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Abstract: Non-decoupling D-term extensions of the MSSM enhance the tree-level Higgs

mass compared to the MSSM, therefore relax fine-tuning and may allow lighter stops with

rather low masses even without maximal mixing. We present the anatomy of various non-

decoupling D-term extensions of the MSSM and explore the potential of the LHC and of

the International Linear Collider (ILC) to determine their deviations in the Higgs couplings

with respect to the Standard Model. Depending on the mass of the heavier Higgs mH ,

such deviations may be constrained at the LHC and determined at the ILC. We evaluate

the Higgs couplings in different models and study the prospects for a model distinction at

the different stages of the ILC at
√
s =250, 500, 1000 GeV, including the full luminosity

upgrade and compare it with the prospects at HL-LHC.ar
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1 Introduction

The mass of the recently discovered scalar particle mh ∼ 125.5 GeV at the Large Hadron

Collider (LHC) [1, 2], as well as its measured signal strengths, within the current achievable

precision, is consistent with the Higgs boson of the Standard Model (SM). In the context

of Supersymmetry (SUSY), the observed Higgs mass can be obtained within the minimal

supersymmetric standard model (MSSM), as well as a number of well-defined extensions

of the MSSM based on the two Higgs doublet model [3]. However, having not yet observed

supersymmetric particles at the LHC so far may provide circumstantial evidence that the

MSSM is fine-tuned to some degree, as the generation of such a heavy mass for the lightest

CP-even Higgs often requires heavy stops, posing a naturalness problem, or high stop

mixings.

Motivated by the aesthetic of naturalness and in the endeavour to uniquely determine

the Higgs sector and its scalar potential, in this paper we explore a number of concrete and
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well motivated extensions of the MSSM and study to what degree they lead to deviations

from the SM that are measurable at the LHC or at a future Higgs factory such as the

International Linear Collider (ILC).

There are two main categories of extensions of the MSSM that may offer extra contri-

butions to the Higgs mass at tree level, thereby improving fine-tuning. The first category

is given by F -term extensions of the MSSM, in which additional fields interacting with

the MSSM Higgs doublets - either gauge singlets as in the NMSSM [4–9] (for a review see

[10–12]) or triplets [13–16] - raise the tree-level Higgs mass via terms in the superpotential

resulting in enhanced quartic couplings of the Higgs boson. The second category, that will

be studied in this work, is given by quiver or D-term extensions of the MSSM [17, 18]. In

these models, an MSSM gauge group extension provides additional non-decoupling D-terms

from the Kähler potential, enhancing the tree level Higgs mass through extra contributions

to the Higgs quartic couplings. In particular, at a scale above the TeV-scale, the extended

gauge group under which the Higgs fields are charged is broken to SU(2)L × U(1)Y ; the

additional D-terms originate from integrating out the heavier scalar fields that participate

in the breaking of the gauge groups. This category of MSSM extension is appealing for a

series of reasons [17, 18]: the electroweak scale remains stable after running from higher

energies, as there are no log-enhanced 1-loop corrections to Higgs soft masses; additional

contributions to electroweak precision observables can be suppressed and gauge coupling

unification is not obviously spoiled. In addition, these models are consistent and compati-

ble with all frameworks of supersymmetry breaking, the Higgs enhancement being largely

independent of how SUSY breaking effects are parameterised.1

We consider gauge extended MSSM models in which the gauge group features two

copies of the electroweak gauge group SU(2) × U(1), GA in site A and GB in site B. At

lower energies, at a scale & 1 TeV, GA×GB diagonally breaks to the SM electroweak group

SU(2)L × U(1)Y . In this case, two main classes of models can be identified. In the first

class, which we will refer to as the “vector Higgs” case, the two Higgs doublets Hu and Hd

are both charged either under GA or under GB, transforming as a vector representation

(Hu, Hd) of GA ×GB. The second class, the “chiral Higgs” case, instead, has Hu and Hd

charged under different copies of SU(2)× U(1) [19, 20].

We supply an anatomy of these types of models, explore whether they lead to pre-

dictions that are experimentally testable at the LHC and the ILC, and use them as a

predictive guide concerning the stops masses and the trilinear At.

The approach we take here will be bottom-up in which we neglect effects from the

renormalization group equations (RGE) and focus on these extensions as deformations of

the MSSM. This approach is complementary to that of [21], for instance, where a fully UV-

complete two-loop spectrum generator is used (and made publicly available, [22]) to analyse

the sparticle spectrum and Higgs physics of such a quiver model. Other descriptions of

quiver models as UV completions may be found, for example in [19, 23–32].

1At low energies the model is often well described by the MSSM plus an effective action. Therefore the

soft terms can be parameterised largely independent of the D-terms enhancement, if the scale of diagonal

gauge symmetry breaking is small enough.

– 2 –



The outline of this paper is as follows: in section 2 we compare the minimisation con-

ditions and naturalness between the MSSM and some of its two-site quiver extensions. In

section 3 we explore the LHC’s and ILC’s capabilities to resolve such D-terms enhance-

ments of the MSSM. In section 4 we discuss and conclude. In appendix A we supply a

more general derivation of the D-terms for Higgs bosons, squarks and sleptons applicable

to both chiral and vector Higgs models. In the appendices B and C we list the mixing ma-

trices of the Higgs sector for both vector-like and chiral D-terms cases. In appendix D we

give the corrections to the sfermion mass matrices of the MSSM, due to vector-like D-term

contributions. Appendix E explores unification in these models as a guide to constrain

the maximum possible size of D-terms. Appendix F outlines a holographic 3-site quiver

extension that may also lead to non-decoupling D-terms.

2 A catalogue of non-decoupling D-terms

D-terms extensions of the MSSM were first explored in [17, 18], as they may provide a tree

level enhancement of the Higgs mass mh through a modification of the Higgs quartic terms

in the scalar potential. A higher tree-level mass requires smaller loop-level corrections to

reproduce the measured Higgs mass with respect to the MSSM, with improved consequences

for naturalness. The main idea is the following: the D-terms induced by an extended gauge

group diagonally breaking to the MSSM’s SU(2)L×U(1)Y contribute to the Higgs quartic

potential. The gauge symmetry breaking is caused by the acquisition of vevs by some

linking fields charged under the gauge group. The minimum of the potential is in a D-flat

direction, leaving the Higgs doublets massless (at tree-level). Once the heavy linking fields

are integrated out, the associated D-terms do not decouple in the supersymmetric limit

as soft masses for the linking fields are introduced at a scale equal or higher than the

breaking scale, remaining in the Higgs scalar potential at lower energies. The additional

non-decoupling D-terms raise the Higgs tree-level mass while introducing an effective hard

SUSY breaking in the quartic scalar couplings. For more details on the generation of

non-decoupling D-terms, see [17, 18, 21] and appendix A.

Non-decoupling D-terms extensions of MSSM may arise in two- (or more) site quiver

models, for example with a single linking field L between the sites, in the bifundamen-

tal representation under the two gauge group copies of SU(2), as is the case in [25–28].

Alternatively, non-decoupling D-terms are predicted in two-site quiver models with a bifun-

damental and antibifundamental pair of linking fields L, L̃ [21, 23, 24, 29–34]. Furthermore,

as quiver models are related to extra dimensional models through deconstruction [30, 35],

non-decoupling D-terms may also appear in this latter context (this was pointed out in

[21]).

We wish to compare here the minimisation conditions and the implications for natu-

ralness within the MSSM and some of its possible quiver extensions.

The gauge group of the MSSM extensions we consider is given by G = SU(3)c ×
GA × GB, where GA, GB are copies of SU(2) × U(1) respectively located in sites A and

B. Regardless of how supersymmetry is broken, mediated either by gauge, gravity or

some other effect, it is reasonable to approximate the low energy theory of these two-site
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models with the MSSM supplemented by an effective action to account for the D-terms.

This approach neglects RGE effects, while the full implementations of the UV completions,

although warranted such as in [21], are beyond the scope of this work.

2.1 Minimal Supersymmetric Standard Model (MSSM)

It is useful, in the context of the MSSM and its D-term extensions, to use the most general

renormalizable scalar potential for a two Higgs-doublet model (2HDM) [3],

V =m2
1|Hu|2 +m2

2|Hd|2 +m2
12(HuHd +H†uH

†
d)

+
λ1

2
|Hd|4 +

λ2

2
|Hu|4 + λ3|Hu|2|Hd|2 + λ4|H†dHu|2 +

λ5

2
[(Hu ·Hd)

2 + c.c.]

