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Abstract

A computation of inclusive cross sections for the production of neutral Higgs bosons through
gluon fusion and bottom-quark annihilation is presented in the MSSM with complex param-
eters. The predictions for the gluon-fusion process are based on an explicit calculation of
the leading-order cross section for the general case of arbitrary complex parameters which is
supplemented by higher-order corrections. Massive top- and bottom-quark contributions are
included at NLO QCD. In the effective theory of a heavy top-quark the top-quark contribu-
tion is taken into account up to N3LO QCD in an expansion around the threshold of Higgs
production for the CP-even component of the light Higgs boson. For the CP-odd component
of the light Higgs boson and the heavy Higgs bosons the contributions in the effective field
theory are incorporated up to NNLO QCD. Two-loop electroweak effects mediated through
light quarks are also incorporated, and SUSY QCD corrections at NLO are interpolated from
the MSSM with real parameters. Finite wave function normalisation factors for the exter-
nal Higgs bosons ensuring the correct on-shell properties are incorporated from the code
FeynHiggs. In the numerical analysis for the typical case of a strong admixture of the two
heavy Higgs bosons it is demonstrated that squark effects are strongly dependent on the
phases of the complex parameters, and the relevance of the resummation of squark effects in
the bottom-quark Yukawa coupling is emphasised. The remaining theoretical uncertainties
in the cross section predictions are discussed. The results have been implemented into an
extension of the numerical code SusHi called SusHiMi.

1 Introduction

In 2012 the experimental collaborations ATLAS and CMS announced the discovery of a Higgs-
like boson [1, 2] produced in collisions of protons at the Large Hadron Collider (LHC). Apart
from the precise measurement of its production and decay properties in order to test whether
there are deviations from the expectations for a Standard Model (SM) Higgs boson, an essential
part of the programme of the LHC experiments in the upcoming years will be the search for
additional Higgs bosons. The observed state can be easily accommodated in extended Higgs
sectors like a Two-Higgs-Doublet Model (2HDM) or supersymmetric extensions, e.g. the Minimal
Supersymmetric Standard Model (MSSM). For the search for additional Higgs bosons and the
test of deviations from the SM expectations for the SM-like Higgs boson, the precise knowledge
of production cross sections through gluon fusion and bottom-quark annihilation for these Higgs
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bosons is a key ingredient. Current efforts in this direction are summarised in the reports of
the LHC Higgs Cross Section Working Group, see Refs. [3–6]. In the present paper we provide
precise predictions for neutral Higgs boson production through gluon fusion and bottom-quark
annihilation in the MSSM with complex parameters, in which CP-even and CP-odd Higgs states
form three admixed Higgs mass eigenstates ha, a ∈ {1, 2, 3}. Complex parameters in the MSSM

allow for CP violation beyond the one induced by the mixing of the quarks of the SM, described by
the Cabibbo-Kobayashi-Maskawa (CKM) matrix [7,8]. In order to explain the baryon asymmetry
of the universe, such additional sources of CP violation beyond the CKM phase are actually
needed, see e.g. Refs. [9–11] for reviews. It is thus of interest to investigate the MSSM with
complex parameters. Its Higgs sector is influenced by the additional phases only beyond tree
level. Still, these phases are of relevance in the Higgs boson collider phenomenology as they can
induce a large mixing among the heavy Higgs bosons, and squark and gluino loop contributions
also directly affect Higgs boson production and decay.

For a brief summary of higher-order corrections to the most important production processes –
gluon fusion and bottom-quark annihilation – in the SM and the MSSM with real parameters we
refer to Section 3 and focus here on studies performed for the Higgs sector of the MSSM with
complex parameters. Early investigations of Higgs production through gluon fusion at hadron
colliders in the MSSM with complex parameters were carried out in Refs. [12–14]. A thorough
analysis taking different production channels into account was presented in Ref. [15], and results
for Higgsstrahlung can be found in Ref. [16]. Large effects of stops on the cross section for a
CP-odd Higgs boson neglecting CP-even and -odd Higgs mixing were discussed in Ref. [17].
Refs. [18, 19] discuss the production of a light Higgs through gluon fusion including its decay
into two photons in the MSSM with complex parameters. It should be noted that the mentioned
references were published before the Higgs discovery in 2012 and mostly employ only the lowest
order in perturbation theory for the production processes. It is therefore timely to improve these
predictions by including up-to-date higher-order corrections and to investigate the compatibility
with the experimental results obtained for the observed signal at 125 GeV. For this purpose
we incorporate the prediction within the MSSM with complex parameters into the numerical
code SusHi [20, 21], which calculates Higgs production through gluon fusion and heavy-quark
annihilation [22] in the SM, the MSSM, the Two-Higgs-Doublet-Model (2HDM) and the Next-
to-Minimal Supersymmetric Standard Model (NMSSM) [23]. However until now, SusHi did not
support complex parameters in the MSSM and thus did not provide predictions for CP-admixed
Higgs bosons.

For the calculation of the masses and the wave function normalisation factors ensuring the
correct on-shell properties of external Higgs bosons, which involves the evaluation of Higgs
boson self-energies and their renormalisation, we use the code FeynHiggs [24–28]. It employs a
Feynman-diagrammatic approach and includes the full one-loop [27] and the dominant two-loop
corrections ofO(αtαs) [29] andO(α2

t ) [30,31] in the MSSM with complex parameters.1 A detailed
description of the prediction for the Higgs boson masses and the wave function normalisation
factors as implemented in FeynHiggs can be found in Refs. [27,34–39]. Whereas the Higgs sector
at tree level remains CP-conserving, at higher orders an admixture of all three neutral Higgs
bosons, i.e. the two CP-even Higgs bosons h, H and the CP-odd Higgs boson A, is induced.
The case where the light Higgs boson describes the SM-like Higgs at ∼ 125 GeV is typically
accompanied with a strong admixture of the two heavy Higgs bosons. For a proper prediction

1Another approach to calculate the Higgs boson sector in the MSSM with complex parameters is based on the
renormalisation group improved effective potential approach and implemented in e.g. the code CPsuperH [32,33].
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in such a case interference effects need to be taken into account in the full process involving
production and decay of the Higgs bosons, which requires going beyond the usual narrow-
width approximation (see also Refs. [40–44]). A convenient way to incorporate interference
effects is a generalised narrow-width approximation for the production and decay of on-shell
particles as described in Refs. [37, 45, 46], where in Ref. [46] only lowest-order contributions
have been considered, while in Refs. [37, 45] also the inclusion of higher-order corrections has
been addressed. The results for the cross sections for on-shell Higgs boson production obtained
in the present paper are suitable for direct incorporation into the framework of a generalised
narrow-width approximation.

Our paper is organised as follows: We start by outlining the relevant quantities in the Higgs,
the gluino and the squark sector of the MSSM with complex parameters in Section 2. We move
to the description of the gluon-fusion cross section in Section 3, where we discuss the calculation
of the cross section at LO and the applicability of higher-order corrections. Next we introduce
in Section 4 the code SusHi and its extension SusHiMi, which we use for our phenomenological
studies carried out in Section 5. We discuss the remaining theoretical uncertainties in Section 6.
Lastly, we conclude in Section 7 and list Higgs-(s)quark couplings in Appendix A.

2 The MSSM with complex parameters

In this section we discuss the relevant sectors of the MSSM with complex parameters, namely
the gluino, the squark as well as the Higgs sector. While the discussion of the gluino and the
squark sector at tree level is sufficient for our purposes, we will briefly describe the inclusion
of higher-order corrections in the Higgs sector. The MSSM with complex parameters allows
for 12 physical, independent phases of the complex parameters, once the phases of the wino
soft-breaking parameter M2 and the soft-breaking parameter m2

12 are rotated away. Those
independent phases are the ones of the soft-breaking gaugino masses M1 and M3, the Higgsino
mass parameter µ and trilinear soft-breaking couplings Af , f ∈ {e, µ, τ, u, d, c, s, t, b}. In the
subsequent discussion we focus on these phases and their effect on the gluino, the squark and
the Higgs sector as well as the Higgs boson cross sections.

2.1 Gluino and squark sector

The gluino g̃ does not mix with other fields and enters the Lagrangian in the form

L ⊃ −1

2
g̃mg̃ g̃ , (1)

where mg̃ is the absolute value of the complex soft-breaking parameter M3 = mg̃e
iφM3 .2 In the

Feynman diagrams for the Higgs boson self-energies and the Higgs boson production via gluon
fusion, the gluino only contributes beyond the one-loop level. However it affects the bottom-
quark Yukawa coupling already at the one-loop level, where it enters the leading corrections to
the relation between the bottom-quark mass and the bottom-quark Yukawa coupling which can
be resummed to all orders, see below.

2The soft-breaking parameter M1 associated with the bino can also be complex, but has a minor impact on
the Higgs sector, and we neglect its phase dependence in the following.
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In the MSSM without flavour mixing in the squark sector, squarks q̃L,R of one generation mix
into mass eigenstates q̃1,2. The term of the Lagrangian containing the squark mass matrix of
one generation is given by [36]

L ⊃ −(q̃†L, q̃
†
R)M2

q̃

(
q̃L
q̃R

)
with

M2
q̃ =

(
M2
q̃L

+m2
q +M2

Z cos 2β(I3
q −Qqs2

W ) mqX
∗
q

mqXq M2
q̃R

+m2
q +M2

Z cos 2βQqs
2
W

)
. (2)

Here Xq := Aq − µ∗ · {cotβ, tanβ}, where cotβ and tanβ apply to up- and down-type quarks,
respectively. The soft-breaking massesM2

q̃L
andM2

q̃R
, the third component of the weak isospin I3

q ,
the electric charge Qq and the mass of the quark mq are real parameters. This also applies to
the Z-boson mass MZ and the sine of the weak mixing angle sW ≡ sin θW . Contrarily, in
the CP-violating MSSM the parameters Aq = |Aq|eiφAq and µ = |µ|eiφµ , and hence Xq, can be
complex. These complex parameters enter the Higgs sector via the Higgs-sfermion couplings,
see Appendix A, which are thus also of direct relevance for Higgs boson production.

The mass matrix is diagonalised through the unitary matrix Uq̃ having real diagonal elements
and complex off-diagonal elements (

q̃1

q̃2

)
= Uq̃

(
q̃L
q̃R

)
. (3)

The squark masses (using the convention mq̃1 ≤ mq̃2) are calculated as the eigenvalues of Eq. (2).
The fact that the left-handed soft-breaking parameter M2

q̃L
is the same for the fields in an SU(2)

doublet gives rise to a tree-level relation between the stop and the sbottom masses. At the loop
level, the corresponding relation between the physical squark masses receives a finite shift, see
Refs. [47], which we have incorporated as a shift in the left-handed soft-breaking parameter M2

q̃L
in the sbottom sector, as obtained from FeynHiggs.

