[
4− 3za + 4z2

a +
za(11− 21za + 29z2

a − 15z3
a)

1− za
m̂2
a

]

− 8

3ua

[
1 + z2

a − 2m̂2
aza(1 + z2

a)− 4m̂4
az

2
a(2− 3za + 5z2

a)
]

ln
ua − va
ua + va

)

+ δ(1− za)
(
θ(T − 2m)

[
32

3
Li2

(w − 1

w + 1

)
+

8

3
ln2 1− w

1 + w
− 32

3
ln

1− w
1 + w

ln m̂T

− 80

9
ln

1− w
1 + w

− w
(448

27
+

128

27
m̂2
T

)
+

8π2

9

]
+
T ∆Sτ,m(T ,m)

2

)]

+
δ(1− za)
T

[
(za, ωa ↔ zb, ωb)

]
+O

(T
Q

)}
, (C.8)

where

m̂a =
m√
ωaT

, m̂T =
m

T , ua =
√

1− 4m̂aza , va =

√
1− 4m̂2

aza
1− za

, w =
√

1− 4m̂2
T .

(C.9)

The singular fixed-order corrections for the T spectrum at O(α2
sT

2
F ) consist of the collinear

real radiation corrections in eq. (4.21) for both beam directions,

dσ̂
(2,h)
gg

dT dQ2 dY
(T , Q,m, za, zb) = 2

dσ
(0)

QQ̄

dQ2 dY
× Q2

TF

∫
dT ′ I(1)

Qg (ωa(T − T ′),m, za) I(1)
Qg (ωbT ′,m, zb)

=
dσ

(0)

QQ̄

dQ2 dY
θ(za) θ(zb) θ

(
T − m2za

ωa(1− za)
− m2zb
ωb(1− zb)

) 8TF
T

×
{

2

(1− za − m̂2
aza)(1− zb − m̂2

bzb)

[
(1− za)(1− zb)− m̂2

aza(1− zb)− m̂2
bzb(1− za)

]
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×
[
(1− za − zb + 2zazb)(za + zb − 2zazb)− m̂2

az
2
a(1− 2zb)

2 − m̂2
bz

2
b (1− 2za)

2 − 4m̂2
am̂

2
bz

2
az

2
b

]

+

(
ln

1− za − m̂2
aza

zam̂2
a

+ ln
1− zb − m̂2

bzb
zbm̂

2
b

)[
(1− 2za + 2z2

a)(1− 2zb + 2z2
b )

+ 2m̂2
az

2
a(1− 2zb + 2z2

b ) + 2m̂2
bz

2
b (1− 2za + 2z2

a) + 8m̂2
am̂

2
bz

2
az

2
b

]}
. (C.10)

Depending on the hierarchy between m and T and Q some of the contributions in eqs. (C.8)

and (C.10) are power-suppressed and therefore only appear via nonsingular corrections in the

factorization formula for the associated parametric regime in sec. 2.

D Plus distributions

The standard plus distribution for some dimensionless function g(x) is defined as

[θ(x)g(x)]+ = lim
β→0

d

dx
[θ(x− β)G(x)] with G(x) =

∫ x

1
dx′ g(x′) . (D.1)

The special case used in this paper is

Ln(x) =

[
θ(x) lnn x

x

]

+

. (D.2)

The 2-dimensional plus distributions that appear in the TMD beam and soft functions are

defined as

Ln(~pT , µ) =
1

πµ2
Ln
( |~pT |2

µ2

)
. (D.3)

For the Fourier transform we use the convention

f̃(~b) =

∫
d2~pT ei

~b·~pT f(~pT ) . (D.4)

The Fourier transforms of the 2-dimensional distributions required here are

δ(2)(~pT ) ←→ 1 ,

L0(~pT , µ) ←→ −Lb ,

L1(~pT , µ) ←→ L2
b

2
,

L2(~pT , µ) ←→ −1

4

(
L3
b + 4ζ3

)
, (D.5)

with Lb defined in eq. (5.13).
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[50] T. Lübbert, J. Oredsson, and M. Stahlhofen, Rapidity renormalized TMD soft and beam

functions at two loops, JHEP 03 (2016) 168, [arXiv:1602.01829].

[51] Y. Li, D. Neill, and H. X. Zhu, An Exponential Regulator for Rapidity Divergences, Submitted to:

Phys. Rev. D (2016) [arXiv:1604.00392].