+ λ6|Hd|2[(Hu ·Hd) + c.c.] + λ7|Hu|2[(Hu ·Hd) + c.c.] , (2.1)

with all parameters real and CP-conserving. To recover the MSSM Higgs scalar potential,

we take

m2
1 = (|µ|2 +m2

Hu) , m2
2 = (|µ|2 +m2

Hd
) , m2

12 = Bµ ,

λ1 = λ2 =
g2 + g′ 2

4
, −λ3 =

g2 + g′ 2

4
, λ4 =

1

2
g2 , λ5 = λ6 = λ7 = 0 , (2.2)

with g′, g respectively being the Standard Model hypercharge and the SU(2)L coupling

constants.2

The up- and down-Higgs doublet scalar fields may be written in terms of their charged

and neutral components, Hu = (H+
u , H

0
u), Hd = (H0

d , H
−
d ). The minimisation conditions

∂V
∂H0

d
= 0 = ∂V

∂H0
u

should be fulfilled for the consistency of the electroweak breaking minimum

of the potential. The vevs of the neutral components are defined as [36]

〈H0
u〉 =

vu√
2
, 〈H0

d〉 =
vd√

2
, (2.3)

v2 ≡ v2
u + v2

d = (246 GeV)2 ,
vu
vd
≡ v sinβ

v cosβ
= tanβ . (2.4)

The minimisation condition equations then read

m2
Hu + |µ|2 −Bµ cotβ − m2

Z

2
cos(2β) = 0 , (2.5)

m2
Hd

+ |µ|2 −Bµ tanβ +
m2
Z

2
cos(2β) = 0 , (2.6)

where mHu and mHd are the Higgs soft masses and Bµ is the MSSM b-term. Taking m2
Z

and tanβ as output parameters, eqns. (2.5),(2.6) can be rewritten as:

sin(2β) =
2Bµ

m2
Hu

+m2
Hd

+ 2|µ|2 , (2.7)

m2
Z =

|m2
Hd
−m2

Hu
|

√
1− sin2(2β)

−m2
Hu −m2

Hd
− 2|µ|2 . (2.8)

2In the following, we take g1 to be SU(5) GUT-normalized, such that g1 = g1,GUT =
√

5/3g′, g2 = g

and m2
Z = 1

4
( 3
5
g21 + g22)(v2u + v2d).
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In the MSSM, after electroweak symmetry breaking there are five physical scalar states:

the two CP even neutral scalars h and H, the CP odd neutral scalar A0, and the conjugate

charged Higgses H+, H−. Using the tree-level scalar potential minimised around the vevs

vu and vd, one obtains the set of masses

m2,MSSM
h,H =

1

2

(
m2
A0 +m2

Z ∓
√

(m2
A0 −m2

Z)2 + 4m2
Zm

2
A0 sin2(2β)

)
, (2.9)

m2,MSSM
A0 ≡ 2Bµ

sin 2β
= 2|µ|2 +m2

Hu +m2
Hd
, (2.10)

m2,MSSM
H± = m2

A0 +m2
W . (2.11)

GA GB

L

L̃
Hu Hd

SSMgenerations

Figure 1. The quiver module of the electroweak sector which leads to the vector-Higgs D-term, as

in table 1. The supersymmetric standard model is on site A, the linking fields (L, L̃) connect the

two sites. The singlet field (K) is not shown. The resulting non-decoupling vector-Higgs D-term is

displayed in Eqn. (2.13).

The tree level Higgs mass is bounded by m2
h,0 < m2

Z cos2 2β, requiring large loop

corrections to reproduce the measured SM-like Higgs mass at ∼ 125.5 GeV. The MSSM

Higgs mass squared in the decoupling limit mA0 � mZ can be approximated at one loop

(with two-loop leading-log effects included) by [12, 37–41]

m2,MSSM
h,1 ' m2

z cos2 2β +
3

2π2v2

[
m4
t, r

(√
mtMt̃

)
ln
M2
t̃

m2
t

+m4
t, r(Mt̃)

X2
t

M2
t̃

(
1− X2

t

12M2
t̃

)]
,

(2.12)

where mt, r(Λ) is the running top mass at the scale Λ and M2
t̃

= mt̃1
mt̃2

; v = 246 GeV is

the electroweak Higgs vev and Xt = At − µ∗ cotβ, with At the stop soft SUSY-breaking

trilinear coupling, which quantifies stop mixing.3 This expression assumes that the left and

right soft parameters of the stops are equal, see appendix D for the stop mixing matrices.

2.2 Vector Higgs quiver model

The first class of two-sites quiver models that we consider is given by the “vector Higgs”

case, in which both the Higgs doublets of the MSSM are on the same site [17, 18]. Depicted

in figure 1, the case in which both the Higgs doublets and the other MSSM matter fields

are on site A, charged under GA as described in table 1.

3In the following we assume µ to be real.
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Superfields Spin 0 Spin 1
2 GA ×GB × SU(3)c

q̂f q̃f qf (2, 1
6 ,1, 0,3)

d̂f d̃f∗R df∗R (1, 1
3 ,1, 0,3)

ûf ũf∗R uf∗R (1,−2
3 ,1, 0,3)

l̂f l̃f lf (2,−1
2 ,1, 0,1)

êf ẽf∗R ef∗R (1, 1,1, 0,1)

Ĥd Hd H̃d (2,−1
2 ,1, 0,1)

Ĥu Hu H̃u (2, 1
2 ,1, 0,1)

L̂ L ψL (2,−1
2 ,2,

1
2 ,1)

ˆ̃L L̃ ψL̃ (2, 1
2 ,2,−1

2 ,1)

K̂ K ψK (1, 0,1, 0,1)

Table 1. The matter content of the theory that may lead to a vector-Higgs non decoupled D-term

for both SU(2)L and U(1)Y , with the Higgs doublets on site A. f = 1, 2, 3 labels the generations.

The singlet K̂ couples to the linking fields in the superpotential and it is introduced to generate a

suitable scalar potential for the linking fields, see also [21]. This model is represented in figure 1.

As outlined at the beginning of the section, after the symmetry breaking of GA ×GB
to SU(2)L×U(1)Y , the real uneaten scalar components of the linking fields appear in both

the A and B site scalar D-term potential. When these components are integrated out, in

the effective theory the following relevant terms are added to the MSSM Higgs potential

δL = −3

5

g2
1∆1

8
(H†uHu −H†dHd)

2 − g2
2∆2

8

∑

a

(H†uσ
aHu +H†dσ

aHd)
2 + . . . . (2.13)

The ellipsis denote terms involving other scalars of the model as explained in appendix A.

∆1 and ∆2, see Table 1, are respectively given by

∆A
1 =

(
g2
A1

g2
B1

)
m2
L

m2
v1 +m2

L

, ∆A
2 =

(
g2
A2

g2
B2

)
m2
L

m2
v2 +m2

L

, (2.14)

where gA1, gB1 are the U(1) couplings on site A and B while gA2, gB2 are the SU(2)

couplings; mL is the soft mass, that we assume equal for both the linking fields L, L̃,

and mv1 , mv2 are the masses of the heavy gauge bosons after the symmetry breaking to

SU(2)L×U(1)Y . The relation between the MSSM gauge couplings and that of the extended

gauge groups takes the form

cos θi =
gi
gAi

, sin θi =
gi
gBi

. (2.15)

To enhance the D-terms one requires g2
A i > g2

B i , a condition that in some cases can be

problematic for perturbative unification, because, if most of the matter is charged under
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Figure 2. Contours of the Higgs mass mh = 125.5 GeV in the (mQ3
, Xt) plane [left panel] and in

the (mt̃1
, Xt) plane [right panel] for different values of ∆1 = ∆2. We set mQ3 = mU3 , tanβ = 10.

The one-loop Higgs mass with tree-level D-terms corrections mh, 1 is plotted.

GA, then a Landau pole may be reached below the GUT scale (see appendix E). If we are

not concerned by coupling unification, then ∆1 and ∆2 may arise independently and in

general are not equal in value.

For the vector Higgs extension of the MSSM, the minimisation conditions are given by

m2
Hu + |µ|2 −Bµ cotβ − m2

Z +m2
∆

2
cos(2β) = 0, (2.16)

m2
Hd

+ |µ|2 −Bµ tanβ +
m2
Z +m2

∆

2
cos(2β) = 0, (2.17)

where we defined 4m2
∆ = (3

5g
2
1∆1 + g2

2∆2)v2. Eqs. (2.16),(2.17) solved for m2
Z and tanβ

read

sin(2β) =
2Bµ

m2
Hu

+m2
Hd

+ 2|µ|2 , (2.18)

m2
Z +m2

∆ =
|m2

Hd
−m2

Hu
|

√
1− sin2(2β)

−m2
Hu −m2

Hd
− 2|µ|2. (2.19)

The tree-level Higgs masses are found simply by replacing m2
Z → m2

Z + m2
∆ and

m2
W → m2

W (1 + ∆2) in (2.9)-(2.11).

