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Abstract

We present all-order expressions for the leading doulgarithmic threshold contributions to the
qguark-gluon coefficient functions for inclusive Higgs-basproduction in the heavy top-quark
limit and for Drell-Yan lepton-pair production. These rlisinave been derived using the structure
of the unfactorized cross sections in dimensional regzaéion and the largg-resummation of
the gluon-quark and quark-gluon splitting functions. Tesummed coefficient functions, which
are identical up to colour factor replacements, are simdaheir counterparts in deep-inelastic
scattering but slightly more complicated.
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The discovery of a particle with a mass of about 125 GeV [1] praperties consistent with
those of the standard-model Higgs bosan [2] at the LHC hasol@éttreased interest in precision
predictions for Higgs production and decay. The main chEonénhe total production cross section
is gluon-gluon fusion via a top quark loop, known atMl; /M;op to next-to-leading order (NLO)

of perturbative QCD([3,/4]. The convergence of the pertudoeseries is particularly slow in this
case, hence calculations are required at, and beyond, xbvtoaeext-to-leading order (NNLO).

These calculations can be carried out, at a sufficient acg(is$, for an effectiveHgg interac-
tion in the heavy-top limit[6],

Let = —7CHHGLGHW (1)

whereGg§, denotes the gluon field strength tensor. The prefegtoincludes all QCD corrections
to the top quark loop; it is of first order in the strong cougliconstantis and fully known up
to N3LO (a?) [7], see also Refs[[8]. The NNLO contributions to the tatalss sections were
computed in this effective theory in Refs] [9+11]; a higlt@acy threshold resummation and a
first approximation for RLO corrections were subsequently obtained in Refs![[12,13]

Recently a major step has been taken towards deriving th@letenN’LO corrections: the
calculation of the soft-gluon and virtual contributionstas order|[14]. This result directly leads to
a further improvementin the threshold limit [15-+17] by figithe remaining parameter required for
a full N°LO + next-to-next-to-next-to-leading logarithmic ML) accuracy [18] of the soft-gluon
exponentiation. The same seftirtual N3LO and resummation accuracy has also been reached
for Drell-Yan lepton-pair productiopp — ¢+ ¢~ + anything calculated at NNLO in Refs. [19,20],
due to its close similarity with inclusive Higgs-boson puation [15[17].

Generally fixed- or all-order results for logarithmicallgfeanced endpoint contributions, e.g.,
in the largex or threshold limit, can provide checks of elaborate Feynaliagram calculations
and estimates of corrections that cannot (yet) be calallditectly. Quite a few studies of the
threshold limit have addressed the dominant channels igdHand lepton-pair production, i.e.,
gluon-gluon fusion and quark-antiquark annihilation pexgtively. Here we present first all-order
results for the sub-dominant quark-gluon contributionbdith processes. In particular, we derive
the leading largec-logarithms of the coefficient functiom:,;,ng for P=H andP = DY.

Our derivation starts from the unfactorized partonic cresstiondh, jein
Op = 6-07PV/\\/p7jg® ﬂ@ﬂ = a'oypaka@Zij ®Zk£®ﬂ®ﬂ7 (2)
which lead to the mass-factorized expressions
Op = OopCpik ® fi ® fy. 3)

Here® abbreviates the Mellin convolutions, and summations dvetight quarks and antiquarks
and gluons are understood. All charge factors have beerresggal; see, e.g., Appendix A of
Ref. [19] for the Drell-Yan process. We use dimensional lagzation withD = 4 — 2¢; a tilde
marks theD-dimensional counterparts of quantities which are finiteefe- 0. In particular, the



coefficient functions in Eq[{2) can be written as
~ N net(ne) ' _ as(M?)
Coik(X,M?) = n; I;ase Cpik (X) Wwith as= ~ar 4)

for the choicgy, = p; = M of the renormalization and mass-factorization scales) Mit= My or

M = M/+,-, which can by made without loss of information. All factatzexpressions refer to
the MS scheme; the additional terms defining its difference toaSsuppressed in Edl (4) and
below. The coefficient functiorﬁ%ik in Eq. (3) are obtained from the above by setting 0.

The scale dependence of the factorized parton distribsitiopin Eq. (3) is governed by the
splitting functionsP, , which are related to the transition functiafig in Eq. (2) by

dz; - dz; -
P = —¥ik = gz @ 27k = Bo(as)d—a;@@[z i 5)
whereBp(as) = —€as — ByaZ — ... with Bo = 3C, — Zn; is the D-dimensional beta function.

Eqg. (8) can be solved fat order by order irus.

