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Abstract: Cross sections for top quarks provide very interesting physics opportunities,

being both sensitive to new physics and also perturbatively tractable due to the large top

quark mass. Rigorous factorization theorems for top cross sections can be derived in several

kinematic scenarios, including the boosted regime in the peak region that we consider here.

In the context of the corresponding factorization theorem for e+e− collisions we extract the

last missing ingredient that is needed to evaluate the cross section differential in the jet-

mass at two-loop order and with next-to-next-to-leading logarithmic resummation, namely the

matching coefficient at the scale µ ' mt. This coefficient exhibits an amplitude level rapidity

logarithm starting at O(α2
s) due to virtual top quark loops, which we treat using rapidity

renormalization group (RG) evolution. Interestingly, this rapidity RG evolution appears in

the matching coefficient between two effective theories around the heavy quark mass scale

µ ' mt.
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1 Introduction

The top quark mass is one of the most important parameters in the Standard Model. As

the heaviest observed fermion, the top quark provides an important probe for the Higgs sec-

tor, and gives dominant contributions to many electroweak observables, thus providing strong

benchmark constraints for extensions of the Standard Model. Furthermore, the mass of the

top quark and the Higgs boson represent crucial parameters in studies of the stability of the

Standard Model vacuum [1–4]. Precision measurements of the top quark mass are a difficult

task due to challenges from both experimental and theoretical sides, mainly related to the fact

that the top quark is a colored particle.

The current value of the top quark mass from a combined analysis of Tevatron and LHC

data is mt = 173.34± 0.76 GeV [5], see also [6, 7]. The precision obtained in this result relies

on Monte Carlo (MC) based template and matrix element methods, which aim to account

for essentially all of the kinematic final state information in the top quark events. However,

this approach does not account for the relation of the extracted MC top quark parameter to

an unambiguous field theoretic QCD top mass definition [8–10]. At the time of writing, no

procedure to systematically quantify and improve this relation exists. While it seems unlikely

that the template and matrix element analyses can be based on first principle QCD calculations

which can be systematically improved to specify the top mass scheme unambiguously, it is quite

plausible that other highly sensitive top mass observables can be devised which can clarify the

issue by making high precision theoretical calculations feasible.

One method to determine mt in a well-defined mass scheme from a kinematic spectrum

with small uncertainties has been discussed in Refs. [8, 11, 12]. Here the hemisphere dijet invari-

ant mass distribution in the peak region for the production of boosted tops in electron-positron

annihilation was suggested as an observable and it was shown that hadron level predictions of

the double differential distribution can be carried out in a stable manner within a constrained

set of top quark mass schemes. It was in particular demonstrated that the location of the

peak of the distribution is highly sensitive to the top quark mass, and that only specific low-

scale short-distance mass definitions are suitable for high-precision extractions. Although the

effective theory setup developed therein was devised for the context of a future e+e− collider,

the approach can be extended to the environment at hadron colliders taking into account the

complications related to initial state radiation, underlying event, parton distribution functions

and dependence on jet algorithms and jet radius [13]. In Refs. [11, 12] the calculation for

e+e− annihilation was carried out at Next-to-Leading Logarithmic (NLL) accuracy with the

perturbative ingredients at O(αs). In this paper we provide a result for the O(α2
s) matching

correction at the scale µ ' mt for the e+e−-collider setup. Taken together with the known

O(α2
s) results for the jet function in the heavy-quark limit from Ref. [14], for the massless

soft function from Refs. [15–17], and input from previous form factor calculations for massless

quark production [18, 19], our result provides the last missing ingredient needed to extend the

e+e− boosted top jet analysis to O(α2
s). In turn, with known results, these fixed order con-

tributions can be accompanied with resummation of logarithms up to next-to-next-to-leading

logarithmic order (NNLL).

Boosted top quark production with subsequent decays in the peak region of the invari-

ant mass distributions involves physical effects in a range of widely separated energy scales.

The hierarchy between the production energy Q, the top mass mt, the decay width Γt and the
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ŝt

mŝt
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Figure 1. Scales and effective theories with associated structures in the factorization theorem for

boosted top production (Q � mt) with jet invariant masses close to the top mass. The superscripts

(5) and (6) indicate the number of dynamic flavors in the theory. Note that in this context SCET just

plays a role of an intermediate EFT with all invariant mass fluctuations above or of order the mass

scale, in which the observable is not yet measured. For definiteness we also display the scaling of the

EFT modes in light-cone coordinates.

hadronization scale ΛQCD is given by Q� mt � Γt > ΛQCD. Given this hierarchy of scales, the

cross section contains large logarithms of ratios of these scales which spoil the perturbative ex-

pansion in αs. This necessitates to replace fixed order computations by resummed calculations.

The Effective Field Theory (EFT) setup devised in Ref. [11, 12] disentangles the fluctuations

at the different scales and allows us to resum the logarithms through renormalization group

evolution (RGE).

We are interested in the peak region where each of the jet invariant masses, for the top st
and antitop st̄, is close to the top quark mass, i.e.,

ŝt,t̄ ≡
st,t̄ −m2

t

mt
� mt . (1.1)

For this kinematic region both of the hierarchies ŝt,t̄ ∼ Γt and ŝt,t̄ � Γt are allowed. The

sequence of the EFTs and the corresponding modes relevant for this problem are displayed

in Fig. 1. First, hard modes with fluctuations with virtualities of order ∼ Q are integrated

out in QCD. The corresponding low-energy theory containing collinear and soft modes is Soft

Collinear Effective Theory (SCET) [20–23], which allows to resum large logarithms between

Q and mt. In a second step all fluctuations with virtualities of order ∼ mt are integrated out,

and SCET is thus matched onto boosted Heavy Quark Effective Theory (bHQET), an EFT

with ultracollinear and ultrasoft modes at a lower invariant mass scale, which allows to resum

logarithms between mt and ŝt,t̄. The factorization theorem for the double differential cross

section in e+e− collisions reads

1

σ0

dσ

dst dst̄
=HQ (Q,µ)Hm

(
mt,

Q

mt
, µ

)∫
d`+d`−S(`+, `−, µ)
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× JB
(
st −m2

t −Q`+
mt

,Γt, δm, µ

)
JB

(
st̄ −m2

t −Q`−
mt

,Γt, δm, µ

)

×
[
1 +O

(
mtαs
Q

)
+O

(
m2
t

Q2

)
+O

(
Γt
mt

)
+O

(
ŝ2
t,t̄

m2
t

)]
. (1.2)

Here σ0 denotes the tree level cross section for e+e− → qq̄. The terms HQ and Hm are hard

functions related to the matching from QCD to SCET at the scale µ ∼ Q and from SCET

to bHQET at the scale µ ∼ m, respectively. The terms JB and S denote the jet and soft

functions, respectively, which are nonlocal matrix elements in bHQET. Note that we use JB
for the heavy-quark jet function, rather than the symbol B employed in Refs. [11, 12, 14].

Here JB describes the dynamics of the ultracollinear radiation inside the t or t̄ jet at the scale

µ ∼ ŝt. The function S incorporates the ultrasoft cross talk between the two jets at the scale

µ ∼ mŝt/Q, which is O(ΛQCD) in the peak region, and perturbative in the tail above the

peak. In Eq. (1.2) the RGE between the characteristic scale of each function and the common

renormalization scale µ are implicit. We stress that in SCET the top quark is considered as

dynamical and hence the RGE takes place with six active flavors, while for the ingredients that

arise in bHQET there are only five dynamical flavors in the evolution. Note that it is possible

that the O(mtαs/Q) power corrections indicated in Eq. (1.2) are absent, but we are not aware

of a rigorous proof at this time.

It is through the residual mass term δm appearing in the bHQET jet functions JB that the

top quark mass scheme is specified unambiguously beyond tree-level. For order-by-order stable

perturbative behavior, the top quark mass scheme employed should be free of the O(ΛQCD)

renormalon ambiguity, thus excluding the pole mass (specified by δm = 0) as a choice. Fur-

thermore, the parametric scaling of higher order corrections defining the mass scheme must be

set by scales associated to the measurement, namely ŝt,t̄,Γt � mt, in order not to violate the

power counting required for the factorization. This excludes employing the MS mass where

these corrections scale as δm ∼ αsmt. Valid options include the jet mass scheme [11, 12, 14] or

the MSR mass scheme [8, 14] which matches continuously onto MS. These two mass schemes

have an adjustable cutoff parameter R which controls the scaling of higher order corrections.

The exact algorithm to determine the two jet regions and the precise form of the observable

is irrelevant for the structure of Eq. (1.2), but matters for the explicit perturbative expressions

of its ingredients. In the analysis of Ref. [12] all particles were assigned to either of the two

top jets depending on which hemisphere with respect to the thrust axis they enter. Thus

the observable considered was physically close to event-shape distributions. The analysis of

Ref. [12] for this inclusive jet observable was carried out at NLL′, i.e. including perturbative

ingredients at O(αs) and NLL resummation. At the time of writing the hard function HQ, the

bHQET jet function and the soft function are already known up to O(α2
s) [14, 15, 18] or beyond,

while resummation can be carried out to NNLL.1 Thus, the only relevant correction missing to

perform a complete NNLL′ analysis for the double hemisphere invariant mass distribution and

similar observables in the peak region is the hard function Hm at O(α2
s). This correction will

affect the normalization of the differential cross section, while the shape of the cross section

1If the non-cusp anomalous dimension for either the heavy quark jet function or Hm were known at O(α3
s)

then this would become N3LL resummation, up to the missing four-loop cusp anomalous dimension which is

known to give a negligibly small correction, see e.g. [24, 25].
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is determined mainly by the jet and soft functions. Here NNLL′ refers to NNLL resummation

with O(α2
s) fixed-order matching and matrix element corrections.

In this paper we carry out the computation of the O(α2
s) correction to Hm. In Sec. 2 we

outline two methods to perform the computation. Instead of directly calculating the current

matching factor between bHQET and SCET, we can also exploit the knowledge of the QCD

heavy quark form factor calculated in Refs. [26, 27] and various properties of the EFT to

extract the hard function. In Sec. 3 we carry out the computation at O(α2
s) using this method

and show how to handle issues associated with the number of active quark flavors. This yields

the result given in Eq. (3.8) in terms of the pole mass. In the two loop expression for Hm we

find terms of the form

α2
sCFTF ln

(
Q2

m2

)
ln0,1,2

(
µ2

m2

)
. (1.3)

The large logarithm ln(Q2/m2) is induced by the separation in rapidity of soft mass-shell

fluctuations with the scaling (p+, p−, p⊥) ∼ (m,m,m) from collinear mass-shell fluctuations

with (p+, p−, p⊥) ∼ (m2/Q,Q,m). It can not be eliminated by a choice of µ or summed by the

RGE in µ. This effect is directly related to virtual top quark loops which first appear at O(α2
s),

and has been discussed in detail in Refs. [28, 29] together with other subtleties concerning the

incorporation of a massive quark in primary massless jet production in SCET. In Sec. 4 we

will explicitly carry out the matching calculation for the O(α2
sCFTF ) correction with primary

massive top quarks, and demonstrate how the amplitudes factorize into collinear and soft

components which each involve a single rapidity scale. We show that this factorization is the

same as that for massless external quarks, computed in Ref. [29], up to a different constant

term that appears in the collinear corrections. The direct computation of the SCET soft and

collinear diagrams at O(α2
sCFTF ) can be performed elegantly by first computing the virtual

correction for the radiation of a “massive gluon” at one-loop and performing in a second step a

dispersion integral. In Sec. 5 we show how to resum the type of rapidity logarithm in Eq. (1.3)

using the framework of the rapidity renormalization group established in Refs. [30, 31]. We

also demonstrate that the residual scale dependence of Hm on µ significantly decreases when

employing the complete two-loop correction, and assess the impact of the rapidity logarithm.