The non-decoupling D-terms contribution causes a shift in the tree level Higgs mass

squared m2
h,0 which results in

m2, vec
h,0 =

[
m2
Z +

(
3
5g

2
1∆1 + g2

2∆2

4

)
v2

]
cos2 2β . (2.20)
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Figure 3. One-loop Higgs mass mh,1 with tree-level D-terms corrections vs tanβ for different

values of ∆1 = ∆2 with Xt = 0 [left panel] and Xt = −1 TeV [right panel], and with mt̃1
= 500

GeV. For comparison, 125.5± 3 GeV grid lines are plotted.

In the following we will consider ∆1 equal to ∆2 and we will simply refer to as ∆. The effect

of the tree-level shift can significantly reduce fine-tuning in the top-stop sector and allows

for a reduced average stop mass. This can be seen in fig. 2 (similarly to [34]), where we plot

in the (mQ3 , Xt) and (mt̃1
, Xt) planes the Higgs mass from eq. (2.12) with the tree-level

D-terms corrections from eq. (2.20), for different values of ∆. While at the MSSM limit

∆ = 0, for Xt = 0 GeV, we need mt̃1
' 4 TeV to reproduce the correct Higgs, at ∆ = 0.3

this is possible with mt̃1
' 1 TeV. One can also note that the value of the maximal mixing

scenario (the sharply acute concave kink in the contours for |At| '
√

6Ms) can further

allow for a significantly smaller Xt for increasing ∆.

Discussing the expected order of the size of these D-terms one can observe that with

∆ ∼ O(1) the tree-level Higgs mass would already be sufficiently large to account for the

observed 125 GeV Higgs mass. In [34] was shown that demanding fine tuning no worse

than 1/10 together with light stops one would expect ∆ & 0.5. On the other hand, in [21]

it was found that O(0.1) ∆ is more easily obtainable and preferable if to accommodate

perturbative unification (see also appendix E). As these O(0.1) ∆ can still have a noticeable

effect on the Higgs mass but may have a less easily observable deviation from the MSSM,

we study here the degree to which their effects can be determined at the LHC and ILC.

In fig. 3 and fig. 4 one can see how enhancements due to the non-decoupling D-terms

arise significantly for tanβ ∈ [1, 10], where it is harder to reproduce mh = 125.5 GeV, and

stabilises for tanβ & 10. Such results are similarly reproduced using the RG-evolution

approach as in [21]. In particular in figure 4 it is evident that for an increasing value of ∆,

a lower mt̃1
is required to get mh = 125.5 GeV, especially compared to the MSSM limit of

∆ = 0.

In the left panel of fig. 5 we can see that to have null mixing Xt = 0 GeV with

tanβ = 10, mt̃1
has to be in the 1-4 TeV range for ∆ ∈ [0.01, 0.3]. On the right panel we

see that for the same values of ∆ with a lower stop mass (mt̃1
∼ 500 GeV) still a |Xt| ∼ 1

TeV is required, with negative values of Xt preferred by theory due to RGE effects, which

makes At = Xt + µ cotβ run negative. In summary, whilst the maximal mixing scenario
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Figure 5. One-loop Higgs mass mh,1 with tree-level D-terms corrections for different values of

∆1 = ∆2, with tanβ = 10 and 125.5± 3 GeV grid lines plotted for comparison. On the left panel,
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is favoured, it is now much more achievable, due to the D-term effects, for smaller values

of At, and even allows sub 2 TeV stops the for the null or small mixing scenario, when

∆ ≥ 0.3.

The vector Higgs D-term extensions of the MSSM may feature different generations of

matter located on different sites, for example having the first two generation matters on

site B [25, 26], while typically the 3rd generation is on the same site as Hu since the stop

mixing parameter Xt helps to trigger EWSB. In alternative version of the vector-Higgs

D-terms, the Higgses are both on site B. The corresponding D-terms are now given by

Eqn. (2.13) with ∆1 and ∆2 respectively equal to

∆B
1 =

(
g2
B1

g2
A1

)
m2
L

m2
v1 +m2

L

, ∆B
2 =

(
g2
B2

g2
A2

)
m2
L

m2
v2 +m2

L

. (2.21)

Notice that the role of the gauge couplings are reversed with respect to model A,

with g2
B1 > g2

A1. This can result in an easier perturbative unification if more matter is on
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GA GB

L

L̃
Hu Hd

SSMgenerations

Figure 6. The quiver module of the electroweak sector for the chiral Higgs case. The resulting

chiral-Higgs like non-decoupling D-term is reported in Eqn. (2.24) and whose matter content is in

table 2. The model requires additional fields carrying Higgs-like charges, such as in figure 15, or

leptons multiplets on site B instead of A, for anomaly cancellation.

site A than site B, although this can generate problems with EWSB and also separately

naturalness, depending on where the source of supersymmetry breaking is introduced, in

the context of supersymmetry breaking, for instance Non-universal UV Higgs soft masses

may be required to trigger EWSB at low scales.

2.2.1 Additional fine-tuning and the Higgs mass

We should also consider the effect on naturalness of the explicit breaking of supersymmetry

from the non-decoupled D-terms in the EFT we restrict to. Using a cut-off, the non-

decoupled D-terms in the vector case will lead to a quadratic divergence that contributes

to the Higgs mass counterterm at one loop [18, 34]:

δm2,vec
h,1 =

(
α3

5g
2
1∆1 + βg2

2∆2

4

)
M2

16π2
, (2.22)

where α, β are determined by the precise matter content that appears in the non-decoupling

D-term, each generating a one loop contribution (see section A), and M2 = m2
L. Such an

effect may arise both in the Higgs tadpole equations and in the one-loop Higgs self energies.

In a supersymmetric theory that is only softly broken all quadratic divergences cancel

exactly at all orders in perturbation theory. In this case, Eqn. (2.22) gives an additional

contribution depending on the size of M2, that should then not be too large in order not

to have too much additional fine tuning. This fine tuning F , may be quantified as

δm2,vec
h,1

m2
h

= 1/F . (2.23)

In either case we have assumed in this paper, as in [18, 34], that M2 is small enough such

that this contribution is neglected. It is interesting to consider the inclusion of these terms

if one considers larger values of M2 such as might arise from future Z ′ exclusions.
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Superfields Spin 0 Spin 1
2 GA ×GB × SU(3)c

q̂f q̃f qf (2, 1
6 ,1, 0,3)

d̂f d̃f∗R df∗R (1, 1
3 ,1, 0,3)

ûf ũf∗R uf∗R (1,−2
3 ,1, 0,3)

l̂f l̃f lf (2,−1
2 ,1, 0,1)

êf ẽf∗R ef∗R (1, 1,1, 0,1)

Ĥu Hu H̃u (2, 1
2 ,1, 0,1)

Ĥd Hd H̃d (1, 0,2,−1
2 ,1)

L̂ L ψL (2,−1
2 ,2,

1
2 ,1)

ˆ̃L L̃ ψL̃ (2, 1
2 ,2,−1

2 ,1)

K̂ K ψK (1, 0,1, 0,1)

Table 2. The matter content of a quiver model that may lead to the Chiral Higgs case and the

D-term enhancement of Eqn. (2.24). This is pictured in figure 6. The model requires additional

fields carrying Higgs-like charges, such as in figure 15, or leptons multiplets on site B instead of A,

for anomaly cancellation.

2.3 Chiral Higgs quiver model

Another possible two-sites quiver is the chiral Higgs case [19, 20], in which the two MSSM

Higgs doublets are on two alternate sites. This is pictured in figure 6 and in table 2, in

which the up-type Higgs double Hu and the third generation of matter are on site A, while

the down-type Higgs double Hd and the first two generations of matter are on site B. The

chiral Higgs case may be quite naturally achieved from a four Higgs doublet model such

as that in appendix F.1 (figure 15), in which each site has two Higgs doublets and then

at lower energies a Higgs doublet for each site are integrated out, resulting in a two Higgs

doublet model. In the chiral Higgs model the non-decoupling D-terms that are added to

the scalar potential of the MSSM, at low energies, are given by

δL = −3

5

g2
1Ω1

8
(ξ1H

†
uHu +

1

ξ1
H†dHd)

2− g2
2Ω2

8

∑

a

(ξ2H
†
uσ

aHu−
1

ξ2
H†dσ

aHd)
2 + . . . . (2.24)

The ellipsis represent terms involving other scalar particles as reported in appendix A,

while

ξi =
gAi
gBi

, Ω1 =
m2
L

m2
v1 +m2

L

, Ω2 =
m2
L

m2
v2 +m2

L

. (2.25)