[52] Y. Li and H. X. Zhu, Bootstrapping Rapidity Anomalous Dimensions for Transverse-Momentum

Resummation, Phys. Rev. Lett. 118 (2017), no. 2 022004, [arXiv:1604.01404].

[53] A. A. Vladimirov, Soft-/rapidity- anomalous dimensions correspondence, Phys. Rev. Lett. 118

(2017), no. 6 062001, [arXiv:1610.05791].

[54] M. A. Ebert and F. J. Tackmann, Resummation of Transverse Momentum Distributions in

Distribution Space, JHEP 02 (2017) 110, [arXiv:1611.08610].

[55] P. F. Monni, E. Re, and P. Torrielli, Higgs Transverse-Momentum Resummation in Direct Space,

Phys. Rev. Lett. 116 (2016), no. 24 242001, [arXiv:1604.02191].

[56] A. H. Hoang, A. Pathak, P. Pietrulewicz, and I. W. Stewart, Hard Matching for Boosted Tops at

Two Loops, JHEP 12 (2015) 059, [arXiv:1508.04137].

[57] I. Z. Rothstein and I. W. Stewart, An Effective Field Theory for Forward Scattering and

Factorization Violation, JHEP 08 (2016) 025, [arXiv:1601.04695].

[58] J. R. Gaunt, Glauber Gluons and Multiple Parton Interactions, JHEP 1407 (2014) 110,

[arXiv:1405.2080].

[59] M. Zeng, Drell-Yan process with jet vetoes: breaking of generalized factorization, JHEP 10 (2015)

189, [arXiv:1507.01652].

– 64 –

http://arXiv.org/abs/1104.0881
http://arXiv.org/abs/1202.0814
http://arXiv.org/abs/1111.4996
http://arXiv.org/abs/1005.4060
http://arXiv.org/abs/1012.4480
http://arXiv.org/abs/hep-ph/0607121
http://arXiv.org/abs/1209.0158
http://arXiv.org/abs/1209.0682
http://arXiv.org/abs/1403.6451
http://arXiv.org/abs/1602.01829
http://arXiv.org/abs/1604.00392
http://arXiv.org/abs/1604.01404
http://arXiv.org/abs/1610.05791
http://arXiv.org/abs/1611.08610
http://arXiv.org/abs/1604.02191
http://arXiv.org/abs/1508.04137
http://arXiv.org/abs/1601.04695
http://arXiv.org/abs/1405.2080
http://arXiv.org/abs/1507.01652


[60] S. Alioli, C. W. Bauer, C. J. Berggren, A. Hornig, F. J. Tackmann, C. K. Vermilion, J. R. Walsh,

and S. Zuberi, Combining Higher-Order Resummation with Multiple NLO Calculations and

Parton Showers in GENEVA, JHEP 09 (2013) 120, [arXiv:1211.7049].

[61] S. Alioli, C. W. Bauer, C. Berggren, F. J. Tackmann, and J. R. Walsh, Drell-Yan production at

NNLL+NNLO matched to parton showers, Phys. Rev. D92 (2015), no. 9 094020,

[arXiv:1508.01475].

[62] S. Alioli, C. W. Bauer, S. Guns, and F. J. Tackmann, Underlying event sensitive observables in

Drell-Yan production using GENEVA, Eur. Phys. J. C76 (2016), no. 11 614,

[arXiv:1605.07192].

[63] T. Sjostrand and M. van Zijl, A Multiple Interaction Model for the Event Structure in Hadron

Collisions, Phys. Rev. D36 (1987) 2019.

[64] T. Sjostrand and P. Z. Skands, Multiple interactions and the structure of beam remnants, JHEP

03 (2004) 053, [hep-ph/0402078].

[65] T. Sjostrand and P. Z. Skands, Transverse-momentum-ordered showers and interleaved multiple

interactions, Eur. Phys. J. C39 (2005) 129–154, [hep-ph/0408302].

[66] I. W. Stewart, F. J. Tackmann, and W. J. Waalewijn, The Quark Beam Function at NNLL,

JHEP 1009 (2010) 005, [arXiv:1002.2213].

[67] J. R. Gaunt, M. Stahlhofen, and F. J. Tackmann, The Quark Beam Function at Two Loops,

JHEP 04 (2014) 113, [arXiv:1401.5478].