We conclude in Sec. 6.

2 Setup and Notation

As described in Refs. [11, 12] for the description of the peak region we first match QCD onto

SCET, and then SCET onto bHQET. The relevant current operators needed to define the hard

functions in Eq. (1.2) are

JQCD = ψ̄(x)Γµi ψ(x) ,

JSCET = χ̄nS
†
nΓµi Sn̄χn̄ ,

JbHQET = h̄v+WnY
†
nΓµi Yn̄W

†
n̄hv− , (2.1)

where Γµv = γµ and Γµa = γµγ5. The jet fields χn = W †nξn and χn̄ = W †n̄ξn̄ describe the

collinear radiation in SCET, and contain the massive collinear quarks ξn and ξn̄ [32, 33] and
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Wilson lines Wn,n̄ where in position space W †n(x) = P exp
(
ig
∫∞

0 ds n̄ · An(n̄s + x)
)
. The

ultracollinear radiation in bHQET is described by the heavy quark fields hv+,− and by Wn,n̄.

The wide-angle radiation in SCET is described by soft Wilson lines Sn,n̄, where in position

space S†n(x) = P exp
(
ig
∫∞

0 ds n · As(ns+ x)
)
, and ultrasoft Wilson lines Yn,n̄ are the analogs

with ultrasoft gluon fields in bHQET. The difference between the SCET fields and bHQET

fields is that SCET still contains soft and collinear fluctuations at the top mass scale, i.e.

the SCET fields contain mass mode fluctuations which scale as (p+, p−, p⊥) ∼ (m,m,m) and

(Q,m2/Q,m) or (m2/Q,Q,m) which are absent in bHQET. This makes our EFT above the

top mass scale an SCETII type theory. There are six flavors in the MS running coupling in

QCD and SCET, and five flavors in bHQET.

The notation above differs from Ref. [12] which used a hybrid of SCETI and SCETII,

where the current operator was written as

J̃SCET = χ̄nY
†
nS
†
nΓµi Sn̄Yn̄χn̄ . (2.2)

Here the Wilson lines Sn,n̄ describe exclusively soft mass mode fluctuations and have ultrasoft

zero-bin subtractions. In Eq. (2.1) the SCET operator only describes soft fluctuations above

and of order of the mass scale m, and not far below m. This simplifies the setup for the

matching coefficient calculation, which in particular can be viewed as going from a six flavor

theory to a five flavor theory.

The matching coefficients between these effective theories are defined by

J (nl+1)
QCD = C

(nl+1)
Q J (nl+1)

SCET

[
1 +O(m/Q)

]
, (2.3)

J (nl+1)
SCET = C

(nf )
m J (nl)

bHQET

[
1 +O(ŝ/m)

]
. (2.4)

Here both the currents and Wilson coefficients refer to the renormalized quantities. When we

refer to the bare objects we will indicate this explicitly as e.g. in J (bare,nl+1)
SCET . For all quantities

we consider we use the renormalized coupling constant. When we want to separate the color

structures of the matching coefficients we will do so in the following way:

C
(nl+1)
Q = 1 + C

(1, nl+1)
Q + C

(C2
F , nl+1)

Q + C
(CFCA, nl+1)
Q + C(CFnlTF , nl+1)

m + C
(CFTF , nl+1)
Q ,

C
(nf )
m = 1 + C

(1, nf )
m︸ ︷︷ ︸
O(αs)

+ C
(C2
F , nf )

m + C
(CFCA, nf )
m + C

(CFnlTF , nf )
m + C

(CFTF , nf )
m︸ ︷︷ ︸

O(α2
s)

. (2.5)

In all the objects above the coupling is renormalized in the MS scheme with the number of

dynamical flavors, nf , being either nl or (nl + 1) as indicated by the superscript. Here nl is

the number of light quarks, and the additional flavor indicates the heavy quark (here the top

quark). The choice for the number of flavors in each of the expressions above is motivated by

the scales at which these objects live compared to the top mass. Note that we have kept the

number of flavors appearing in Cm unspecified, as it can be expressed in either the nl- or the

(nl + 1)-flavor scheme. We will be explicit about which scheme we are using in the equations

below.

The hard functions in Eq. (1.2) are related to the Wilson coefficients via

HQ(Q,µ) = |CQ|2, Hm

(
m,

Q

m
,µ

)
= |Cm|2 . (2.6)
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Here the dependence on Q in the hard function Hm appears due to the boost factor Q/m.

In Eq. (1.2) all the functions live at their respective scales and are evolved to a common

scale µfinal through renormalization group running. While the jet and the soft functions have

convolution running [12], the large logarithms of the hard matching coefficients are summed

by multiplicative evolution factors,

Hevol(Q,m, µfinal;µQ, µm, νQ, νm) ≡H(nl+1)
Q (Q,µQ) U

(nl+1)
HQ

(Q,µQ, µm) (2.7)

×H(nl)
m

(
m,

Q

m
,µm; νQ, νm

)
U (nl)
v

(
Q

m
,µm, µfinal

)
,

for µQ ' Q, µm ' m and µfinal < µm. On the LHS the dependence on µQ and µm only comes

from higher order corrections when the objects in Eq. (2.7) are truncated at a given order in

resummed perturbation theory. The same is true for the rapidity scales νQ and νm, which are

induced by the rapidity RGE that will be discussed further below and in Sec. 5.1. We will

frequently drop these arguments that appear after the semicolon. The evolution factors here

obey the RG equations

µ
d

dµ
U

(nl+1)
HQ

(Q,µQ, µ) = −γ(nl+1)
HQ

(Q,µ)U
(nl+1)
HQ

(Q,µQ, µ) ,

µ
d

dµ
U (nl)
v

(
Q

m
,µ, µfinal

)
= +γ(nl)

v

(Q
m
,µ
)
U (nl)
v

(
Q

m
,µ, µfinal

)
, (2.8)

where γ
(nl)
v is the anomalous dimension for the squared current in bHQET.

Eqs. (2.3) and (2.4) suggest two different methods that one can use to calculate the O(α2
s)

piece of Cm or equivalently Hm:

1) Indirect calculation using the known result for CQ and the matrix elements for the QCD

and bHQET current operators in pure dimensional regularization:

Using Eq. (2.3) and (2.4), and taking matrix elements of the operators with onshell top-

quark states as in [11], we have

〈J (nl+1)
QCD 〉 = C

(nl+1)
Q C(nl)

m 〈J (nl)
bHQET〉 . (2.9)

Using the relation between bare and renormalized bHQET currents

〈J (nl)
bHQET〉 = Z

(nl)
bHQET 〈J

(bare, nl)
bHQET 〉 , (2.10)

we get

C(nl)
m =

〈J (nl+1)
QCD 〉

C
(nl+1)
Q Z

(nl)
bHQET 〈J

(bare, nl)
bHQET 〉

. (2.11)

Note that the terms on the RHS involve objects with different flavor number schemes for

the strong coupling, which must all be converted to nl-flavors to get C
(nl)
m . Here we work in

dimensional regularization for both UV and IR divergences and renormalize the quantities in

the MS scheme. With this regulator we can use the known two loop result for the heavy form

factor 〈JQCD〉 given in Refs. [26, 27]. The result for CQ is also known [18, 19] in MS, and the
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result for Z
(nl)
bHQET can be determined by RG consistency as discussed below. Loop graphs in

bHQET factorize into ultrasoft and ultra-collinear contributions, and in general each involve at

most a single dimensionfull scale. The use of dimensional regularization for both the UV and

IR, and employing onshell external quarks, imply that these loop corrections in bHQET are

scaleless and vanish, such that 〈J (bare,nl)
bHQET 〉 = 1. In general, the IR divergences in the QCD and

bHQET matrix elements will match up, and the UV divergences in 〈J (bare, nl)
bHQET 〉 are eliminated

by the counterterm Z
(nl)
bHQET. In dimensional regularization with 1/εIR = 1/εUV, this implies a

cancellation of 1/ε poles between 〈J (nl+1)
QCD 〉 and Z

(nl)
bHQET. Thus we can use the simpler relation

C(nl)
m =

〈J (nl+1)
QCD 〉

Z
(nl)
bHQETC

(nl+1)
Q

. (2.12)

2) Direct calculation by matching the SCET and bHQET current operators:

Using Eq. (2.4) we can also just directly compute the Wilson coefficient from a matching

calculation, computing partonic matrix elements using the same IR regulator in SCET and

bHQET,

C(nl)
m =

〈J (nl+1)
SCET 〉

〈J (nl)
bHQET〉

≡ F
(nl+1)
SCET

F
(nl)
bHQET

. (2.13)

These matrix elements are form factors in the respective theories which we denote by F . We

will use the same notation for the color structures in the perturbative expansion of FSCET and

FbHQET as in Eq. (2.5). We define the relation between bare and renormalized SCET currents

by

〈J (nl+1)
SCET 〉 = Z

(nl+1)
SCET 〈J

(bare, nl+1)
SCET 〉 . (2.14)

As usual the bare currents are µ-independent, so from Eqs. (2.10), (2.13) and (2.14) the µ-RG

equation for C
(nl)
m can be written as

µ
d

dµ
lnC(nl)

m =
[
γ

(nl+1)
SCET (Q,µ)− γ(nl)

bHQET

(Q
m
,µ
)]

(α(nl)
s ) ≡ γCmµ (Q,m, µ) , (2.15)

where the current anomalous dimensions are computed order-by-order from the counterterms

in the standard fashion

γ
(nl+1)
SCET (Q,µ) = µ

d

dµ
lnZ

(nl+1)
SCET , γ

(nl)
bHQET

(Q
m
,µ
)

= µ
d

dµ
lnZ

(nl)
bHQET . (2.16)

The anomalous dimension for the SCET current is known to 3-loop order [34]. Up to two loops

the result reads

γ
(nl+1)
SCET (Q,µ) =

α
(nl+1)
s (µ)CF

4π

[
− 4LQ + 6

]
+

(
α

(nl+1)
s (µ)

4π

)2{
C2
F

[
3− 4π2 + 48ζ3

]
+ CFCA

[
−
(

268

9
− 4π2

3

)
LQ +

961

27
+

11π2

3
− 52ζ3

]

+ (nl + 1)CFTF

[
80

9
LQ −

260

27
− 4π2

3

]}
, (2.17)
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where LQ = ln[(−Q2 − i0)/µ2]. The bHQET anomalous dimension can be derived using one

of the consistency relations [12] for the factorization theorem in Eq. (1.2):

γv = γbHQET + γ∗bHQET = 2γJB + 2γS , (2.18)

where γS indicates the soft function anomalous dimension for one hemisphere. Using the results

for γJB given in Eq. (41) of Ref. [14] and for γS given in Eq. (19) of Ref. [35] (which can be

derived via consistency from the two-loop jet function anomalous dimension [36]) we find

γbHQET

(Q
m
,µ
)

=
α

(nl)
s (µ)CF

4π

[
− 4L+ 4

]
+

(
α

(nl)
s (µ)

4π

)2{
nlCFTF

[
80

9
L− 80

9

]

+ CFCA

[
−
(

268

9
− 4π2

3

)
L+

196

9
− 4π2

3
+ 8ζ3

]}
+O(α3

s) , (2.19)

where L = ln[(−Q2 − i0)/m2].