In the b/b̃ sector we take into account higher-order corrections to the relation between the
bottom-quark mass and the bottom-Yukawa coupling [48–53]. The couplings of the lowest-order
mass eigenstates φ, where φ ∈ {h,H,A}, see Section 2.2 below, of the Higgs bosons to bottom
quarks are given by the effective Lagrangian

Leff =
mbe

vd
√

2

∑
φe∈{h,H}

b̄
[
gφ

e

bL
PL + (gφ

e

bL
)∗PR

]
bφe +

imbe

vd
√

2
b̄
[
gAbLPL − (gAbL)∗PR

]
bA (4)

in terms of the left-handed and right-handed couplings gφbL and gφbR = (gφbL)∗, where PL/R =
1
2(1∓ γ5) are the left- and right-handed projection operators, respectively. The explicit form of
the couplings is given by

ghbL =
fhαβ

1 + ∆b

[
1− cotα

tanβ
∆b

]
, gHbL =

fHαβ
1 + ∆b

[
1 +

tanα

tanβ
∆b

]
, gAbL =

fAαβ
1 + ∆b

[
1− ∆b

tan2 β

]
, (5)

with fhαβ = sinα/ cosβ, fHαβ = cosα/ cosβ and fAαβ = tanβ (see also Refs. [36, 54]). The
effective Lagrangian provides a resummation of leading tanβ-enhanced contributions entering
via the quantity ∆b. The leading QCD contribution to ∆b has the form

∆b =
2

3

αs(µd)

π
M∗3µ

∗ tanβ I(m2
b̃1
,m2

b̃2
,m2

g̃) , (6)
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where αs is typically evaluated at an averaged SUSY scale µd = (mb̃1
+mb̃2

+mg̃)/3, and the func-

tion I(a, b, c) is given by I(a, b, c) =
(
ab log

(
a
b

)
+ bc log

(
b
c

)
+ ca log

(
c
a

))
/ ((a− b)(b− c)(a− c))).

As one can see from Eq. (6), the leading contribution to ∆b has an explicit dependence on the
complex parameters M3 and µ. In our numerical analysis below we use the value for ∆b as
obtained from FeynHiggs (see Ref. [55]), which includes additional QCD and electroweak con-
tributions [56–59]. In our implementation in the program SusHiMi, see Section 4 below, both
the ∆b value from FeynHiggs and the leading contribution from Eq. (6) can be selected.

We will use the expression for the bottom-quark Yukawa coupling according to the effective
Lagrangian of Eq. (4) and Eq. (5) in our leading-order expressions for the (loop-induced) gluon-
fusion process. For bottom-quark annihilation and the implementation of higher-order correc-
tions to the gluon-fusion process, see Section 3, we use as a simplified version [36]

gφb ≡ g
φ
bL

= gφbR =
1

|1 + ∆b|
fφαβ , (7)

in which the left- and right-handed couplings to bottom quarks are identical to each other. We
will compare the numerical impact of the two implementations at LO in Section 5. The effective
Yukawa coupling in Eq. (4) is complex. The phase of this coupling could be rotated away by an
appropriate redefinition of the (s)quark fields, see e.g. Ref. [56]. We prefer to use the general
expression for a complex Yukawa coupling. In our phenomenological discussion in Section 5
below we will compare the effect of the complex Yukawa coupling of Eq. (4) with the simplified
real coupling of Eq. (7) (which are not equivalent to each other) and we will show that the
numerical differences are small.

2.2 Higgs sector

The MSSM contains two Higgs doublets with opposite hypercharges YH1,2 = ±1 in order to
introduce masses for both the up- and down-type fermions. The neutral fields of the two Higgs
doublets can be decomposed in CP-even (φ0

1, φ
0
2) and CP–odd (χ0

1, χ
0
2) components as follows3

H1 =

(
h0
d

h−d

)
=

(
vd + 1√

2
(φ0

1 + iχ0
1)

φ−1

)
(8)

H2 =

(
h+
u

h0
u

)
= eiξ

(
φ+

2

vu + 1√
2
(φ0

2 + iχ0
2)

)
, (9)

such that the Higgs potential VH in terms of the neutral Higgs states is given by

V 0
H =(|µ|2 +m2

H2
)|h0

u|2 + (|µ|2 +m2
H1

)|h0
d|2 (10)

− [m2
12h

0
uh

0
d + h.c.] +

g2
1 + g2

2

8
[|h0

u|2 − |h0
d|2]2 .

The quadratic terms of VH contain the SUSY parameter |µ|2 and the soft terms mH1 , mH2 . The
bilinear terms have the soft coefficient m2

12, which is a complex parameter in general but whose

3We note that the convention differs from the convention employed by FeynHiggs by a different sign of χ0
1 and

φ−
1 , which induces different signs in the corresponding elements of the matrices in Eq. (11) and Eq. (12) and the
χ0
1 couplings to (s)quarks displayed in the Appendix.
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phase can be absorbed through a Peccei-Quinn transformation [60, 61]. The relative phase ξ
between the Higgs doublets vanishes when the Higgs potential is minimised, making the Higgs
sector of the MSSM CP-invariant at lowest order.

The tree-level neutral mass eigenstates {h,H,A,G} are related to the tree-level neutral fields
{φ0

1, φ
0
2, χ

0
1, χ

0
2} through a unitary matrix as follows

h
H
A
G

 =


−sα cα 0 0
cα sα 0 0
0 0 sβn cβn
0 0 −cβn sβn



φ0

1

φ0
2

χ0
1

χ0
2

 . (11)

Similarly, for the charged Higgs states one obtains(
H±

G±

)
=

(
sβc cβc
−cβc sβc

)(
φ±1
φ±2

)
, (12)

where sx ≡ sinx, cx ≡ cosx. α, βn and βc are the mixing angles for the CP-even Higgs bosons
(h,H), the neutral CP-odd states (A, G), and the charged states (H±, G±), respectively. Min-
imising the Higgs potential leads to β := βn = βc at tree level. The masses of the charged Higgs
bosons and the neutral CP-odd Higgs boson at tree level are given by

m2
H± = m2

A +M2
W , m2

A =
2m2

12

sin(2β)
. (13)

The Higgs sector of the MSSM at lowest order is fully determined (besides the gauge couplings)
by two parameters, which are usually chosen as mH± (mA) and tanβ := vu

vd
for the case of the

MSSM with complex (real) parameters.

2.3 Higgs mixing at higher orders

CP-violating mixing between the neutral Higgs bosons {h,H,A} arises as a consequence of
radiative corrections and results in the neutral mass eigenstates {h1, h2, h3}, where by convention
mh1 ≤ mh2 ≤ mh3 . The full mixing in higher orders takes place not just between {h,H,A}, but
also with the Goldstone boson and the electroweak gauge bosons. In general, (6 × 6)-mixing
contributions involving the fields {h,H,A,G,Z, γ} need to be taken into account. For the
calculation of the Higgs boson masses and wave function normalisation factors at the considered
order it is sufficient to restrict to a (3× 3)-mixing matrix among {h,H,A}, since mixing effects
with {G,Z, γ} only appear at the sub-leading two-loop level and beyond. In processes with
external Higgs bosons, on the other hand, mixing contributions with G and Z already enter at
the one-loop level, but the numerical effect of these contributions has been found to be very
small, see e.g. Refs. [34–36, 62]. In our numerical analysis of the Higgs production through
gluon fusion and bottom-quark annihilation below we will neglect these kinds of (electroweak)
mixing contributions of the external Higgs bosons with Goldstone and gauge bosons. Concerning
electroweak corrections, we only incorporate the potentially numerically large contributions to
the Higgs boson masses and wave function normalisation factors as well as the electroweak
contribution to the correction affecting the relation between the bottom-Yukawa coupling and the
bottom quark mass (see above), while all other contributions considered here like e.g. electroweak
corrections to gluon fusion involve at least one power of the strong coupling. For the contribution
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of the Z boson and the Goldstone boson to the gluon-fusion process via gg → {Z∗, G∗} → hi (the
photon only enters at higher orders) it should be noted that contributions from mass-degenerate
quark weak-isodoublets vanish and only top- and bottom-quark contributions proportional to
their masses are of relevance, see the discussion of the Higgsstrahlung process in Refs. [63, 64].
This is a consequence of the fact that only the axial component of the quark-quark-Z boson
coupling contributes to the loop-induced coupling of the Z boson to two gluons. Similarly,
squark contributions in gg → {Z∗, G∗} are completely absent at the one-loop level, even in case
of CP violation in the squark sector. The one-loop contributions to gg → {Z∗, G∗} therefore
have no dependence on the phases of complex parameters.

Thus, we focus our discussion on the contributions to the (3×3)-mass matrix M, which contains
the tree level masses m2

i on the diagonal and has non-zero (off-)diagonal self-energies involving
the Higgs states. It enters the Lagrangian, with Φ = (h,H,A), as follows

L ⊃ −1

2
ΦMΦT with M =

m2
h − Σ̂hh(p2) −Σ̂hH(p2) −Σ̂hA(p2)

−Σ̂Hh(p2) m2
H − Σ̂HH(p2) −Σ̂HA(p2)

−Σ̂Ah(p2) −Σ̂AH(p2) m2
A − Σ̂AA(p2)

 . (14)

The propagator matrix is then given by

[−∆hHA(p2)]−1 = Γ̂hHA(p2) with [Γ̂hHA(p2)]ij = Γ̂ij = i[(p2 −m2
i )δij + Σ̂ij(p

2)], (15)

and the roots of the determinant of this matrix yield the loop-corrected Higgs boson masses.
The non-diagonal and diagonal propagators can be written as follows

∆ij =
Γ̂ijΓ̂kk − Γ̂jkΓ̂ki

Γ̂iiΓ̂jjΓ̂kk + 2Γ̂ijΓ̂jkΓ̂ki − Γ̂iiΓ̂2
jk − Γ̂jjΓ̂2

ki − Γ̂kkΓ̂
2
ij

, (16)

∆ii =
i

p2 −m2
i + Σ̂eff

ii

, (17)

with effective self-energies that contain mixed terms

Σ̂eff
ii = Σ̂ii − i

2Γ̂ijΓ̂jkΓ̂ki − Γ̂jjΓ̂
2
ki − Γ̂kkΓ̂

2
ij

Γ̂jjΓ̂kk − Γ̂2
jk

= Σ̂ii +
∆ij

∆ii
Σ̂ij +

∆ik

∆ii
Σ̂ik , (18)

where we suppressed the p2 arguments of all terms and i 6= j 6= k.

2.4 Wave function normalisation factors for external Higgs bosons

For Higgs bosons that appear as external particles in a process appropriate on-shell properties are
required for a correct normalisation of the S-matrix. Unless the field renormalisation constants
have been chosen such that all mixing contributions between the mass eigenstates {h1, h2, h3}
vanish on-shell and the propagators of the external particles have unit residue, the correct on-
shell properties need to be ensured via the introduction of finite wave function normalisation
factors, see e.g. Refs. [65–67], as a consequence of the LSZ formalism [68]. The matrix of those
so-called Ẑ factors contains the correction factors for the external Higgs bosons {h1, h2, h3}
relative to the lowest-order mass eigenstates {h,H,A}. The matrix elements Ẑaj [39] (see also
Refs. [34, 36]) are composed of the root of the external wave function normalisation factor

Ẑai := ResM2
a
{∆ii(p

2)} (19)
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φ
Ẑ

h1,2,3 φ
Ẑ

h1,2,3

(a) (b)

Figure 1: Feynman diagrams for the LO cross section with (a) quark and (b) squark contribu-
tions.

and the on-shell transition ratio

Ẑaij =
∆ij(p

2)

∆jj(p2)

∣∣∣∣∣
p2=M2

a

, (20)

which are evaluated at the complex poleM2
a. Here the indices {a, b, c} refer to the loop-corrected

mass eigenstates, while {i, j, k} label the lowest-order mass eigenstates. With an appropriate
assignment of the indices of the two types of states (see Ref. [39]) the matrix elements can be
written as

Ẑaj =
√
ẐaẐaj , (21)

corresponding to the (non-unitary) matrix

Ẑ =


√
Ẑ1Ẑ1h

√
Ẑ1Ẑ1H

√
Ẑ1Ẑ1A√

Ẑ2Ẑ2h

√
Ẑ2Ẑ2H

√
Ẑ2Ẑ2A√

Ẑ3Ẑ3h

√
Ẑ3Ẑ3H

√
Ẑ3Ẑ3A

 . (22)

As explained above, these Ẑ factors provide the correct normalisation of a matrix element with
an external on-shell Higgs boson ha, a ∈ {1, 2, 3}, at p2 =M2

a. The application of the Ẑ factors
yields an expression of the amplitude Aha for an external on-shell Higgs boson ha in terms of
a linear combination of the amplitudes resulting from the one-particle irreducible diagrams for
each of the lowest-order mass eigenstates {h,H,A} according to

Aha = ẐahAh + ẐaHAH + ẐaAAA + . . . =

√
Ẑa

(
ẐahAh + ẐaHAH + ẐaAAA

)
+ . . . . (23)

The ellipsis indicate additional mixing effects with Goldstone bosons and gauge bosons, which
we neglect in our numerical analysis, see the discussion in Section 2.3.

