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Abstract

We use the TMD quark densities of the proton to investigate unpolarized Drell-Yan
lepton pair production in proton-proton collisions at the LHC energies. We investigate
the case where the gluon-to-quark splitting occurs at the last evolution step and calculate
the TMD sea quark density as a convolution of the CCFM-evolved gluon distribution and
the TMD gluon-to-quark splitting function which contains all single logarithmic small-x
corrections to the sea quark evolution for any order of perturbation theory. Based on the
O(α) production amplitude q∗ + q̄∗ → Z/γ∗ → l+ + l− which calculated according to the
reggeized quark approach, we analyze the distributions on the dilepton invariant mass,
transverse momentum and rapidity as well as the specific angular correlations between the
produced leptons as measured by the CMS, ATLAS and LHCb collaborations. We argue
that these measurements impose stringent constraints on the TMD quark distributions of
the proton.
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1 Introduction

Usually, the scale-dependent quark and gluon densities are calculated as a function
of Bjorken variable x and hard scale µ2 within the framework of the DGLAP evolution
equations [1] based on the standard collinear QCD factorization. However, for a wide
class of semi-inclusive processes probing the small-x and forward physics at the LHC it is
more appropriate to use the parton distributions unintegrated over the partonic transverse
momentum kT or, transverse momentum dependent (TMD) parton distributions [2]. The
latter are subject of intense studies, and various approaches to investigate these quantities
have been proposed [3–6]. At asymptotically large energies (or very small x) the theoret-
ically correct description is based on the BFKL evolution equation [7] where the leading
ln(1/x) contributions are taken into account to all orders. Another approach, which is
valid for both small and large x, is given by the CCFM gluon evolution equation [8]. In
the limit of asymptotic high energies, it is equivalent to BFKL, but also similar to the
DGLAP evolution for large x. Two basic TMD gluon densities are used in the small-x
formalism: the so-called Weizsaker-Williams and the dipole ones [9–11].

Most of previous phenomenological applications of the TMD parton distributions in
the framework of high energy QCD factorization (or kT -factorization approach) [12, 13]
take only gluon and valence quark contributions into account (see, for example, [14–18]).
Such approaches are reasonable approximations, based on the dominance of spin-1 ex-
change processes at high energies, tfor the production processes coupled to the gluons
(such as, for example, production of heavy flavours or scalar particles). However, to
correctly treat the final states associated with the quark-initiated processes it is neces-
sary to go beyond this simple approximation and take into account subleading effects.
First attempts to address this issue and evaluate the TMD sea quark density have been
performed in [19–22], where the relevant TMD gluon distribution has been derived via
splitting probabilities to lowest order of perturbative theory, neglecting any transverse
momentum dependence in the gluon-to-quark branching. In [23] the TMD kinematic
corrections have been included, while the splitting kernels are still taken at lowest order.
Recently, the TMD sea quark densities have been calculated [24] incorporating the effects
of the TMD gluon-to-quark splitting function [25] which contains all single logarithmic
small-x corrections to sea quark evolution for any order of perturbation theory, and the
kinematical effects from initial state parton transverse momentum on the forward Z boson
spectrum have been studied. The proposed formulation [24–26] has been implemented in
a Monte Carlo event generator cascade [27]. In the present paper we apply the TMD
sea quark densities [24] to investigate the Drell-Yan lepton pair production at the LHC.
This process, where quark-antiquark annihilation form a intermediate virtual photon γ∗

or Z boson decaying to lepton pairs, offers high sensitivity to the sea quark evolution of
a proton.