As mentioned above, the two-loop expression of Cm contains large logarithms of the form

α2
sCFTF ln(−m2/Q2) ∼ O(αs) which cannot be resummed using the RGE in µ. They are

rapidity logarithms and originate from a separation of the soft and collinear mass modes which

have the same invariant mass but different rapidity. These rapidity logarithms only appear

inside Hm, and not for the other soft, jet, and hard functions in Eq. (1.2). Our focus here

will be on the leading rapidity logarithms, which start contributing with the O(α2
sCFTF )

piece. The latter comes from virtual top quark loops, and hence we only need to compute the

correction F
(CFTF , nl+1)
SCET , while the bHQET graphs give no contribution for this color structure,

i.e. F
(CFTF ,nl)
bHQET = 0.

To set up the stage for rapidity resummation we can factorize the current operators and

its matrix elements into products of soft and collinear diagrams,

〈J (nl+1)
SCET 〉 = 〈J (nl+1)

SCET 〉n 〈J
(nl+1)
SCET 〉s 〈J

(nl+1)
SCET 〉n̄ ,

〈J (nl+1)
bHQET〉 = 〈J (nl+1)

bHQET〉n 〈J
(nl+1)
bHQET〉s 〈J

(nl+1)
bHQET〉n̄ , (2.20)

where the {n, s, n̄} labels in bHQET indicate n-ucollinear, ultrasoft, and n̄-ucollinear contri-

butions respectively. Note that in order to split up these corrections we must choose an IR

regulator which preserves the SCETII nature of the theory. We will regulate the IR divergences

using a gluon mass Λ, which thus differs from the use of pure dimensional regularization dis-

cussed above for method 1. In SCETII the individual soft and collinear diagrams have rapidity

divergences, and using the regulator of Refs. [30, 31] the coefficients will depend on a rapidity

renormalization scale ν. Thus Eq. (2.13) can be decomposed into individual contributions

involving n-collinear, n̄-collinear, and soft amplitudes,

C
(nl)
m, i =

〈J (nl+1)
SCET 〉i

〈J (nl)
bHQET〉i

, i = n, n̄, s . (2.21)

This leads to

C(nl)
m

(
m,

Q

m
,µ

)
= C(nl)

m,n

(
m,µ,

ν

Q

)
C(nl)
m,s

(
m,µ,

ν

m

)
C

(nl)
m,n̄

(
m,µ,

ν

Q

)
, (2.22)
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where we included the dependence on scales and renormalization parameters. Thus we see

that the logarithmic dependence on the Q/m boost variable is factorized by the rapidity

regularization parameter ν into collinear factors that depend on Q and a soft factor which

does not. To sum the rapidity logarithms we can follow the standard approach of matching

and running.

We define hard functions H
(nl)
m,i =

∣∣∣C(nl)
m,i

∣∣∣2. The individual Wilson coefficient and hard

functions obey related RG equations,

ν
d

dν
C

(nl)
m,i = γCmν,i C

(nl)
m,i , ν

d

dν
H

(nl)
m,i = γHmν,i H

(nl)
m,i , γHmν, i = γCmν, i +

(
γCmν, i

)∗
. (2.23)

The ν-anomalous dimensions appearing here can be computed directly from the SCET and

bHQET counterterms and depend only on m and µ. Taking Eqs. (2.10) and (2.14) and intro-

ducing individual counterterm factors for each of the collinear and soft component amplitudes,

noting that the bare coefficients are ν-independent, and using Eq. (2.21) we get

γCmν, i (m,µ) = ν
d

dν
lnC

(nl)
m, i = ν

d

dν
ln 〈J (nl+1)

SCET 〉i − ν
d

dν
ln 〈J (nl)

bHQET〉i

= ν
d

dν
lnZ

(nl+1)
SCET,i − ν

d

dν
lnZ

(nl)
bHQET,i , i = n, n̄, s . (2.24)

As we will see in detail below, individual contributions on the right hand side of Eq. (2.24)

contain IR divergences, but they will always cancel to leave an IR finite result for the γCmν, i ,

when we fully expand in either the nl-flavor or (nl + 1)-flavor scheme for the strong coupling.

3 Two Loop Determination of Hm from QCD heavy form factor

In this section we use the first method outlined in Sec. 2 to determine the bHQET matching

coefficient, Cm at two loops. From Eq. (2.12) the ingredients we need are the UV renormalized

QCD two-loop heavy quark form factor, 〈J (nl+1)
QCD 〉, in dimensional regularization and the SCET

matching coefficient, C
(nl+1)
Q . In the following we abbreviate the appearing logarithms as

L = ln

(−Q2 − i0
m2

)
, Lm = ln

(
m2

µ2

)
, LQ = ln

(−Q2 − i0
µ2

)
. (3.1)

From Refs. [26, 27] we extract the renormalized two loop QCD heavy quark form factor

result in the high energy limit, Q2 � m2, evaluated at an arbitrary scale µ & m, abbreviating

α
(nl+1)
s ≡ α(nl+1)

s (µ), 2

F
(nl+1)
QCD = 1 +

α
(nl+1)
s CF

4π

{
2L− 2

ε
− L2 − (2Lm − 3)L+ 2Lm − 4 +

π2

3
+ ε

[
L3

3
+

(
Lm −

3

2

)
L2

+

(
L2
m − 3Lm + 8− π2

6

)
L− L2

m +

(
4− π2

3

)
Lm − 8 +

π2

3
+ 4ζ3

]
+O(ε2)

}

+

(
α

(nl+1)
s

4π

)2

C2
F

{
1

ε2
[
2L2−4L+ 2

]
+

1

ε

[
− 2L3−(4Lm−8)L2 +

(
8Lm− 14 +

2π2

3

)
L

2Note that in Ref. [26] the counterterm for the renormalization of the coupling constant contains an extra

factor Γ(1 + ε), so that also additional finite terms are subtracted compared to the conventional MS renormal-

ization.
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− 4Lm + 8− 2π2

3

]
+

7

6
L4 +

(
4Lm −

20

3

)
L3 +

(
4L2

m − 16Lm +
55

2
− 2π2

3

)
L2

−
(

8L2
m −

(
28− 4π2

3

)
Lm +

85

2
− 32ζ3

)
L+ 4L2

m −
(

16− 4π2

3

)
Lm + 46 +

13π2

2

− 44ζ3 − 8π2 ln 2− 59π4

90
+O(ε)

}

+

(
α

(nl+1)
s

4π

)2

CFCA

{
1

ε2

[
− 11

3
L+

11

3

]
+

1

ε

[(
67

9
− π2

3

)
L− 49

9
+
π2

3
− 2ζ3

]
+

11

9
L3

+

(
11

3
Lm −

233

18
+
π2

3

)
L2 +

(
11

3
L2
m −

(
233

9
− 2π2

3

)
Lm +

2545

54
+

11π2

9
− 26ζ3

)
L

− 11

3
L2
m +

(
230

9
− 17π2

9
+ 4ζ3

)
Lm −

1595

27
− 7π2

54
+

134

3
ζ3 + 4π2 ln 2− π4

60
+O(ε)

}

+

(
α

(nl+1)
s

4π

)2

CFnlTF

{
1

ε2

[
4

3
L− 4

3

]
+

1

ε

[
− 20

9
L+

20

9

]
− 4

9
L3 −

(
4

3
Lm −

38

9

)
L2

−
(

4

3
L2
m −

76

9
Lm +

418

27
+

4π2

9

)
L+

4

3
L2
m −

(
88

9
− 4π2

9

)
Lm +

424

27
− 14π2

27

− 16

3
ζ3 +O(ε)

}

+

(
α

(nl+1)
s

4π

)2

CFTF

{
1

ε

[
8

3
Lm L−

8

3
Lm

]
− 4

9
L3 −

(
4

3
Lm −

38

9

)
L2 −

(
4L2

m − 4Lm

+
530

27
+

2π2

3

)
L+ 4L2

m −
(

16

3
− 4π2

9

)
Lm +

1532

27
− 4π2

9
+O(ε)

}
. (3.2)

Note that we keep the O(ε) part of the one loop piece in F
(1,nl+1)
QCD since it yields a contribution

when considering the cross terms in the expansion of the ratio in Eq. (2.12). (One can avoid

considering these cross terms and obtain the same answer by taking the logarithm of Eq. (2.12).)

We remark that in these expressions the pole mass scheme has been used for the top quark

mass m.

The other ingredient we need is the well known two-loop expression for CQ, widely used

in the SCET literature, and obtained with the aid of the massless form factor calculation of

Refs. [18, 19],

C
(nl+1)
Q = 1 +

α
(nl+1)
s (µ)CF

4π

{
− L2

Q + 3LQ − 8 +
π2

6

}

+

(
α

(nl+1)
s (µ)

4π

)2

C2
F

{
1

2
L4
Q − 3L3

Q +

(
25

2
− π2

6

)
L2
Q −

(
45

2
+

3π2

2
− 24ζ3

)
LQ

+
255

8
+

7π2

2
− 30ζ3 −

83π4

360

}
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+

(
α

(nl+1)
s (µ)

4π

)2

CACF

{
11

9
L3
Q −

(
233

18
− π2

3

)
L2
Q +

(
2545

54
+

11π2

9
− 26ζ3

)
LQ

− 51157

648
− 337π2

108
+

313ζ3

9
+

11π4

45

}

+

(
α

(nl+1)
s (µ)

4π

)2

CFTF (nl + 1)

{
− 4

9
L3
Q +

38

9
L2
Q −

(
418

27
+

4π2

9

)
LQ

+
4085

162
+

23π2

27
+

4ζ3

9

}
. (3.3)

The remaining quantities in Eq. (2.12) are the coefficient C
(nl)
m we wish to determine, and

the counterterm Z
(nl)
bHQET. The contributions to these two quantities can be easily distinguished

since Z
(nl)
bHQET only has terms with powers of 1/ε, whereas C

(nl)
m is given by the finite O(ε0) con-

tribution. Therefore, it is straightforward to distinguish these two quantities unambiguously.

Since we wish to determine these with nl active flavors, we must convert the strong coupling

in 〈J (nl+1)
QCD 〉 and C

(nl+1)
Q to the nl-flavor scheme using the decoupling relation

α(nl+1)
s (µ) = α(nl)

s (µ)

{
1 + α(nl)

s (µ)

[
Π(m2, 0)− α

(nl)
s (µ)TF

3π

1

ε

]
+O(α2

s)

}
, (3.4)

where the one-loop vacuum polarization at zero momentum transfer for a massive quark pair

is given by

Π(m2, 0) =
αs(µ)TF

3π

(
µ2eγE

m2

)ε
Γ(ε) =

αs(µ)TF
3π

[
1

ε
− Lm + ε

(
1

2
L2
m +

π2

12

)
+O(ε2)

]
. (3.5)

We need to keep terms up to O(ε) in Eq. (3.4) since they contribute in the dimensional

regularization scheme we are using when multiplying O(αs/ε) IR divergent terms in Eq. (2.12).