3 The gluon-fusion cross section

In this section we discuss the calculation of the gluon-fusion cross section with particular em-
phasis on the effects of complex parameters. We first focus on individual ingredients and then
combine them in Section 4. For this purpose our notation closely follows Ref. [20]. At leading
order (LO) the gluon-fusion cross section is known since a long time [69]. In addition to the
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quark-induced contributions, the squark-induced contributions to the gluon-fusion process are
also of relevance in supersymmetric extensions of the SM, even though they are suppressed by
inverse powers of the supersymmetric particle masses if those masses are heavy. Subsequently
we present our calculation of the LO cross section for the case of the MSSM with complex pa-
rameters for the three physical Higgs bosons ha, a ∈ {1, 2, 3}. Differences with respect to the
calculation in the MSSM with real parameters are induced through4

• Ẑ factors, which relate the amplitude for an external on-shell Higgs ha (in the mass eigen-
state basis) to the amplitudes of both the CP-even lowest-order states h and H and the
CP-odd state A, see Section 2.4.

• Non-vanishing couplings of squarks gA
f̃ii

to the pseudoscalar component A.

• Different left- and right-handed quark couplings gφqL and gφqR with φ ∈ {h,H,A}, see
Section 2.1.

3.1 Lowest-order cross section

The LO production cross section of the mass eigenstates ha can be written as follows

σLO(pp→ ha) = σha0 τhaLgg(τha) with Lgg(τ) =

∫ 1

τ

dx

x
g(x)g(τ/x) , (24)

where τha = m2
ha
/s. The hadronic squared centre-of-mass energy is denoted by s, and the

gluon-gluon luminosity by Lgg. Therein, the partonic LO cross section for gg → ha is given by

σha0 =
GFα

2
s(µR)

288
√
π

[∣∣∣Aha,e∣∣∣2 +
∣∣∣Aha,o∣∣∣2] (25)

with Aha,e = ẐahAh+ + ẐaHAH+ + ẐaAAA−
and Aha,o = ẐahAh− + ẐaHAH− + ẐaAAA+ ,

where GF denotes Fermi’s constant, and Ẑaφ are the elements of the Ẑ factor matrix. µR is
the renormalisation scale, which at LO only enters through the scale dependence of the strong
coupling constant αs. We denote the cross section pp → ha, which involves one-loop diagrams
in the production process pp→ φ, as “LO cross section” despite the fact that it contains higher-
order effects through the application of the Ẑ factors (Fig. 1). We note that in the effective field
theory approach of heavy quark and SUSY masses, where the gluon-gluon-Higgs interaction is
condensed into a single vertex, the amplitudes of the first term in Eq. (25) can be identified with
a contribution that stems from L ⊃ GµνGµνφ with the gluon field strength Gµν . The amplitudes
of the second term stem from L ⊃ G̃µνGµνφ, which involves the dual of the gluon field strength
tensor G̃µν , resulting in the cross section being expressible as the sum of two non-interfering
squared amplitudes. This explains the naming of the first and the second term with Aha,e and
Aha,o, respectively. Similarly, we can split σLO into σe

LO and σo
LO.

4In the MSSM with real parameters only couplings involving f̃i− f̃j −A with i 6= j are non-vanishing, and left-
and right-handed quark Yukawa couplings are identical, gφq ≡ gφqL = gφqR .
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For the two CP-even lowest-order mass eigenstates φe ∈ {h,H} we obtain the amplitudes

Aφe+ =
∑

q∈{t,b}

(
aφ

e

q,+ + ãφ
e

q

)
, Aφe− =

∑
q∈{t,b}

aφ
e

q,− (26)

with

aφ
e

q,+ =
1

2

(
gφ

e

qL
+ gφ

e

qR

) 3

2
τhaq

[
1 + (1− τhaq )f(τhaq )

]
, aφ

e

q,− =
i

2

(
gφ

e

qR
− gφeqL

) 3

2
τhaq f(τhaq )

ãφ
e

q = −3

8
τhaq

2∑
i=1

gφ
e

q̃ii

[
1− τhaq̃i f(τhaq̃i )

]
, (27)

where gφ
e

qL and gφ
e

qR are the couplings of the Higgs boson φe to the left- and right-handed quarks,

respectively. They are normalised to the SM Higgs-quark couplings. gφ
e

q̃ij are the couplings of the
Higgs boson φe to squarks q̃i and q̃j . The explicit expressions for the Higgs-squark and relative
Higgs-quark couplings are listed in Appendix A. Similarly, for the CP-odd Higgs boson A we
have

AA− =
∑

q∈{t,b}

(
aAq,− + ãAq

)
, AA+ =

∑
q∈{t,b}

aAq,+ (28)

with

aAq,+ =
1

2

(
gAqL + gAqR

) 3

2
τhaq f(τhaq ) , aAq,− =

i

2

(
gAqL − g

A
qR

) 3

2
τhaq

[
1 + (1− τhaq )f(τhaq )

]
ãAq = −3

8
τAq

2∑
i=1

gAq̃ii

[
1− τhaq̃i f(τhaq̃i )

]
. (29)

Within the previous formulas we use the notation

τhaq =
4m2

q

m2
ha

, τhaq̃i =
4m2

q̃i

m2
ha

, (30)

and f(τ) is given by

f(τ) =

{
arcsin2 1√

τ
for τ ≥ 1

−1
4

(
log 1+

√
1−τ

1−
√

1−τ − iπ
)2

for τ < 1
. (31)

Our result is consistent with Ref. [12], which however assumes gφqL = gφqR (see our discussion
of this issue in Section 2.1) and does not take into account the mixing among the tree-level

mass eigenstates φ ∈ {h,H,A}. All squark contributions, i.e. ãφ
e

q and ãAq , enter the first term,

Aha,e, in Eq. (25). Quark contributions to Aha,e which couple to the CP-odd lowest-order mass
eigenstate A are proportional to the difference between the left- and right-handed quark Yukawa
couplings. The same holds for the contributions to the second term Aha,o in Eq. (25) which
couple to the CP-even lowest-order mass eigenstates φe. All these terms are therefore denoted
with the subscript A−. It should be noted that the amplitudes Aφe,A− only arise due to the
complex nature of the Yukawa couplings, which is a consequence of the incorporation of higher-
order contributions entering via ∆b, see Eq. (5), and our choice of working with a complex

Yukawa coupling. Accordingly, the amplitudes Aφe,A− are zero in the case of the MSSM with real
parameters.
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3.2 Higher-order contributions

Gluon fusion receives sizeable corrections at higher orders in QCD. The NLO corrections for
the SM quark contributions are known for arbitrary quark masses [70–75]. NNLO (SM-) QCD

contributions were calculated in the limit of a heavy top-quark mass [76–78], similar to the
recently published N3LO contributions for a CP-even Higgs boson in an expansion around the
threshold of Higgs production [79–83].5 Finite top-quark mass effects at NNLO are known in
an expansion of inverse powers of the top-quark mass [86–93]. All of the previously mentioned
corrections are implemented in SusHi [20,21] and can be added in all supported models. We will
later discuss in more detail for which Higgs mass ranges these corrections are applicable, which
also explains why the above mentioned N3LO contributions are only employed for the CP-even
component of the light Higgs boson.

As explained above a complex Yukawa coupling is only induced for the bottom quark through
the incorporation of ∆b contributions. According to this approach, for the top-quark Yukawa
coupling gφt left- and right handed components are identical also in the MSSM with complex
parameters. Therefore we can directly adapt the known higher-order QCD corrections to the
top-quark loop contribution for the MSSM with complex parameters. They are incorporated in
the extension SusHiMi, see Section 4. For the incorporation of the bottom-quark contribution at
NLO (SM-) QCD, on the other hand, we have to rely on the simplified version of the ∆b corrections
to the bottom-Yukawa coupling as specified in Eq. (7). Electroweak two-loop corrections as
discussed in Refs. [94–96] can be added as well. We take into account the contributions mediated
by light quarks, which can be reweighted to the MSSM with complex parameters. We follow
Ref. [97] and define the correction factor

δlf
EW =

αEM

π

2Re
(
Aha,eAha,EW∗)
|Aha,e|2 , (32)

where Aha,e, which has been given in Eq. (25), denotes the CP-even part of the LO amplitude
including quark and squark contributions. Accordingly, this electroweak correction factor is
only applied to the CP-even component of the LO and NLO cross section, see Section 4. The
electroweak amplitude is given by [96]

Aha,EW = −3

8

xW
s2
W

[
2

c4
W

(
5

4
− 7

3
s2
W +

22

9
s4
W

)
A1[xZ ] + 4A1[xW ]

]
(33)

·
(
−Ẑah sinα cosβ + ẐaH cosα sinβ

)
,

with the abbreviation

xV =
1

m2
ha

(
MV − i

ΓV
2

)2

, V ∈ {W,Z} . (34)

In Eq. (32) αEM denotes the electro-magnetic coupling, and sW ≡ sin θW = (1 − c2
W )1/2 =

(1−M2
W /M

2
Z)1/2 is the sine of the weak mixing angle. MV and ΓV are the mass and the width

of the heavy gauge bosons V ∈ {W,Z}, and the function A1[x] can be found in Ref. [96].

5Most recently also N3LO QCD corrections for CP-odd Higgs bosons became available [84, 85]. We neglect
those corrections in our analysis.
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In the MSSM with real parameters analytical NLO virtual contributions involving squarks, quarks
and gluinos are either known in the limit of a vanishing Higgs mass [98–101] or in an expansion of
heavy SUSY masses [102–104]6. Even NNLO corrections of stop-induced contributions to gluon
fusion are known [108, 109]; SusHi can approximate these NNLO stop effects [110] in the CP-
conserving MSSM. We neglect those contributions in our analysis for the MSSM with complex
parameters.