The production of Drell-Yan lepton pairs at the LHC is subject of intense studies from
both theoretical and experimental points of view [28–35]. It provides a major source of
background to a number of processes, such as Higgs, tt̄-pair, di-boson or W ′ and Z ′ bosons
production and other processes beyond the Standard Model. It is an important reference
process for measurements of electroweak boson properties, and it is used for monitoring of
the collider luminosity and calibration of detectors. A first study of Drell-Yan process at
the TMD level has been performed in [36], where diagrams with virtual photon exchange
only are considered and mostly on the rather low energies covered by the RHIC and UA1
experiments are covered. A more recent investigation [37] was based on the O(α) and
O(ααs) production amplitudes of q + q̄ → Z/γ∗ → l+ + l− and q + g∗ → Z/γ∗ + q →
l++ l−+q subprocesses where only the initial gluon transverse momentum has been taken
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into account. This process has been investigated also in the framework of the soft-collinear
effective theory [38, 39], and general investigation of high energy resummation for Drell-
Yan lepton pair production has been done in [40]. In the present paper we concentrate on
the off-shell (or transverse momentum dependent) quark-antiquark annihilation q∗+ q̄∗ →
Z/γ∗ → l+ + l− and calculate the corresponding production amplitude according to the
reggeized quark approach [41, 42], which is based on the effective action formalism [43],
currently explored at next-to-leading order [44]. It was shown that the use of effective
vertices [41, 42] ensures the exact gauge invariance of calculated amplitude despite the
off-shell initial quarks. We apply the TMD valence and sea quark distributions [15, 24]
to calculate the Drell-Yan production cross sections at LHC energies. For comparison,
we also use the TMD quark densities obtained in the Kimber-Martin-Ryskin (KMR)
scheme [20,21]. We analyze the dilepton transverse momentum and rapidity distributions
as well as the specific angular correlations between the produced leptons and compare our
predictions with recent data taken by the CMS [28–30], ATLAS [31–34] and LHCb [35]
collaborations. Note that we present a first phenomenological application of the formalism
developed in [24, 25] to the analysis of experimental data.

The outline of our paper is following. In Section 2 we recall shortly the basic formulas
of kT -factorization QCD approach. The TMD quark densities are discussed in Section 3.
In Section 4 we present numerical results of our calculations. Section 4 contains our
conclusions.

2 Theoretical framework

Our consideration is based on the O(α) subprocess of off-shell quark-antiquark anni-
hilation into a virtual photon or Z boson which decays to lepton pair:

q∗(q1) + q̄∗(q2) → Z/γ∗ → l+(p1) + l−(p2), (1)

where the four-momenta of all corresponding particles are given in the parentheses. Note
that O(ααs) contributions from q∗+g∗ → Z/γ∗+q → l++l−+q and q∗+q̄∗ → Z/γ∗+g →
l++ l− + g subprocesses are effectively taken into account in our consideration due to the
initial state gluon radiation. This is in contrast with collinear QCD factorization where
all these contributions have to be taken into account separately1.

Within the reggeized quark formalism [41, 42], the off-shell amplitude of q∗ + q̄∗ →
Z/γ∗ → l+ + l− subprocess can be written as

Mγ = eqe
2 v̄s1(q2)Γ

µ
γ(q1, q2)us2(q1)

gµν

ŝ
ūr1(p1)γ

νvr2(p2), (2)

MZ =
e2

sin 2θW
v̄s1(q2)Γ

µ
Z(q1, q2)us2(q1)

[

gµν − (q1 + q2)
µ(q1 + q2)

ν

m2
Z

]

×

× 1

ŝ−m2
Z − imZΓZ

ūr1(p1)γ
ν(C l

V − C l
Aγ

5)vr2(p2),

(3)

where e and eq are the electron and quark (fractional) electric charges, ŝ = (q1 + q2)
2,

mZ and ΓZ are the mass and full decay width of Z boson, θW is the Weinberg mixing
angle, C l

V and C l
A are the vector and axial lepton coupling constants, and the transverse

momenta of initial quarks are q2
1T 6= 0 and q2

2T 6= 0. We take the propagator of the
intermediate Z boson in the Breit-Wigner form to avoid any artificial singularities in

1See, for example, reviews [2] for more information.
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the numerical calculations. The effective vertex Γµ
γ(q1, q2) which describes the effective

coupling of off-shell (reggeized) quark and antiquark to the photon reads [41, 42]

