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When modelling inflaton fluctuations as a free quantum scalar field, the initial vacuum is conven-
tionally imposed at the infinite past. This is called the Bunch-Davies (BD) vacuum. If however an
asymptotically Minkowskian past does not exist, this requires modifications. We derive corrections
to the scalar spectral index ns and the tensor tilt nt descending from arbitrary mixed states or from
explicit non-BD initial conditions. The former may stem from some pre-inflationary background
and can redshift away whereas the latter are induced by a timelike hypersurface parametrising a
physical cut-off. In both cases, we find that corrections scale in parts or fully as O(ε) where ε is
the first slow-roll parameter. The precise observational footprint is hence dependent on the model
driving inflation. Further, we show how the inflationary consistency relation is altered. We thus
provide an analytic handle on possible high scale or pre-inflationary physics.

PACS numbers: 98.80.Cq, 98.80.Es, 04.62.+v

I. INTRODUCTION

Cosmic inflation [1, 2] has been well established as the
leading paradigm to describe the physics of the early uni-
verse. Besides solving the horizon and flatness problem,
inflation is furthermore predictive as it provides a mech-
anism [3] seeding structure formation which is in aston-
ishing agreement with recent observations [4–6].

Typically, inflation is taken to be realised by a scalar
field with a nearly shift-symmetric potential thus mim-
icking the equation of state of a cosmological constant.
The shift symmetry is broken by a minimum in which
the field may settle, hence inducing a graceful exit. In-
ducing the primordial density perturbation then comes
naturally once promoting the inflaton field to a quantum
operator. Precisely, the inflaton is decomposed into a
classical background field evolving as determined by its
potential, and a fluctuating part that is described as a
massless quantum scalar field. The equation of motion
for the free field then follows from the interplay of the
perturbed stress-energy tensor of the inflaton field with
the perturbed part of the linearised Einstein tensor. It
has the form of that of a harmonic oscillator with time
dependent mass. When taking the limit of the infinite
past, the simple harmonic oscillator is recovered and one
may impose a Minkowski vacuum as a boundary condi-
tion for the fluctuation; this is called the Bunch-Davies
vacuum [7], and is the conventional procedure whenever
an expanding spacetime is asymptotically Minkowskian
at the infinite past.

However, problems can arise when questioning the
accessibility of the infinite past, or more generally, a
Minkowskian limit at some past infinity. A prominent
criticism of the standard procedure outlined above was
coined the trans-Planckian problem [8–34], and ques-
tioned whether or not scales from below the Planck
length lP could leave a signature in the cosmic microwave
background (CMB) when stretched across the (event)
horizon during inflation. A true consensus was never
reached.

In this paper, we revisit some of the original consider-
ations and argue that whenever the infinite past is not
accessible, the BD vacuum may not be imposed. Instead,
one has to resort to mixed states as vacua, so called α-
vacua [35–37], which have recently been rediscovered in
[38]. While these are commonly thought to be ill be-
haved, they nevertheless provide a possible handle on
imposing a vacuum at some finite past. Allowing yet un-
known physics to settle the debate about the consistency
of such vacua, we derive corrections to the inflationary
observables ns and nt induced by arbitrary mixed states
or non-BD initial conditions.

Considering arbitrary mixed states, we find that the
correction to the inflationary indices depends on the spec-
trum of mixed states; namely on the coefficient |Bk| of
the negative frequency contribution to the solution of the
equation of motion for a mode k. It reads

δns,t ∼ 2εV |Bk|2 −
d|Bk|2

d ln k
. (1)

Assuming non-BD initial conditions, one finds oscillatory
corrections

δns,t ∼ εV cos

(
2Λ

Hinfl
exp (εV Ne)

)
, (2)

where Ne ≤ 0 is the number of remaining e-folds, Hinfl

is the inflationary energy scale and Λ is the physical mo-
mentum cut-off where the initial vacuum is imposed.

