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Abstract

QCD evolution equations can be recast in terms of parton branching processes. We present a new numerical solution
of the equations. We show that this parton-branching solution can be applied to analyze infrared contributions to
evolution, order-by-order in the strong coupling αs, as a function of the soft-gluon resolution scale parameter. We
examine the cases of transverse-momentum ordering and angular ordering. We illustrate that this approach can be
used to treat distributions which depend both on longitudinal and on transverse momenta.

The evolution of QCD parton cascades is an essential element of theoretical predictions for production processes
with high momentum transfer at high-energy colliders. It has been realized since long that realistic predictions for
collider processes require taking into account contributions to QCD evolution not only from collinear parton radiation,
associated with the renormalization group behavior at high momenta, but also from soft gluon radiation, including its
color coherence properties [1–5]. Infrared radiation contributions are controlled by a finite resolution scale δ of order
δ ∼ O(ΛQCD/µ), where µ is the hard scattering scale and ΛQCD ≈ 1 fm−1 is the natural scale of strong interactions.

In this paper we study the effects of soft-gluon emission and the soft-gluon resolution scale in cases in which not
only longitudinal-momentum degrees of freedom but also transverse-momentum degrees of freedom are necessary for
reliable theoretical predictions. We address the issue of taking into account simultaneously soft gluon radiation, with
light-cone momentum fraction z → 1, and transverse momentum q⊥ recoils in the parton branchings along the QCD
cascade. This is relevant for instance in multiple-scale problems, such as the high invariant-mass region of heavy par-
ticle spectra and the high-energy limit of hadroproduction processes, where transverse-momentum dependent (TMD)
factorization theorems apply (see e.g. [6] for a recent review).

While analytic resummation methods exist, based on these theorems, for sufficiently inclusive variables such as,
e.g., heavy-boson transverse spectra, the viewpoint in this work is to aim at a formulation by which one could also treat
exclusive components of the final states. Parton-shower algorithms do provide such a formulation, and are widely used
as an effective alternative (though limited in accuracy) to analytic resummation methods. While great progress has
been achieved in the last decade on matching and merging methods [7] to combine parton showers with perturbative
calculations through next-to-leading order, several open questions still remain, both conceptual and technical, on the
appropriate use of parton distribution functions in parton showers [8] and on the treatment of the shower’s transverse
momentum kinematics [9].

In the context of analytic methods, the behavior of parton distributions near the endpoint z→ 1 motivates the use
of infrared subtractive techniques which lead to a generalization of the “plus” distribution [10] including transverse
degrees of freedom. In this paper we describe a new calculation, based on the unitarity method [1] to recast evolution
equations in terms of Sudakov form factors and real emission kernels, and present a study of the soft-gluon resolution

1

ar
X

iv
:1

70
4.

01
75

7v
1 

 [
he

p-
ph

] 
 6

 A
pr

 2
01

7



scale in the cases of inclusive parton distributions and of transverse-momentum dependent parton distributions. We
analyze different ordering variables, including transverse momentum ordering and angular ordering. The method set
up in this paper can be applied systematically order-by-order in the strong coupling αs, at leading order as well as at
next-to-leading and higher orders. In this article we present the basic results and numerical leading-order applications.
Details of the method and applications including next-to-leading order will be presented elsewhere [11].

We start from the renormalization group evolution of parton distribution functions [12–14]

∂ f̃a(x, µ2)
∂ ln µ2 =

∑
b

∫ 1

x
dz Pab(αs(µ2), z) f̃b(x/z, µ2) . (1)

where f̃a(x, µ2) ≡ x fa(x, µ2) are momentum-weighted parton distributions for a = 1, . . . , 2N f + 1 species of partons
(with N f the number of quark flavors) as functions of longitudinal momentum fraction x and evolution mass scale µ,
and Pab(αs, z) are splitting functions, computable as perturbation series expansions in powers of the strong coupling
αs.