At NLO in the MSSM with complex parameters, supersymmetric contributions are present both
in virtual and real corrections. The real corrections show a similar behaviour as observed for
the LO cross section, i.e. the squark induced contributions of CP-odd components proportional
to gAq̃ii are added as a complex component to the CP-even couplings. Since beyond LO we
employ the simplified version of the ∆b resummation according to Eq. (7), the higher-order
quark contributions, both real and virtual, are of the same structure as in the CP-conserving
MSSM. The NLO virtual contributions as described in the previous paragraph are however not
easily adjustable to the MSSM with complex parameters. We therefore interpolate the NLO

virtual contributions between phases 0 and π of the various MSSM parameters using a cosine
interpolation, see Refs. [111, 112]. This interpolation makes use of on-shell stop- and sbottom-
quark masses defined at phases 0 and π. Thus, within the interpolated result we have to ensure
the correct subtraction of the NLO contributions that have already been taken into account
through ∆b effects in the bottom-quark Yukawa coupling. This is done by expanding the ∆b

correction to next-to-leading order in the subtraction term. For a certain value of the phase φz
of a complex parameter z, the virtual NLO amplitude AφNLO(φz) can be approximated using

AφNLO(φz) =
1 + cosφz

2
AφNLO(0) +

1− cosφz
2

AφNLO(π) (35)

for each of the lowest-order mass eigenstates φ ∈ {h,H,A}. Here AφNLO(0) is the analytical result

for the MSSM with real parameters, and AφNLO(π) is the analytical result with z → −z. Using the
factors cosφz ensures a smooth interpolation such that the known results for a vanishing phase
are recovered. Whereas a dependence on the phases of Aq and µ is already apparent in the lowest-
order diagrams of gg → φ, the phase of M3 only enters through the NLO virtual corrections.
Besides the ∆b contributions, where the full phase dependence is incorporated, the treatment of
the phase of M3 therefore relies on the performed interpolation. While the implemented routines
for the MSSM with real parameters are expressed in terms of the gluino mass, they can also be
used for a negative soft-breaking parameter M3, such that we can obtain interpolated results
for a complex-valued parameter M3. We note that the NLO virtual amplitudes with a negative
M3 are identical to the virtual amplitudes for positive M3 with opposite signs of the parameters
At, Ab and µ. This can be understood from the structure of the NLO diagrams involving the
squark–quark–gluino couplings. It should however be noted in this context that due to the
generation of Higgs-squark couplings gAq̃ii for non-vanishing phases a new class of NLO virtual
diagrams arises which is not present in the MSSM with real parameters. Since the interpolation
is based on the result for the MSSM with real parameters as input for the predictions at the
phases 0 and π, the additional set of diagrams may not be adequately approximated in this way.

Despite this fact, we expect that the interpolation of the virtual two-loop contributions involving
squarks and gluinos to the gluon-fusion amplitude provides a reasonable approximation, for the
following reasons (we discuss the theoretical uncertainty associated with the interpolation in

6Exact numerical and for certain contributions analytical results for NLO virtual contributions were presented
in Refs. [74, 75,105–107].
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Section 6 and assign a conservative estimate of the uncertainty in our numerical analysis). We
focus here on the gluon fusion amplitude without Ẑ factors, since in the Ẑ factors the full
phase dependence is incorporated without approximations. Gluino contributions are generally
suppressed for gluino masses that are sufficiently heavy to be in accordance with the present
bounds from LHC searches, while gluon-exchange contributions do not add an additional phase
dependence compared to the dependence on the phases of Aq and µ in the LO cross section,
which is fully taken into account. The dependence of the NLO amplitude on the phases of Aq
and µ is therefore expected to follow a similar pattern as the LO amplitude, which is also what
we find in the application of the interpolation method.

One can also compare the higher-order corrections to the gluon-fusion process with the ones
to the Higgs boson masses and Ẑ factors. In fact, a similar interpolation was probed in the
prediction for Higgs boson masses in the MSSM with complex parameters, see e.g. Refs. [27,29,
112, 113], where the phase dependence of sub-leading two-loop contributions beyond O(αtαs)
were approximated with an interpolation before the full phase dependence of the corresponding
two-loop corrections at O(α2

t ) was calculated [30, 31]. Generally good agreement was found
between the full result and the approximation [30,31]. In order to investigate the interpolation
of the phase of M3 that is associated with the gluino we performed a similar check concerning the
phase dependence of two-loop squark and gluino loop contributions. We numerically compared
the full result for the Higgs mass prediction at this order from FeynHiggs with an approximation
where the phases at the two-loop level are interpolated. Despite the fact that also for the Higgs
mass calculation new diagrams proportional to gAq̃ii arise away from phases 0 and π, the phase
dependence of the interpolated results generically follows the behaviour of the full results very
well.

Based on the NLO amplitude that has been obtained as described above, we can construct
the NLO cross sections σe

NLO and σo
NLO individually, following Ref. [20], by defining the NLO

correction factors Ce and Co:

Ce/o = 2Re

[
Aha,e/oNLO

Aha,e/o

]
+ π2 + β0 log

(
µ2

R

µ2
F

)
. (36)

The amplitudes are given by Aha,eNLO = ẐahAhNLO + ẐaHAHNLO and Aha,oNLO = ẐaAAANLO, µF denotes
the factorisation scale, and β0 = 11/2−nf/3 with nf = 5. Note that the LO amplitudes Aha,e/o
entering Eq. (36) are taken in the limit of large stop and sbottom masses, see Ref. [20]. The
correction factors enter the NLO cross section as follows

σ
e/o
NLO(pp→ ha +X) = σ

ha,e/o
0 τhaLgg(τha)

[
1 + Ce/oαs

π

]
+ ∆σe/o

gg + ∆σe/o
gq + ∆σ

e/o
qq̄ . (37)

The terms ∆σ denote the real corrections, which are not fully displayed here. We emphasise
again that at NLO we work with Eq. (7), such that in the real corrections the only new ingredients
are Higgs-squark couplings gAq̃ii, which are added to the CP-even components ∆σe. The real
corrections can be split in ∆σe and ∆σo since no interference terms arise.

4 The program SusHi and the extension SusHiMi

SusHi is a numerical FORTRAN code [20,21] which combines analytical results for the calculation
of Higgs boson cross sections through gluon fusion and heavy-quark annihilation in models
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SusHi input file in SLHA-style

SusHiMi initialization

Higgs masses and Ẑ factors by FeynHiggs

SusHiMi Call #1: σ
e/o
LO → Full ∆b resummation (Eq.(5)→ ∆b2)

SusHiMi Call #2: σ
e/o
LO → Simplified ∆b resummation
(Eq.(7)→ ∆b1)

SusHiMi Call #3: σ
e/o

NkLO
→ Simplified ∆b resummation

(Eq.(7)→ ∆b1)

σ
e/o

NkLO
= σ

e/o
NLO(1 + δEW) + (σ

t,e/o

N3LO/NNLO, EFT
− σt,e/o

NLO, EFT)

σ
e/o
NLO → Exact results for quark contributions

Interpolated results for squark contributions

“C
P

-e
ve

n
”

“C
P

-o
d

d
”

Combination to σ(pp→ ha +X)

σe
NkLO,∆b1

+ σo
NkLO,∆b1

σe
LO,∆b2

+ σo
LO,∆b2

σe
LO,∆b1

+ σo
LO,∆b1

Figure 2: Pictorial view of the gluon-fusion cross section calculation.

beyond the Standard Model up to the highest known orders in perturbation theory. However,
the current release does not allow for CP violation in the Higgs sector. Following our discussion
in Section 3 we present the calculation of Higgs boson production in the context of the MSSM

with complex parameters, which we included in an extension of SusHi named SusHiMi7. For
this purpose we proceed along the lines of Fig. 2 and calculate the Higgs boson production
cross section through gluon fusion as follows: SusHiMi calls SusHi twice and in these two calls
performs a “CP-even” calculation for σe

NLO and a “CP-odd” calculation for σo
NLO according to

Eq. (37). Thus, the total gluon-fusion cross section is the sum of the two parts

σNkLO(pp→ ha +X) = σe
NkLO

(pp→ ha +X) + σo
NkLO

(pp→ ha +X) . (38)

We obtain the result beyond LO QCD through8

σe
NkLO

= σe
NLO(1 + δlf

EW) +
(
σt,e
NkLO, EFT

− σt,eNLO, EFT

)
(39)

σo
NkLO

= σo
NLO +

(
σt,o
NkLO, EFT

− σt,oNLO, EFT

)
, (40)

7The name is inspired by the mixing of the Higgs bosons. SusHiMi can be obtained upon request.
8These formulas equal the master formulas employed in previous SusHi releases [20,21].
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whereas σ
e/o
LO was specified in Section 3, and k ∈ {1, 2, 3}. The CP-odd component σt,o

NkLO, EFT

is only implemented up to k = 2 (see below). In the previous formulas σ
e/o
NLO are the NLO cross

sections including real contributions and the interpolated NLO virtual corrections as discussed
in Section 3. They employ the simplified ∆b resummation according to Eq. (7), named ∆b1.
σt,e
NkLO, EFT

and σt,o
NkLO, EFT

are cross sections including the top-quark contribution only. They

are based on a K-factor calculated in the EFT approach of an infinitely heavy top-quark obtained
for a SM Higgs boson H and a pseudoscalar A (in a 2HDM with tanβ = 1) with mass mha ,
respectively. This K-factor is subsequently reweighted with the exact LO cross section. For this
purpose the employed LO cross sections σt,eLO and σt,oLO are again evaluated as discussed in Section 3
with full Ẑ factors, but include only the top-quark contribution. They are multiplied with the
K-factors in σt,e

NkLO, EFT
and σt,o

NkLO, EFT
, respectively. Due to their small numerical impact in

σ
t,e/o

NkLO, EFT
we do not take into account top-quark mass effects beyond NLO even though they

are implemented in SusHi. An alternative approach, which is not discussed in this paper but
can be implemented in SusHiMi, is to include the relative couplings gφt and the Ẑ factors into
the complex-valued Wilson coefficients of the EFT directly.

As already mentioned N3LO QCD corrections are only taken into account for the CP-even com-
ponent of the light Higgs boson, which allows us to match the precision of the light Higgs boson
cross section in the SM employed in up-to-date predictions. This is motivated by the fact that
the light Higgs boson that is identified with the observed signal at 125 GeV is usually assumed to
have a dominant CP-even component, which is also the case in the scenarios which are considered
in our numerical discussion. For the CP-odd component of the light Higgs and the heavy Higgs
bosons we employ the NNLO corrections for the top-quark induced contributions to gluon fusion
in the effective theory of a heavy top-quark, i.e. we do not take into account top-quark mass
effects beyond NLO, but only factor out the LO QCD cross sections σt,eLO and σt,oLO. The strategy
to employ the EFT result at NNLO beyond the top-quark mass threshold can be justified from
the comparison of NLO corrections, which are known in the EFT approach and exactly with
full quark-mass dependence and agree also beyond the top-quark mass threshold. On the other
hand, the N3LO QCD corrections that were obtained for the top-quark contribution are only
known in the EFT approach and for an expansion around the threshold of Higgs production at
x = m2

ha
/s → 1, which we can take into account up to O(1 − x)16. Since the combination of

the EFT approach and the threshold expansion becomes questionable above the top-quark mass
threshold, we apply N3LO QCD corrections only for the CP-even component of the light Higgs
boson and thus match the precision of the SM prediction. The electroweak correction factor δlf

EW

multiplied in the “CP-even” run is obtained from Eq. (32).