Using these results in Eq. (2.12) we find the following expression for Z
(nl)
bHQET,

Z
(nl)
bHQET = 1 +

α
(nl)
s (µ)CF

4π

1

ε

(
2L− 2

)
+

(
α

(nl)
s (µ)

4π

)2

C2
F

1

ε2
(
2L2 − 4L+ 2

)
+

(
α

(nl)
s (µ)

4π

)2

CFCA

{
1

ε2

[
− 11

3
L+

11

3

]
+

1

ε

[(
67

9
− π2

3

)
L− 49

9
+
π2

3
− 2ζ3

]}

+

(
α

(nl)
s (µ)

4π

)2

CFnlTF

{
1

ε2

[
4

3
L− 4

3

]
+

1

ε

[
− 20

9
L+

20

9

]}
. (3.6)

This result can also be extracted from earlier literature using the consistency relation for RG

running between Hm, and the soft and the jet functions in Eq. (1.2). In particular, the 1/ε2

terms in Eq. (3.6) are given by a term involving the lowest order β-function, and the square of

the one-loop result (due to non-abelian exponentiation), while the 1/ε terms are directly related

to the two-loop anomalous dimension given in Eq. (2.19). This provides a key cross-check for

Z
(nl)
bHQET and hence for our result below for C

(nl)
m .

After cancellation of the 1/ε and 1/ε2 terms in Eq. (2.12) with the help of Z
(nl)
bHQET, the

remaining O(ε0) terms give the desired result for C
(nl)
m . With the top-mass in the pole scheme
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we find

C(nl)
m

(
m,

Q

m
,µ
)

= 1 +
α

(nl)
s (µ)CF

4π

(
L2
m − Lm + 4 +

π2

6

)

+

(
α

(nl)
s (µ)

4π

)2

C2
F

{
1

2
L4
m − L3

m +

(
9

2
+
π2

6

)
L2
m −

(
11

2
− 11π2

6
+ 24ζ3

)
Lm

+
241

8
+

13π2

3
− 8π2 log 2− 6ζ3 −

163π4

360

}

+

(
α

(nl)
s (µ)

4π

)2

CACF

{
− 11

9
L3
m +

(
167

18
− π2

3

)
L2
m −

(
1165

54
+

28π2

9
− 30ζ3

)
Lm

+
12877

648
+

323π2

108
+ 4π2 log 2 +

89ζ3

9
− 47π4

180

}

+

(
α

(nl)
s (µ)

4π

)2

CFnlTF

{
4

9
L3
m −

26

9
L2
m +

(
154

27
+

8π2

9

)
Lm −

1541

162
− 37π2

27
− 52ζ3

9

}

+

(
α

(nl)
s (µ)

4π

)2

CFTF

{
− 8

9
L3
m −

2

9
L2
m +

(
130

27
+

2π2

3

)
Lm +

5107

162
− 41π2

27
− 4ζ3

9

−
(

4

3
L2
m +

40

9
Lm +

112

27

)
ln

(−Q2−i0
m2

)}
, (3.7)

Finally we arrive at the main result of this section - the result for Hm = |Cm|2 in the nl-flavor

scheme with the top-mass in the pole scheme (α
(nl)
s ≡ α(nl)

s (µ))

H(nl)
m

(
m,

Q

m
,µ
)

= 1 +
α

(nl)
s (µ)

4π
CF

(
2L2

m − 2Lm + 8 +
π2

3

)

+

(
α

(nl)
s (µ)

4π

)2

C2
F

{
2L4

m − 4L3
m +

(
18 +

2π2

3

)
L2
m −

(
19− 10π2

3
+ 48ζ3

)
Lm

+
305

4
+ 10π2 − 16π2 log 2− 12ζ3 −

79π4

90

}

+

(
α

(nl)
s (µ)

4π

)2

CACF

{
− 22

9
L3
m +

(
167

9
− 2π2

3

)
L2
m −

(
1165

27
+

56π2

9
− 60ζ3

)
Lm

+
12877

324
+

323π2

54
+ 8π2 log 2 +

178ζ3

9
− 47π4

90

}

+

(
α

(nl)
s (µ)

4π

)2

CFnlTF

{
8

9
L3
m −

52

9
L2
m +

(
308

27
+

16π2

9

)
Lm −

1541

81
− 74π2

27
− 104ζ3

9

}

+

(
α

(nl)
s (µ)

4π

)2

CFTF

{
− 16

9
L3
m −

4

9
L2
m +

(
260

27
+

4π2

3

)
Lm +

5107

81
− 82π2

27
− 8ζ3

9

−
(

8

3
L2
m +

80

9
Lm +

224

27

)
ln

(
Q2

m2

)}
. (3.8)
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As anticipated, all of the logarithms in this expression are minimized for µ ' m, except for

the contributions in the last line that involve the rapidity logarithm α2
sCFTF ln(Q2/m2). To

understand the origin of this type of logarithm in the context of the renormalization group

requires a further factorization of H
(nl)
m into soft and collinear pieces, as in Eq. (2.22). In the

next section we will carry out an independent calculation of the O(α2
sCFTF ) terms in H

(nl)
m .

This sets up the rapidity renormalization group analysis of this term, which can be found in

Sec. 5.1. In Sec. 5.2 we present the result for H
(nl+1)
m̄ with the top mass renormalized in the

MS scheme.

4 Direct Computation of the O(α2
sCFTF ) Result

4.1 Ingredients for the Calculation

In this section we perform a direct computation of the α2
sCFTF piece of the matching coefficient

Cm(m,Q/m,µ) due to massive quark loops using the second method from Sec. 2. We carry

out the calculation in analogy to Refs. [28, 29], where the corresponding contribution to the

matching coefficient at the mass scale for massless external quarks (in the following called

“primary”) was computed. In this section we extend the calculation to the case of primary

massive quarks.

Starting from Eq. (2.13) we note that for the α2
sCFTF massive quark term, the bHQET

graphs expressed in the usual nl-flavor scheme do not give any contribution. The SCET graphs

do contribute, and should be expressed in the same scheme for the strong coupling. Using the

decoupling relation in Eq. (3.4) we obtain in the notation of Eq. (2.5)

C(CFTF , nl)
m

(
m,

Q

m
,µ
)

=

[
F

(CFTF , nl+1)
SCET (Q,m,Λ, µ) (4.1)

− α
(nl)
s (µ)TF

3π
ln

(
m2

µ2

)
F

(1,nl+1)
SCET (Q,m,Λ, µ)

]
α

(nl+1)
s →α

(nl)
s

.

The second term on the right hand side accounts for the coupling conversion of the SCET

form factor from (nl + 1) to nl flavors.3 As discussed in detail below, we will use a massive

gluon as an IR regulator Λ, such that O(ε) terms in the coupling conversion in Eq. (3.4) can be

dropped. For the remainder of this section we will drop the superscript (nl + 1) on the SCET

form factors.

We adopt the calculational method of Refs. [28, 29], where the two loop graphs containing

a “secondary” massive quark bubble are calculated by starting with one-loop graphs describing

the radiation of a massive gluon with mass M and applying in a second step dispersion relations

to account for the gluon splitting into a pair of secondary massive quarks with masses m. The

3Note that the subscript “α
(nl+1)
s → α

(nl)
s ” used here and elsewhere stands for the plain replacement of the

couplings and does not involve any expansion based on Eq. (3.4).
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corresponding relation can be written as

(−i)gµρ
p2 + iε

Πρσ(m2, p2)
(−i)gσν
p2 + iε

=
1

π

∫
dM2

M2

(−i)
(
gµν − pµpν

p2

)
p2 −M2 + iε

Im
[
Π(m2,M2)

]

−
(−i)

(
gµν − pµpν

p2

)
p2 + iε

Π(m2, 0) . (4.2)

Here Π(m2, p2) is the gluonic vacuum polarization due to the massive quark-antiquark bubble,

ΠAB
µν (m2, p2) = −i(p2gµν − pµpν)Π(m2, p2)δAB ≡

∫
d4x eipx〈0|TJAµ (x)JBν (0)|0〉 , (4.3)

with the imaginary part in d = 4− 2ε dimensions given by

Im
[
Π(m2, p2)

]
= θ(p2−4m2) g2TF

(
p2

µ̃2

)−ε
23−2dπ(3−d)/2

Γ
(
d+1

2

) (
d−2+

4m2

p2

)(
1− 4m2

p2

)(d−3)/2

.

(4.4)

We note that the same method can be applied to account for any kind of secondary particles

by a corresponding choice of the polarization function Π. Eq. (4.2) allows us to express the

contribution to the SCET form factor due to the massive quark loops as

F
(CFTF , bare)
SCET (Q,m,Λ) = F

(OS,CFTF ,bare)
SCET (Q,m)

−
(

Π(m2, 0)− α
(nl)
s (µ)TF

3π

1

ε

)
F

(1, bare)
SCET (Q,m,Λ) , (4.5)

where the “on-shell” form factor is

F
(OS,CFTF ,bare)
SCET (Q,m) =

1

π

∫
dM2

M2
F

(1,bare)
SCET (Q,m,M) Im

[
Π(m2,M2)

]
. (4.6)

In Eq. (4.5) Λ denotes the gluon mass acting as our IR regulator, which we distinguish from the

gluon mass M used in the dispersion integration. Since total bare quantities are µ-independent,

we do not add µ as an argument to the components of bare quantities at a specific order. In

F
(OS,bare)
SCET the massive quark contributions to the coupling are renormalized with the onshell

subtraction, i.e. F
(OS,bare)
SCET is given in the scheme with nl dynamic flavors. In Eq. (4.5) the

second term accounts for the change to nl + 1 dynamic flavors. The form factor itself is still

unrenormalized, as indicated by the (bare) superscript. We perform the MS renormalization

for the SCET current using Eq. (2.14). Incorporating Eqs. (4.5) and (2.14) into Eq. (4.1) the

result for C
(CFTF , nl)
m can be written as

C(CFTF , nl)
m

(
m,

Q

m
,µ
)

= F
(OS,CFTF ,bare)
SCET (Q,m) (4.7)

−
(

Π(m2, 0)− α
(nl)
s (µ)TF

3π

1

ε

)(
F

(1)
SCET(Q,m,Λ, µ)− Z(1)

SCET(Q,m, µ)
)

+ Z
(CFTF )
SCET (Q,m, µ)− α

(nl)
s (µ)TF

3π
ln

(
m2

µ2

)
F

(1)
SCET(Q,m,Λ, µ) .
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F
(1)
n F

(1)
n̄F

(1)
s

p

p′

p

p′

p

p′

Z
(1,a)
ξ,m

Z
(1,b)
ξ,m

M

m

Figure 2. Non-vanishing EFT diagrams for the computation of the hard current at O(αs) with primary

massive quarks and secondary massive gluons with masses m and M , respectively. Soft-bin subtractions

are implied for the collinear diagrams.

Here the 1-loop form factor F
(1,bare)
SCET is a UV and IR divergent amplitude, and Z

(CFTF )
SCET is the

SCET current counterterm in the (nl + 1)-flavor scheme. Using the explicit form of Π(m2, 0)

in Eq. (3.5) one can rewrite Eq. (4.7) as

C(CFTF , nl)
m

(
m,

Q

m
,µ
)

= F
(OS,CFTF ,bare)
SCET (Q,m) + Z

(CFTF )
SCET (Q,m, µ) (4.8)

+

(
Π(m2, 0)− α

(nl)
s TF
3π

1

ε

)
Z

(1)
SCET(Q,m, µ) ,

where we see explicitly that the dependence on the IR regulator is canceled. Note that we

could have also carried out the computation employing the (nl+1)-flavor scheme to determine

C
(CFTF ,nl+1)
m , which involves converting the bHQET form factor from the nl to (nl + 1)-flavor

scheme. In this case the cancellation of IR divergences occurs in a different manner, and

involves the O(αs) bHQET form factor. This approach is discussed in App. A.