Γµ
γ(q1, q2) = γµ − q̂1

lµ1
q2 · l1

− q̂2
lµ2

q1 · l2
, (4)

where l1 and l2 are the four-momenta of colliding protons. The coupling of the off-shell
quark and antiquark to the Z boson is constructed in a similar way:

Γµ
Z(q1, q2) = Γµ

γ(q1, q2)(C
q
V − Cq

Aγ
5), (5)

where Cq
V and Cq

A are the corresponding vector and axial coupling constants. The effec-
tive vertexes Γµ

γ(q1, q2) and Γµ
Z(q1, q2) satisfy the Ward identities Γµ

γ(q1, q2)(q1 + q2)µ = 0
and Γµ

Z(q1, q2)(q1 + q2)µ = 0. It is obvious that the amplitudes (4) and (5) are gauge in-
variant despite the off-shell initial quarks. In all other respects the evaluation follows the
standard QCD Feynman rules. The further calculation (including γ∗ — Z interference)
is straightforward and was done using the algebraic manipulation system form [45]. We
do not list here explicitly the lengthy expressions. In the on-shell limit, with q2

1T → 0
and q2

2T → 0, we recover the well-known textbook formulas.
To calculate the total and differential cross sections one has to convolute the evaluated

off-shell amplitude squared |M̄|2 with the TMD quark densities of the proton. Our master
formula reads:

σ =
∑

q

∫ |M̄|2
16π (x1x2s)2

fq(x1,q
2
1T , µ

2)fq(x2,q
2
2T , µ

2)dp2
1Tdq

2
1Tdq

2
2Tdy1dy2

dφ1

2π

dφ2

2π
, (6)

where s is the total energy, y1 and y2 are the center-of-mass rapidities of the produced
leptons, φ1 and φ2 are the azimuthal angles of the initial quarks having the fractions x1 and
x2 of the longitudinal momenta of the colliding protons. Finally, from the conservation
laws one can easily obtain the following relations:

q1T + q2T = p1T + p2T , (7)

x1

√
s = m1T e

y1 +m2T e
y2 , (8)

x2

√
s = m1T e

−y1 +m2T e
−y2 , (9)

where p1T and p2T are the transverse momenta of produced leptons, and m1T and m2T

are their transverse masses.

3 TMD quark densities

In the present paper we concentrate on the CCFM approach to calculate the TMD
parton densities of the proton. As it was already mentioned above, the CCFM parton
shower, based on the principle of color coherence, describes only the emission of gluons,
while real quark emissions are left aside. It implies that the CCFM equation describes
only the distinct evolution of TMD gluon and valence quarks, while the non-diagonal
transitions between quarks and gluons are absent. The TMD gluon [46] and valence quark
[15] distributions fg(x,k

2
T , µ

2) and f (v)
q (x,q2

T , µ
2) have been obtained from the numerical

solutions of the CCFM equation. Here kT and qT are the gluon and quark transverse
momenta, respectively. In the approximation where the sea quarks occur in the last
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gluon-to-quark splitting, the TMD sea quark density at the next-to-leading logarithmic
accuracy αs(αs ln x)

n can be written [24] as follows:

f (s)
q (x,q2

T , µ
2) =

1
∫

x

dz

z

∫

dk2
T

1

∆2

αs

2π
Pqg(z,k

2
T ,∆

2)fg(x/z,k
2
T , µ̄

2), (10)

where z is the fraction of the gluon light cone momentum which is carried out by the quark,
and ∆ = qT − zkT . The sea quark evolution is driven by the off-shell gluon-to-quark
splitting function Pqg(z,k

2
T ,∆

2) [25]:

Pqg(z,k
2
T ,∆

2) = TR

(

∆2

∆2 + z(1 − z)k2
T

)2 [

(1− z)2 + z2 + 4z2(1− z)2
k2
T

∆2

]