As shown in Fig. 2 we call SusHiMi three times in order to take into account the different
possibilities of the resummation of tanβ enhanced sbottom effects in the LO QCD contributions.
We add the results as follows

σ(pp→ ha +X) = σ∆b1

NkLO
+ σ∆b2

LO − σ∆b1
LO , (41)

where in the NkLO QCD cross section following Eq. (38) the simplified resummation according
to Eq. (7) is employed, indicated through the index ∆b1. We add and subtract the LO QCD

cross section using the full resummation according to Eq. (5), named ∆b2, and the simplified
resummation, respectively. As we will demonstrate the differences between the two versions of
resummation are small, which can partially be understood from a possible rephasing of complex
Yukawa couplings by a redefinition of all (s)quark fields (see the discussion in Section 2.1).
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SusHi also allows one to obtain differential cross sections as a function of the transverse mo-
mentum or the (pseudo-)rapidity of the Higgs boson. These effects can be studied also in the
MSSM with complex parameters. In the case of non-vanishing transverse momentum, which is
only possible through additional radiation, i.e. real corrections, the precision for massive quark
contributions in extended Higgs sectors is currently limited to the LO prediction [114,115]. The
predictions of the pT distributions in SusHiMi have been obtained from the LO contributions
with arbitrary complex parameters, and in contrast to the total cross sections are therefore not
affected by additional interpolation uncertainties from higher orders in comparison to the case
of the MSSM with real parameters.

Higgs production through bottom-quark annihilation is calculated in SusHi for a SM Higgs boson
at NNLO QCD. In the employed five-flavour scheme, where the bottom quarks are understood as
partons, the result equals the cross section of a pseudoscalar A (in a 2HDM with tanβ = 1). For
the production of the Higgs boson ha in the MSSM with complex parameters, as implemented in
SusHiMi, the results for the SM Higgs boson are reweighted to the MSSM with |Ẑahghb +ẐaHg

H
b |2+

|ẐaAgAb |2, which includes tanβ-enhanced squark effects through ∆b according to Eq. (7). This

procedure equals the application of a K-factor on the full LO cross section including Ẑ factors.
In case of non-equal left- and right-handed couplings gbL and gbR due to the application of the
full resummation in Eq. (5), the SM cross section has to be multiplied with

|Ẑah(ghbL + ghbR) + ẐaH(gHbL + gHbR) + iẐaA(gAbL − gAbR)|2

+ |iẐah(ghbR − ghbL) + iẐaH(gHbR − gHbL) + ẐaA(gAbL + gAbR)|2 . (42)

Though, due to the similarity of both approaches we only discuss Higgs production through
bottom-quark annihilation with simplified ∆b resummation.

5 Numerical results

For our numerical analysis we slightly modify two standard MSSM scenarios introduced in Ref.
[116], namely the mmod+

h and the light-stop scenario. The light-stop inspired scenario that we
use for our numerical analysis is defined as follows

M1 = 340 GeV, M2 = µ = 400 GeV, M3 = 1.5 TeV

Xt = Xb = Xτ = 1.0 TeV, Aq = Al = 0 (43)

m̃Q2 = m̃L = 1 TeV, m̃Q3 = 0.5 TeV ,

where the modified values of M1 and M2 have been chosen to avoid direct bounds from stop
searches obtained in LHC Run I (assuming R-parity conservation).9 For the mmod+

h -inspired
scenario we choose for vanishing phases of the complex parameters:

M1 = 250 GeV, M2 = 500 GeV, M3 = 1.5 TeV

Xt = Xb = Xτ = 1.5 TeV, Aq = Al = 0 (44)

µ = m̃Q = m̃L = 1 TeV .

We use for the SM parameters the values mOS
t = 173.20 GeV, mMS

b (mb) = 4.16 GeV, mOS
b (mb) =

4.75 GeV and αs(MZ) = 0.119. The depicted on-shell bottom-quark mass is used as internal

9Indirect bounds from the effects of stops on the measured Higgs rates are much weaker, see e.g. Ref. [117]

16



mass for propagators and for the bottom-quark Yukawa coupling in the gluon-fusion process.
The depicted value of αs is only used for the evaluations of FeynHiggs, for the cross sections
the value of αs associated with the employed PDF set is taken. We employ the MMHT2014

PDF sets at LO, NLO and NNLO QCD [118]. The central choice for the renormalisation and
factorisation scales µ0

R and µ0
F, respectively, is (µ0

R, µ
0
F) = (mha/2,mha/2) for gluon fusion and

(µ0
R, µ

0
F) = (mha ,mha/4) for bottom-quark annihilation. More details are described in Section 6.

Whereas for the mmod+
h -inspired scenario we pick heavy Higgs bosons through mH± = 900 GeV

with tanβ = 10 and 40 for the study of ∆b effects, we choose mH± = 500 GeV with tanβ = 16
for the light-stop inspired scenario. A detailed discussion of squark effects for the Higgs boson
cross sections in the light-stop scenario can also be found in Ref. [119]. For the chosen parameter
point the squark effects are sizeable, both for the light Higgs boson and in particular also for
the heavy CP-even Higgs boson, where they reduce the gluon-fusion cross section by about
∼ 90%. The Higgs boson masses and the Ẑ factors are obtained from FeynHiggs 2.11.2. The
cross sections are evaluated with SusHiMi, which is based on the latest release of SusHi, version
1.6.1. We will mostly focus on the gluon-fusion cross section and present the bottom-quark
annihilation cross section only for the scenario with tanβ = 40.

For the parameter points associated with the mentioned scenarios in the MSSM with real pa-
rameters we vary the phases of At = |At|eiφAt and M3 = mg̃e

iφM3 leaving the absolute values
constant in order to address various aspects in the phenomenology of Higgs boson production.
The phases of Ab and µ do not introduce new phenomenological features, and we do not display
results for the variation of those phases. A variation of the phase of Xt leads to very similar
cross sections for all Higgs bosons as observed for the variation of the phase of At. This can
be understood from the fact that we choose not too large values of µ and tanβ ≥ 10, and so
Xt ≈ At. Note that the stop masses are constant as a function of the phase of Xt, if the absolute
value of Xt is fixed. Before we proceed we want to briefly discuss experimental constraints on
the phases: The most restrictive constraints on the phases arise from bounds on the electric
dipole moments (EDMs) of the electron and the neutron, see Refs. [120–122] and references
therein. EDMs from heavy quarks [123,124] and the deuteron [125] also have an impact. MSSM

contributions to these EDMs already contribute at the one-loop level and primarily involve the
first two generations of sleptons and squarks. Thus, EDMs lead to severe constraints on the
phases of Aq for q ∈ {u, d, s, c} and Al for l ∈ {e, µ}. Using the convention that the phase of the
wino soft-breaking mass M2 is rotated away, one finds tight constraints on the phase of µ [126].
On the other hand constraints on the phases of the third-generation trilinear couplings are sig-
nificantly weaker. We refer the reader to Ref. [127] for a review. It should be noted in this
context that in particular the variation of At affects the value of the stop masses. Additionally,
the Higgs boson masses are a function of the phases of the complex parameters. The impact is
particularly pronounced for the mass of the light Higgs boson. In order to factor out the impact
of phase space effects, we normalise the prediction for the cross section of the light Higgs boson
in the MSSM to the cross section of a SM Higgs boson with identical mass as the light Higgs
mass eigenstate mh1 . In case of the heavy Higgs bosons for which the phase space effects are
much less severe, we stick to the inclusive cross sections without such a normalisation.

Subsequently we discuss three aspects: We start with a discussion of squark effects for the Higgs
boson production cross sections. They are of relevance both for the heavy Higgs bosons and
the light Higgs boson. Secondly, we focus on the admixture of the two heavy Higgs bosons
(described through Ẑ factors) and its effect on production cross sections. Lastly we discuss
∆b corrections in the context of the mmod+

h -inspired scenario with large tanβ, for which the
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bottom-quark annihilation process for the heavy Higgs bosons is relevant as well.

Note that given the large admixture of the two heavy Higgs bosons in the MSSM with complex
parameters, interference effects in the full processes of production and decay can be large.
However, we restrict our discussion in the present paper to Higgs boson production. The results
for the cross sections obtained in our paper can be employed in a generalised narrow-width
approximation as described in Ref. [37] in order to incorporate interference effects. We will
address this issue elsewhere.

The prediction for Higgs boson cross sections is affected by various theoretical uncertainties,
which we discuss in detail in Section 6. In order to demonstrate the improvement in precision
through the inclusion of higher-order corrections, all subsequent figures which show the LO

cross section and our best prediction cross section according to Eq. (38) include renormalisation
and factorisation scale uncertainties. The procedure for obtaining these scale uncertainties is
outlined in Section 6.

5.1 Squark contributions in the light-stop inspired scenario

We start with a discussion of squark effects to the Higgs boson cross section σ(gg → hi) for all
three Higgs bosons hi in the context of the light-stop inspired scenario with mH± = 500 GeV
and tanβ = 16. The variation of the light Higgs boson mass mh1 as well as the stop masses is
depicted in Fig. 3 (a) as a function of φAt . The light Higgs mass in this scenario may appear
to be too light to be compatible with the signal observed at the LHC, however we regard it as
sufficiently close in view of the facts that our discussion should demonstrate phenomenological
effects only and that on the other hand there are still sizeable theoretical uncertainties in the
MSSM prediction for the light Higgs boson mass. The lightest stop mass has its minimum at
around 293 GeV. For the heavy Higgs bosons with masses between 492 and 494 GeV, which are
not shown in the figures, the NLO squark-gluino contributions [102–104] which assume heavy
squarks and gluinos are thus well applicable. The variation of the heavy Higgs boson masses
as a function of the phases of φAt and φM3 turns out to be small, namely within 0.6 GeV. Due
to the strong admixture of the left- and right-handed stops through a large value of At, also a
phase dependence of the stop masses is observed. We checked that if we instead choose a phase
for Xt keeping |Xt| constant, we obtain constant stop masses if the phase of Xt is varied.

Fig. 3 (b) shows the production cross section through gluon fusion for the light Higgs boson h1.
The black, dot-dashed curve depicts the cross section with top-quark and bottom-quark con-
tributions and electroweak corrections in the production amplitudes only, i.e. in the formulas
of Section 4 we omit all squark contributions which enter either directly or through ∆b. Note
however that squark contributions are always part of the Ẑ factors. Due to the decoupling
with large values of mH± in our scenarios the light Higgs h1 has mostly SM-like couplings to
quarks and gauge bosons. Thus, thanks to the inclusion of N3LO QCD contributions for the top-
quark induced contribution, our prediction of the gluon fusion cross section omitting the squark
contributions (black, dot-dashed curve in Fig. 3 (b)) is very close to the one for the SM Higgs
boson with the same mass as provided by the LHC Higgs Cross Section Working Group [6,128].
The inclusion of squark contributions explicitly and through ∆b resummation lowers the gluon-
fusion cross section by about 20%, as can be inferred from the blue, solid curve, which is shown
together with its renormalisation and factorisation scale uncertainty, see Section 6. For com-
pleteness we also show the LO cross section calculated according to Eq. (24) including squark
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Figure 3: (a) Mass of h1 and stop masses in GeV as a function of φAt ; (b) LO (red) and best
prediction for the gluon-fusion cross section (blue) for the light Higgs h1 in pb as a function
of φAt . The results are shown for the light-stop inspired scenario as specified in Eq. (43). The
black, dot-dashed curve depicts the best prediction cross section without squark contributions
(except through Ẑ factors). The depicted uncertainties are scale uncertainties. In the lower
panel we normalise to the cross section of a SM Higgs boson with the same mass mh1 .

effects as the red curve. It is apparent that the scale uncertainties are significantly reduced from
LO QCD to our best prediction cross section calculated according to Eq. (38). Fig. 3 (b) also
includes the cross section for h1 normalised to the cross section of a SM Higgs boson with the
same mass. Here the ∼ 20% reduction due to squark effects is apparent once again, whereas
the quark-induced cross section shows the well-known decoupling behaviour. Not shown in the
figures are the following effects, which we state here for completeness: The variation of φM3

leads to a very similar picture, even though the light Higgs mass variation is not as pronounced
(2 GeV) and the stop masses are unaffected. Moreover, in the comparison of the simplified and
the full resummation of ∆b contributions in the LO gluon-fusion cross section of h1 we observe a
well-known behaviour, namely the simplified resummation of Eq. (7) does not yield a decoupled
bottom-quark Yukawa coupling, whereas the full resummation of Eq. (5) does.