The prefactorsﬁpr in Eq. (2) are defined such that the lowest-order contrilngtito the
D-dimensional coefficient functions in EQJ (4) are normalized independent &f i.e., given by

Cﬁ?ﬁé(m = cé%%dx) = 8(1-x) O - (6)

We further specify our notation for the coefficient funcsand splitting functions by recalling the
leading-logarithmic large-contributions to the NLO quark-gluon coefficient functions

s () = 2P () IN(1-x) = 4Ce(2x1-2+4x) In(1-x) )
e = 2P (X)IN(1-x) = 4T;(1-2x+2x2) In(1-X) (8)

with Cz = 3, T; = 3 andC, = 3 for QCD. Note that our convention in Eql (7) differs from the

quantitiesA, in Refs. [10,11] by a factor of 1. On the other hand, our normalization in Eg. (8)
is the same as in Ref. [19]. The corresponding NNLO correstiead

Ciigg (9 = 1(13Ck +35C,) Pyq () In®(1-x) , 9)
Cvag®) = % (35Ck +13C,) Pig (x) In(1-X) . (10)

Itis convenient to turn the convolutions above to produgtslellin transforming all quantities,

1
fN) = [ ax (M H=1}) T (11)

where the parts in curly brackets refer to the casélof x)~1 +-distributions. Here we mainly

consider the leading powers @f—x) in the threshold limit, in particula(rl—x)0 corresponding to

N~ in the largeN limit for the quark-gluon quantities addressed in thisdetKeeping only the
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leading — and subleading, if flN is replaced by IAN + ky=Ink~IN — contributions, the relations
between the corresponding expressionsapace and MellirN space read
In"(1-x) \ (=11

_q)n
T © nid "N+ ..., In"1-x) M %ln”NwL.-.. 12)
+

Here and below denotes equality under the Mellin transformation (11).

The diagonal splitting function are not logarithmicallyhemced at higher orders for tin?
contributions[[211] (nor aN 1, see Refs[[22,23]). Hence only their leading-order cbations
are relevant here (and at NLL), with

P (N) = —4C:InN, P (N) = —4CuInN . (13)

The corresponding off-diagonal contributions can be fgadad off from Eqs.[{7) and {8),

PO (N) = 2Nt R (N) = 2Nt (14)

These functions do exhibit a double-logarithmic highetesrenhancement, derived in Ref. [24],

P (Nyas) = asPig™(N) Bo(—4s) , (15)
Per(N,as) = asPgg ~(N) Bo(8s) (16)
in terms of the function
< Bn X < (=10 2
Bo(X) = X" =1—= — Bon| X", (17)
% =2 fiy 2~ 2, Tn2 B

whereB,, are the Bernoulli numbers in the standard normalizationedf R5], and
8s = 4as(C-—C,)In?N . (18)
For the corresponding NLL and NNLL resummations of the splitfunctions see Refs. [26,27].
We are now prepared to return to the unfactorized crossosecin Eq. [(2). For brevity the
following steps are written out only for Higgs-boson protloie. \We have checked that the cor-

responding relations for the Drell-Yan case can be obtaiaséxpected from Eq$.](7) =(10) and
(@3) - (18), by interchanging gluon and (anti-) quark indieed colour factor replacements.

For the resummation of the quark-gluon coefficient functig, = ¢,; 54we need to consider

Whgg = OIN™Y) = €4 q9ZaaZag + CrggZaaZog + ON ) (19)
and R
Whgg = ON®) = Gqq ZggZgg + O(N2?) (20)

which providest,, o, for the right-hand-side of Ed. (19). Other coefficient fuaos such asg,, .5
are not relevant for the leading logarithms in EqgJ (19) everigher orders irN L.
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At the leading (and next-to-leading) power M1 the af contributions to the diagonal and
off-diagonal transition functions are given hy [24]

LL 1 _n/ )"

Z" = S () (21)
LL 1 -1 -1 (m4 o)/ \n-mt-L o ¢

ZiE(n) = o mZOS n+m [ZO y <V|(| )) Vi(|£n) (yl(<k)> ‘ (22)

Here additional sign factors have been avoided by usingbenalous dimensiongdefined in
Eqg. (8). TheD-dimensional coefficient functio’«:“H’gg can be determined from Ed. (20) with

LL
WH 9 = exp(asw,i gg ) (23)
and 1 .
Wigst = 4Ce 5 (exp(2einN) ~1) M — 4G~ (1%, % + virtual (24)

at orderN°. The difference of Eq[{24) to the corresponding structurecfion in deep-inelastic
scattering (DIS) is the replacement> 2¢ in the exponentials due to the different phase space. An
extension of Eqs[(21) £ (24) to higher logarithmic accuriaayo problem, but not required here.

The right-hand-side of Ed._(1L9) is thus known at LL accuratcgllgpowers ofas ande except
for the quark-gluon coefficient function. Hence an all-oraesult forVA\/H7qg on the left-hand-side
corresponding to Eqd. (3) arid [24) leads to a LL resummaﬂﬁcnng; determining this result is
the crucial step of our calculations.