Note that nothing in Eq. (4.8) depends on the low energy bHQET theory. Therefore the

result applies equally well to the case where one integrates out the heavy quark loop without

approaching the jet invariant mass threshold st → m2 and matches onto a nl-flavor SCET

theory instead of bHQET. In this case the matching coefficient only contains the contribution

from the massive quark loop and receives corrections starting at O(α2
sCFTF ), so switching

between the nl and (nl + 1)-flavor schemes only affects the corrections at O(α3
s) and beyond.

This is in close analogy to the case of primary massless quarks discussed in detail in Refs. [28,

29].

4.2 One-loop computation for secondary massive gluons

Having laid out the basic framework in the previous section we now start with calculating the

one loop SCET heavy quark form factors for a top-quark of mass m with a massive gluon of

mass M to be used in the dispersion relation. The complete unrenormalized SCET result for

the current form factor at O(αs) can be written as

F
(1,bare)
SCET (Q,m,M) = F

(1,bare)
SCET,m=0(Q,M) + F

(1,bare)
SCET (Q,m,M)− F (1,bare)

SCET,m=0(Q,M)︸ ︷︷ ︸
= δF

(1,bare)
SCET (m,M)

. (4.9)
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The correction with primary massless quarks F
(1,bare)
SCET,m=0 has been already calculated in Refs. [28,

31, 37–39] and reads in d = 4− 2ε dimensions

F
(1,bare)
SCET,m=0 =

αs(µ)CF
4π

{
2

ε2
+

3

ε
− 2

ε
LQ + (2LQ − 3)LM − L2

M +
9

2
− 5π2

6
+O(ε)

}
, (4.10)

where LQ = ln (−Q
2−i0
µ2 ) and LM = ln (M

2

µ2 ). The corresponding one-loop counterterm in MS

reads

Z
(1)
SCET =

αs(µ)CF
4π

{
− 2

ε2
− 3

ε
+

2

ε
LQ

}
. (4.11)

Fig. 2 illustrates the SCET graphs with massive gluons needed to compute F
(1,bare)
SCET . For the

first three graphs in Fig. 2 the form factor contributions are defined as prefactors to the spinors,

F
(1)
i ūn,pγ

µun̄,p′ for i = n, n̄, s and are computed using the SCET Feynman rules for massive

quarks given in Ref. [32].

Due to the eikonal structure the result for the soft diagram, F
(1,bare)
s , is same as that for

primary massless quarks [here µ̃2 = µ2eγE/(4π)],

F (1,bare)
s = − 2ig2CF µ̃

2ε

∫
ddk

(2π)d
1

[k− + iε]

1

[k+ − iε]
1

[k2 −M2 + iε]
. (4.12)

For the n-collinear diagram we get

F (1,bare)
n = 2ig2CF µ̃

2ε

∫
ddk

(2π)d
Q− k−

[k2 −Qk+ − m2

Q k− + iε]

1

[k− + iε]

1

[k2 −M2 + iε]
. (4.13)

We can decompose this contribution into a correction corresponding to the diagram with

primary massless quarks, and a UV and IR-finite difference of terms which can be computed

in 4 dimensions,

F (1,bare)
n = F

(1,bare)
n,m=0 +

(
F (1,bare)
n − F (1,bare)

n,m=0

)
. (4.14)

After performing a contour integration in k+, carrying out the k⊥-integration and rescaling

the label momentum as k− ≡ zQ, the finite correction due to the mass of the primary quark

yields

F (1,bare)
n − F (1,bare)

n,m=0 (4.15)

= −αsCF
2π

Γ

(
2− d

2

)(
µ2eγE

M2

)2− d
2
∫ 1

0
dz

1− z
z

[(
1− z +

m2

M2
z2

) d
2
−2

− (1− z) d2−2

]

=
αsCF

2π

[
ln

(
1 + a

2

)
ln

(
1− a

2

)
+

1 + a

1− a ln

(
1 + a

2

)
+

1− a
1 + a

ln

(
1− a

2

)
+ 1 +O(ε)

]
,

with

a =

√
1− 4m2

M2
. (4.16)

In SCET loop graphs include soft 0-bin subtractions [40] which ensure that there is no double

counting of infrared regions. For the soft 0-bin subtraction of F
(1,bare)
n the dependence on the
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primary quark mass drops out, and we obtain the same result as for primary massless quarks,

which is therefore fully contained in F
(1,bare)
n,m=0 . Note that the result in Eq. (4.15) does not

contain any rapidity divergences, so that rapidity logarithms arise only in the computation of

F
(1)
n,m=0. This can be understood from the fact that the corrections due to soft modes are the

same for massless and massive primary quarks, so that the rapidity divergences in the soft

sector and, by consistency, also in the collinear sectors have to agree in both cases.

The n̄-collinear diagram corresponds to switching k− and k+ in Eq. (4.13). We perform a

decomposition analogous to Eq. (4.14),

F
(1,bare)
n̄ = F

(1,bare)
n̄,m=0 +

(
F

(1,bare)
n̄ − F (1,bare)

n̄,m=0

)
. (4.17)

The difference correction due to the primary quark mass is again UV and IR-finite and does

not contain any rapidity divergences. Thus it yields for any choice of regulator the same result

as the n-collinear correction, i.e.

F
(1,bare)
n̄ − F (1,bare)

n̄,m=0 = F (1,bare)
n − F (1,bare)

n,m=0 . (4.18)

Finally, we also have to consider the wave function corrections. In analogy to the computation

in Ref. [12] we have

Σ(1) = 2ig2CF µ̃
2ε /n

2

∫
ddk

(2π)d
Qm2(3− ε)− (Q2k+ +Qp2 +m2k−)(1− ε)

Q2[k2 −M2 + iε][(k + p)2 −m2 + iε]
. (4.19)

Using p2 = m2+∆2 and decomposing the integrals into elementary one- and two-point functions

we obtain

Σ(1) = ig2CF µ̃
2ε /n

2

(1− ε)
Q(m2 + ∆2)

{[
A0(m2)−A0(M2)

]
[2m2 + ∆2]

+ B0(m2 + ∆2,M2,m2)

[
4m2(m2 + ∆2)

1− ε + 2m2M2 +M2∆2 −∆4

]}
, (4.20)

which uses the loop integrals

A0(m2) =

∫
ddk

(2π)d
1

[k2 −m2 + iε]
,

B0(p2,M2,m2) =

∫
ddk

(2π)d
1

[k2 −M2 + iε]

1

[(p− k)2 −m2 + iε]
. (4.21)

The wave function renormalization constant Z
(1)
ξ is defined by taking the on-shell limit ∆→ 0

Σ(1) ∆→0−→ i
/n

2

1

Q

[
2mδm

(OS,1)
M + ∆2 Z

(1)
ξ +O(∆4)

]
, (4.22)

where δm
(OS,1)
M is the one-loop renormalization constant for the quark mass m in the pole mass

scheme for the interaction with a massive gluon (with mass M). The wavefunction correction

Z
(1)
ξ can be written in terms of the wavefunction correction for primary massless quarks and a

UV and IR finite remainder,

Z
(1)
ξ = Z

(1)
ξ,m=0 +

(
Z

(1)
ξ − Z

(1)
ξ,m=0

)
. (4.23)
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The remainder contribution in d = 4 dimensions reads

Z
(1)
ξ − Z

(1)
ξ,m=0 =

αsCF
4π

3

2a(1− a2)2

[
2(1 + a)4(2− a) ln

(
1 + a

2

)

− 2(1− a)4(2 + a) ln

(
1− a

2

)
+ a

(
11− 14a2 + 3a4

)
+O(ε)

]
, (4.24)

where a was given above in Eq. (4.16).

The complete finite correction at one-loop, which accounts for the mass of the primary

quark is given by the sum of the terms from Eqs. (4.15) and (4.24),

δF
(1)
SCET(m,M) = 2

(
F (1,bare)
n − F (1,bare)

n,m=0

)
(m,M)−

(
Z

(1)
ξ − Z

(1)
ξ,m=0

)
(m,M) . (4.25)

This result will be used for our two-loop computation in the next section.

4.3 Two-loop computation for secondary massive quarks

In this section we use the one-loop results from Sec. 4.2 to calculate the two-loop graph with

the massive quark loop, and to determine the CFTF contribution to Cm. First we compute

F
(OS,CFTF ,bare)
SCET via Eq. (4.6) using the one-loop result in Eq. (4.9). Again we can decompose

the two loop SCET form factor into a primary massless component and a correction for primary

massive top quarks:

F
(OS,CFTF ,bare)
SCET = F

(OS,CFTF ,bare)
SCET,m=0 + δF (CFTF )

m (4.26)

The calculation for primary massless quarks has already been performed in Ref. [29]. We

display the result here for convenience:

F
(OS,CFTF ,bare)
SCET,m=0 =

(
α

(nl)
s (µ)

4π

)2

CFTF

{
2

ε3
+

1

ε2

[
8

3
L−4LQ+

8

9

]
+

1

ε

[
4

3
L2 −

(
16

3
L+

16

9

)
LQ

+4L2
Q+4L− 65

27
− π2

9

]
+

56

9
L2 −

[
242

27
+

4π2

9

]
L− 8

3
L3
Q +

[
16

3
L+

16

9

]
L2
Q

−
[

8

3
L2 + 8L− 130

27
− 2π2

9

]
LQ +

875

54
+

8π2

9
− 20ζ3

3

}
. (4.27)

The contribution from the two-loop MS counterterm is known from the massless quark case

and reads

Z
(CFTF )
SCET =

(
α

(nl+1)
s (µ)

4π

)2

CFTF

{
− 2

ε3
+

1

ε2

[
4

3
LQ −

8

9

]
+

1

ε

[
− 20

9
LQ +

65

27
+
π2

3

]}
,

(4.28)

where L and LQ are defined in Eq. (3.1). The 1/εn divergences in Eqs. (4.27) and (4.28) differ,

and are reconciled only once we account for the additional scheme change correction in the

last term of Eq. (4.5). The δF
(CFTF )
m term can be computed by inserting the one-loop massive

gluon correction term of Eq. (4.25) into the dispersive integral (4.6) which can be performed

in four dimensions. The result reads

δF (CFTF )
m =

(
α

(nl)
s (µ)

4π

)2

CFTF

{
1241

81
− 56π2

27
+

16

3
ζ3

}
. (4.29)
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Thus the only modification in the massive quark loop contributions to the form factor for

primary massive quarks with respect to primary massless quarks is a simple constant term. In

particular no additional rapidity logarithm ∼ ln(Q2/m2) appears, which can be again traced

back to the universality of the soft corrections for massless and massive primary quarks.

Assembling all the pieces above in Eq. (4.8) we get the following result for C
(CFTF , nl)
m :

C(CFTF , nl)
m

(
m,

Q

m
,µ
)

=

(
α

(nl)
s (µ)

4π

)2

CFTF

{
− 8

9
L3
m −

2

9
L2
m +

(
130

27
+

2π2

3

)
Lm (4.30)

−
(

4

3
L2
m +

40

9
Lm +

112

27

)
ln

(−Q2−i0
m2

)
+

5107

162
− 41π2

27
− 4ζ3

9

}
,

which matches exactly with the CFTF result we obtained above in Eq. (3.7). In the next

section we decompose the SCET form factor result into soft and collinear pieces in order to

find the terms needed for the rapidity RGE analysis.