In Fig. 4 (a) and (b) we show the gluon-fusion cross sections of the heavy Higgs bosons h2 and
h3, respectively, as a function of φAt . The colour coding is identical to Fig. 3 except for the
fact that we show the K-factor of our best prediction for the cross section with respect to the
LO cross section, σ/σLO, rather than a cross section normalised to the SM Higgs boson cross
section. In fact, the heavy Higgs masses change only slightly as a function of the phase φAt ,
and therefore the associated phase space effect is small. For vanishing phase φAt = 0 it is
known that squark effects are huge and reduce the cross section by ∼ 89% (h2) and ∼ 22%
(h3) [119]. These squark effects are strongly dependent on the phase φAt and induce a large
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Figure 4: LO (red) and best prediction for the gluon-fusion cross section (blue) for (a) h2 and
(b) h3 in fb as a function of φAt . The results are shown for the light-stop inspired scenario
as specified in Eq. (43). The black, dot-dashed curve depicts the best prediction cross section
without squark contributions (except through Ẑ factors). The depicted uncertainties are scale
uncertainties. In the lower panel we show the K-factor σ/σLO.

positive correction at phase φAt = π in case of h2. For h3 the effects are not as pronounced,
but still sizeable. The K-factor for both processes gg → h2 and gg → h3 remains within [1, 1.6],
i.e. higher-order corrections mainly follow the phase dependence of the LO cross section. The
dependence of the K-factor on φAt follows the black, dot-dashed curve, which shows the cross
section with quark contributions only. The significant dependence of the cross section where
only quark contributions are included on the phase φAt is induced by the admixture of the two
Higgs bosons through Ẑ factors. We will discuss this feature in detail for the mmod+

h -inspired
scenario in Section 5.2.

The phase dependence on φM3 is less pronounced. We show the corresponding cross sections for
the two heavy Higgs bosons h2 and h3 in Fig. 5. As in previous figures we observe a significant
reduction in the scale dependence from LO QCD to our best prediction for the cross section.
The inclusion of squark and gluino contributions through the Ẑ factors and through ∆b induces
a dependence on the gluino phase already for the LO cross section. The almost flat black dot-
dashed curves show the cross section with quark contributions only, and any variation with φM3

is an effect of the Ẑ factors, which in this case is negligible since φM3 only enters at the two-loop
level. The K-factor, which takes into account our interpolated NLO virtual corrections, only
shows a relatively mild dependence on the phase. We will discuss the interpolation uncertainty
for this scenario in Section 6, since we obtain the largest relative interpolation uncertainty in
the cross section variation with phases for the interpolation of the gluino phase φM3 .
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Figure 5: LO (red) and best prediction for the gluon-fusion cross section (blue) for (a) h2 and
(b) h3 in fb as a function of φM3 . The results are shown for the light-stop inspired scenario
as specified in Eq. (43). The black, dot-dashed curve depicts the best prediction cross section
without squark contributions (except through Ẑ factors). The depicted uncertainties are scale
uncertainties. In the lower panel we show the K-factor σ/σLO.

5.2 Admixture of Higgs bosons in the mmod+
h -inspired scenario

In this subsection we discuss the mmod+
h -inspired scenario with tanβ = 10 and mH± = 900 GeV.

Since the squark masses are at the TeV level in this scenario, the numerical effect of the squark
loops in the gluon fusion vertex contributions is rather small for the production cross section of
the light Higgs boson h1. We do not discuss the results for h1 in this section. The results for
the two heavy Higgs bosons are displayed in Fig. 6. The effects from squark loops are at the
level of about ±20% in this case. The considered scenario is typical for the decoupling region
of supersymmetric theories, where a light SM-like Higgs boson (that is interpreted as the signal
observed at about 125 GeV) is accompanied by additional heavy Higgs bosons that are nearly
mass-degenerate. In the general case where the possibility of CP-violating interactions is taken
into account, there can be a large mixing between the CP-even and CP-odd neutral Higgs states.
This feature is clearly visible in Fig. 6. The dependence on the phase φAt is seen to be closely
correlated to the mixing character of the two neutral heavy Higgs bosons.

Fig. 6 (a) depicts the masses of the two heavy Higgs bosons h2 and h3 as a function of φAt
together with the CP-odd character of h2 and h3, being defined as |ẐaA|2. For illustration here
and in the following we call the mass eigenstates h2 and h3 either he or ho, depending on their
mixing character: if |ẐaA|2 & 1/2 the mass eigenstate ha is called ho, otherwise it is called he.
It can be seen in Fig. 6 (b) and (c) that the behaviour of the cross sections as a function of φAt
closely follows the variation in the CP-even and CP-odd character of the Higgs states. A similar
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Figure 6: (a) Masses of h2 and h3 in GeV as well as CP-odd character |ẐaA|2 as a function of φAt
in the mmod+

h -inspired scenario with tanβ = 10. The solid and dashed curves depict regions in
φAt where h2 and h3 are predominantly CP-even (he) or odd (ho), respectively, corresponding to
|ẐaA|2 being below or above 0.5 as shown in the lower panel. (b,c) LO (red) and best prediction
for the gluon-fusion cross section (blue) for (b) h2 and (c) h3 in fb as a function of φAt in the
same scenario. The black, dot-dashed curve depicts the best prediction for the cross section
without squark contributions (except through Ẑ factors). In the lower panel we show the K-
factor σ/σLO. The depicted uncertainties are scale uncertainties.

effect was already apparent in the top- and bottom-quark induced cross sections depicted in
the light-stop inspired scenario, see Fig. 4, however there the effects of squark contributions are
dominant. Also in this case our best prediction for the cross section is significantly reduced
in comparison with the prediction in LO QCD. The variation of the K-factors between about
1.2 and 1.5 with the phase φAt also follows the modification of the mixing character of the two
neutral heavy Higgs bosons.

Since the two heavy Higgs bosons are nearly mass degenerate, it may not be possible in such
a case to experimentally resolve the two Higgs bosons as separate signals. Rather than the
individual cross sections times their respective branching ratios, the experimentally measurable
quantity then consists of the sum of the cross sections of the two Higgs states times their re-
spective branching ratios together with the interference contribution involving the two Higgs
states. The latter can be particularly important if the mass difference between the two Higgs
states is smaller than the sum of their total widths [37]. While we defer the incorporation of
such interference effects into the prediction for the production and decay process to a forthcom-
ing publication, one can already infer from the plots of Fig. 6 (b) and (c) that in the overall
contribution there will be sizeable cancellations between the phase dependencies of the separate
contributions.

5.3 ∆b corrections in the mmod+
h -inspired scenario

We finally discuss the impact of ∆b effects, which we investigate for the two heavy Higgs bosons
in the mmod+

h -inspired scenario with tanβ = 40. In this scenario the admixture between the two
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Figure 7: Masses of h2 and h3 in GeV and CP-odd character as a function of (a) φAt and (b)
φM3 in the mmod+

h -inspired scenario with tanβ = 40. As in Fig. 6 (a), the solid and dashed
curves refer to he and ho, respectively.

heavy Higgs bosons is again sizeable both as a function of φAt and as a function of φM3 . This
even leads to mass crossings as seen in Fig. 7. It is therefore convenient to discuss the results
in terms of the predominantly CP-even mass eigenstate he and the predominantly CP-odd mass
eigenstate ho, as defined in Section 5.2, as for those states a smooth behaviour of the cross
section as function of the phases is obtained. The masses of the two heavy Higgs bosons and
their CP-character (defining ho and he) are shown in Fig. 7 as a function of φAt and φM3 . One
can see that the states h2 and h3 drastically change their CP character upon variation of the
phases φAt and φM3 , while on the other hand the state he is almost purely CP-even and ho is
almost purely CP-odd for the whole range of phase values. It should be kept in mind in this
context that |ẐaA|2 arises from a non-unitary matrix and can therefore have values above 1. For
vanishing phases the mass eigenstate h2 corresponds to he and h3 to ho.

In the following we show results for the predominantly CP-even mass eigenstate he. The ob-
servations for ho are very similar and are not shown here, we will only add comments where
appropriate. In Fig. 8 we show the gluon-fusion cross section as a function of the phases φAt
and φM3 . In both cases the behaviour for the full prediction, including the squark contributions,
is dominated by ∆b corrections. For vanishing phases those corrections significantly reduce the
cross sections compared to the case where only quark contributions are taken into account. For
phase values around π, however, the ∆b corrections can also give rise to a significant enhance-
ment of the cross section. In particular, for φM3 the quantity ∆b changes sign between φM3 = 0
and φM3 = π, such that the bottom-Yukawa coupling is suppressed for small values of φM3 and
enhanced for φM3 values close to π as a consequence of the resummation of the ∆b corrections.
The reduction of the scale uncertainties from LO QCD to our best prediction for the cross section
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Figure 8: LO (red) and best prediction gluon-fusion cross section (blue) for he in fb as a function
of (a) φAt and (b) φM3 in the mmod+

h -inspired scenario with tanβ = 40. The black dot-dashed

curves depict the best prediction cross section without squark contributions (except through Ẑ
factors). In the lower panel we show the K-factor σ/σLO. The depicted uncertainties are scale
uncertainties.

is similar as in the previous plots. The K-factors in the lower panel show that the dependence
of the NLO cross sections on the phases φAt and φM3 follows a similar trend as the LO cross
section. In the plot on the right, the asymmetric K-factor dependence on φM3 is related to the
direct dependence of ∆b on the phase φM3 .

In Fig. 9 we separately analyse the squark contributions for the LO cross section, i.e. the predic-
tion omitting the squark loop contributions (black dot-dashed curves) is compared with the ones
where first the pure LO squark contributions are added (depicted in cyan), and then the resum-
mation of the ∆b contributions to the bottom-quark Yukawa coupling is taken into account. For
the latter both the results for the full (∆b2, blue) and the simplified (∆b1, red) resummation are
shown. While the the pure LO squark contributions are seen to have a moderate effect, it can
be seen that the incorporation of the resummation of the ∆b contribution leads to a significant
enhancement of the squark loop effects. We furthermore confirm that for the heavy neutral
Higgs bosons considered here the simplified resummation approximates the full resummation of
the ∆b contribution very well. The curves corresponding to ∆b2 and ∆b1 hardly differ from each
other both for the variation of φAt and φM3 . As before all curves include the same Ẑ factors
obtained from FeynHiggs. The results for ho, which are not shown here, are qualitatively very
similar. The LO squark contributions are less relevant for the ho cross section, since those con-
tributions are absent in the MSSM with real parameters. We also note that the curves for ho
follow a similar behaviour as the ones for he, which implies that there are no large cancellations
expected in the sum of the cross sections for the two heavy Higgs bosons times their respective
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Figure 9: Effect of ∆b contributions on the LO cross sections of he as a function of (a) φAt
and (b) φM3 in the mmod+

h -inspired scenario with tanβ = 40. The black dot-dashed curves

depict the prediction without squark contributions (except through Ẑ factors), while the cyan
lines correspond to the prediction where the squark loop contributions at the one-loop level
are included. In the red (blue) curves furthermore the simplified (full) resummation of the ∆b

contributions is included.

branching ratios. Thus, the phases entering ∆b could potentially lead to observable effects in
the production of the two heavy Higgs bosons even if the two states cannot be experimentally
resolved as separate signals.