The rest of the paper is structured as follows; we be-
gin with a short review of field operators in time depen-
dent backgrounds and establish our notation. Following
a quick discussion of the relevant equation of motion for
inflationary fluctuations, we discuss Bunch-Davies and
non-BD initial conditions and highlight which scenario
requires which choice of vacuum. In the main part, we
first derive corrections to ns and nt from mixed states
and continue to study the explicit example of corrections
induced from α-vacua. We conclude in section IV.
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II. THEORY

In this section, we review relevant results and establish
our notation. We will introduce scalar fields in time de-
pendent backgrounds as well as their quantisation, equa-
tion of motion, and vacuum selection in de Sitter space.

A. Scalar fields in time dependent backgrounds

We begin by summarising the formalism of [17–19, 39–
41]. We consider a flat FRW background

ds2 = a2(τ)
(
dτ2 − dx2

)
, (3)

where dτ = a−1dt. Inflationary fluctuations are usually
modelled as a massless scalar field φ

L =
1

2
gµν∂µφ∂νφ , (4)

but the equation of motion will be derived for the rescaled
field f = a(τ)φ. When promoting the rescaled field vari-
able to be a field operator, the variable’s conjugate mo-
mentum is required in order to impose relevant commuta-
tion relations. The conjugate momentum of the rescaled
field is

πf =
∂L
∂f ′

= f ′ − a′

a
f , (5)

and we impose the following commutation relations

[f̂(τ,x), π̂f (τ,y)] = iδ(3)(x− y) , (6)

[f̂(τ,x), f̂(τ,y)] = [π̂f (τ,x), π̂(τ,y)] = 0 , (7)

and

[f̂(τ,k), π̂†f (τ,k′)] = iδ(3)(k− k′) . (8)

The creation and annihilation operators satisfy

[âk, â
†
k′ ] = δ(3)(k− k′), [âk, âk′ ] = [â†k, â

†
k′ ] = 0 . (9)

Now, consider a component of the field operator f̂

f̂k(τ) = fk(τ)âk + f∗k (τ)â†−k ,

subject to the normalisation condition

〈fk, f∗k 〉 ≡ i(f∗kf ′k − f ′∗k fk) = 1 . (10)

Having the operators absorb the time dependence gives

f̂k(τ) = âk(τ) + â†−k(τ) . (11)

Likewise, we may write the conjugate momentum as

π̂k(τ) = −ik
(
âk(τ)− â†−k(τ)

)
. (12)

We recast the creation and annihilation operators in
terms of their values at some fixed time τ0 as

âk(τ) = uk(τ)âk(τ0) + vk(τ)â†−k(τ0) , (13)

â†−k(τ) = u∗k(τ)â†−k(τ0) + v∗k(τ)âk(τ0) , (14)

which are essentially Bogolubov transformations and
yield the mixing of creation and annihilation operators
with time. The commutation relations have to obey con-
dition (10), we hence have

|uk(τ)|2 − |vk(τ)|2 = 1 . (15)

Substituting the above into equation (11) yields

f̂k(τ) = fk(τ)âk(τ0) + f∗k (τ)â†−k(τ0) , (16)

π̂k(τ) = −i
(
gk(τ)âk(τ0)− g∗k(τ)â†−k(τ0)

)
, (17)

with

fk(τ) =
1√
2k

(uk(τ) + v∗k(τ)) , (18)

gk(τ) =

√
k

2
(uk(τ)− v∗k(τ)) , (19)

and where equation (18) is a solution to the field equation

of the field f̂ and equation (19) may be obtained from
the expression for the conjugate momentum. A vacuum
may now be defined at some time τ0 as

âk(τ0)|0, τ0〉 = 0 . (20)

Recalling equation (13), we can rewrite the above as

uk(τ0)âk(τ0)|0, τ0〉+ vk(τ0) â†−k(τ0)|0, τ0〉︸ ︷︷ ︸
=|1,τ0〉

= 0 , (21)

which immediately sets vk(τ0) = 0 for the above to realise
a vacuum. Thus in order to define a vacuum we need
mode functions such that this condition is satisfied at
the time the vacuum is imposed. Subsequently, we focus

on the mode function fk rather than the operator f̂k.