4.4 Two Loop Ingredients for the Rapidity Renormalization Group

In order to determine the ingredients needed for the rapidity renormalization group analysis,

we now calculate the O(α2
sCFTF ) SCET form factor contributions for the individual collinear

and soft sectors using dispersion relations. We will employ the symmetric η-regulator [30, 31]

to regulate the rapidity divergences in the individual sectors. This corresponds to modifying

the Wilson lines in the respective sectors according to

Wn :
1

n̄ · P →
w2(ν) νη

(n̄ · P)1+η
, Sn :

1

n · P →
1

n · P
w(ν) νη/2

|n̄ · P−n · P|η/2 , (4.31)

and similarly for Wn̄ and Sn̄. Here Pµ denotes the label momentum operator and w(ν) is a

dimensionless book keeping coupling parameter satisfying

ν
d

dν
w(ν) = −η

2
w(ν) , lim

η→0
w(ν) = 1 . (4.32)

The one-loop form factor corrections for the radiation of a massive gluon have been already

calculated in Ref. [31] for massless quarks. Including the modification due to the quark mass

in Eq. (4.25) they read after expanding in η

F
(1,bare)
SCET, n = F

(1,bare)
SCET, n̄ (4.33)

=
α

(nl+1)
s (µ)w2(ν)CF

4π
Γ(ε)eγEε

(
µ2

M2

)ε{2

η
+ ln

(
ν2

Q2

)
+ 2ψ(2− ε) + 2γE −

1− ε
2− ε

}

+
δF

(1)
SCET(m,M)

2
,

F
(1,bare)
SCET, s =

α
(nl+1)
s (µ)w2(ν)CF

4π
Γ(ε)eγEε

(
µ2

M2

)ε{
−4

η
− 2 ln

(
ν2

−M2 + i0

)
− 2ψ(ε)− 2γE

}
.

In the collinear results we have included the wave function contributions Zξn/2 and Zξn̄/2.

The soft-bin subtractions in the collinear diagrams vanish for the η-regulator.
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In direct analogy to Eq. (4.5) the corresponding two-loop expressions for the individual

soft and collinear sectors read

F
(CFTF ,bare)
SCET, i (Q,m) =

1

π

∫
dM2

M2
F

(1,bare)
SCET, i (Q,m,M) Im

[
Π(m2,M2)

]
−
(

Π(m2, 0)− αsTF
3π

1

ε

)
F

(1,bare)
SCET, i (Q,m,Λ) . (4.34)

for i = n, n̄, s. Note that for this relation to make sense also the one-loop form factor corrections

with a massless gluon have to be decomposed according to Eq. (2.21). To achieve this goal

we use a gluon mass Λ � m as an infrared regulator which allows us to use the results in

Eq. (4.33). As discussed in Sec. 2, we absorb all divergences of the form 1/η, η0/εn in the form

factors into separate counterterms Z
(CFTF )
SCET, i for each sector, so that

F
(1)
SCET, i = F

(1, bare)
SCET, i + Z

(1)
SCET, i , F

(CFTF )
SCET, i = F

(CFTF , bare)
SCET, i + Z

(CFTF )
SCET, i . (4.35)

The explicit results for the counterterms at one-loop are given by4

Z
(1)
SCET, n(Q,m,Λ, µ, ν) = Z

(1)
SCET, n̄(Q,m,Λ, µ, ν) , (4.36)

=
α

(nl+1)
s (µ)w2(ν)CF

4π

{
1

η

[
−2

ε
+ 2 ln

(
Λ2

µ2

)]
+

1

ε

[
−3

2
− ln

(
ν2

Q2

)]}

Z
(1)
SCET, s(Q,m,Λ, µ, ν) =

α
(nl+1)
s (µ)w2(ν)CF

4π

{
1

η

[
4

ε
− 4 ln

(
Λ2

µ2

)]
− 2

ε2
+

2

ε
ln

(
ν2

−µ2 + i0

)}
,

while at two-loop they read

Z
(CFTF )
SCET, n(Q,m,Λ, µ, ν) = Z

(CFTF )
SCET, n̄(Q,m,Λ, µ, ν)

=

[
α

(nl+1)
s (µ)

]2
w2(ν)CFTF

16π2

{
1

η

[
− 4

3ε2
+

20

9ε
+

8

3
Lm ln

(
Λ2

µ2

)
− 4

3
L2
m −

40

9
Lm −

112

27
+O(ε)

]

+
1

ε2

[
−2

3
ln

(
ν2

Q2

)
− 1

]
+

1

ε

[
10

9
ln

(
ν2

Q2

)
+

1

6
+

2π2

9

]}
,

Z
(CFTF )
SCET, s(Q,m,Λ, µ, ν)

=

[
α

(nl+1)
s (µ)

]2
w2(ν)CFTF

16π2

{
1

η

[
8

3ε2
− 40

9ε
− 16

3
Lm ln

(
Λ2

µ2

)
+

8

3
L2
m +

80

9
Lm +

224

27
+O(ε)

]

− 2

ε3
+

1

ε2

[
4

3
ln

(
ν2

−µ2 + i0

)
+

10

9

]
+

1

ε

[
−20

9
ln

(
ν2

−µ2 + i0

)
+

56

27
− π2

9

]}
. (4.37)

Note that the sum Z
(CFTF )
SCET, n + Z

(CFTF )
SCET, n̄ + Z

(CFTF )
SCET, s reproduces the result for the SCET current

counterterm Z
(CFTF )
SCET in Eq. (4.28). These results for the individual collinear and soft coun-

terterms provide the necessary ingredients for determining the rapidity RGE for the collinear

and soft sectors below in Sec. 5.1.
4Although the full ε-dependence in the expression proportional to 1/η should be in principle kept unexpanded,

this is only relevant to ensure that the coefficient of the 1/η pole is explicitly µ-independent, which is also true

order by order in its ε expansion. Therefore we show here only the terms up to O(ε0) which contain the

information we need later for the anomalous dimensions.
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5 Rapidity Evolution and Numerical Results

5.1 Rapidity Renormalization Group Evolution

In our result for the matching coefficient between bHQET and SCET at O(α2
s), given above

in Eq. (3.8), we encountered a large logarithm α2
sCFTF ln(m2/Q2). We discussed the setup

for the resummation of such logarithms above in Sec. 2. As shown in Sec. 4 these rapidity

logarithms are only related to contributions of the virtual massive quarks that appear in

the gluon vacuum polarization, and hence are the same as in the threshold corrections for

massless primary quarks in Ref. [29]. There it was anticipated that they can be resummed by

exponentiation, as is common for these kinds of logarithms. For example, for the radiation

of a massive gauge boson the rapidity renormalization group implies that this exponentiation

occurs to all orders in perturbation theory [28, 31, 37, 38]. The difference in our case is that

the rapidity logarithms start at two-loops, and hence involve the additional issue of one-loop

induced corrections due to the scheme change in the coupling constant.

Here we will show explicitly how to treat the rapidity logarithms at O(α2
sCFTF ) in a

rapidity renormalization group framework, and subsequently demonstrate that they indeed

exponentiate. We start from Eq. (2.24). Up to O(α2
s) we only have a contribution from the

CFTF dependent terms,

γCmν, i (m,µ) = ν
d

dν
lnZSCET,i − ν

d

dν
lnZbHQET,i

= ν
d

dν
Z

(CFTF )
SCET,i −

α
(nl)
s (µ)TF

3π
ln

(
m2

µ2

)
ν

d

dν
Z

(1)
SCET, i +O(α3

s) , (5.1)

where the second term accounts for coupling conversion from the (nl + 1)-flavor to nl-flavor

scheme. As before, in the nl-flavor scheme the bHQET graphs give no contribution. The results

from Sec. 4.4 can now be used to compute this ν-anomalous dimension. Using Eq. (4.36) we

can calculate the one-loop correction,

ν
d

dν
Z

(1)
SCET, n = ν

d

dν
Z

(1)
SCET, n̄ = −1

2
ν

d

dν
Z

(1)
SCET, s = −α

(nl+1)
s (µ)CF

2π
ln

(
Λ2

µ2

)
, (5.2)

which exhibits dependence on the infrared gluon-mass regulator Λ. The two-loop term above

can be calculated using Eq. (4.37) which gives

ν
d

dν
Z

(CFTF )
SCET, n = ν

d

dν
Z

(CFTF )
SCET, n̄ = −1

2
ν

d

dν
Z

(CFTF )
SCET, s

=
[α

(nl+1)
s (µ)]2CFTF

16π2

{
−8

3
Lm ln

(
Λ2

µ2

)
+

4

3
L2
m +

40

9
Lm +

112

27

}
, (5.3)

where Lm is defined in Eq. (3.1). Together these results determine the ν-anomalous dimensions:

γCm, CFTFν, n (m,µ) = γCm, CFTFν, n̄ (m,µ) = −1

2
γCm, CFTFν, s (m,µ)

=
[αs(µ)]2CFTF

16π2

{
4

3
L2
m +

40

9
Lm +

112

27

}
. (5.4)
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Note that the IR regulator has canceled out, and that here the coupling [αs(µ)]2 can be taken

in either the nl or (nl + 1)-flavor scheme since the anomalous dimension starts at O(α2
s) and

the difference is higher order. This result suffices for solving the ν-RGE equations at NNLL

order. Using Eq. (2.22) and Eq. (2.23) we can write an analog of Eq. (2.7) for the ν-evolution

of Hm. From Eq. (2.22) we have

H(nl)
m

(
m,

Q

m
,µ

)
= H(nl)

m,n

(
m,µ,

ν

Q

)
H

(nl)
m, n̄

(
m,µ,

ν

Q

)
H(nl)
m, s

(
m,µ,

ν

m

)
. (5.5)

With rapidity evolution this becomes

H(nl)
m

(
m,

Q

m
,µ; νQ, νm

)
(5.6)

= H(nl)
m,n

(
m,µ,

νQ
Q

)
H

(nl)
m, n̄

(
m,µ,

νQ
Q

)
VRRG(νQ, νm, µ)H(nl)

m, s

(
m,µ,

νm
m

)
,

where on the LHS the dependence on νQ and νm comes from truncating the resummed pertur-

bation theory for objects on the RHS. Here the functions H
(nl)
m,n = H

(nl)
m,n̄ and H

(nl)
m,s are given

up to O(α2
s) by

H(nl)
m,n

(
m,µ,

νQ
Q

)
= 1 +

α
(nl)
s (µ)CF

4π

(
L2
m − Lm + 4 +

π2

6

)

+

(
α

(nl)
s (µ)

4π

)2

C2
F

{
1

2
L4
m − L3

m +

(
9

2
+
π2

6

)
L2
m −

(
11

2
− 11π2

6
+ 24ζ3

)
Lm

+
241

8
+

13π2

3
− 8π2 log 2− 6ζ3 −

163π4

360

}

+

(
α

(nl)
s (µ)

4π

)2

CACF

{
− 11

9
L3
m +

(
167

18
− π2

3

)
L2
m −

(
1165

54
+

28π2

9
− 30ζ3

)
Lm

+
12877

648
+

323π2

108
+ 4π2 log 2 +

89ζ3

9
− 47π4

180

}

+

(
α

(nl)
s (µ)

4π

)2

CFnlTF

{
4

9
L3
m −

26

9
L2
m +

(
154

27
+

8π2

9

)
Lm −

1541

162
− 37π2

27
− 52ζ3

9

}

+

(
α

(nl)
s (µ)

4π

)2

CFTF

{
2L2

m +

(
2

3
+

8π2

9

)
Lm +

3139

162
− 4π2

3
+

8ζ3

3

+

(
4

3
L2
m +

40

9
Lm +

112

27

)
ln

(
ν2
Q

Q2

)}
, (5.7)

H(nl)
m,s

(
m,µ,

νm
m

)
= 1 +

(
α

(nl)
s (µ)

4π

)2

CFTF

{
8

9
L3
m +

40

9
L2
m +

(
448

27
− 4π2

9

)
Lm

+
656

27
− 10π2

27
− 56ζ3

9
−
(

8

3
L2
m +

80

9
Lm +

224

27

)
ln

(
ν2
m

µ2

)}
, (5.8)
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and contain no large logarithms for µ ' m, and for νQ ' Q and νm ' m, respectively. The

evolution factor VRRG sums the rapidity logs between νm and νQ, and is defined as follows

VRRG(νf , νi, µ) = exp

{∫ ln νf

ln νi

d ln ν
[
γCmν, s + (γCmν, s )∗

]}
. (5.9)

The general result for VRRG, and the result at NNLL, will be given below.