[68] J. Gaunt, M. Stahlhofen, and F. J. Tackmann, The Gluon Beam Function at Two Loops, JHEP

08 (2014) 020, [arXiv:1405.1044].

[69] D. Kang, O. Z. Labun, and C. Lee, Equality of hemisphere soft functions for e+e−, DIS and pp

collisions at O(α2
s), Phys. Lett. B748 (2015) 45–54, [arXiv:1504.04006].

[70] R. Kelley, M. D. Schwartz, R. M. Schabinger, and H. X. Zhu, The two-loop hemisphere soft

function, Phys. Rev. D84 (2011) 045022, [arXiv:1105.3676].

[71] P. F. Monni, T. Gehrmann, and G. Luisoni, Two-Loop Soft Corrections and Resummation of the

Thrust Distribution in the Dijet Region, JHEP 1108 (2011) 010, [arXiv:1105.4560].

[72] C. W. Bauer, F. J. Tackmann, J. R. Walsh, and S. Zuberi, Factorization and Resummation for

Dijet Invariant Mass Spectra, Phys.Rev. D85 (2012) 074006, [arXiv:1106.6047].

[73] M. Procura, W. J. Waalewijn, and L. Zeune, Resummation of Double-Differential Cross Sections

and Fully-Unintegrated Parton Distribution Functions, JHEP 1502 (2015) 117,

[arXiv:1410.6483].

[74] A. J. Larkoski, I. Moult, and D. Neill, Non-Global Logarithms, Factorization, and the Soft

Substructure of Jets, JHEP 09 (2015) 143, [arXiv:1501.04596].

[75] P. Pietrulewicz, F. J. Tackmann, and W. J. Waalewijn, Factorization and Resummation for

Generic Hierarchies between Jets, JHEP 08 (2016) 002, [arXiv:1601.05088].

[76] B. A. Kniehl, Two Loop QED Vertex Correction From Virtual Heavy Fermions, Phys.Lett. B237

(1990) 127.

[77] A. Hoang, Applications of two loop calculations in the standard model and its minimal

supersymmetric extension, .

[78] B. A. Kniehl and J. H. Kuhn, QCD Corrections to the Z Decay Rate, Nucl. Phys. B329 (1990)

547–573.

– 65 –

http://arXiv.org/abs/1211.7049
http://arXiv.org/abs/1508.01475
http://arXiv.org/abs/1605.07192
http://arXiv.org/abs/hep-ph/0402078
http://arXiv.org/abs/hep-ph/0408302
http://arXiv.org/abs/1002.2213
http://arXiv.org/abs/1401.5478
http://arXiv.org/abs/1405.1044
http://arXiv.org/abs/1504.04006
http://arXiv.org/abs/1105.3676
http://arXiv.org/abs/1105.4560
http://arXiv.org/abs/1106.6047
http://arXiv.org/abs/1410.6483
http://arXiv.org/abs/1501.04596
http://arXiv.org/abs/1601.05088


[79] R. J. Gonsalves, C.-M. Hung, and J. Pawlowski, Heavy quark triangle diagram contributions to Z

boson production in hadron collisions, Phys. Rev. D46 (1992) 4930–4942.

[80] W. Bernreuther, R. Bonciani, T. Gehrmann, R. Heinesch, T. Leineweber, and E. Remiddi,

Two-loop QCD corrections to the heavy quark form-factors: Anomaly contributions, Nucl. Phys.

B723 (2005) 91–116, [hep-ph/0504190].

[81] S. Catani, S. Dittmaier, and Z. Trocsanyi, One loop singular behavior of QCD and SUSY QCD

amplitudes with massive partons, Phys. Lett. B500 (2001) 149–160, [hep-ph/0011222].

[82] Z.-B. Kang, F. Ringer, and I. Vitev, Effective field theory approach to open heavy flavor

production in heavy-ion collisions, arXiv:1610.02043.

[83] C. W. Bauer and E. Mereghetti, Heavy Quark Fragmenting Jet Functions, JHEP 04 (2014) 051,

[arXiv:1312.5605].

[84] M. Buza, Y. Matiounine, J. Smith, and W. L. van Neerven, Charm electroproduction viewed in

the variable flavor number scheme versus fixed order perturbation theory, Eur. Phys. J. C1

(1998) 301–320, [hep-ph/9612398].
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