B. Equation of motion in de Sitter space

The equation of motion determining the evolution of

the mode functions fk(τ) for the rescaled field f̂ = a(τ)φ̂
is the Mukhanov-Sasaki equation [3] (see [42] as a stan-
dard review)

f ′′k +

(
k2 − z′′

z

)
fk = 0 , (22)

where z = ϕ′/H with ϕ being the unperturbed back-
ground value of the inflaton field. It resembles the equa-
tion of motion of a harmonic oscillator with time depen-
dent mass. From equation (5), we infer

gk = f ′k −
a′

a
fk . (23)
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In de Sitter space with a = −1/Hτ , we have

z′′

z
≈ a′′

a
=

2

τ2
. (24)

Equation (22) may be thus recast as

f ′′k +

(
k2 − 2

τ2

)
fk = 0 . (25)

The above has the general solution

fk(τ) = Ak
e−ikτ√

2k

(
1− i

kτ

)
+Bk

eikτ√
2k

(
1 +

i

kτ

)
, (26)

and the conjugate momentum (5)

gk(τ) = Ak

√
k

2
e−ikτ −Bk

√
k

2
eikτ . (27)

As we will recall in the following, the asymptotic past
of the spacetime under consideration determines which
term of the general solution (26) exists; we will show that
a non-Minkowskian past creates a non-zero Bogolubov
coefficient Bk whereas it is zero otherwise.

C. The Bunch-Davies vacuum

First, we require spacetime to resemble Minkowski
space at early times τ → −∞. Equation (22) then re-
duces to a simple harmonic oscillator. We hence specify
the initial condition

lim
τ→−∞

fk(τ) =
1√
2k
e−ikτ , (28)

for the solutions of (22). Imposing this initial condition
on the general solution (26) sets Bk = 0 , Ak = 1 and
hence

fk(τ) =
e−ikτ√

2k

(
1− i

kτ

)
, (29)

as the mode function for the Bunch-Davies vacuum.
From equation (29) and (23) we quickly find

uk =
1

2
e−ikτ

(
2− i

kτ

)
, (30)

vk =
1

2
eikτ

i

kτ
. (31)

Furthermore, considering condition (20) yields

âk(τ0)|0, τ0〉 =

uk(τ0)âk(τ0)|0, τ0〉+ vk(τ0) â†−k(τ0)|0, τ0〉︸ ︷︷ ︸
6=0

= 0 , (32)

which is readily satisfied for τ0 → −∞. Thus requiring
spacetime to resemble Minkowski space for early times

consistently yields an initial condition for the Mukhanov-
Sasaki equation and satisfies the vacuum condition (20).
Note that a sufficient way to choose (28) was going to
the infinite and asymptotically Minkowskian past at τ →
−∞, having k →∞ was not required. The limit k →∞
should generally not be taken, as the initial vacuum state
ought to be imposed for all modes, i.e. for all k and at
τ → −∞.

However, scales probed by CMB experiments today
correspond to modes whose physical wavelength a/k was
much below the Planck length lP at some point during
inflation. As physics below the Planck scale is unknown,
it is conceptually unclear whether or not the BD vac-
uum is the correct choice for sub-Planckian modes. This
has been coined the trans-Planckian problem and a true
consensus has not yet been reached; especially since al-
ternatives are lacking. In the next subsection, we review
a competing proposal, namely α-vacua which provide a
way to impose a vacuum at finite τ by effectively reinter-
preting a mixed state as a vacuum state.

D. α-vacua

So far, we have considered the standard treatment of
inflaton fluctuations in de Sitter space. However, assum-
ing the inflationary phase to be of finite duration, the in-
finite past might not be accessible and thus imposing the
Bunch-Davies vacuum at τ → −∞ seems inconsistent.
In order to satisfy condition (20), we need v(τ0) = 0, yet
equation (31) only approaches zero for τ → −∞. Thus
the Bunch-Davies vacuum cannot be imposed at a finite
time.1 In order to find a vacuum state at a finite past
time, recall the general solution (26)

fk(τ) = Ak
e−ikτ√

2k

(
1− i

kτ

)
+Bk

eikτ√
2k

(
1 +

i

kτ

)
, (33)

and the conjugate momentum (5)

gk(τ) = Ak

√
k

2
e−ikτ −Bk

√
k

2
eikτ . (34)

Now recalling equations (18) and (19) we may compare
them with the functions above and deduce

uk =
1

2

(
Ake

−ikτ
(

2− i

kτ

)
+Bke

ikτ i

kτ

)
, (35)

v∗k =
1

2

(
Bke

ikτ

(
2 +

i

kτ

)
−Ake−ikτ

i

kτ

)
. (36)