Similarly to the ν-anomalous dimensions, we can also determine individual µ-anomalous

dimensions for the collinear and soft sectors, i = n, s, n̄,

γCmµ, i = µ
d

dµ
lnZSCET, i − µ

d

dµ
lnZbHQET, i . (5.10)

Repeating the steps below Eq. (5.1) we find

γCm,CFTFµ, n

(
m,µ,

ν

Q

)
=

[α
(nl)
s (µ)]2CFTF

16π2

{
−
(

8

3
Lm +

40

9

)
ln

(
ν2

Q2

)
− 4Lm −

2

3
− 8π2

9

}
= γ

Cm(CFTF )
µ, n̄

(
m,µ,

ν

Q

)
,

γCm,CFTFµ, s

(
m,µ,

ν

m

)
=

[α
(nl)
s (µ)]2CFTF

16π2

{(
16

3
Lm +

80

9

)
ln

(
ν2

−µ2 + i0

)
− 224

27
+

4π2

9

}
,

(5.11)

whose sum yields the same result for the O(α2
sCFTF ) µ-anomalous dimension of C

(nl)
m as the

difference of Eqs. (2.19) and (2.17),

γCm, CFTFµ, n

(
m,µ,

ν

Q

)
+ γCm, CFTFµ, n̄

(
m,µ,

ν

Q

)
+ γCm, CFTFµ, s

(
m,µ,

ν

m

)

=

[
α

(nl)
s (µ)

]2
CFTF

16π2

{(
16

3
Lm +

80

9

)
LQ − 8Lm −

260

27
− 4π2

3

}

=
[
γ

(nl+1)
SCET − γ

(nl)
bHQET

](CFTF )
= γCm,CFTFµ (Q,m, µ) , (5.12)

with Lm and LQ defined in Eq. (3.1).

Eqs. (2.7) and (5.6) together include the evolution connected to Hm in the 2-dimensional

µ-ν plane, including that from invariant mass scales µm to µQ, that from invariant mass

scales µm to µfinal, and that from rapidity scales νQ to νm. As demonstrated in Ref. [31] the

combined µ-ν evolution can be performed along any path and the path independence implies

the consistency equation:

µ
d

dµ
γCmν, i =

(
∂

∂µ
+ β(g)

∂

∂g

)
γCmν, i = ν

d

dν
γCmµ, i . (5.13)

However, similar to the example of the massive Sudakov form factor considered in Ref. [31]

we can see from Eq. (5.4) that γCmν, s contains potentially large logarithms ln(µ/m) for an

arbitrary path in µ-ν-space. This is resolved by a prior resummation exploiting the fact that

the derivatives in Eq. (5.13) are proportional to the cusp anomalous dimension. Since Cm is a
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matching coefficient between a (nl + 1)-flavor and nl-flavor theory, we can express Eq. (5.13)

in terms of the difference between the cusp anomalous dimensions Γcusp[αs] in the (nl + 1) and

nl-flavor schemes. So for γCmν,s we obtain

µ
d

dµ
γCmν, s = ν

d

dν
γCmµ, s = −2

(
Γcusp[α(nl+1)

s ]− Γcusp[α(nl)
s ]

)
=
α2
sCFTF
16π2

(
32

3
Lm +

160

9

)
+O(α3

s) , (5.14)

which can be checked using the explicit perturbative expression of Γcusp[αs] up to two loops,

Γcusp[α
(nf )
s ] =

α
(nf )
s

4π
4CF +

(
α

(nf )
s

4π

)2

4CF

[(
67

9
− π2

3

)
CA −

20nf
9

TF

]
+O(α3

s) . (5.15)

Integrating Eq. (5.14) in µ we obtain the resummed result for γCmν, s ,

γCmν, s (m,µ) = −2

∫ lnµ

lnm
d lnµ′

(
Γcusp[α(nl+1)

s (µ′)]− Γcusp[α(nl)
s (µ′)]

)
+ γCmν,s (m,m)

= −
(
ω(nl+1)(µ,m)− ω(nl)(µ,m)

)
+ γCmν,s (m,m) . (5.16)

Here the integration constant γCmν,s (m,m) is the correction in the anomalous dimension γCmν,s
that does not multiply a logarithm ln(µ2/m2). We are now in the position to write down a

general expression for VRRG. Using Eq. (5.9) we find the all orders result

VRRG(νQ, νm, µ) = exp

{[
ω(nl+1)(µ,m)− ω(nl)(µ,m)− γCmν,s (m,m)

]
ln

(
ν2
m

ν2
Q

)}
. (5.17)

At NNLL order with the counting αs(µ)ln(νm/νQ) ∼ 1, we can expand this exponential to the

first non-trivial order. At the order we are working

γCmν,s (m,m) = −
[
α

(nl+1)
s (m)

]2
CFTF

16π2

224

27
+O(α3

s) , (5.18)

as can be seen from Eq. (5.4), where we have for definiteness employed the (nl + 1)-flavor

scheme. The evolution function ω at NNLL accuracy reads

ω(nf )(µ, µ0) = −Γ0

β0

{
ln r +

(
Γ1

Γ0
− β1

β0

)
α

(nf )
s (µ0)

4π
(r−1) (5.19)

+

(
Γ2

Γ0
− β1Γ1

β0Γ0
− β2

β0
+
β2

1

β2
0

)[
α

(nf )
s (µ0)

]2
32π2

(r2−1)

}
,

where r = α
(nf )
s (µ)/α

(nf )
s (µ0) and the coefficients βi and Γi are evaluated with nf flavors.

To extend the analysis to N3LL resummation, one needs the currently unknown µ-anomalous

dimension for the bHQET current operator and the result for the ν-anomalous dimension

γCmν,s (m,m) at O(α3
s). The latter can be inferred from the coefficient of the rapidity logarithm

appearing in a related DIS calculation [41] due to consistency (see Ref. [42]).
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5.2 Numerical Results

In this section we explore the impact of the two-loop correction to the hard function Hm on

the differential cross section and the corresponding improvement to the perturbative uncer-

tainties. To do this we examine the evolved hard function Hevol(Q,m, µfinal;µQ, µm, νQ, νm)

from Eq. (2.7). This function fully captures the multiplicative contributions for the differential

cross section factorization theorem in Eq. (1.2), including the matching at µQ ' Q in H
(nl+1)
Q ,

the RG evolution from µQ down to µm ' m in U
(nl+1)
HQ

, the matching at µm encoded in Hm,

and through U
(nl)
v the RG evolution from µm down to a scale µfinal where the soft and jet

functions are evaluated.5 Since the ingredient that has not been previously analyzed is Hm we

focus our numerical study on the impact of this function and the associated reduction in the

resulting µm dependence. For H
(nl)
m (m,Q/m,µm; νQ, νm) we employ Eq. (5.6), which provides

a decomposition of this function into collinear and soft components, H
(nl)
m,i with i = n, n̄, s, plus

a kernel VRRG which carries out the RG evolution in rapidity from νQ ' Q to νm ' m.

We begin by converting the result for the collinear and soft components H
(nl)
m,i in Eqs. (5.7)

and (5.8) from the pole-mass scheme to the MS mass scheme with nl + 1 dynamic flavors via

mpole = m̄(nl+1)(µ)

(
1− α

(nl+1)
s (µ)CF

4π

(
3Lm − 4

))
+O(α2

s) . (5.20)

The MS scheme is an appropriate renormalon-free short distance mass scheme to be employed

in the hard function Hm. For consistency we also convert the results in Eqs. (5.7) and (5.8) to

the (nl + 1)-flavor scheme for the strong coupling. Together this yields up to O(α2
s)

H
(nl+1)
m̄,n

(
m̄, µ,

νQ
Q

)
= 1 +

α
(nl+1)
s (µ)CF

4π

(
L2
m̄ − Lm̄ + 4 +

π2

6

)

+

(
α

(nl+1)
s (µ)

4π

)2

C2
F

{
1

2
L4
m̄ − L3

m̄ −
(

15

2
− π2

6

)
L2
m̄ +

(
33

2
+

11π2

6
− 24ζ3

)
Lm̄

+
177

8
+

13π2

3
− 8π2 log 2− 6ζ3 −

163π4

360

}

+

(
α

(nl+1)
s (µ)

4π

)2

CACF

{
− 11

9
L3
m̄ +

(
167

18
− π2

3

)
L2
m̄ −

(
1165

54
+

28π2

9
− 30ζ3

)
Lm̄

+
12877

648
+

323π2

108
+ 4π2 log 2 +

89ζ3

9
− 47π4

180

}

+

(
α

(nl+1)
s (µ)

4π

)2

CFnlTF

{
4

9
L3
m̄ −

26

9
L2
m̄ +

(
154

27
+

8π2

9

)
Lm̄ −

1541

162
− 37π2

27
− 52ζ3

9

}

+

(
α

(nl+1)
s (µ)

4π

)2

CFTF

{
4

3
L3
m̄ +

2

3
L2
m̄ +

(
6 +

10π2

9

)
Lm̄ +

3139

162
− 4π2

3
+

8ζ3

3

+

(
4

3
L2
m̄ +

40

9
Lm̄ +

112

27

)
ln

(
ν2
Q

Q2

)}
= H

(nl+1)
m̄,n̄

(
m̄, µ,

νQ
Q

)
, (5.21)

5The soft or jet functions also contain an additional evolution which is not purely multiplicative [11]. This

evolution affects the shape of the dσ/dstdst̄ distribution and was evaluated up to NNLL′ order in Ref. [14].
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H
(nl+1)
m̄,s

(
m̄, µ,

νm
m

)
= 1 +

(
α

(nl+1)
s (µ)

4π

)2

CFTF

{
8

9
L3
m̄ +

40

9
L2
m̄ +

(
448

27
− 4π2

9

)
Lm̄

+
656

27
− 10π2

27
− 56ζ3

9
−
(

8

3
L2
m̄ +

80

9
Lm̄ +

224

27

)
ln

(
ν2
m

µ2

)}
, (5.22)

where Lm̄ = ln(m̄2/µ2) and m̄ = m̄(nl+1)(µ) is the MS mass for nl + 1 active flavors. For the

bHQET evolution function U
(nl)
v , when using the MS mass scheme, we expand the pole mass

appearing in the anomalous dimension in Eq. (2.19) in terms of m̄t(m̄t) to obtain

γbHQET

(Q
m̄
, µ
)

=
α

(nl)
s (µ)CF

4π

[
− 4L+ 4

]
+

(
α

(nl)
s (µ)

4π

)2{
nlCFTF

[
80

9
L̄− 80

9

]

+ CFCA

[
−
(

268

9
− 4π2

3

)
L̄+

196

9
− 4π2

3
+ 8ζ3

]}

+
32α

(nl)
s (µ)α

(nl)
s (m̄)C2

F

(4π)2
+O(α3

s) , (5.23)

where L̄ = ln[(−Q2 − i0)/m̄2]. For the ν-anomalous dimensions the MS results are obtained

by the simple replacement m→ m̄, since they start at two-loops. For our central results below

we use µm = νm = m̄t and µQ = νQ = Q.