We classify the singular behavior of the splitting functions Pab(αs, z) for z→ 1 according to the decomposition

Pab(αs, z) = Dab(αs)δ(1 − z) + Kab(αs)
1

(1 − z)+

+ Rab(αs, z) , (2)

where the plus-distribution 1/(1 − z)+ is defined for any test function ϕ as∫ 1

0

1
(1 − z)+

ϕ(z) dz =

∫ 1

0

1
1 − z

[ϕ(z) − ϕ(1)] dz . (3)

Eq. (2) decomposes the splitting functions into the δ(1 − z) distribution, the 1/(1 − z)+ distribution, and the function
R(αs, z) which contains logarithmic terms in ln(1 − z) and analytic terms for z → 1. The δ(1 − z) and 1/(1 − z)+

contributions to splitting functions are diagonal in flavor,

Dab(αs) = δabda(αs) , Kab(αs) = δabka(αs) (4)

(no summation over repeated indices). The constants da and ka and the functions Rab in Eq. (2) can be expanded in
powers of αs. The two-loop expansions for the constants da and ka may be obtained from [15, 16] and read

dq =
3αsCF

4π
+

(
αs

2π

)2
[
C2

F

(
3
8
−
π2

2
+ 6 ζ(3)

)
+ CFCA

(
17
24

+
11π2

18
− 3 ζ(3)

)
−CFTRN f

(
1
6

+
2π2

9

)]
+ O

(
α3

s

)
,

dg =
αs

2π

(
11
6

CA −
2
3

TR N f

)
+

(
αs

2π

)2
[
C2

A

(
8
3

+ 3 ζ(3)
)
−

4
3

CATRN f −CFTRN f

]
+ O

(
α3

s

)
,

kq =
αsCF

π
+
α2

sCF

2π2 Γ + O
(
α3

s

)
, kg =

αsCA

π
+
α2

sCA

2π2 Γ + O
(
α3

s

)
, Γ ≡ CA

(
67
18
−
π2

6

)
− TRN f

10
9
, (5)

where CA = Nc, CF = (N2
c − 1)/(2 Nc), TR = 1

2 are SU(Nc) color factors (Nc = 3), and ζ is the Riemann zeta function.
Analogously, explicit expressions for the functions Rab may be obtained from [15, 16] through two loops.

In the physical picture of Eqs. (1),(2) a finite resolution scale in the transverse distance between emitted partons
implies, by energy-momentum conservation, that partons radiated with longitudinal momentum fractions closer to
z = 1 than a certain cut-off value, z > zM with 1 − zM ∼ O(ΛQCD/µ), cannot be resolved. Removing such radiative
contributions from the evolution, on the other hand, leads to a violation of unitarity. The key idea of the parton
branching method is to restore unitarity by recasting the evolution equations in terms of no-branching probabilities
(Sudakov form factors) and real-emission branching probabilities [1, 17].

To this end, in this work we proceed in two steps, as follows. First, we introduce the resolution scale parameter zM

into the evolution equations (1) by splitting the integration range on the right hand side into the resolvable (z < zM)
and non-resolvable (z > zM) regions. We include terms through O(1−zM)0 but neglect power-suppressed contributions
O(1− zM)n, n ≥ 1. (The details of this analysis will be given elsewhere [11].) Further we use the momentum sum rule∑

c

∫ 1

0
z Pca(αs, z) dz = 0 (for any a) (6)

2



to systematically eliminate D-terms in Eq. (2) in favor of K- and R-terms. Then the evolution equations (1) can be
recast in integral form as

f̃a(x, µ2) = S a(zM , µ
2, µ2

0) f̃a(x, µ2
0) +

∑
b

∫ µ2

µ2
0

dµ′2

µ′2
S a(zM , µ

2, µ2
0)

S a(zM , µ′2, µ
2
0)

×

∫ zM

x
dz

(
Kab(αs(µ′2))

1
1 − z

+ Rab(αs(µ′2), z)
)

f̃b(x/z, µ′2) + O(1 − zM) , (7)

where S a is the Sudakov form factor

S a(zM , µ
2, µ2

0) = exp

−∑
b

∫ µ2

µ2
0

dµ′2

µ′2

∫ zM

0
dz z

(
Kab(αs(µ′2))

1
1 − z

+ Rab(αs(µ′2), z)
) . (8)

Eqs. (7),(8) take into account the effects of the d-terms in Eq. (5) and subtraction term in Eq. (3) implicitly, while the
k-terms in Eq. (5) (as well as the R-terms) are integrated over up to the resolution scale parameter zM .