We now seek to fix a vacuum at a finite time τi

ak(τi)|0, τi〉 = 0 . (37)

1 Physically, the inability to impose the Bunch-Davies vacuum at
some finite past time can also be understood as follows; as an
expanding background always produces particles, any vacuum
can only exist when spacetime is (asymptotically) Minkowskian.
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Substituting equation (13) in the above expression yields(
uk(τi)âk(τi) + vk(τi)â

†
−k(τi)

)
|0 , τi〉

=uk(τi)âk(τi)|0, τi〉︸ ︷︷ ︸
=0

+ vk(τi)â
†
−k(τi)|0, τi〉︸ ︷︷ ︸
6=0

. (38)

We need v(τi) = 0 which is satisfied for2

Bk =
ie−2ikτi

2kτi + i
Ak . (39)

We observe that a vacuum at a finite past time can only
be imposed when the general solution of the Mukhanov-
Sasaki equation is taken as the mode function of the

rescaled field f̂ .
Since we consider our starting point being the inabil-

ity to access some infinite and Minkowskian past, we may
recognise that by imposing a vacuum at finite τi, we have
introduced a physical cut-off described by a timelike hy-
persurface Λ (see [18] for more detail); to be more precise:
there exists a physical momentum cut-off Λ and mode
evolution is assumed to begin once k = aΛ (note that
this is similar to the horizon crossing condition k = aH).
Hence, for a = (−Hτ)−1, the vacuum is imposed for all
k at a k-dependent initial time

τ = − Λ

Hk
. (40)

Considering the normalisation condition |Ak|2−|Bk|2 = 1
and expression (40), the coefficient Bk becomes

|Bk|2 =
H2

4Λ2
. (41)

These vacua are called α-vacua as the parameters Ak
and Bk may be reparametrised in terms of just one pa-
rameter α [35–37, 43]. It is however understood that α-
vacua are non-thermal [44] and seemingly violate locality
[43, 45]. Furthermore, back-reaction has to remain un-
der control [46, 47], which also puts limits on the amount
of early universe entanglement. It has been argued that
unknown physics might help resolve these outstanding
issues [37, 48], but this is speculation as of now. It is im-
portant to note that α-vacua did not arise in the context
of trans-Planckian physics but simply due to consider-
ing an inflationary phase with finite duration: BD ini-
tial conditions can only be imposed if an asymptotically
Minkowskian past exists and the non-existence of such a
history seems to induce non-BD initial conditions, which
however come with theoretical obstacles that remain un-
resolved to date.

Nevertheless, we will derive corrections to the infla-
tionary scalar and tensor spectra in terms of the number
of remaining e-folds in order to provide an easy handle on
these effects from the model-building and phenomenology
perspective.

2 The normalisation condition (10) yields |Ak|2−|Bk|2 = 1. Com-
bined with the requirement v(τi) = 0, we find the given relation.

III. PHENOMENOLOGY

We continue with the main part of this work and derive
corrections to ns and nt. After a quick introduction of
scale dependence of spectra, we first consider corrections
δns,t induced by mixed states (26). Then, we study the
example of an α-vacuum, i.e. a mixed state treated as a
vacuum, in detail and give the explicit form of the cor-
rections to the inflationary indices and to the consistency
relation. While the explicit form of corrections induced
by some mixed state depends on the coefficients Bk and
one generically evaluates the spectra at horizon crossing
where the oscillatory terms are frozen, α-vacua do cause
oscillatory corrections with an amplitude of O(εV ).3

We will assume H << Λ throughout, i.e. the cut-off
scale to be at least one order of magnitude above the
inflationary energy scale. This will allow to expand in
H/Λ.