The minimisation conditions now take the form

m2
Hu + |µ|2 −Bµ cotβ − m2

Z

2
cos(2β) +m2

Ω cos2 β + C = 0 , (2.26)
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m2
Hd

+ |µ|2 −Bµ tanβ +
m2
Z

2
cos(2β) +m2

Ω sin2 β +D = 0 , (2.27)

where

m2
Ω =

v2

8

∑

i=1,2

kig
2
i Ωi , (2.28)

with ki = (3/5, 1) and

C =
v2

8

∑

i=1,2

kig
2
i Ωiξ

2
i sin2 β , D =

v2

8

∑

i=1,2

kig
2
i Ωi

cos2 β

ξ2
i

. (2.29)

Eqs. (2.26),(2.27) then give

sin(2β) =
2Bµ

m2
Hu

+m2
Hd

+ 2|µ|2 + C +D +m2
Ω

, (2.30)

m2
Z =

2

1− tan2 β

[
(C +m2

Hu) tan2 β − (D +m2
Hd

)
]
− 2|µ|2 . (2.31)

The masses of the Higgs states are adjusted accordingly

m2, chir
h0,H0 =

1

2

(
m2
A +m2

Z

)
+ (C +D)

∓ 1

2

√(
m2
A−m2

Z +
2 (C−D)

cos(2β)

)2

c2(2β) +(m2
A +m2

Z − 2m2
Ω)

2
s2(2β) , (2.32)

m2, chir
A ≡ 2Bµ

sin 2β
= m2

Hu
+m2

Hd
+ 2|µ|2 + C +D +m2

Ω , (2.33)

m2, chir
H± = m2

A +m2
W (1− Ω2) , (2.34)

where c2(2β) = cos2(2β), s2(2β) = sin2(2β). The non-decoupling D-terms in this model

leads to a shift to the tree level mass, that in the leading order in the 1/ tanβ expansion

is given by

m2
h,0 '

[
m2
Z +

(
3
5g

2
1ξ

2
1Ω1 + g2

2ξ
2
2Ω2

4

)
v2

]
+O(

1

tan2 β
, ξi) . (2.35)

In the following, for simplicity we take Ω ≡ Ω1 = Ω2 and ξ ≡ ξ1 = ξ2. In fig. 7 it is

plotted the Higgs mass from eq. (2.12) with the tree-level D-term corrections from (2.35)

in the (mt̃1
, Xt) plane for different values of ξ or Ω. Also in the case the 125.5 GeV contour

lines show that the D-term contribution lower the minimal stop masses required for a given

value of Xt. In fig. 8, in a fashion similar to [20]4, we show the mh contour lines in the (ξ,

Ω)-plane for mt̃1
= 500 GeV and 1 TeV.

In the chiral Higgs case, too, the explicit supersymmetry breaking in the low energy

effective theory leads to a reasoning similar to the one discussed in section 2.2.1.

4Note the different notation.
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Figure 7. Contours of the Higgs mass mh = 125.5 GeV in the (mt̃1
, Xt) plane for different values

of ξ [left panel] and Ω [right panel], with mQ3 = mU3 , tanβ = 10. The one-loop Higgs mass with

tree-level D-terms corrections mh, 1 is plotted.
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Figure 8. The Higgs mass in the (ξ1 = ξ2, Ω1 = Ω2) plane, for the chiral Higgs case, with
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= 500 GeV [left panel] and mt̃1

=1 TeV [right panel], while tanβ = 10, At = −400 GeV. The

one-loop Higgs mass with tree-level D-terms corrections mh, 1 is plotted.
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3 Higgs couplings determination at LHC and ILC

Non-decoupling D-terms induced by the quiver extensions of the MSSM, a part of shifting

the tree level masses of the scalars of the theory (see appendix A), have direct impact also

on several physical quantities as, for instance, the h → γγ decay branching ratio [28] or

the Higgs boson couplings to fermions and gauge bosons [20, 34, 42, 43]. We will study

the latter effects, estimating the dependence of the deviations from the SM couplings on

the additional D-terms, in the light of the precise determination of Higgs boson couplings

at current and future colliders. Let us then first define the ratio of the Higgs (the lightest

eigenstate h) coupling normalised by that of the Standard Model couplings:

κU = gU/g
SM
U , κD = gD/g

SM
D , κV = gV /g

SM
V , (3.1)

for any up(down)-type fermion U = u, c, t (D = d, s, b, e, µ, τ), or gauge boson V = W±, Z.

A standard way to express these ratios, or scaling factors, in a 2HDM models of type-II

such as the MSSM, is to write them in terms of the angles β and α,

κD ≡ −
sinα

cosβ
, κU ≡

cosα

sinβ
, κV ≡ sin(β − α) , (3.2)

where α is defined as the mixing angle of the Higgs mass eigenstates,

(
h0

H0

)
=
√

2

(− sinα cosα

cosα sinα

)(
Re H0

d

Re H0
u

)
. (3.3)

The SM is recovered for sinα = − cosβ, cosα = + sinβ. We can express κt, κV in

terms of tanβ and κb (not considering wrong mixings ∆b coming from loop effects) [34]:

κt =

√
1− κ2

b − 1

tan2 β
, κV =

tanβ

1 + tan2 β

(
κb

tanβ
+
√

1 + tan2 β − κ2
b

)
. (3.4)

The relations (3.2) are exact, however a more transparent general expression for the scaling

factors can be obtained looking at the specific model considered. We study models in the

decoupling limit for large tanβ. A procedure to rewrite the Higgs couplings in this regime

is to start from the general 2HDM Higgs scalar potential, equation (2.1) and integrate

out the heavier states identified to the Higgs doublet Hd, see also [20, 34, 43]. The Higgs

couplings can be read from the effective Lagrangian after having integrated out H0
d and,

after a perturbative expansion in 1/ tanβ, κb = κτ are

κb '
(

1− m2
h

m2
H

)−1(
1− [λ3 + λ5] v2

m2
H −m2

h

)
+ . . . , (3.5)

where we adopt the definitions from Eqn. (2.1) (v2 ∼ (246 GeV)2) and the ellipsis de-

note nonzero λ7 contributions from F-term like enhancements that are null in the MSSM,

O(1/ tan2 β) corrections and possible “wrong sign” couplings coming from 1-loop con-

tributions. Finding the right κb expressions for our quiver models is straightforward,

substituting into (3.5) the corresponding λ3, λ5. For the vector Higgs case λ3, λ5 are
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obtained by the MSSM relations (2.2) with the additional contributions (2.13), giving

λ3 + λ5 = [g2
2(1 + ∆2) + 3

5g
2
1(1 + ∆1)]/4, such that

κvector
b '

(
1− m2

h

m2
H

)−1
(

1 +
[g2

2(1 + ∆2) + 3
5g

2
1(1 + ∆1)]v2

4
(
m2
H −m2

h

)
)
. (3.6)

For the chiral Higgs case, using instead the additional contributions (2.24), one obtains

λ3 + λ5 = [g2
2(1− Ω2) + 3

5g
2
1(1− Ω1)]/4, and

κchiral
b '

(
1− m2

h

m2
H

)−1
(

1 +
[g2

2(1− Ω2) + 3
5g

2
1(1− Ω1)]v2

4
(
m2
H −m2

h

)
)
. (3.7)

In these two cases, the MSSM limit can be obtained by setting the non-decoupling D-term

contributions to zero, respectively ∆i = 0 and Ωi = 0.
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Figure 9. Vector case: relative enhancements κb − 1 of the Higgs bottom couplings for the chiral-

Higgs case with respect to the SM are displayed in solid lines, in [%] as function of ∆1 = ∆2, for

different values of mH [GeV]. (a) In dashed lines, the contours of the expected accuracies on the

scaling factors κb at at the LHC, HL-LHC and ILC, from [44] and table 3, centered on the SM

value 0. The accuracies assume no non-SM production and decay modes and assumes universality

(κu ≡ κt = κc, κd ≡ κb = κs and κl ≡ κτ = κµ). (b) In dashed lines, the contours of the

model-independent ILC sensitivities for each run from [45], see table 4, centered on the SM value

0.