Having discussed the three different sources for CP-violating effects relevant for Higgs boson
production through gluon fusion in the MSSM — squark loop contributions, admixtures through
Ẑ factors and resummation of ∆b contributions — for completeness we also briefly discuss the
bottom-quark annihilation cross section for the mmod+

h -inspired scenario with tanβ = 40. The
corresponding cross section is shown in Fig. 10 as a function of φAt and φM3 . For such a
large value of tanβ this cross section exceeds the gluon-fusion cross section by far. It shows
a very significant dependence on the phases φAt and φM3 , which is mainly induced by the
∆b contribution.

6 Remaining theoretical uncertainties

In the previous section we analysed our cross section predictions regarding CP-violating effects
entering via squark loop contributions, Ẑ factors and ∆b contributions. Therein, we included
renormalisation and factorisation scale uncertainties, which as expected are reduced upon in-
clusion of higher-order corrections. However, the cross section predictions are also affected by
other relevant theoretical uncertainties, which we want to discuss in detail in this section.

Some of the theoretical uncertainties of cross sections in the MSSM with complex parameters are
very similar to the ones in the MSSM with real parameters as discussed in Ref. [119]. Therefore,
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Figure 10: Bottom-quark annihilation cross section for he in fb as a function of (a) φAt and
(b) φM3 in the mmod+

h -inspired scenario with tanβ = 40. The depicted uncertainties are scale
uncertainties.

we can directly transfer the discussion of PDF+αs uncertainties as well as the uncertainty as-
sociated with the renormalisation prescription for the bottom-quark Yukawa coupling from the
case of the MSSM with real parameters:

• PDF+αs uncertainties: The fitted parton distribution functions (PDF) and the associated
value of αs induce an uncertainty in the prediction of the gluon-fusion cross section and, in
particular, also the bottom-quark annihilation cross section. In our calculation we employ
the MMHT2014 PDF sets at LO, NLO and NNLO [118], which can be used for both gluon
fusion and bottom-quark annihilation. In Refs. [23, 119] it was observed that despite
the effects of squarks in supersymmetric models, the PDF+αs uncertainties are mostly a
function of the Higgs boson mass mha . We will therefore not discuss them in more detail,
since – similar to the prescription for MSSM Higgs boson cross sections by the LHC Higgs
Cross Section Working Group [6] – relative uncertainties can be taken over from tabulated
relative uncertainties obtained for the SM Higgs boson or a pseudoscalar (in a 2HDM with
tanβ = 1) as a function of its mass. For Higgs masses in the range between 50 GeV and
1 TeV the typical size of PDF+αs uncertainties for gluon fusion is ±(3 − 5)% following
the prescription of Ref. [129]. They increase up to ±10% for Higgs masses up to 2 TeV.
For bottom-quark annihilation they are in the range ±(3− 8)% for Higgs masses between
50 GeV and 1 TeV and up to ±16% for Higgs masses below 2 TeV.

• Renormalisation of the bottom-quark mass and definition of the bottom Yukawa coupling:
In our calculation the bottom-quark mass is renormalised on-shell, and the bottom-Yukawa
coupling is obtained from the bottom-quark mass as described in Section 2.1. The renor-
malisation of the bottom-quark mass and the freedom in the definition of the bottom-
Yukawa coupling are known to have a sizeable numerical impact on the cross section
predictions. This is in particular the case for large values of tanβ where the bottom-
Yukawa coupling of the heavy Higgs bosons is significantly enhanced and the top-quark
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Yukawa coupling is suppressed. On the other hand, in these regions of parameter space
bottom-quark annihilation is the dominant process, for which there is less ambiguity re-
garding an appropriate choice for the renormalisation scale. The described uncertainties
in the MSSM with complex parameters are analogous to the case of real parameters. We
therefore refer to the discussion in Ref. [119] and references therein for further details.

We neglect approximate NNLO stop-quark contributions and accordingly the uncertainty as-
sociated with the approximation of the involved Wilson coefficients, which was discussed in
Ref. [119]. The impact of the NNLO stop-quark contributions for the case of the MSSM with
real parameters can be compared with our estimate for the renormalisation and factorisation
scale uncertainty of our calculation. As an example, the NNLO stop-quark contributions lower
the inclusive cross section for the light Higgs boson by about 2 pb for zero phases in the light-
stop inspired scenario, which is at the lower edge of the scale uncertainty depicted in Fig. 3 (b).
Other uncertainties discussed in Ref. [119] are renormalisation and factorisation scale uncertain-
ties and an uncertainty related to higher-order contributions to ∆b. Moreover, we add another
uncertainty related to the performed interpolation of supersymmetric NLO QCD contributions.
We discuss in the following our estimates for the three previously mentioned uncertainties:

• We obtain the renormalisation and factorisation scale uncertainty as follows: The central
scale choice is (µ0

R, µ
0
F) = (mha/2,mha/2) for gluon fusion and (µ0

R, µ
0
F) = (mha ,mha/4) for

bottom-quark annihilation. We obtain the scale uncertainty by taking the maximal devia-
tion from the central scale choice ∆σ obtained from the additional scale choices (µR, µF) ∈
{(2µ0

R, 2µ
0
F), (2µ0

R, µ
0
F), (µ0

R, 2µ
0
F), (µ0

R, µ
0
F/2), (µ0

R/2, µ
0
F), (µ0

R/2, µ
0
F/2)}. We perform this

procedure individually for all three cross sections in Eq. (41) and then obtain the overall
absolute uncertainty through

∆σscale =

√(
∆σ∆b1

NkLO

)2
+
(

∆σ∆b2
LO −∆σ∆b1

LO

)2
, (45)

where we assume the two LO cross sections to be fully correlated. The uncertainty bands
that we have displayed in the plots shown above correspond to the cross section range
covered by σ ±∆σscale.

• In order to display the propagation of an uncertainty arising from higher-order contri-
butions to ∆b to our cross section calculation, we vary the value of ∆b obtained from
FeynHiggs by ±10%. This variation by ±10% roughly corresponds to the effect of a vari-
ation of the renormalisation scales, see the discussion in Ref. [119]. We label the obtained
uncertainty as ∆σresum and assign an uncertainty band of σ ±∆σresum.

• The employed interpolation for the two-loop virtual squark-gluino contributions following
Eq. (35) leads to a further uncertainty. A conservative estimate for it can be obtained as
follows: We determine the cross section σ(φz) following Eq. (38) not only for the correct
phase φz in Eq. (35), but also leave the phase within Eq. (35) constant, i.e. fixed to 0 and
π. We call the obtained cross sections σ(0) and σ(π). For each value of φz we take the
difference ∆σint = sin2(φz)|σ(0) − σ(π)|/2. It is reweighted with sin2(φz), since we know
that our result is correct at phases 0 and π. The obtained uncertainty band is given by
σ ±∆σint.
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Figure 11: Renormalisation and factorisation scale uncertainties ∆σscale (blue) and interpolation
uncertainties ∆σint (green) for the gluon-fusion cross section of (a) h2 and (b) h3 as a function
of φM3 in the light-stop inspired scenario. In the lower panel the upper and lower edge of the
band of the cross section prediction with the assigned interpolation uncertainty is normalised to
the cross section without this uncertainty.

In the following we display the effects of the estimated uncertainties for certain scenarios, where
we choose the displayed scenarios and the displayed cross sections such that the effect of the
uncertainties is largest. While the scale uncertainties were included in all previous figures for
the LO prediction as well as for our best prediction already, we will discuss the interpolation
uncertainty for the light-stop inspired scenario with tanβ = 16 and the resummation uncertainty
for the mmod+

h -inspired scenario with tanβ = 40.

Fig. 11 shows the renormalisation and factorisation scale uncertainties ∆σscale as before and in
addition the above described interpolation uncertainty ∆σint, which in case of the variation of
φM3 can be substantial. As can be seen in Fig. 11, the interpolation uncertainty obtained from
our conservative estimate can in this scenario even exceed the scale uncertainty for the gluon-
fusion cross section of h2. It should be noted that this is an extreme case, while the interpolation
uncertainty, which is an NLO effect related to the squark and gluino loop contributions, remains
small for the other previously described scenarios (which we do not show here explicitly). This is
simply a consequence of the fact that the relative impact of the squark and gluino contributions
in the other scenarios is much smaller than in the light-stop inspired scenario. The interpolation
uncertainty for the gluon-fusion cross section of h3 in Fig. 11 is much less pronounced than for
h2, since as discussed above the squark loop corrections are significantly smaller in this case and
would vanish if h3 were a pure CP-odd state. The behaviour in the lower panels of Fig. 11 displays
the fact that by construction the assigned interpolation uncertainty vanishes for the phases 0 and
π, where the interpolated result in the MSSM with complex parameters merges the known result
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Figure 12: Renormalisation and factorisation scale uncertainties ∆σscale (blue) and resummation
uncertainties ∆σresum (green) for the gluon-fusion cross section of he as a function of (a) φAt and
(b) φM3 in the mmod+

h -inspired scenario for tanβ = 40. In the lower panel the upper and lower
edge of the band of the cross section prediction with the assigned resummation uncertainty is
normalised to the cross section without this uncertainty.

of the MSSM with real parameters. For the variation of φAt the LO cross section incorporating
squark contributions already includes the dominant effect on the cross section, such that the
uncertainty due to the interpolated NLO contributions is also less pronounced than in case of
the variation of φM3 .

The described ∆b uncertainties are depicted in Fig. 12. Since ∆b crosses 0 as a function of
φM3 twice, the uncertainty that we have associated to it according to the prescription discussed
above also vanishes there, as can be seen in the lower panel of Fig. 12(b). Even for the large
value of tanβ chosen here the assigned ∆b uncertainty of ±10% is much smaller than the scale
uncertainty of the displayed cross sections. Despite the different behaviour with the phases
φAt and φM3 displayed in the lower panel of Fig. 12 the qualitative effect of the resummation
uncertainties on the Higgs boson production cross sections is nevertheless rather similar. The
latter is also true for the bottom-quark annihilation cross section, which is not depicted here.
The resummation uncertainties are of most relevance for large values of tanβ, where the cross
section of bottom-quark annihilation exceeds the gluon-fusion cross section.
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7 Conclusions

In this paper we have presented theoretical predictions for inclusive cross sections for neutral
Higgs boson production via gluon fusion and bottom-quark annihilation in the MSSM with
complex parameters, and demonstrated the relevance of the CP-violating phases on these cross
sections.