, (11)

with TR = 1/2. The splitting function Pqg(z,k
2
T ,∆

2) has been obtained by generalizing to
finite transverse momenta, in the high-energy region, the two-particle irreducible kernel
expansion [47]. Although evaluated off-shell, this splitting function is universal [25]. It
takes into account the small-x enhanced transverse momentum dependence up to all orders
in the strong coupling, and reduces to the collinear splitting function at lowest order for
k2
T → 0. The scale µ̄2 is defined [24] from the angular ordering condition which is natural

from the point of view of the CCFM evolution: µ̄2 = ∆2/(1−z)2+k2
T/(1−z). To precise,

in (10) we have used A0 gluon [46].
Beside the CCFM-based approximation above, to determine the TMD quark densities

in a proton we have used also the Kimber-Martin-Ryskin (KMR) approach [20,21]. This
approach is a formalism to construct the TMD parton distributions from the known
collinear ones. In this approximation, the TMD quark densities are given by [20, 21]

fq(x,q
2
T , µ

2) = Tq(q
2
T , µ

2)
αs(q

2
T )

2π
×

×
1
∫

x

dz
[

Pqq(z)
x

z
q
(

x

z
,q2

T

)

Θ (ς − z) + Pqg(z)
x

z
g
(

x

z
,q2

T

)]

,

(12)

where Pab(z) are the unregulated leading-order DGLAP splitting functions. The theta
function in (12) implies the angular-ordering constraint ς = µ/(µ + |qT |) specifically
to the last evolution step to regulate the soft gluon singularities. The Sudakov form
factor Tq(q

2
T , µ

2) enable us to include logarithmic loop corrections to the calculated cross
sections. In the region of small q2

T < µ2
0, where µ2

0 ∼ 1 GeV2 is the minimum scale
for which the DGLAP evolution of the initial parton densities is valid, the TMD quark
distributions are defined from the normalisation condition:

fq(x,q
2
T , µ

2)|q2

T
<µ2

0

= xq(x, µ2
0)Tq(µ

2
0, µ

2). (13)

For the numerical calculations we have used the leading-order MSTW’2008 parton densi-
ties [48].

The calculated TMD up, down and light sea quark densities are shown in Fig. 1
as a function of q2

T for different values of x at µ2 = m2
Z . Even with very different

approaches, the TMD quark densities are rather similar at large q2
T . The influence of

starting distributions and/or initial conditions is concentrated at small values of q2
T . It

was pointed out [18] that the small q2
T region provides information on the non-perturbative

part of the TMD parton density functions. The difference between the CCFM-based and
KMR approaches are visible clearly in the sea quark distributions which are driven mainly
by the gluon densities.
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4 Numerical results

We now are in a position to present our numerical results. After we fixed the TMD
quark densities, the cross section (6) depends on the renormalization and factorization
scales µR and µF . Numerically, we set them to be equal to µR = µF = ξM , where M
is the invariant mass of produced lepton pair. To estimate the scale uncertainties of our
calculations we vary the parameter ξ between 1/2 and 2 about the default value ξ = 1.
Following to [49], we set mZ = 91.1876 GeV, ΓZ = 2.4952 GeV, sin2 θW = 0.23122 and
use the LO formula for the strong coupling constant αs(µ

2) with nf = 4 active quark
flavors at ΛQCD = 200 MeV, so that αs(m

2
Z) = 0.1232. Since we investigate a wide region

of M , we use the running QED coupling constant α(µ2). To take into account the non-
logarithmic loop corrections to the quark-antiquark annihilation cross section we apply
the effective K-factor, as it was done in [21, 37]:

K = exp

[

CF
αs(µ

2)

2π
π2

]

, (14)

where color factor CF = 4/3. A particular scale choice µ2 = p
4/3
T M2/3 (with pT being the

transverse momentum of produced lepton pair) has been proposed [21,50] to eliminate sub-
leading logarithmic terms. We choose this scale to evaluate the strong coupling constant
in (14) only. Everywhere the multidimensional integration have been performed by the
means of Monte Carlo technique, using the routine vegas [51]. The corresponding C++
code is available from the authors on request2.