It is important to understand how these D-term enhanced deviations from the SM

couplings could be detected, as a signature for the considered quiver-models at present

and future colliders, see figures 9, 10, 11, 12. At the LHC only ratios between different

Higgs couplings can be determined, therefore coupling determination is possible only in
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Figure 10. Vector-Higgs case: experimental sensitivity to coupling deviations from the Standard

Model, assuming no correlation between κi measures. (a) (κb, κτ ) for ∆=0 (SM-limit), 0.1, 0.2, 0.5,

at different values of mH = 500, 600, 800, 1000, 1200 GeV. The experimental sensitivity, centered

in the SM value (κb, κτ )=1, is represented by 1σ-confidence ellipses: black dashed for LHC at 14

TeV and 300 fb−1, black dotted for HL-LHC at 3000 fb−1 at 14 TeV, red dashed ILC at 500 GeV

and red dotted for ILC at 1000 GeV. (b) χ2-test of κW , κZ , κτ , κb, κt in the (mH , ∆)-plane at

the different experiments: areas on the left of the solid lines are not consistent with the SM at

3σ-confidence level.

the framework of a specific model. For example, taking some minimal assumptions on the

underlying model, as explained in [44], one can obtain κb from a constrained 7-parameter

fit assuming no non-SM production and decay modes and assuming generation universality

(κu ≡ κt = κc, κd ≡ κb = κs and κl ≡ κτ = κµ). This is listed in table 3, where the coupling

determination uncertainties at LHC at 14 TeV (
∫
Ldt = 300 fb−1) and High Luminosity

LHC (HL-LHC,
∫
Ldt = 3000 fb−1) are compared with some expectations at the Interna-

tional Linear Collider (ILC). On the other hand, at future e+e−-colliders as the ILC, the

Higgs total width and the Higgs couplings can be determined in a model-independent way.

This is possible by exploiting the recoil methods that allow for a decay independent de-

termination of the Higgsstrahlung process production e+e− → HZ, a quantity that enters

many observables [45]. With respect to estimates with minimal model assumption, there

are slightly higher uncertainties. This is reported in table 4, where we show the estimated

ILC accuracies on the Higgs couplings, assuming the theoretical uncertainties to be equal

to 0.5% for the ILC stages at
√
s =250, 500, 1000 GeV and for the luminosity upgrade

ILCLumUp at 250, 500, 1000 GeV, from [45], that may be further improved [46]. Since

ILC measurements are dominated by statistical errors, they are improved with increasing

statistics, in contrast with Higgs determinations in the High-Luminosity LHC that are
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LHC 14 HL-LHC ILC500 ILC500−LumUp ILC1000 ILC1000−LumUp

κW 4 –6 % 2 –5 % 0.39 % 0.21 % 0.21 % 0.2 %

κZ 4 –6 % 2 –4 % 0.49 % 0.24 % 0.5 % 0.3 %

κl = κτ 6 –8 % 2 –5 % 1.9 % 0.98 % 1.3 % 0.72 %

κd = κb 10 –13 % 4 –7 % 0.93 % 0.60 % 0.51 % 0.4 %

κu = κt 14 –15 % 7 –10 % 2.5 % 1.3 % 1.3 % 0.9 %

Table 3. Expected precisions on κb at 1σ, in %, from a constrained 7-parameter fit assuming no

non-SM production and decay modes and assuming universality (κu ≡ κt = κc, κd ≡ κb = κs and

κl ≡ κτ = κµ), as reported in [44]. LHC corresponds to 300 fb−1 at 14 TeV, HL-LHC at 3000 fb−1

at 14 TeV.

dominated by systematic errors.

ILC250 ILC500 ILC1000 ILCLumUp

κW 4.9 % 1.2 % 1.1 % 0.6 %

κZ 1.3 % 1.0 % 1.0 % 0.5 %

κτ 5.8 % 2.4 % 1.8 % 1.0 %

κb 5.3 % 1.7 % 1.3 % 0.8 %

κt – 14 % 3.2 % 2.0 %

Table 4. Expected accuracies on the coupling scaling factors κi at 1σ, in %, for a completely

model-independent fit assuming theory errors ∆Fi/Fi = 0.5%, from the ILC Higgs White Paper

[45].

In figure 9 we plot how the LHC and ILC may detect deviations from the SM Higgs

bottom coupling due to non-decoupling D-terms in a vector Higgs quiver extension of the

MSSM. The relative enhancement with respect to the SM Higgs bottom coupling, κb−1, is

plotted as a function of ∆ for different values of the heavier neutral CP-even Higgs mass mH

(see eq. (3.6)). The non-decoupling D-terms in the vector Higgs case enhance the deviation

from the SM with respect to the MSSM limit ∆ = 0, while larger values for mH clearly

suppress these effects. Furthermore, in figure 9 a value of κb − 1 that lies above a contour

line corresponds to a deviation from the SM that can be detected, once the Higgs bottom

coupling at the corresponding machine run is measured. In figure 9(a), the horizontal

dashed contour lines correspond to the LHC and ILC 1σ-confidence level sensitivities for

κb determination with the minimal model assumptions in table 3, centered on the SM value

κSMb − 1 = 0. In 9(b), the sensitivities for ILC model-independent κb determination are

displayed. At the LHC at 14 TeV, deviations triggered by ∆ ∼ O(1-2) may be detected

for a mH . 600 GeV, while for mH ≤ 1 TeV, these deviations may be detected at the

HL-LHC. Coupling enhancements due to ∆ ∼ O(0.1-0.2), more suitable according to the

top-down approach in [21], are (just) discernible at the HL-LHC for mH . 800 GeV. The

ILC running at 500 GeV may be sensitive to these ranges of ∆ for mH ∼ 1 TeV, while
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for the high luminosity configuration at 1000 GeV (
∫
Ldt = O(5000) fb−1), this is valid

up to mH ∼ 2 TeV, showing the power of this experiment in the study of the Higgs scalar

potential.
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Figure 11. Chiral-Higgs case: relative enhancements κb − 1 of the Higgs bottom couplings for the

chiral-Higgs case with respect to the SM are displayed in solid lines, in [%] as a function of Ω1 = Ω2

for different values of mH [GeV]. (a) In dashed lines, the contours of the expected accuracies on

the scaling factors κb at the LHC, HL-LHC and ILC, from [44] and table 3, centered on the SM

value 0. The accuracies assume no non-SM production and decay modes and assumes universality

(κu ≡ κt = κc, κd ≡ κb = κs and κl ≡ κτ = κµ). Correlations are neglected. (b) In dashed lines,

the contours of the model-independent ILC sensitivities for each run from [45], see table 4, centered

on the SM value 0.

The deviation from the SM of κb in figure 9 alone cannot be used for claiming a BSM

underlying model, as it can merely be due to statistical effects. Therefore, in figure 10(a)

we show the non-decoupling D-terms triggered deviations in κb and κτ : the points lying

outside the 1σ-confidence ellipses for each experiment is displayed.5 In figure 10(b) we

perform a χ2-fit to the SM values of κW , κZ , κτ , κb, κt in the (mH , ∆)-plane: the areas

on the left of the solid lines are not consistent with the SM at 3σ-confidence level. As

deviations from the SM value 1 for κW , κZ , κt are relatively mild in these models, see

eq. (3.4), in particular considering the achievable accuracy in these quantities, the main

contribution to the χ2 result comes from κb and κτ , as they present large deviations and

a relatively good resolution. One can see that at the first run of the LHC deviations from

the Standard Model only for a relatively light H, with mass up to mH ' 350-400 GeV

are observable and the luminosity upgrade is needed to explore the parameter space up

to decoupling masses mH . 500 GeV for any value of ∆. At the ILC, instead, deviations

5A similar kind of analysis, for general 2HDM models, may be found in [47].
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from the SM for mH up to 700 (900) GeV at
√
s =500 (1000) GeV. In both plots in fig.

10 we do not take into account any experimental correlations between the determinations

of κi.
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Figure 12. Chiral-Higgs case: experimental sensitivity to coupling deviations from the Standard

Model, assuming no correlation between κi measures. (a) (κb, κτ ) for Ω=0 (SM-limit), 0.2, 0.5, 1

at different values of mH = 500, 600, 800, 1000, 1200 GeV. The experimental sensitivity, centered

in the SM value (κb, κτ )=1, is represented by 1σ-confidence ellipses: black dashed for LHC at 14

TeV and 300 fb−1, black dotted for HL-LHC at 3000 fb−1 at 14 TeV, red dashed ILC at 500 GeV

and red dotted for ILC at 1000 GeV. (b) χ2-test of κW , κZ , κτ , κb, κt in the (mH , ∆)-plane at

the different experiments: areas on the left of the solid lines are not consistent with the SM at

3σ-confidence level.

In the chiral Higgs quiver case, the D-terms triggered deviations of κb (in particular),

have an opposite behaviour compared to the vector case. Here, the D-term contributions

are negative, see eq. (3.7), pushing the Higgs couplings closer to the SM value. Therefore

for increasing Ω, the deviations of the couplings from the SM get less detectable with

respect to the MSSM limit (for Ω = 0), see figures 11 and 12(a). Figure 12(b) shows how,

for Ω ∼ O(1), the sensibility to the deviation of couplings is reduced at the LHC by ∼ 50

GeV and by ∼ 100 GeV at the ILC.