A. Two-point functions and spectra

The general expression is for the two-point function of
inflaton fluctuations is

Pφ =
k3

2π2a2
〈0|f†kfk′ |0〉

=
k3

2π2a2

∣∣∣∣Ak e−ikτ√
2k

(
1− i

kτ

)
+Bk

eikτ√
2k

(
1 +

i

kτ

)∣∣∣∣2
=

(
H

2π

)2

︸ ︷︷ ︸
P̄φ

[
1 + |Bk|2

(
2 +

2kτi + i

i
e2ikτi

+
2kτi − i
−i

e−2ikτi

)]
≡ P̄φ + δPφ , (42)

where we have made use of |Ak|2−|Bk|2 = 1. Exchanging
the exponentials for trigonometric functions, and focus-
ing on the perturbation, one finds

δPφ = |Bk|2 [2 + 4kτ sin(2kτ) + 2 cos(2kτ)] . (43)

The text book approach [49] then suggests to average
over the oscillatory part.4 One arrives at

Pφ =

(
H

2π

)2 (
1 + 2|Bk|2

)
. (44)

Depending on whether or not the wavenumber k to which
there exists a non-zero Bk lies within the range of observ-
able modes, the correction may be observed in the CMB.

3 For α-vacua, the precise expression for Bk → Bk(k) is known,
namely expression (41).

4 Literature [42] also suggests to evaluate the spectrum at late
times, i.e. for kτ → 0. This would induce a factor of two to
expression (43) which we omit.
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Otherwise, it redshifts away. Different scenarios of pre-
inflationary physics may induce different Bk and atten-
tion to the details of the assumed scenario is important
to examine whether or not corrections may be seen.5

For the example of a physical cut-off as in (41), the
averaging over the oscillatory part must not be done due
to the assumed mode emergence at k = aΛ. Instead, we
find the leading order correction

δPφ =
H

Λ
sin

(
2

Λ

H

)
+O(2)

(
H

Λ

)
. (45)

Recalling the expression for the power spectrum of metric
fluctuations at horizon exit

∆2
s =

H2

ϕ̇2
Pφ =

H2

ϕ̇2

(
P̄φ + δPφ

)
, (46)

where ϕ is the inflaton and φ the scalar field parametris-
ing the inflaton fluctuation, one then arrives at the cor-
rected expressions for scalar and tensor perturbations

∆2
s =

1

8π2

H2

ε

[
1 +

H

Λ
sin

(
2Λ

H

)
+ . . .

]
, (47)

∆2
t = 2

(
H

π

)2 [
1 +

H

Λ
sin

(
2Λ

H

)
+ . . .

]
, (48)

where we have quoted the result for tensor perturbations
without proof.6 When considering corrections to scalar
and tensor spectrum, their ratio r remains unchanged
and is still given as

r =
∆2
t

∆2
s

= 16ε ≈ 16εV . (49)

Measuring r and nt then may provide a definite answer to
the question about the initial conditions of inflationary
fluctuations as we will describe in the following.

B. Scale dependence

Inflation does not resemble perfect de Sitter but has an
end, thus H is slowly varying with respect to the scales
exiting the horizon. The scale dependence of the infla-
tionary spectra is quantified as

ns − 1 =
d ln ∆2

s

d ln k
, and nt =

d ln ∆2
t

d ln k
. (50)

A change of variables

d

d ln k
( ) =

d

dNe
( )

dNe
d ln k

, (51)

5 Scenario [50] e.g. leads to oscillations from pre-inflationary non-
de Sitter backgrounds.

6 Each polarisation of primordial gravitational waves can be de-
scribed by a massless scalar field, rescaled with the inverse scale
factor. We have hence simply quoted the result for tensor per-
turbations.

and the results dNe/d ln k ≈ 1 + ε and d ln ε/dNe = 2(ε−
η) evaluate expressions (50) with the vanilla spectra

∆2
s =

1

8π2

H2

ε
and ∆2

t = 2

(
H

π

)2

, (52)

to

ns−1 = 2η−4ε ≈ 2ηV −6εV , nt = −2ε ≈ −2εV , (53)

where the subscript V denotes the potential slow-roll pa-
rameters. In the following, we evaluate expressions (50)
with the corrected spectra (44), (47) and (48).

