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Abstract

We discuss vacuum stability in Froggatt-Nielsen (FN) models. One con-
cern in FN models is that for large flavon VEVs the running of the quar-
tic Higgs coupling is enhanced what might lead to a more severe instabil-
ity compared to the Standard Model (SM). We study this issue using the
renormalization-group improved scalar potential. Another issue is that the
mixing between the Higgs and the flavon can potentially destabilize the po-
tential. However, taking current bounds on the flavon phenomenology into
account, we find that both effects do not lead to an instability that is more
severe than in the SM.

ar
X

iv
:1

90
9.

04
06

7v
1 

 [
he

p-
ph

] 
 9

 S
ep

 2
01

9



Contents

1 Introduction 2

2 The Froggatt-Nielsen model 3

3 Effective field theory and renormalization group running 6
3.1 Hierarchy of effective field theories . . . . . . . . . . . . . . . . . . . . 7
3.2 Matching method and resummation . . . . . . . . . . . . . . . . . . 11
3.3 EFT instabilities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

4 Conclusion 15

A Comparing with experimental constraints 16
A.1 Bounds from meson mixing . . . . . . . . . . . . . . . . . . . . . . . 16
A.2 Bounds from scalar mixing . . . . . . . . . . . . . . . . . . . . . . . . 19

B Running and beta functions 20

1



1 Introduction

One of the open questions in the Standard Model (SM) of particle physics stems
from the hierarchy of the masses and couplings in the fermionic sector. The fermion
masses are generated through a Yukawa coupling to the Higgs field that obtains
a vacuum expectation value (VEV) and breaks the electroweak symmetry sponta-
neously. The large range of fermion masses - from the 512 keV of the electron to the
175 GeV of the top quark - then requires a large range of six orders of magnitude
of Yukawa couplings.

One way to explain this large hierarchy of couplings is the Froggatt-Nielsen
mechanism [1]. The central idea is to assign different charges of a new U(1)FN
symmetry group to the different particles of the SM. When the left- and right-
handed fields are assigned different charges, the Yukawa couplings of the SM can
then only be produced by breaking the new U(1)FN symmetry. For example, the
symmetry can be spontaneously broken by giving a VEV to a flavon field S that is
also charged under U(1)FN . The Yukawa couplings of the SM are then generated
by higher dimensional operators with certain powers of ε ∼ 〈S〉 /M where M is the
typical mass scale of the flavon sector that produces the Yukawa couplings. If this
ratio is somewhat smaller than unity, the large hierarchies in the Yukawa couplings
can be explained with not too baroque charge assignments [2, 3].

This construction has several appealing features. Besides the hierarchies in the
Yukawa couplings, one main motivation for this construction are the patterns in the
CKM matrix. Naturally, the FN mechanism predicts the Cabibbo angle from the
mass hierarchies in the first two generations (θ12 ∼ ε) and also the smallness of the
mixing angles involving the third generation (θ13 ∼ ε2, θ23 ∼ ε3).

Moreover, the dynamic generation of the Yukawa couplings can be potentially
utilized in baryogenesis [4, 5, 6]. For example, one possibility is that the sponta-
neous breaking of the U(1)FN symmetry is intertwined with electroweak symmetry
breaking [5]. This can strengthen the electroweak phase transition and also lead to
new CP-violating sources that drive baryogenesis [6].

The main motivation of the current work is to study implications of the FN
setup for vacuum stability. Naively, if the Yukawa couplings are considered to be
dependent on the flavon VEV, y(〈S〉 /M), all Yukawa couplings will be of order
unity for large flavon VEVs, 〈S〉 ∼ M . This potentially has disastrous effects. For
once, large Yukawa couplings will drive the Higgs quartic coupling λh to negative
values very quickly and the electroweak vacuum becomes unstable. In particular, in
the context of models with varying Yukawa couplings, where the UV theory is not
known, the stability of the effective potential is an open question [7].

We will see that stability is actually not an issue in FN models for several reasons.
The first reason is that also the flavon field will contribute to the scalar potential.
Displacing the VEV from its minimum 〈S〉 ∼ εM to 〈S〉 ∼ M will increase the
scalar potential. How large this effect is depends on the flavon mass. Second, also
the Higgs quartic coupling can become a function of the flavon VEV, λ(〈S〉 /M).
This effect will counteract the increased running of the quartic coupling in case
〈S〉 /M is of order unity.
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In order to study this issue, we will use the renormalization group (RG) improved
effective potential. This will serve to demonstrate above points but not be compet-
itive with current studies of vacuum stability in the SM that use the β functions
up to three loop order [8, 9]. In the current study, we have the additional com-
plication that we have to deal with two scalar VEVs. There are several proposals
in the literature how to obtain a RG-improved effective potential in this circum-
stance [10, 11, 12, 13, 14]. We will see that we do not require these techniques here
and discuss in detail how to resum the leading logs in our context.