Once a deviation in the couplings from the SM is detected, one should address the

question about which (BSM) supersymmetric model has been observed. For this, the

measurement of the couplings alone is not sufficient, but also the detection of H and the

measurement of its mass mH are fundamental, as one can decouple the ∆ or Ω measure-

ment, see equation (3.6).
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4 Discussion and Conclusions

In the Minimal Supersymmetric Standard Model (MSSM) a 125.5 GeV Higgs implies large

radiative corrections from stops or large stop mixing. Such a requirement can be relaxed

in the framework of non-decoupling D-terms extensions, in which additional contributions

to Higgs quartic couplings enhance the tree-level Higgs mass. We studied two examples

of quiver models that result in two different low energy D-terms extensions of the MSSM:

the “vector Higgs” case, with both Higgs doublets in the same gauge site, and the “chiral

Higgs” case, with the Higgs doublets in two different sites.

In the vector Higgs case we concentrated on the region in which the D-term size

parameter ∆ is ∼ O(0.1) as it may be preferred in the light of perturbative unification and

from a top down approach [21]. For example, for Xt = 0 GeV, the Higgs mass mh = 125.5

GeV is recovered with mt̃1
∼ O(1) TeV for ∆ = 0.3, while for the MSSM limit ∆ = 0,

a mt̃1
∼ O(4) TeV is required, showing how non-decoupling D-terms may increase the

tree-level mass. Non-decoupling D-terms also modify the couplings of the Higgs boson

to fermions and vector bosons with respect to the SM and the MSSM. The measurement

of the quantities ki = gi/gi,SM, especially κb, κτ at the LHC and ILC may be used to

discriminate from the SM and the MSSM itself. In the vector Higgs case in particular,

considering the decoupling limit mh � mH and large tanβ, the coupling ratios κb, κ tau

sensibly increase with respect to the SM and MSSM for increasing ∆. At the LHC at 14

TeV deviations from the SM may be determined for any value of ∆ only for relatively light

H, mH ≤ 350 GeV, as the lighter H the larger is the correction. At the HL-LHC deviations

from the SM can be determined for H roughly 200 GeV heavier. At the ILC at 500 GeV

instead deviations from the SM are seen with mH ≤ 800 GeV for ∆ = 0 and with mH

up to 900 GeV for ∆ = 0.5; the improved resolution at the ILC at 1 TeV may push the

detectable deviation heavier by another ∼ 250 GeV. In the Chiral Higgs case the tree-level

Higgs mass is enhanced (similarly to the vector Higgs case) with increasing ξ2 ·Ω. However

κb, κτ decrease for smaller Ω and get closer to the SM, the determination of a deviation

from the SM becomes more challenging. In particular at the ILC at 500 (1000) TeV for

Ω = 1 (the maximal value), deviations from the SM can be found only for mH ≤ 650 (900)

GeV, roughly 200 GeV lighter than in the MSSM limit Ω = 0.

On the other hand, once deviations from SM couplings are established, further stud-

ies are needed to determine the underlying model. For instance, within supersymmetry,

in order to distinguish the model from the MSSM, also a precise measurement of mH is

required for obtaining ∆ or Ω. Furthermore, combining these results with electroweak pre-

cision measurements where the effects of gauge extensions could be observed, may possibly

identify these models. In order to be sensitive to a vast range of gauge extended models,

we have shown that the precise and largely model-independent measurements of the Higgs

couplings at the linear collider is needed.
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A General derivation of non-decoupling D-terms

Here we give a derivation of the non-decoupling D-terms and show how they may arise

within a two-site quiver model, involving scalars charged under the final symmetry: squarks,

sleptons as well as Higgs bosons. We consider the product of two identical (non-)abelian

gauge groups GA × GB that breaks to the diagonal subgroup, GD. The canonical kinetic

terms for i chiral superfields Ai, charged under only GA, and of j chiral superfields Bj ,

charged under only GB, are given by:

L ⊃
∫
d4θ
(∑

i

A†ie
gaVaAi +

∑

j

B†je
gbVbBj

)
, (A.1)

where ga and gb, respectively, are the gauge couplings for site A and B and Va, Vb are the

corresponding vector multiplets.

After the diagonal breaking GA × GB → GD, Va and Vb recombine into a massless

vector multiplet, VD, and a heavy one, VH , that can be written as

VD =
gaVb + gbVa√

g2
a + g2

b

, VH =
−gaVa + gbVb√

g2
a + g2

b

. (A.2)

VH obtains a mass through the supersymmetric Higgs mechanism by eating a (complex)

chiral superfield Φ, in our case a combination of the linking fields between the sites A and

B,

Φ = (t+ is) +
√

2θχ+ θ2FΦ . (A.3)

The real scalar field t is eaten to give the third degree of freedom to the gauge fields

Aµ, s remains uneaten, while the Weyl fermion χ couples to the gaugino λ to make a

supersymmetric Dirac mass. In the Kähler potential the corresponding mass term m2
V for

VH is given by

L ⊃
∫
d4θ m2

V V
2
H + . . . . (A.4)

Furthermore, the following soft mass terms are added,

L ⊃
∫
d4θ (mχm

2
V θ

2 + m̄χm
2
V θ̄

2 − 1

2
m2
Vm

2
sθ

4)V 2
H +

∫
d2θmλW

2
α +

∫
d2θ̄m̄λW̄

2
α̇ , (A.5)
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where the soft masses mχ,m
2
s,mλ respectively parameterise the soft breaking of the fermion

χ, the real uneaten scalar s and the usual Majorana soft mass for the gaugino λ. Therefore

the Kähler potential may be written to leading order in VH as

KH ⊃ gd
(
ga
gb

)
JaVH + gd

(
gb
ga

)
JbVH + . . . . (A.6)

Ja/b are the current multiplets, satisfying the constraint D2J = 0, that contain all the

fields charged under site A or site B:

J c = Jc + iθjc − iθ̄j̄c − θσµθ̄jcµ +
1

2
θθθ̄σ̄µ∂µj

c − 1

2
θ̄θ̄θσµ∂µj̄

c − 1

4
θθθ̄θ̄�Jc , (A.7)

with the leading term being the current of scalars Jc =
∑

i φ
†
iT

cφi, where φi are the

collection of all scalars charged under the gauge group and c is the generator index. The

effective lagrangian after integrating out the heavy vector field VH , is then of the form

Leff =

∫
d4θ


∑

i

A†ie
gDVDAi +

∑

j

B†je
gDVDBj


+O . (A.8)

O is the most general expression for the non-decoupled D-terms,

O = g2
D

∫
d4θ

(
1

m2
V

− m2
sθ

4

m2
V +m2

s

)∑

A

[(ga
gb

)
J Aa −

(
gb
ga

)
J Ab
]2
, (A.9)

with a sum over A generators. The associated non-decoupling D-term corresponds then to

the θ4 term in the round brackets of eq. (A.9), while the currents in the square brackets

reduce simply to (1
8) the scalar current for this θ4 term.

Passing explicitly to the case of quiver extensions of the MSSM, the diagonal gauge

group coupling gD corresponds to the SM coupling gSM and the symmetry breaking consists

in

SU(2)A × SU(2)B → SU(2)L, U(1)A × U(1)B → U(1)Y . (A.10)

In the case of a model in which all MSSM fields are on site A, charged under GA the

scalar currents are given by

JU(1)A =
1

2
H†uHu −

1

2
H†dHd −

1

2
l̃† l̃ +

1

6
q̃†q̃ +

1

3
d̃†d̃− 2

3
ũ†ũ+ ẽ†ẽ ,

JU(1)B = 0, (A.11)

JASU(2)A
=

1

2

(
H†uσ

AHu +H†dσ
AHd + q̃†σAq̃ + l̃†σA l̃

)
,

JASU(2)B
= 0 , (A.12)

with all flavour and colour indices implicitly traced. For the case of split generations (see

for instance [25]), in which the 3rd generation and Hu, Hd are charged under GA and the
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first two generations under GB, one finds

JU(1)A =
1

2
H†uHu −

1

2
H†dHd +

[
−1

2
l̃† l̃ +

1

6
q̃†q̃ +

1

3
d̃†d̃− 2

3
ũ†ũ+ ẽ†ẽ

]

3

,

JU(1)B =

[
−1

2
l̃† l̃ +

1

6
q̃†q̃ +

1

3
d̃†d̃− 2

3
ũ†ũ+ ẽ†ẽ

]

1,2

, (A.13)

JASU(2)A
=

1

2

(
H†uσ

AHu +H†dσ
AHd

)
+

1

2

[
q̃†σAq̃ + l̃†σA l̃

]
3
,

JASU(2)B
= +

1

2

[
q̃†σAq̃ + l̃†σA l̃

]
1,2
. (A.14)

These results may be extended to a four Higgs doublet model or to a quiver model with

three or more sites (see appendix F.2), straightforwardly. The sum in (A.9) implies that the

D-terms here described generate mass shifts to the Higgs doublets, to all charged squarks

and sleptons (see appendix D) as well as additional quartic vertices. As a consequence,

additional contributions to branching ratios should be considered in precision studies with

Higgs and sfermion decays. An accurate detection of these effects may allow for the deter-

mination of the gauge structure and its matter charges identify the underlying model.