Next, we solve Eq. (7) by numerical Monte Carlo method and use the parton branching kinematics (Fig. 1) to
relate the transverse momentum recoils at each branching to the evolution variable. With reference to the notation of
Fig. 1 for the splitting b→ a + c, the plus lightcone momenta are p+

a = zp+
b , p+

c = (1 − z)p+
b . We consider the cases of

transverse-momentum ordering and angular ordering [18, 19]. In the first case we have

µ = |qc| , (9)

where qc is the (euclidean) transverse momentum vector of particle c. In the second case we have

µ = |qc|/(1 − z) . (10)

For numerical solution, we develop a new program based on the Monte Carlo method which was earlier employed

µ      

b     t,b k

x

a

b

t,c

c

x  ,a      t,ak

z =     /x
a b q       

x   , 

Figure 1: Branching process b→ a + c.

by some of us for studies of the CCFM equations [20, 21]. The application to the case of the evolution equations (7)1

presents different features with respect to the CCFM case. These depend especially on the different flavor structure
of the two equations, and the different behavior of the kernels at small longitudinal momentum fractions. While
CCFM equations are dominated by the gluon channel, Eq. (7) has fully coupled flavor structure. The small-x behavior
of CCFM kernels is controlled by the non-Sudakov form factor. In the case of Eq. (7) it is essential to work with
momentum-weighted distributions to improve the convergence of the numerical integration over the region of small
x. The iterative solution of Eq. (7) schematically reads

f̃a(x, µ2) =

∞∑
i=0

f̃ (i)
a (x, µ2) , (11)

1First results from this numerical program have been presented in [22].
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where

f̃ (0)
a (x, µ2) = S a(zM , µ

2, µ2
0) f̃a(x, µ2

0) ,

f̃ (1)
a (x, µ2) =

∑
b

∫ µ2

µ2
0

dµ′2

µ′2
S a(zM , µ

2, µ2
0)

S a(zM , µ′2, µ
2
0)

∫ zM

x
dz S b(zM , µ

′2, µ2
0)

×

(
Kab(αs(µ′2))

1
1 − z

+ Rab(αs(µ′2), z)
)

f̃b(x/z, µ2
0) , . . . . (12)

Using this branching Monte Carlo solution and the parton kinematic relations given above, we are able to compute
the distributionAa in the transverse momentum k = −

∑
c qc, in addition to the inclusive distribution, integrated over

k, ∫
xAa(x,k, µ2)

d2k
π

= f̃a(x, µ2) . (13)
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Figure 2: Transverse momentum gluon distribution at x = 10−2 and µ = 100 GeV (upper row), µ = 1000 GeV (lower row) for different values of
the resolution scale parameter 1 − zM = 10−3, 10−5, 10−8: (left) angular ordering; (right) transverse momentum ordering.

The key observation is that while in the case of the inclusive distribution the cancellation of real and virtual
non-resolvable emissions leads to results which become independent of the resolution parameter zM for large enough
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zM , regardless of the choice of the evolution variable, the case of the transverse momentum distribution is infrared-
sensitive and depends on the appropriate choice of the evolution variable (e.g., Eqs. (9),(10)). In the framework of [10],
this infrared sensitivity is treated by using the subtractive technique [23] in the definition of transverse momentum
dependent distributions and leads to a generalization of the plus distribution (3). In the case of the branching solution
of the evolution equations analyzed in this paper, we will see next that the angular ordering (10) takes into account
the cancellation of non-resolvable emissions and gives stable, zM-independent results.
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Figure 3: Transverse momentum up-quark distribution at x = 10−2 and µ = 100 GeV (upper row), µ = 1000 GeV (lower row) for different values
of the resolution scale parameter 1 − zM = 10−3, 10−5, 10−8: (left) angular ordering; (right) transverse momentum ordering.

In Figs. 2,3 we apply our numerical solution of Eq. (7) to study the transverse-momentum dependence of the gluon
and up-quark distribution and their behavior with the soft-gluon resolution parameter zM . The parameter zM in general
depends on the evolution scale µ. For numerical illustrations in this paper we limit ourselves to presenting results at
fixed values of zM . Fig. 2 shows the gluon distribution versus kt ≡ |k| for different values of the resolution parameter,
1 − zM = 10−3, 10−5, 10−8. Fig. 3 shows analogous curves for the up-quark distribution. The distributions are plotted
for a fixed value of longitudinal momentum fraction, x = 10−2, and two values of evolution scale, µ = 100 GeV
(top panels) and µ = 1000 GeV (bottom panels).2 On the right are the results for transverse-momentum ordering; on
the left are the results for angular ordering. We see that the transverse-momentum ordering does not lead to results