C. Corrections from mixed states

We begin with the derivation of the generic form of
δns,t induced by mixed states. First, we recall that

ns − 1 =
d ln ∆2

s

d ln k
=

1

∆2
s

d∆2
s

dNe

dNe
d ln k︸ ︷︷ ︸
1+ε

, (54)

where we will focus on the d∆2
s/dNe term in the follow-

ing; we separate

∆2
s → ∆2

s,0 + δ∆2
s =

1

8π2

H2

ε
+

2

8π2

H2

ε
|Bk|2, (55)

and expand the 1/∆2
s factor

1

∆2
s

≈ 1

∆2
s,0

+
δ∆2

s

(∆2
s)

2
≈ 1

∆2
s,0

[
1 +O(2)

(
|Bk|
H

)]
. (56)

The leading order terms thus are

1

∆2
s

d∆2
s

dNe
=

1

∆2
s,0

d(∆2
s,0)

dNe
+

1

∆2
s,0

d(δ∆2
s)

dNe
, (57)

where the first term on the right hand side evaluates to
the known 2η − 4ε. We hence calculate

d(δ∆2
s)

dNe
= 2

d

dNe

[
H2

ε
|Bk|2

]
= 2

H2

ε

d

dNe
|Bk|2 + 2|Bk|2

d

dNe

[
H2

ε

]
= 2

H2

ε

d

dNe
|Bk|2 + 2

H2

ε
|Bk|2

(
2
d lnH

dNe
+

dε

dNe

)
= 2

H2

ε

(
d

dNe
|Bk|2 − 2ε|Bk|2

)
, (58)

where have assumed dε/dNe ∼ O(2)(ε) and omitted this
subleading contribution. We thus obtain

δns ∼ −2

(
2εV |Bk|2 −

d|Bk|2

d ln k

)
. (59)
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Considering tensor fluctuations, we separate ∆2
t =

∆2
t,0 + δ∆2

t and approximate 1/∆2
t ≈ 1/∆2

t,0, so that the
missing piece to calculate is

d(δ∆2
t )

dNe
= 2

d

dNe

[
H2|Bk|2

]
= H2

(
d

dNe
|Bk|2 − 2ε|Bk|2

)
.

We may now write the corrected expression for nt as

δnt ∼ −2

(
2εV |Bk|2 −

d|Bk|2

d ln k

)
, (60)

which is equal to the correction to the scalar spectral
index.

Note that a suitable spectrum |Bk|2 may in principle
account for low-` phenomenology such as power suppres-
sion or specific outliers in the data. Further, a correction
δnt does also change the consistency relation, which we
will demonstrate in the final subsection.

D. Corrections from α-vacua

We continue with the calculation of the scalar spec-
tral index with the example of a physical cut-off as an
example. Again, we separate (47)

∆2
s → ∆2

s,0 + δ∆2
s =

1

8π2

H2

ε
+

1

8π2

H3

εΛ
sin

(
2Λ

H

)
, (61)

and expand the 1/∆2
s factor of (54) as

1

∆2
s

≈ 1

∆2
s,0

+
δ∆2

s

(∆2
s)

2
≈ 1

∆2
s,0

[
1 +O

(
H

Λ

)]
. (62)

The leading order terms thus are

1

∆2
s

d∆2
s

dNe
=

1

∆2
s,0

d(∆2
s,0)

dNe
+

1

∆2
s,0

d(δ∆2
s)

dNe
, (63)

where the first term on the right hand side evaluates to
2η − 4ε. We hence calculate

d(δ∆2
s)

dNe
=

d

dNe

[
1

8π2

H3

εΛ
sin

(
2Λ

H

)]
= − 2H

8π2ε
cos

(
2Λ

H

)
dH

dNe

+
H2

8π2Λε
sin

(
2Λ

H

)[
3
dH

dNe
−Hd ln ε

dNe

]
. (64)

Multiplying by 1/∆2
s,0 then has the second term of the

right hand side be of O(H/Λ) × O(ε, η). We therefore
write

1

∆2
s,0

d(δ∆2
s)

dNe
= − 2

H
cos

(
2Λ

H

)
dH

dNe

= 2 ε cos

(
2Λ

H

)
. (65)

0.0001 0.001 0.01

1

1.1

1.2

k � Mpc-1

FIG. 1. Power spectrum ∆2
s ∼ (k/k∗)ns−1 between −62 <

Ne < −56 for V ∼ (1−e−κϕ)2 with κ =
√

2/3, or equivalently
f(R) = R + αR2, and pivot scale k∗ = 0.05Mpc−1. Here,
Λ/H = 105. For plateau type models, εV ∼ O(N−2

e ) whereas
ηV ∼ O(N−1

e ), hence the oscillations are clearly subleading.