B The MSSM Higgs including vector type D-terms

In this appendix we collect a number of relevant expressions for the Higgs sector with

vector-like non-decoupling D-terms. We will work in Feynman gauge, such that the ξ-

terms are gauge-dependent contributions. For brevity we set

g2
12 =

3

5
g2

1(1 + ∆2
1) + g2

2(1 + ∆2
2) , (B.1)

ĝ2
12 = −3

5
g2

1(1 + ∆2
1) + g2

2(1 + ∆2
2) . (B.2)

The non-decoupling D-terms of the vector type Eqn. (2.14), appear in the tadpole equations

∂V

∂H0
d

=
1

8

(
− 8vuRe[Bµ] + g2

12v
3
d + vd[8m

2
Hd

+ 8|µ|2 − g2
12v

2
u]
)
, (B.3)

∂V

∂H0
u

=
1

8

(
− 8vdRe[Bµ] + 8vu|µ|2 + vu[8m2

Hu − g2
12(−v2

u + v2
d)]
)
, (B.4)

as well as the Higgs mixing matrices. The mass matrix for the CP-even Higges, in the basis

of the real components of (H0
d , H

0
u) is given by

m2
h =


 mh,11 −1

4g
2
12vdvu−Re[Bµ]

−1
4g

2
12vdvu− Re[Bµ] mh,22


 , (B.5)

where

mh,11 =
1

8

(
8m2

Hd
+ 8|µ|2 + g2

12

(
3v2
d − v2

u

))
, (B.6)

mh,22 =
1

8

(
8m2

Hu + 8|µ|2 − g2
12

(
− 3v2

u + v2
d

))
. (B.7)
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For the pseudo-scalar Higgses, the mass matrix in the basis of the imaginary components

of (H0
d , H

0
u) reads

m2
A0 =


mA0,11 Re[Bµ]

Re[Bµ] mA0,22


+ ξZm

2
Z , (B.8)

where

mA0,11 =
1

8

(
8m2

Hd
+ 8|µ|2 + g2

12

(
− v2

u + v2
d

))
, (B.9)

mA0,22 =
1

8

(
8m2

Hu + 8|µ|2 − g2
12

(
− v2

u + v2
d

))
. (B.10)

The mass matrix for the charged Higgses
(
H−d , H

+,∗
u

)
,
(
H−,∗d , H+

u

)
reads

m2
H− =


 mH−,11

1
4

(
4B∗µ +

(
g2

2 + g2
2∆2

2

)
vdvu

)

1
4

(
4Bµ +

(
g2

2 + g2
2∆2

2

)
vdvu

)
mH−,22


+ ξW−m

2
W− ,

(B.11)

with

mH−,11 =
1

8

(
8m2

Hd
+ 8|µ|2 + g2

12v
2
d + ĝ2

12v
2
u

)
, (B.12)

mH−,22 =
1

8

(
8m2

Hu + 8|µ|2 + g2
12v

2
u + ĝ2

12v
2
d

)
. (B.13)

C The MSSM Higgs including chiral type D-terms

In this appendix we provide the relevant mass matrices and equations for the chiral type

D-terms of Eqn. (2.24). For the chiral type D-terms the tadpole equations are given by

∂V

∂H0
d

= −vuR
[
Bµ

]
+ vd

(
m2
Hd

+ |µ|2
)

+ vd
m2
Z

2
cos(2β) +

vd
8

∑

i

kig
2
i Ωi

(
v2
d

ξ2
i

+ v2
u

)
,

(C.1)

∂V

∂H0
u

= −vdR
[
Bµ

]
+ vu

(
m2
Hu + |µ|2

)
− vu

m2
Z

2
cos(2β) +

vu
8

∑

i

kig
2
i Ωi

(
v2
d + v2

uξ
2
i

)
.

(C.2)

where ki = (3/5, 1). The mass matrix for the CP-even Higges, in the basis of the real

components of (H0
d , H

0
u) is given by

m2
h =


 mh,11

vdvu
4

∑
i kig

2
i (Ωi − 1)− Re[Bµ]

vdvu
4

∑
i kig

2
i (Ωi − 1)− Re[Bµ] mh,22


 , (C.3)

with

mh,11 = |µ|2 +m2
Hd

+m2
Z

(
cos(2β)

2
+ cos2 β

)
+

1

8

∑

i

kig
2
i Ωi

(
3v2
d

ξ2
i

+ v2
u

)
, (C.4)

mh,22 = |µ|2 +m2
Hu −m2

Z

(
cos(2β)

2
− sin2 β

)
+

1

8

∑

i

kig
2
i Ωi

(
v2
d + 3ξ2

i v
2
u

)
, (C.5)
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that using the minimisation conditions (C.1),(C.2) become:

mh,11 = Bµ tanβ +m2
Z cos2 β +

v2

4
cos2 β

∑

i

kig
2
i

Ωi

ξ2
i

(C.6)

mh,22 = Bµ cotβ +m2
Z sin2 β +

v2

4
sin2 β

∑

i

kig
2
i Ωiξ

2
i . (C.7)

For the pseudo-scalar Higgses, the mass matrix in the basis of the imaginary components

of (H0
d , H

0
u) reads

m2
A0 =


 mA0,11 R

[
Bµ

]

Re
[
Bµ

]
mA0,22


+ ξZm

2(Z) (C.8)

with

mA0,11 = |µ|2 +m2
Hd

+
m2
Z

2
cos(2β) +

1

8

∑

i

kig
2
i Ωi

(
v2
d

ξ2
i

+ v2
u

)
, (C.9)

mA0,22 = |µ|2 +m2
Hu +

m2
Z

2
cos(2β) +

1

8

∑

i

kig
2
i Ωi

(
v2
d + v2

uξ
2
i

)
, (C.10)

that using the minimisation conditions (C.1),(C.2) become:

mA0,11 = Bµ cotβ , (C.11)

mA0,22 = Bµ tanβ . (C.12)

The mass matrix for charged Higgses
(
H−d , H

+,∗
u

)
,
(
H−,∗d , H+

u

)
is

m2
H− =


 mH−,11

1
4g

2
2(1− Ω2)vdvu +B∗µ

1
4g

2
2(1− Ω2)vdvu +Bµ mH−,22


+ ξW−m

2(W−) , (C.13)

with

mH−,11 = |µ|2 +m2
Hd

+
v2
u

8

[3

5
g2

1(Ω1 − 1) + g2
2(1− Ω2)

]
+
v2
d

8

∑

i

kig
2
i

(
1 +

Ωi

ξ2
i

)
, (C.14)

mH−,22 = |µ|2 +m2
Hu +

v2
d

8

[
3

5
g2

1(Ω1 − 1) + g2
2(1− Ω2)

]
+
v2
u

8

∑

i

kig
2
i

(
ξ2
i Ωi + 1

)
, (C.15)

that using the minimisation conditions (C.1),(C.2) become:

mH−,11 = Bµ tanβ +m2
W sin2 β(1− Ω2) , (C.16)

mH−,22 = Bµ cotβ +m2
W cos2 β(1− Ω2) . (C.17)
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D Sfermion mixing matrices for the vector type with matter on site A

The non-decoupling D-terms can have an effect also on the squark and slepton mixing

matrices. For the simplest case where all MSSM-like matter including the Higgs is on site

A, the mixing matrix Mf̃ of a generic sfermion f̃ for charged sleptons or squarks is given

by

M2
f̃

=



m2
f̃L

+m2
f + M̂2

Z(If3 −Qfs2
W ) mfX

∗
f

mfXf m2
f̃R

+m2
f + M̂2

Z Qfs
2
W


 , (D.1)

denoting sw = sin θW where θW is the Weinberg weak mixing angle, and the useful ab-

breviation M̂2
Z ≡ (m2

Z + m2
∆) cos 2β, where m2

∆ = 1
2(3

5g
2
1∆1 + g2

2∆2)v2. The off-diagonal

element Xf is defined in terms of the soft SUSY-breaking trilinear coupling Af via