For our numerical analysis of Hevol we employ scale choices that are appropriate to the

peak region of the differential cross section within bHQET. We fix Q = µQ = 1 TeV, which

is a possible c.m. energy for a future linear collider, and µfinal = 5 GeV corresponding to

the scale of the soft radiation. We do not vary these two scales here since their impact

and associated uncertainties have been analyzed elsewhere [12]. They matter only for the

overall normalization and thus cancel in the normalized spectrum. In addition we use the MS

mass m̄t(m̄t) = 163 GeV or pole mass mt = 171.8 GeV using the two-loop conversion, and

α
(5)
s (mZ) = 0.114 [25, 43] and using two-loop conversion at µ = m̄t to obtain α

(6)
s (µ). For

results with RG evolution that sums large logarithms we use the so called primed counting,

i.e. our results at NLL′ and NNLL′ include NLL and NNLL evolution kernels together with

the hard function boundary conditions at O(αs) and O(α2
s), respectively. For the rapidity

evolution we use the expression in Eq. (5.17), and the default rapidity scales νQ = Q and

νm = mt, where mt is either the MS mass m̄t(m̄t) or the pole mass.

To determine the impact on the normalization we first note that the two-loop fixed order

corrections to H
(nl+1)
m̄ turn out to be small, giving at the central scale µm = m̄t(m̄t) a 2%

correction and the fixed-order series

H
(nl+1)
m̄

(
m̄t,

Q

m̄t
, µm = m̄t

)
= 1 + 0.126(1-loop) + 0.015(2-loop) = 1.141 . (5.24)

In the top-left panel of Fig. 3 we display the evolved hard function Hevol at the first three

orders in resummed perturbation theory for values of µm in the range m̄t/2 < µm < 2m̄t. We

use the MS mass scheme and the expressions for H
(nl+1)
m̄,n , H

(nl+1)
m̄,n̄ and H

(nl+1)
m̄,s from Eqs. (5.21)

and (5.22). As already observed in Ref. [12], there is a significant correction when going from

LL to NLL′ order which more than doubles Hevol. From NLL′ to NNLL′ we observe that the

correction is notably smaller, indicating that the series has stabilized. Although the magnitude

of these corrections is not captured by the µm variation, it is of the size expected from studying
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Figure 3. Upper panels: Plots of the residual dependence on the matching scale µm for the unnormal-

ized (left) and normalized (right) evolved hard function Hevol at three different orders in the evolution,

using the MS mass. Lower left panel: Comparison of the scale dependence at NNLL′ for the MS mass

and the pole mass. Lower right panel: Impact of varying the ratio of rapidity scales νQ/νm by a factor

of two at NNLL′ as a function of µm, with the MS mass.

the uncertainty associated to the µfinal variation. The complete study of the µfinal variation

requires including the jet and soft functions, which cancel the µfinal dependence of Hevol to the

order one is working. We leave this for future work rather than taking it up here. We observe

that the µm dependence significantly decreases as we go to higher order. This behavior is shown

best in the top-right panel of Fig. 3, where the same curves are plotted, but now normalized

to Hevol(µm = m̄t) at the respective order. The two-loop result for the hard function H
(nl+1)
m̄

plays a key role in this reduction of the scale dependence at NNLL′. Note that the size of the

µm variation of the blue dashed curve at 2% correlates well with the size of the NNLO fixed

order correction in Eq. (5.24), which gives a +2% correction. Therefore it is reasonable to take

the µm variation of the solid red curve in this figure as an estimate of the O(α3
s) correction in

Eq. (5.24), which we take to be ±0.2%.

In the lower-left panel of Fig. 3 we compare the dependence on µm at NNLL′ for the

MS mass with the corresponding result for the pole mass. In the pole mass case we em-

ploy Eqs. (5.7) and (5.8) for H
(nl)
m,n , H

(nl)
m,n̄ and H

(nl)
m,s . We see that the pole mass exhibits a

larger sensitivity to the renormalization scale µm implying a slightly slower convergence of the

perturbative series, potentially related to IR renormalon effects.

Finally, we can analyze the impact of the terms related to rapidity logarithms. For µm =

m̄t(m̄t), these terms yield a numerical contribution of −0.0014 in the fixed-order full hard
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function H
(nl+1)
m̄ (m̄t, Q/m̄t, µm = m̄t) in Eq. (5.24). Due to a relatively small coefficient, they

do not give a significant correction in comparison with the remaining two-loop contributions

which give a numerical correction of 0.0166. Therefore, we anticipate the dependence on the

rapidity scales νQ and νm to be rather mild. In the lower-right panel of Fig. 3 we plot Hevol at

NNLL′ for the MS mass as a function of µm, but now with three choices for νQ/νm. To obtain

these results we varied νQ up and down by a factor of two, but we note that equivalent results

are obtained by instead varying νm by a factor of two. We see that varying νQ/νm by a factor of

2 gives a negligible effect compared to the residual µm dependence at this order. Therefore, we

conclude that including an uncertainty from ν-variation is not necessary to obtain an estimate

of the overall perturbative uncertainty of the cross section.

6 Conclusions

In the context of EFT factorization for boosted top quark production, we have extracted the

hard function Hm = |Cm|2 describing virtual fluctuations at the top-mass scale, completely at

two-loop order using earlier results from Refs. [26, 27]. This result provides the last missing

ingredient needed to make NNLL′ resummed predictions for the invariant mass distribution of

top-jets in the peak region using the factorization theorem of Refs. [11, 12] given in Eq. (1.2).

Particular focus was given to the contributions to Hm from heavy quark loops, which induce

terms with a large logarithm α2
sCFTF ln(Q2/m2) that can not be treated with standard RG

evolution in µ. These terms were computed once more directly using collinear and soft matrix

elements in SCET, and we have shown how they can be factorized using a rapidity cutoff ν, and

RG evolved using rapidity renormalization group equations. Interestingly, this factorization

and RG evolution occurs within the Wilson coefficient Cm and hence at the amplitude level.

Using our result for Hm we have assessed the remaining perturbative uncertainty associated to

the top-mass scale, µm ' m, and estimate it to be very small, ±0.2%, predicting that the two-

loop result for Hm provides a very accurate result for this function. The total normalization

uncertainty in the differential cross section is expected to now be dominated by that fromO(α3
s)

perturbative corrections to the low-scale soft and jet functions, which could be estimated by a

dedicated study of the residual µfinal dependence at NNLL′ order.
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A Direct Calculation of Cm in the (nl + 1)-flavor scheme

In Sec. 4 we directly computed the O(α2
sCFTF ) massive quark correction to C

(nl)
m by using

form factors in the nl-flavor scheme. Since this coefficient lives at the border between the

(nl + 1) and nl-flavor theories, we could just as well have carried out the calculation for Cm by
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using form factors in the (nl + 1)-flavor scheme, and then converted to an nl-flavor coupling

at the very end. Of course the same result is obtained in this approach, but there are a few

subtle differences in the calculation, which we discuss here.

In particular, in Sec. 4 we noted that for the O(α2
sCFTF ) correction in the nl-flavor scheme,

the bHQET graphs give no contribution. However, using the (nl + 1)-flavor scheme for the

strong coupling this is no longer the case. To see this, consider the ratio in Eq. (2.13) and

express the denominator in the (nl+1)-flavor scheme by inverting the decoupling relation given

in Eq. (3.4):

α(nl)
s (µ) = α(nl+1)

s (µ)

[
1 +

α
(nl+1)
s (µ)TF

3π
ln

(
m2

µ2

)]
. (A.1)

Expanding in αs and using the notation in Eq. (2.5) we then get

C(CFTF , nl+1)
m

(
m,

Q

m
,µ
)

=
[
F

(CFTF , nl+1)
SCET (Q,m,Λ, µ) (A.2)

− α
(nl+1)
s (µ)TF

3π
ln

(
m2

µ2

)
F

(1,nl)
bHQET

(Q
m
,Λ, µ

)]
α

(nl)
s →α(nl+1)

s

.

Here the second term comes from converting the strong coupling constant to (nl+ 1)-flavors in

the one-loop bHQET graph. Below we drop the flavors superscript on the form factors. Here

it should be understood that all the terms are now expressed in the (nl + 1)-flavor scheme.

Then combining Eq. (A.2) and Eq. (4.5), and Eq. (2.14) we get

C(CFTF , nl+1)
m

(
m,

Q

m
,µ
)

= F
(OS,CFTF ,bare)
SCET (Q,m) (A.3)

−
(

Π(m2, 0)− α
(nl+1)
s (µ)TF

3π

1

ε

)
F

(1,bare)
SCET

(Q
m
,Λ
)

+ Z
(CFTF )
SCET (Q,µ)− α

(nl+1)
s (µ)TF

3π
ln

(
m2

µ2

)
F

(1)
bHQET

(Q
m
,Λ, µ

)
.

Note that both F
(1,bare)
SCET and F

(1)
bHQET are IR divergent. This result can be simplified by noting

that in any flavor scheme the one-loop C
(1)
m is given by the difference of one-loop renormalized

SCET and bHQET amplitudes:

C(1)
m

(
m,

Q

m
,µ
)

= F
(1)
SCET(Q,m,Λ, µ)− F (1)

bHQET

(Q
m
,Λ, µ

)
. (A.4)

Using Eq. (A.4) in Eq. (A.3) we can then write down a simpler expression for C
(CFTF ,nl+1)
m :

C(CFTF , nl+1)
m = F

(OS,CFTF ,bare)
SCET (Q,m) + Z

(CFTF )
SCET (Q,µ)

−
(

Π(m2, 0)− α
(nl+1)
s (µ)TF

3π

1

ε

)(
F

(1)
SCET(Q,m,Λ, µ)− Z(1)

SCET(Q,µ)
)

− α
(nl+1)
s (µ)TF

3π
ln

(
m2

µ2

)
F

(1)
bHQET

(Q
m
,Λ, µ

)
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= F
(OS,CFTF ,bare)
SCET (Q,m) + Z

(CFTF )
SCET (Q,µ)

+

(
Π(m2, 0)− α

(nl+1)
s (µ)TF

3π

1

ε

)
Z

(1)
SCET(Q,µ)

+
α

(nl+1)
s (µ)TF

3π
ln

(
m2

µ2

)
C(1)
m

(
m,

Q

m
,µ
)
. (A.5)

This result can be used to compute C
(CFTF , nl+1)
m . Comparing it with Eq. (4.8) we see that it

can be rewritten as

C(CFTF , nl+1)
m = C(CFTF , nl)

m +
α

(nl+1)
s (µ)TF

3π
ln

(
m2

µ2

)
C(1)
m , (A.6)

and hence is fully consistent with determining C
(CFTF ,nl+1)
m from Eq. (4.8) and then simply

applying the coupling conversion in Eq. (A.1) in the result. Note that in this (nl + 1)-flavor

scheme approach the bHQET one-loop amplitude contributes and plays an important role in

obtaining the scheme conversion term involving C
(1)
m in the last line of Eq. (A.6).
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