Having obtained the missing terms of (63), we may now
write the result

ns − 1 =

[
2η − 4ε+ ε cos

(
2Λ

H

)]
(1 + ε)

≈ 2ηV − 6εV + 2 εV cos

(
2Λ

H

)
. (66)

We hence find that the scalar spectral index ns receives
oscillatory corrections with an amplitude of O(εV ). Mak-
ing use of result (A4), we can recast the above in a form
more useful to the phenomenologist and write

ns = 1+2ηV−6εV +2 εV cos

(
2Λ

Hinfl
exp (εV Ne)

)
, (67)

which gives the correction to ns in terms of the number
of e-folds. Figures 1 and 2 show how the power spectrum
∆2
s receives oscillatory corrections of O(εV ). Thus the

amplitude of the observational signature is dependent on
the inflationary model realised in nature.

Having obtained the corrected form of ns, we now
turn to the tensor tilt nt. Recalling expressions (48) and
(50), we employ an approach similar to the calculation
of ns; i.e. we separate ∆2

t = ∆2
t,0 + δ∆2

t and approximate

1/∆2
t ≈ 1/∆2

t,0, so that the missing piece to calculate is

d(δ∆2
t )

dNe
=

d

dNe

[
H3

Λ
sin

(
2Λ

H

)]
= −2H cos

(
2Λ

H

)
dH

dNe

+
3H2

Λ
sin

(
2Λ

H

)
dH

dNe
. (68)

Now accounting for the factor 1/∆2
t,0 has the second term
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0.0001 0.001 0.01

0.8

1

1.2

k � Mpc-1

FIG. 2. Power spectrum ∆2
s ∼ (k/k∗)ns−1 between −62 <

Ne < −56 for V ∼ ϕ2. Again, Λ/H = 105. Since ηV = εV
for V ∼ ϕ2, the oscillations are of O(ns − 1). Oscillations of
this type are surely ruled out by PLANCK.

of the right hand side be of O(1/Λ). We thus write

1

∆2
t,0

d(δ∆2
t )

dNe
= − 2

H
cos

(
2Λ

H

)
dH

dNe

= 2 ε cos

(
2Λ

H

)
, (69)

which is equal to the corresponding term of the scalar
calculation. As we had separated

nt =
d∆2

t

d ln k
=
d∆2

t,0

d ln k
+

δ∆2
t

d ln k
, (70)

where the first term of the right hand side is the vanilla
result −2ε, we may now write the corrected expression
for nt as

nt = −2

[
ε+ ε cos

(
2Λ

H

)]
. (71)

Again, assuming slow roll and making use of expression
(A4), we write

nt = −2

[
εV + εV cos

(
2Λ

Hinfl
exp (εV Ne)

)]
. (72)

Importantly, the correction does not change the sign of
nt. Note that both (67) and (72) do not approach the
conventional result for Λ → ∞. However, the starting
point of the derivation, i.e. (47) and (48) do.

Further note that the crucial difference to the calcu-
lation of corrections from arbitrary mixed states is that
the form here is dominated by the oscillatory terms that
one had averaged over in the case of mixed states. It is
this why the results (59) and (60) do not reduce to (67)
and (72) once expression (41) is inserted. Instead, one
obtains O(εV )×O(2)(H/Λ) corrections to the oscillatory
results.

E. Correction to the consistency relation

As shown by means of equations (47) and (48), the
tensor-to-scalar ratio r remains unchanged by our con-
siderations. However, as we have just shown that nt may
obtain corrections of order one (conventional result and
correction are of O(ε)), the inflationary consistency rela-
tion

r = −8nt (73)

no longer holds. It is simply verified that, considering
(49), (72), and (A4), the consistency relation changes to

r = 8nt

[
−1 + cos

(
2Λ

Hinfl
exp (εNe)

)]−1

. (74)

Thus measuring the tensor-to-scalar ratio and the tensor
tilt may provide a definite answer as to whether or not the
duration of inflation is finite and a high-scale cut-off of
the theory exists, leaving theoretical concerns regarding
the use of mixed states as vacua aside for now.