Experimental data for the Drell-Yan production at the LHC come from the CMS [28–
30], ATLAS [31–34] and LHCb [35] collaborations. The CMS collaboration has reported
the normalized dilepton invariant mass distribution measured at 15 < M < 600 GeV [28].
The normalized dilepton rapidity y and transverse momentum distributions have been
measured in the Z boson mass region 60 < M < 120 GeV [29]. The ATLAS and LHCb
collaborations have presented the differential cross sections in the central (|y| < 3.5) and
forward (2 < y < 4.5) dilepton rapidity regions at 66 < M < 116 GeV [31–33, 35]. Very
recently the ATLAS collaboration has measured the Drell-Yan differential cross-section
as a function of dilepton invariant mass in the range 116 < M < 1500 GeV [34]. Note
that special cuts on the pseudorapidities and transverse momenta of produced leptons
have been applied in all these measurements, see [28–35] for the detailed information.
Of course, we impose these cuts in the same manner as it was done in the experimental
analyses.

The results of our calculations are presented in Figs. 2 — 6 in comparison with the
LHC data. The differential cross sections as a function of dilepton invariant mass and
rapidity are shown in Figs. 2 and 3. We find that these distributions are described reason-
ably well by the CCFM-based calculations. However, the KMR predictions significantly
(by a factor of about 2) underestimate the LHC data, mainly due to different behaviour
of corresponding TMD sea quark densities at low transverse momenta (see Fig. 1). We
observe that the shape of dilepton invariant mass distributions is not very sensitive to
the TMD quark densities. This is in a contrast with the distributions on the dilepton
rapidity, where the CCFM and KMR predictions differ from each other (Fig. 3). The
sensitivity of predicted cross sections to the TMD quark densities is also clearly visible in
the transverse momentum distributions of produced lepton pair, or in the distributions of
the φ∗

η variable, as it is shown in Figs. 4 and 5. The φ∗

η variable is defined as [52–54]:

φ∗

η = tan

(

φacop

2

)

[

cosh
(

∆η

2

)]−1

, (15)

2lipatov@theory.sinp.msu.ru
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where φacop = π − |∆φ| is the acoplanarity angle, and ∆η and ∆φ are the differences
in pseudorapidity and azimuthal angles between the leptons, respectively. The variable
φ∗

η is correlated to the quantity |pT |/M and therefore probes the same physics as the
dilepton transverse momentum [55–57]. Note that both these observables are singular
at leading order in the collinear QCD approximation due to back-to-back kinematic,
whereas in the kT -factorization approach the finite transverse momentum of lepton pair
is generated already in simple quark-antiquark annihilation (1). One can see that none of
the TMD quark densities under consideration describe well the transverse momentum and
φ∗

η distributions, although their shapes are better reproduced by the KMR predictions.
The CCFM-based calculations overestimate the CMS [29] and ATLAS [32] data (taken
in a central dilepton rapidity region) at low transverse momenta and underestimate them
if dilepton transverse momentum increases. We note, however, that description of these
observables is improved if higher order contributions (which, in particular, affect on the
shape of tranverse momentum distributions) are taken into account [37]. In a forward
dilepton rapidity region, the CCFM predictions agree well with the LHCb data (see
Fig. 5).