Xf = Af − µ∗ {cotβ, tanβ} , (D.2)

where cotβ applies for the up-type quarks, f = u, c, t, and tanβ applies for the down-type

fermions, f = d, s, b, e, µ, τ . Note that mf , Qf and If3 are the mass, charge and isospin

projection of the fermion f , respectively. Once diagonalised this matrix leads to the light

and heavy sfermion masses mf̃1
and mf̃2

. In particular the stop masses are given by

m2
t̃1, 2

=m2
t +

1

2

[
M2
Q̃3

+M2
u3 +

1

2
M̂2
Z cos 2β

∓
√[

M2
Q3
−M2

u3 + M̂2
Z cos 2β

(
1

2
− 4

3
sin2 θW

)]2

+ 4m2
tX

2
t


 . (D.3)

To obtain the MSSM mass expression one has just to set m∆ = 0. For a light stop scenario,

this may have an appreciable effect and similarly, for the stau which may be the NLSP (for

a Goldstino LSP scenario such as GMSB). In the case that the gA > gB, even for the case

of split families the above mixing matrix will still apply to the third generation scalars on

Site A. For the sneutrinos the mass matrix is given by

m2
ν̃ = M2

L +
1

2
(m2

Z +m2
∆) cos(2β). (D.4)

E Perturbative unification and the size of the D-terms

To maximise the effect of the vector-like D-terms such as Eqn. (2.14), one requires that

the ratio of gauge couplings

Ri = gAi/gBi , (E.1)

is as large as possible, however making certain gauge couplings large at low energies and

including additional matter fields will certainly effect perturbativity of the gauge couplings

at higher energies. In addition, whilst these models do not (yet) have full GUT multiplets

of matter, particularly for the linking fields, but also for the MSSM matter content, we can

still explore the possibility of unification in these models as usual. For definiteness we take

the model outlined in table 1.
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Figure 13. Perturbative unification of the GA × SU(3)c and GB sites separately, allowing for the

maximal value of the ratios Ri. These also give a prediction of the values of the mixing angles, θi’s

in Eqn. (2.15).

The beta functions at one loop are given by

βga =
d

dt
ga =

ba
16π2

g3
a with ba = (2,

39

5
,−5,

6

5
,−3) , (E.2)

The restriction that αi(MGUT ) < 1 and that

αg1A(MGUT ) = αg2A(MGUT ) = αgc(MGUT ) , (E.3)

with

αg1B (MGUT ) = αg2B (MGUT ) , (E.4)

restricts the parameter space significantly. The results of perturbative unification for the

largest values of R’s are plotted in figure 13. We find R1 ∼ 0.6 and R2 ∼ 0.86, such that

even allowing for
m2
L

m2
v+m2

L
∼ 1 this gives

∆ =

(
g2
A

g2
B

)
m2
L

m2
v +m2

L

< R which implies that (∆Max
1 ,∆Max

2 ) = (0.6, 0.86) , (E.5)

respectively. Larger ∆’s are also possible if SU(3) is quivered to SU(3)A×SU(3)B as then

α−1
3A can be made weaker allowing for unification at a later scale and therefore larger R’s.

Of course abandoning perturbativity altogether will allow for a larger D-term enhancement

too.

The dynamics of the Yukawa couplings are also of interest The superpotential is given

by

W = WMSSM +
Yk
2
K(LL̃− V 2) , (E.6)

in which Yk is taken to be real. The Yukawa coupling one-loop beta functions (for the third

generation only) are given by

β(1)
yt ≡

d

dt
yt '

yt
16π2

[
3y∗t yt + y∗byb −

16

3
g2

3 − 3g2
A2 −

13

15
g2
A1

]
, (E.7)
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Figure 14. Renormalisation group evolution for the Yukawa couplings.

β(1)
yb
≡ d

dt
yb '

yb
16π2

[
y∗t yt + y∗τyτ + 3y∗byb −

16

3
g2

3 − 3g2
A2 −

7

15
g2
A1

]
, (E.8)

β(1)
yτ ≡

d

dt
yτ '

yτ
16π2

[
4y∗τyτ + y∗t yt −

16

3
g2

3 − 3g2
A2 −

7

15
g2
A1

]
, (E.9)

and

β(1)
yk
≡ d

dt
yk '

yk
16π2

[
15

10
y∗kyk − 10g2

B2 − 10g2
A2 − 6g2

A1 − 6g2
B1

]
. (E.10)

For the same choice of parameters as before, the results are presented in figure 14, where

one can see that as αA1 hits a Landau pole at around 1014 GeV, which is after both GUT

scales, the Yukawa couplings become very small and run to opposite signed values. This is

reminiscent of five dimensional extensions of the MSSM [48, 49], where power law running

is used to argue for an explanation of the O(1) top Yukawa from an initially small coupling

in the UV.

F Other quiver alternatives

In this appendix we introduce a number of extensions of the quiver models outlined in

this paper. First we mention a four Higgs doublet model that may lead the 2HDM with

chiral Higgs doublets described in sec. 2.3. Then we discuss a three site quiver that

“deconstructs” a holographic extra dimension and may also help to explain the flavour

hierarchies of the SM and give a natural SUSY hierarchy of light 3rd generation squarks

[21, 33].

F.1 Four Higgs doublet model (4HDM)

An alternative possibility to the MSSM is a model with four Higgs doublets below the scale

of the linking field vevs, see figure 15. Labelling the A and B site Higgses (Au, Ad, Bu, Bd),
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Figure 15. An example of UV completion of the model in figure 6 of the chiral-Higgs like non-

decoupling D-term. This is a four Higgs doublet model in which the Higgses Au and Bd combine

to make the MSSM Higgses Hu, Hd with additional chiral-Higgs non-decoupling D-terms in their

scalar potential, while the remaining two states are integrated out at a suitable scale to give the

D-terms of Eqn. (2.24). It is also possible that all four Higgses have masses below the linking scale,

in which case one obtains a four Higgs doublet variant of the MSSM with D terms as in Eqn. (F.1).

The Υ adjoint field and the messenger fields ϕ, ϕ̃ are coupled to site B.

SSM

Gvisible Gmiddle Ghidden

L

L̃

T

T̃

DSB
ϕ, ϕ̃

V 2
L ≫ V 2

T

Figure 16. A 3 site model of a deconstructed holographic setup. The vevs of the linking fields

encode a discretized metric. The non-decoupling D-term of the 3-site case is more exotic to derive

but it may be approximated by the 2-site case between each pair of gauge sites, by integrating out

(L, L̃) and (T, T̃ ) separately.

in this case the non-decoupling D-terms would take the form

L =− 3

5

g2
1Ω1

8

(
ξ1(A†uAu −A†dAd)−

1

ξ1
(B†uBu −B†dBd)

)2

− g2
2Ω2

8

∑

a

(
ξ2(A†uσ

aAu +A†dσ
aAd)−

1

ξ2
(B†uσ

aBu +B†dσ
aBd)

)2

+ . . . . (F.1)

where the ellipsis denote other squark and slepton contributions to the D-term potential.

F.2 Deconstructed Holography

A number of models of supersymmetry breaking involve strong coupling or holography

and this may be usefully approximated by holographic deconstruction [50, 51], its most
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elementary example is given by a 3-site quiver model. Such models may also exhibit non-

decoupling D-terms, as well as a possible explanation of flavour hierarchies and a squark

soft mass hierarchy, which motivates giving them a brief mention. The key to realising

such a scenario is to identify the metric

ds2 = e−2kyηµνdx
µdxν − dy2 . (F.2)

The relative vevs of the linking fields related as

vT
vL

=
e−2σia2

L

a2
T

, (F.3)

where the vevs of the linking fields are labelled vT , vL as in figure 16 and the lattice spacings

are aT , aL. A useful identification is to take the lattice spacing and couplings equal ai = a

and gi(vi) = g, such that the warping is entirely encoded in the linking field vevs. Naturally

one would find that

mvL � mvT , (F.4)

in which case by inspecting Eqn. (2.14) the prevalent effect of the non-decoupling D-term

would be on matter close to the IR part of the quiver where the effect of the supersymmetry

breaking would be maximal. One may therefore approximate the 2-site non-decoupling D-

term as arising from integrating out the linking fields between Gmiddle and Ghidden as in

figure 16 (for a scenario in which the supersymmetry breaking is predominately gauge

mediated from fields charged under Ghidden).

Even in the case of vT ∼ vL (the flat case) the three site model has a number of

interesting features. A possible model of soft mass hierarchies would be to locate each of

the three generations of MSSM-like matter on the three separate gauge sites, respectively.

Superfields further away from the source of supersymmetry breaking would then have

smaller soft masses, compared to those located closest to the supersymmetry breaking

effects [30]. In addition one may attempt to explain the flavour hierarchies, if for example

the Hu, Hd are on the same site as the 3rd generation superfields, this might lead to an

O(1) Yukawa coupling, but the subleading Yukawa entries would only be generated through

nonrenormalisable operators from integrating out both sets of linking fields.
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