2The plots in Figs. 2,3 are produced using the plotting tool TMDplotter [24, 25].
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independent of zM . In contrast, the angular ordering does. The different behavior is associated with the emission
of gluons at large negative rapidities, y ∼ ln(p+/p−) → −∞. In the case of transverse-momentum ordering, for
quantities which are not inclusive but depend on observed transverse momenta, an extra dependence is left over on
zM , corresponding to a cut-off on the rapidity of emitted gluons. On the other hand, the angular ordering correctly
takes into account the cancellation of non-resolvable emissions due to soft-gluon coherence [5], and no dependence
is left on the resolution scale.
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Figure 4: Integrated gluon and down-quark distributions at µ2 = 10 GeV2 (left column) and µ2 = 105 GeV2 (right column) obtained from the
parton-branching solution for different values of zM , compared with the result from Qcdnum. The ratio plots show the ratio of the results obtained
with the parton-branching method to the result from Qcdnum.

We find that the effect from the ordering variable and soft-gluon resolution illustrated in Figs. 2,3 influences the
transverse momentum distribution for any kinematic region, namely, both at small kt and large kt, and for any value
of x (including the low-x region).

The result in Figs. 2,3 is obtained using an arbitrarily chosen form for the distributions at the initial scale of
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evolution µ0 in Eq. (12). This is sufficient to illustrate the main point about the zM dependence. In a complete
treatment, the initial distributions are to be determined from fits to experimental data. We plan to report on this in a
future publication.

Also, we have obtained the numerical curves in Figs. 2,3 by restricting ourselves to leading order in the strong
coupling. The method described in this paper however is general and can be extended to higher orders. Explicit results
at the next-to-leading order will be presented in a separate paper.

Fig. 4 shows the result of applying our parton-branching solution of Eq. (7) to compute the evolution of gluon and
quark distributions as functions of x, for different values of the resolution scale parameter zM . We use this to validate
our method in the case of ordinary parton distributions, integrated over kt. As a consistency check we verify that,
regardless of the ordering variable in Fig. 2, the result for the inclusive parton distributions converges as a function
of zM for large enough zM . Further, we compare the answer from our parton-branching solution of the evolution
equations to semi-analytic results obtained via the evolution package Qcdnum [26–28].3 We find agreement to a level
better than 1 %.

In conclusion, we have shown that the evolution of parton distribution functions can be calculated, including the
transverse momentum dependence, from a parton branching approach, provided infrared contributions are treated by
a method which takes into account consistently soft gluon emissions near the endpoint z→ 1 not just at inclusive level
but at exclusive level. We have analyzed in detail the dependence on the soft-gluon resolution scale parameter zM .

Having defined this properly opens the way to collider applications of TMD parton distributions. Contrary to most
studies so far, which are limited to specific kinematic regions, the approach of this paper is expected to be valid more
generally and in particular includes the full flavor structure.
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[24] F. Hautmann, H. Jung, M. Krämer, P.J. Mulders, E.R. Nocera, T.C. Rogers and A. Signori, Eur. Phys. J. C74 (2014) 3220.
[25] P. Connor, F. Hautmann and H. Jung, PoS DIS2016 (2016) 039.
[26] M. Botje, Comput. Phys. Commun. 182 (2011) 490.
[27] M. Botje, Eur. Phys. J. C 14 (2000) 285.

3Similar comparisons were made in [29, 30] and in [31].

7

http://arxiv.org/abs/1608.06425
http://arxiv.org/abs/1411.4085
http://arxiv.org/abs/1304.7180
http://arxiv.org/abs/1206.1796
http://arxiv.org/abs/hep-ph/0011381


[28] M. Virchaux and A. Milsztajn, Phys. Lett. B 274 (1992) 221.
[29] S. Jadach and M. Skrzypek, Acta Phys. Polon. B 35 (2004) 745.
[30] K. J. Golec-Biernat, S. Jadach, W. Placzek and M. Skrzypek, Acta Phys. Polon. B 37 (2006) 1785.
[31] H. Tanaka, Prog. Theor. Phys. 110 (2003) 963.

8