2 The Froggatt-Nielsen model

As a model we consider an extension of the SM where the Yukawa coupling of the
bottom quark is generated by the flavon sector while the top quark sector is as in
the Standard Model. The Lagrangian in the scalar sector contains the terms

L = −m2
hH

†H + λh
(
H†H

)2 −m2
sS
∗S + λs (S∗S)2 + λmH

†H S∗S , (1)

which gives rise to the tree level scalar potential for the real degrees of freedom

V0(φ, s) = −m
2
h

2
h2 +

λh
4
h4 − m2

s

2
s2 +

λs
4
s4 +

λm
4
s2h2 . (2)

The complex flavon field S also contains a pseudo-scalar degree of freedom a that
would be massless after the spontaneous breaking of the (global) U(1)FN symmetry.
We will neglect this particle in our analysis and assume that it obtains a soft mass
term through an explicitly U(1)FN -breaking term that is above all relevant scales
that we aim to study. In a more realistic set-up the pseudo-scalar would be expected
to be very light and would have phenomenological consequences [15], which we also
discuss in appendix A.

The top quark mass is induced through a usual Yukawa term1

m2
t =

y2
t

2
h2 , (3)

while the mass of the bottom quark is generated in the flavon sector. We consider
a charge assignment where the bottom quark mass requires two insertions of the
flavon VEV and two corresponding (heavy) quarks F . The Lagrangian contains the
term  q̄

(0)
L

F̄
(0)
L

F̄
(−1)
L


T  0 YbH

(0) 0

0 M/
√

2 YB S
(−1)

YB S
(−1) 0 M/

√
2


 b

(2)
R

F
(0)
R

F
(1)
R

 , (4)

1Throughout the paper we use a slightly lighter top quark mass yt = 0.95 instead of yt = 1.
We do this in order to recover the known instability scale from three-loop calculations that lead
to additional threshold effects not present at 1-loop.
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where we indicated the particles FN charges in the superscripts. The corresponding
mass matrix reads

M †
QMQ =

1

2

 Y 2
b h

2 YbhM 0
YbhM M2 + Y 2

B s
2 YB sM

0 YB sM M2 + Y 2
B s

2

 . (5)

For φ� s and (YB s/M) ≡ ε this matrix has two eigenvalues of order M2 and one
light eigenvalue that constitutes the bottom quark,

m2
b '

Y 2
b

2
h2ε4 . (6)

Realistic bottom masses can be obtained for ε ∼ 0.2 and Yb ∼ 1. For convenience,
we set YB = 1 in the following. As a first assessment of the vacuum stability of
the model we will calculate the one-loop effective potential (in Landau gauge). The
relevant degrees of freedom besides the quark sector are the W , Z gauge bosons,
with masses

m2
W =

1

4
g2h2, m2

Z =
1

4
(g2 + g′2)h2. (7)

Furthermore, the scalar sector contains the Higgs boson h, the flavon s and Gold-
stone bosons χ with the masses

m2 =

(
3λhh

2 −m2
h + λms

2/2 λmhs
λmhs 3λss

2 −m2
s + λmh

2/2

)
, (8)

and
m2
χ = λhh

2 −m2 + λms
2/2 . (9)

In principle, the Goldstones would mix with the pseudo-scalar residing in the flavon
field. As explained before, we decoupled this field by giving it an explicit mass term.
Alternatively, one can eliminate the mass parameters and write these mass matrices
in terms of the VEVs in the minimum of the potential. We denote the two eigenval-
ues of (8) as mφ and mσ according to the states that are predominantly Higgs and
flavon.

Minimizing the potential in (2) leads then to

m2 =

(
λh(3h

2 − v2) + λm(s2 − w2)/2 λmhs
λmhs λs(3s

2 − w2) + λm(h2 − v2)/2

)
, (10)

and
m2
χ = λh(h

2 − v2) , (11)

where v and w denote the minima of the VEVs h and s.
For the one-loop effective potential, we use the known contributions from Cole-

man and Weinberg [16] in MS regularization, namely (κ = 1/(16π2))

V1 =
∑
i

κgi
4
m4
i

(
log[m2

i /µ
2]− ci

)
. (12)
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Figure 1: The left panel shows the comparison between the effective potential of the SM
and the model invoking a Froggatt-Nielsen mechanism for the b quark in h-direction. The
flavon sector is fixed as mσ = w = 1 TeV whereas the scalar mixing angle θs varies (red
band). The Froggatt-Nielsen scale is M = 5 TeV. The gray curve corresponds to the
potential in s-direction. The right panel shows the zero-potential lines in the model with
and without mixing.