Taking into accoun(l—x)*"8 factors due to real and virtual corrections, cf. the disicusef
the phase-space master integrals in Ref. [10], the ger@raldf theal contribution toW oq IS

Wy = s 3 0o (At ey ) + 00

1 2n
stnl%efﬁh’lN (A(Hqg)}_i_sB'g'qg]_i_ ) + O<N -2 kelnN) . (25)

<

The parameterA( q)g combine to the coefficients of the LL contributioad—2"tM In™IN in

Egs. (19), which, of course, vanish forlm < n— 1 due to Eqs[(21) and (R2). Correspondingly,

the quantltlesB,(4 qé determine the NLL contributions at all powersafande.

The presence ofr— 1 terms in the sums (25) represents a crucial diﬂeren@H@g in the

N© soft-gluon limit, where only the even values of occur [13], and inclusive DIS and semi-
inclusiveete~ annihilation (SIA), where the corresponding sums run flom1 to/ = n [26,28)].

In those cases, an"NO calculation leads to aNLL resummation with a large number of relations
to spare. Here, instead, alh2 1 terms with negative powers @fare required to fix the LL
coefficientsA,(Jlnj%, i.e., the terms t@ —2 fixed by lower-order contributions together with the!
term provided by the splitting-function resummatibn|(16pnsequently, due to the extra factor of

g, the NLL coefﬁmentsB,(4 qé in Eq. (25) cannot be determined without additional infotiora
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Figure 1: The origin of the LL coefficients afl X in Egs. [19) and{25) fon < 5. ‘0’ indicates
double-pole combinations of andk which are present in the latter but not the former equation.
Entries marked by ‘M’ are fixed by lower-order quantitiesaiigh the mass factorization formula.
Thee~! terms (‘R’) are required at each order to determine the-2 coeff|C|entsA( q) they
involve the splitting functions provided by fixed-order@alations an < 3 and the resummatlons
(@5) and[(16). Finally entries marked by ‘D’ are determingideach order, from the above coeffi-
cients via Eq.[(25). Checks of this procedure are provideitieg? £° terms of Refs/[[9=11,19,20],
see Eqs[{9) and(10), and tage? contributions to Higgs production calculated in R&f./[29].

We have determined the coeﬁiciew@’éé in Eq. (25) to a sufficiently high order img and find

(n72) _ (_1)n n—1
3 =0 _
A(Hn,q; = 2C¢ ﬁ 2(Cr —Ca) (4Ca)" 2,
(n,2n) -1'C jn-1-k
Aag = Fnl Z (4C0)" ’ (26)

which can be cast in a closed, if not very transparent, forterims of binomial coefficients:

y 4n 14/2] n m-1 /oK o
A|(4n7q2; = 5ni Zl(_l)n+m+1 i kzo p . (Cr _CA>DC'I:<+1CAH p—1 27)
Tom= —

with p = ¢ — 2m and |a| the largest integer not greater than The simplicity of especially the
special case$ (26) provides some additional insurancestgailculational errors. It is interesting

to note that not onlﬁﬁ”’g’;, but all odd# coefficients vanish fo€g = Ca.

With these results the LL mass-factorizatior\M{qg can be performed order by order; it leads
to a table of coefficients which has been givente 12 in Ref. [30]. Finally this table can be used
to find and verify the all-order resummation formula for theatk-gluon coefficient functions,

1

ChasN:3) = SN CF

C {exp(8Caasin?N) Bo(8s) — exp((2C4 +6Cr) asIn®N) } , (28)
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which involves the same ingredients as its counterpart 1& [24] but is slightly more compli-
cated. The corresponding coefficient function for the D¥@lh process can be obtained frdml(28)
by Cc — T; in the numerator of the prefactor adg «+ C- everywhere else, including the argu-
ment of the functiorBy. Expansion of EqL(28) and Mellin inversion yields the esplihird- and
fourth-order predictions

ST ) = w2 1062+ Pcgoy+ Borch) o
4)LL
A (x,as) = In”(1-x) (_3124560é + 2834cEc, + 3186c2c + 24434c; c,f) (30)

and their obvious analogues for lepton-pair production.

To summarize, we have derived the leading-logarithmicdargesummation of the quark-
gluon coefficient functions for inclusive Higgs-boson aadtbn-pair production; our main results
are Eq.[(2B) and its closely related counterpart for the IDf@h process. Our calculations have
been confined to the leading term in the expansion in powe($-ek); yet we definitely expect
the structure WitrP”((O) (x) in Eq. (7) — [10) to occur at all orders. An extension of ouuhessto
the next-to-leading double logarithms? In?"~2 (1—x), would require additional all-order insight
into the corresponding coefficients in the crucial decontmesof the unfactorized partonic cross
section [[Z5). One may hope that an extension of Ref. [14]éatmplete RLO corrections will

soon provide useful information also for the largeesummation of the quark-gluon channel.
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