IV. DISCUSSION

In this work, we studied the phenomenology of arbi-
trary mixed states and non-BD initial conditions. Eval-
uating expressions for the inflationary observables (50)
with the corrected spectra (44), (47) and (48), we found
corrections δns,t scaling partly as O(εV ) in the case of
arbitrary mixed states and being oscillatory with an am-
plitude of O(εV ) in the case of non-BD initial conditions.
Results (1) and (2) thus provide an analytic handle on
possible high scale corrections to inflationary observables.

Reflecting on the theoretical motivation for this study,
mixed states may be caused by non-slow-roll pre-
inflationary backgrounds as described in e.g. [50]. There,
the duration of inflation is taken to be just the required
one, i.e. inflation does not last much longer than |NCMB |.
Concretely, assuming a non-slow-roll and asymptotically
Minkowskian background before inflation can in principle
induce non-zero Bogolubov coefficients for the inflaton
fluctuations (provided the inflaton field already quantum
fluctuates before inflation) which hence can induce the
comoving excitations described above.

Further, α-vacua display several shortcomings. How-
ever, it seems that the conventional BD vacuum may
only consistently be imposed at the infinite past. Postu-
lating that an asymptotically Minkowskian background
at some past infinity is not accessible then renders the
standard procedure inconsistent. This could e.g. be the
case if one assumes the inflationary phase to be without
a predecessor, i.e. that inflation is indeed the first pe-
riod in the universe when QFT and GR become applica-
ble in their respective regimes. A consistent formulation
of initial conditions, or more generally QFT on curved
backgrounds, will surely require a full theory of quantum
gravity.
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Appendix A: From H to Ne to k and back

As Inflation has an end and hence does not resemble
perfect de Sitter space, the Hubble parameter H is not
constant. Variables of interest for phenomenology that
parametrise time during inflation are the number of re-
maining e-folds Ne (Ne ≤ 0) and the wavenumber k of
scales at (event) horizon exit. We now outline how to de-
rive expressions for H(Ne) and H(k) so that we can cast
the derived corrections to ns and nt in tractable form.

Recall the definition of the Hubble slow-roll parameter

ε = − Ḣ

H2
= − 1

H

d lnH

dt
= −d lnH

dNe
, (A1)

where we have made use of dNe = dHdt for the last
equality. Solving for H yields

ln

(
H

Hinfl

)
= −

ˆ Ne

−|Ntotal|
ε(N ′e)dN

′
e , (A2)

whereHinfl andNtotal denote the values of the respective
quantities at the onset of inflation. Assuming ε(Ntotal) ∼
0 and ε to be only slowly varying with respect to Ne

within the observable range of e-folds, i.e.

ˆ
ε(N ′e)dN

′
e ≈ εNe , (A3)

we find the expression for H in terms of the number of
remaining e-folds to be

H(Ne) = Hinfl exp (−εNe) . (A4)

Now recall the (event) horizon exit condition k = aH.
Taking the derivative with respect to the wavenumber k
and considering the relation dNe/d ln k ≈ 1 + ε, one may
verify that

dH

dk
= −εH

k
. (A5)

This describes the change of H with respect to the scales
exiting the horizon. Again, we assume ε to be slowly
varying with respect to k for observable scales, i.e.

ˆ
ε(k′)k′−1dk′ ≈ ε ln k . (A6)

Expression (A5) may hence be solved with

H(k) = Hinfl

(
k

kH

)−ε
. (A7)

Once more, Hinfl denotes the value of the Hubble pa-
rameter at the onset of inflation. The scale kH is the last
scale to exit the horizon, k hence is within 0 < k ≤ kH .
As k corresponds to the inverse wavelength, larger k exit
the event horizon later.

The value of kH can be inferred as follows; wavenum-
ber k and number of remaining e-folds Ne with Ne ≤ 0
are related as k = aendHinfl e

Ne , where aend is the
size of the scale factor at the end of inflation (a0 =
1). Depending on the thermal history of the universe,
aendHinfl ≈ H0e

#, where # ∼ 62. The last scale to
exit has kH = aendHinfl e

0 = aendHinfl. Inserting the
expressions for kH and k(Ne) into (A7) then readily re-
covers (A4).
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