According to (2) and (3), the off-shell amplitude of the Drell-Yan production subpro-
cess contains both the vector and axial-vector couplings of Z boson to fermions. The
corresponding differential cross section (6) can be described by the polar and azimuthal
angles of produced leptons in their rest frame. When integrated over the azimuthal angle,
it can be presented as follows:

dσ

d cos θ∗
∼ 3

8
(1 + cos2 θ∗) + AFB cos θ

∗, (16)

where θ∗ is the emission angle of produced lepton with respect to the quark momentum
in the dilepton rest frame, and AFB is the parameter of forward-backward asymmetry. It
is defined as

AFB =
σF − σB

σF + σB
, (17)

where σF and σB are the total cross sections for forward and backward events, i.e. events
with positive or negative values of cos θ∗. At the dilepton invariant masses near the Z
boson peak, the asymmetry AFB is predicted to be small due to the small value of the
lepton vector coupling. Above and below the Z boson peak, AFB shows a characteristic
energy dependence governed by γ∗ — Z interference. Deviations from the Standard Model
predictions for AFB may indicate the existence of new particles beyond the Standard
Model. Recently the CMS collaboration has presented [30] a first measurement of the
asymmetry AFB. Our predictions for AFB as a function of the dilepton invariant mass and
rapidity are shown in Fig. 6 in comparison with the CMS data. Following to experimental
procedure [30], we use the Collins-Soper frame where θ∗ is defined to be the angle between
the lepton momentum and the axis that bisects the angle between the direction of one
proton and the direction opposite to the other proton. We find a good agreement of our
predictions and the CMS data as was also obtained with collinear QCD calculations [30].
In contrast with the dilepton transverse momentum and rapidity distributions, there
is practically no differences between the CCFM-based and KMR predictions for AFB.
Note that the angular distributions in dilepton production at the Tevatron have been
investigated in [37].

To conclude, we have demonstrated that the studies of Drell-Yan production (in par-
ticular, investigations of the dilepton transverse momentum and rapidity distributions)
impose a stringent constraints on the TMD quark densities in a proton. Moreover, this
process can be used as an important tool to determine the parameters of initial (starting)
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TMD parton distributions. It is important for further investigations of small-x physics
at hadron colliders, in particular, in the direction which concerns the non-linear effects
originating from high parton densities at small x.

5 Conclusion

We used the TMD quark densities in a proton to investigate unpolarized Drell-Yan
lepton pair production in pp collisions at the LHC energies. We investigated the case where
the gluon-to-quark splitting occurs at the last evolution step and calculated the TMD
sea quark density as a convolution of the CCFM-evolved gluon distribution and TMD
gluon-to-quark splitting function. This function contains all single logarithmic small-x
corrections to sea quark evolution for any order of perturbation theory. We calculated
O(α) production amplitude q∗ + q̄∗ → Z/γ∗ → l+ + l− within the reggeized (off-shell)
quark approach which ensures the exact gauge invariance. The higher-order O(ααs)
subprocesses q∗ + g∗ → Z/γ∗+ q → l+ + l− + q and q∗ + q̄∗ → Z/γ∗+ g → l+ + l− + g are
present in calculations as part of the evolution of TMD parton densities. We have analyzed
the distributions on the dilepton invariant mass, transverse momentum and rapidity as
well as the specific angular correlations between the produced leptons as measured by
the CMS, ATLAS and LHCb collaborations. These measurements impose a stringent
constraints on the TMD quark distributions in a proton. We obtain a reasonably good
description of the experimental measurements with our approach.
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Figure 1: The TMD quark densities fq(x,q
2
T , µ

2) calculated as a function of quark trans-
verse momentum q2

T at several fixed x values and µ2 = m2
Z . The solid and dashed curves

correspond to the CCFM-based and KMR quark densities, respectively.
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Figure 2: The differential cross sections of Drell-Yan lepton pair production in pp collisions
at the LHC as a function of dilepton invariant mass. The solid and dash-dotted histograms
correspond to the CCFM-based and KMR predictions, respectively. The upper and lower
dashed histograms correspond to the scale variations in the CCFM calculations, as it is
described in the text. The experimental data are from CMS [28] and ATLAS [34].
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is the same as in Fig. 2. The experimental data are from CMS [29] and ATLAS [31].
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Figure 5: The differential cross sections of Drell-Yan lepton pair production in pp collisions
at the LHC as a function of φ∗

η. Notation of all histograms is the same as in Fig. 2. The
experimental data are from ATLAS [33] and LHCb [35].
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