The cross section predictions for the gluon-fusion process at leading-order are based on an ex-
plicit calculation taking into account the dependence on all complex parameters in the MSSM,
and the complete form of the analytical formulae for the general CP-violating case including
Higgs mixing has been presented in the literature for the first time. The wave function normal-
isation factors arising from the (3× 3)-mixing of the lowest-order mass eigenstates of the Higgs
bosons {h,H,A} into the loop-corrected mass eigenstates {h1, h2, h3} have been described with
full propagator corrections using the self-energies of the neutral Higgs bosons as provided by
FeynHiggs. Furthermore, the LO predictions for the gluon-fusion process in the MSSM with
complex parameters deviate from those of the MSSM with real parameters due to non-zero
couplings of the squarks to the pseudoscalar A and potentially different left- and right-handed
bottom-Yukawa couplings arising from the resummation of tanβ-enhanced sbottom contribu-
tions in ∆b. We have supplemented the LO computation of the cross section by higher-order
contributions: using for the treatment of the higher-order corrections a simplified version of
the ∆b resummation we have included the full massive top- and bottom quark contributions
at NLO QCD and have interpolated the NLO SUSY QCD corrections from the amplitudes in
the MSSM with real parameters. We have thoroughly discussed the uncertainties involved in
using such an interpolation. The interpolation uncertainty at NLO, which is most relevant in
scenarios where the squarks and the gluino are relatively light in view of the present limits from
the LHC searches, could be avoided if an explicit result for the squark-gluino contributions at
NLO QCD in the MSSM becomes available for the general case of complex parameters. For the
top-quark contribution in the effective theory of a heavy top-quark we have added NNLO QCD

contributions for all Higgs bosons, and N3LO QCD contributions in an expansion around the
threshold of Higgs production for the CP-even component of the light Higgs boson h1 to match
the precision of the predictions for the SM Higgs boson. Electroweak effects, which include
two-loop contributions with couplings of the heavy gauge bosons to the CP-even component of
the Higgs bosons mediated by light quarks, have been added to the CP-even component of the
gluon-fusion cross section.

The results presented in this paper are currently the state of the art for neutral Higgs produc-
tion in the MSSM with complex parameters. Our calculations have been implemented in an
extension of the code SusHi called SusHiMi, which is linked to FeynHiggs. SusHiMi is available
upon request. Using SusHiMi, we have investigated the phenomenological effects of CP-violating
phases on the production of Higgs bosons in the MSSM with complex parameters in two slightly
modified benchmark scenarios, light-stop and mmod+

h . We have found in our analysis of Higgs
boson production through gluon fusion that a proper description of squark and gluino loop
contributions is essential. This refers both to the loop contributions to the gluon–gluon–Higgs
vertex and to the corrections entering through ∆b. Squark and gluino loop contributions fur-
thermore enter the wave function normalisation factors that are necessary to ensure the correct
on-shell properties of the produced Higgs boson. Where squark and gluino contributions are
sizeable the production cross sections show a significant dependence on the CP-violating phases.
We have discussed the remaining theoretical uncertainties in the cross section predictions taking
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into account renormalisation and factorisation scale uncertainties, a resummation uncertainty
for ∆b and an uncertainty due to the performed interpolation of NLO SUSY QCD corrections.
We have furthermore briefly commented on other uncertainties that can directly be taken over
from the case of the MSSM with real parameters.

A further important feature that occurs in the production processes for the two heavy states h2

and h3 in the general case where CP-violating interactions are taken into account is the fact that
there can be a large mixing between these often nearly mass-degenerate states. Their mixing
effects are incorporated in the wave function normalisation factors for the external Higgs bosons.
For a proper interpretation of experimental exclusion limits arising from MSSM Higgs searches,
which so far have only been analysed in the framework of the CP-conserving MSSM, it will be
important to take into account interference effects in the full process of Higgs production and
decay. Our results for the cross sections for on-shell Higgs bosons can be directly used in the
context of a generalised narrow-width approximation to incorporate these interference effects.
This topic will be addressed in a forthcoming publication.
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A Formulas: Higgs-quark and Higgs-squark couplings

In SusHiMi the Higgs–(s)quark couplings are expressed in terms of the CP-even and CP-odd
neutral gauge eigenstates φg ∈ {φ0

1, φ
0
2} and χg ∈ {χ0

1, χ
0
2}, respectively. In order to obtain

the couplings of the squarks with the lowest-order mass eigenstates φ ∈ {h,H,A,G} the gauge
eigenstates are rotated using the tree-level mixing matrixR as depicted in the following Feynman
diagrams

φ

q

q

=

{
i
mq
v R(g

φg
qLPL + g

φg
qRPR)

−mq
v R(g

χg
qLPL − g

χg
qRPR)

and φ

q̃i

q̃j

= i
1

v
Rgφg ,χgq̃,ij (46)

with v = 2mW /g = 1/
√√

2GF and the tree-level mixing matrix R given in Eq. (11). At the
amplitude level the results will then also be multiplied with the corresponding Ẑ factor.

The couplings between the gauge eigenstates and the third generation quarks are gqL = 1/ cosβ
for φ0

1 and χ0
1 and gqL = 1/ sinβ for φ0

2 and χ0
2. For ∆b corrections we refer to Eq. (5) and

Eq. (7).

The couplings between the gauge eigenstates and the third generation squarks contain terms
from the squark mass diagonalisation matrix Uq̃ (see Eq. (3)) which is a unitary matrix with real
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diagonal elements and complex off-diagonal elements, i.e. it can be written as follows

Uq̃ =

(
Uq̃11 Uq̃12

−U∗q̃12 Uq̃22

)
. (47)

They are obtained with MaCoR [130, 131]. For the CP-even state φ0
1 we have the stop couplings

(using sβ ≡ sinβ, cβ ≡ cosβ, tβ ≡ tanβ, sW ≡ sin θW and cW ≡ cos θW ):

g
φ01
t̃,11

= U∗
t̃12

[
−Ut̃11mtµ

sβ
+

4

3
Ut̃12cβm

2
Zs

2
W

]
− U∗

t̃11

[
Ut̃12mtµ

∗

sβ
+ cβm

2
ZUt̃11

(
1

3
s2
W − c2

W

)]
g
φ01
t̃,12

= U∗
t̃12

[
−Ut̃21mtµ

sβ
+

4

3
Ut̃22cβm

2
Zs

2
W

]
− U∗

t̃11

[
Ut̃22mtµ

∗

sβ
+ cβm

2
ZUt̃21

(
1

3
s2
W − c2

W

)]
g
φ01
t̃,21

= U∗
t̃22

[
−Ut̃11mtµ

sβ
+

4

3
Ut̃12cβm

2
Zs

2
W

]
− U∗

t̃21

[
Ut̃12mtµ

∗

sβ
+ cβm

2
ZUt̃11

(
1

3
s2
W − c2

W

)]
g
φ01
t̃,22

= U∗
t̃22

[
−Ut̃21mtµ

sβ
+

4

3
Ut̃22cβm

2
Zs

2
W

]
− U∗

t̃21

[
Ut̃22mtµ

∗

sβ
+ cβm

2
ZUt̃21

(
1

3
s2
W − c2

W

)]
.

(48)

For the CP-even state φ0
2, the couplings are:

g
φ02
t̃,11

= U∗
t̃12

[
Ut̃11mtA

∗
t

sβ
+ Ut̃12

(
2m2

t

sβ
− 4

3
sβm

2
zs

2
W

)]
+ U∗

t̃11

[
Ut̃12mtAt

sβ
+

2Ut̃11m
2
t

sβ
+ sβm

2
ZUt̃11

(
1

3
s2
W − c2

W

)]
g
φ02
t̃,12

= U∗
t̃12

[
Ut̃21mtA

∗
t

sβ
+ Ut̃22

(
2m2

t

sβ
− 4

3
sβm

2
zs

2
W

)]
+ U∗

t̃11

[
Ut̃22mtAt

sβ
+

2Ut̃21m
2
t

sβ
+ sβm

2
ZUt̃21

(
1

3
s2
W − c2

W

)]
g
φ02
t̃,21

= U∗
t̃22

[
Ut̃11mtA

∗
t

sβ
+ Ut̃12

(
2m2

t

sβ
− 4

3
sβm

2
zs

2
W

)]
+ U∗

t̃21

[
Ut̃12mtAt

sβ
+

2Ut̃11m
2
t

sβ
+ sβm

2
ZUt̃11

(
1

3
s2
W − c2

W

)]
g
φ02
t̃,22

= U∗
t̃22

[
Ut̃21mtA

∗
t

sβ
+ Ut̃22

(
2m2

t

sβ
− 4

3
sβm

2
zs

2
W

)]
+ U∗

t̃21

[
Ut̃22mtAt

sβ
+

2Ut̃21m
2
t

sβ
+ sβm

2
ZUt̃21

(
1

3
s2
W − c2

W

)]
. (49)
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Similarly for the CP-odd states χ0
1 and χ0

2 the stop couplings are given as:

g
χ0
1

t̃,11
= i

mt

sβ

[
−µU∗

t̃12
Ut̃11 + µ∗U∗

t̃11
Ut̃12

]
g
χ0
2

t̃,11
= i

mt

sβ

[
−A∗tU∗t̃12

Ut̃11 +AtU
∗
t̃11
Ut̃12

]
g
χ0
1

t̃,12
= i

mt

sβ

[
−µU∗

t̃12
Ut̃21 + µ∗U∗

t̃11
Ut̃22

]
g
χ0
2

t̃,12
= i

mt

sβ

[
−A∗tU∗t̃12

Ut̃21 +AtU
∗
t̃11
Ut̃22

]
g
χ0
1

t̃,21
= i

mt

sβ

[
−µU∗

t̃22
Ut̃11 + µ∗U∗

t̃21
Ut̃12

]
g
χ0
2

t̃,21
= i

mt

sβ

[
−A∗tU∗t̃22

Ut̃11 +AtU
∗
t̃21
Ut̃12

]
g
χ0
1

t̃,22
= i

mt

sβ

[
−µU∗

t̃22
Ut̃21 + µ∗U∗

t̃21
Ut̃22

]
g
χ0
2

t̃,22
= i

mt

sβ

[
−A∗tU∗t̃22

Ut̃21 +AtU
∗
t̃21
Ut̃22

]
. (50)

Analogously, the Higgs-sbottom couplings for the CP-even state φ0
1 are:

g
φ01
b̃,11

= U∗
b̃12

[
Ub̃11A

∗
bmb

cβ
+ Ub̃12

(
2m2

b

cβ
− 2

3
cβm

2
Zs

2
W

)]
+ U∗

b̃11
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Ub̃12Abmb
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+

2Ub̃11m
2
b

cβ
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,
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φ01
b̃,21

= U∗
b̃22

[
Ub̃11A

∗
bmb

cβ
+ Ub̃12

(
2m2
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cβ
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3
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Zs

2
W

)]
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Ub̃12Abmb
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− cβm2
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(
1

3
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W
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= U∗
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∗
bmb
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(
2m2
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cβ
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3
cβm

2
Zs

2
W

)]
+ U∗

b̃21

[
Ub̃22Abmb

cβ
+

2Ub̃21m
2
b

cβ
− cβm2

ZUb̃21

(
1

3
s2
W + c2

W

)]
. (51)

For the CP-even state φ2
0 they are given as:

g
φ02
b̃,11

= U∗
b̃12
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−Ub̃11mbµ
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+
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W + c2

W

)]
g
φ02
b̃,12

= U∗
b̃12

[
−Ub̃21mbµ
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+
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(52)
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Finally, for the CP-odd states χ0
1 and χ0

2 the Higgs-sbottom couplings are:

g
χ0
1

b̃,11
= i
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[
−A∗bU∗b̃12
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b̃11
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. (53)
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