Here, gi denotes the number of degrees of freedom (−12 for top, b and F quarks, 3
and 6 for W - and Z-bosons, 3 for Goldstone bosons, 1 for the remaining scalars).
The ci are constants that are however irrelevant since we renormalize such that the
VEVs in the minima are held constant. As parameters we hence use the two VEVs
– v and w – the physical masses of the Higgs, mφ, and the flavon mσ and their
mixing θ. The mixing angle is related to the couplings and VEVs via

tan 2θ =
λmvw

λhv2 − λsw2
. (13)

Note that in this convention for v � w negative λm leads to a positive mixing angle.
Further in our analysis we restrict ourselves to the case of the Higgs being the lighter
mass eigenvalue θ ∈

(
−π

4
, π

4

)
.

Once the effective potential is known, the instability scale ΛI is read off from
the scale where the effective potential hits zero 2. The left panel of figure 1 shows
the comparison between the SM vacuum instability scale and a low energy real-
ization (M = 5 TeV) of the Froggatt-Nielsen mechanism near meson mixing lim-
its (A.1). The TeV value chosen for the FN scale M keeps the error by the inclusion
of heavy degrees of freedom below the UV scale to a minimum (we will construct
an RG-improved effective potential which can handle large UV scales M in the next
section). The red curve shows the potential in h-direction whereas the gray line
shows the potential in s-direction which is not present in the SM. The case θ = 0◦

2The VEV at which the potential vanishes is actually not an observable and suffers from gauge-
dependence. However it turns out that in Landau gauge this scale is very close to the mass scale
where new degrees of freedom must be introduced to (absolutely) stabilize the potential [17, 18].
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offers the most severe instability. It lies in direction of the h4 operator and thus can
be directly compared with the SM instability ΛSM

I (green line). The FN instability
(for θ = 0◦) is lower because of additional log contributions from the heavy quarks.
Still, for the chosen UV completion the fermion logarithm can be easily counteracted
by introducing mixing in the scalar sector. Thus there is the possibility that the
stability issue in the SM might not even be present in a UV completed FN setup.

The right panel of figure 1 shows the stabilizing effect from increased mixing in
the h−s plane such that also the effect from the h2s2 operator becomes visible. The
shown lines correspond to the respective instability contours of vanishing mixing
(black) and non-vanishing mixing (blue). Two things can be observed. The first
effect is a feature on the diagonal which is due to the non-vanishing tree level operator
h2s2 whose coefficient is fixed to be λm in our notation. For λm 6= 0 the operator
can be stabilizing or destabilizing depending on the sign of λm. The second effect
is the stabilizing effect caused by mixing of the flavor eigenstates which does not
depend on the sign of λm. This effect can overturn the negative contribution from
the extended fermion sector in h-direction. In general the barrier in s-direction is
high and large in case of ms ∼ M � mh. This reduces the tunneling amplitude
calculation effectively to a 1D path problem in h-direction (with a fixed flavon VEV).
Thus to create an instability in the EFT region below the heavy quark threshold
one can use two ingredients, a negative λm and a small flavon mass in comparison
to M . However, once M and mσ are decoupled, one should do proper RG-running
between the scales.

3 Effective field theory and renormalization group

running

We have seen in the last section that the FN extension in principle does not seem
to have an issue with vacuum stability that is more serious than in the SM. In this
section, we will provide a renormalization group improved analysis of the effective
potential. There are two motivations for this. First, the RG-improved potential
deviates significantly from the one-loop analysis – even in the SM. This is due to the
fact that the main running of the quartic coupling comes from the Yukawa coupling
of the top and enters in its fourth power. Since the Yukawa coupling themselves
run, a small change in the top Yukawa coupling can have a large impact on the
potential. For example the potential turns negative around h ∼ 104 GeV in the one-
loop approximation while this happens at h ∼ 108 GeV in the RG-improved analysis.
The second reason to present the RG-improved analysis is that the effective field
theory (EFT) being setup in the RG framework elucidates why the FN mechanism
has minimal impact on vacuum stability below the FN threshold.

The basic observation of the RG analysis is that the observables that are derived
from the effective action (in gradient expansion),

S '
∫
d4x

Zh
2
∂µh∂

µh+
Zs
2
∂µs∂

µs− V (s, h) , (14)
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should be independent from the renormalization scale µ that explicitly appears in
the loop corrections, as in equation (12). This explicit dependence hence can be ab-
sorbed into the parameters of the theory: the couplings, mass terms, cosmological
constant and wave function normalizations Z. To simplify matters, one can rescale
the fields such that the kinetic terms are always canonically normalized. The effec-
tive potential has then to be scale-independent by itself and the scale dependence in
the wave function normalizations show up as the anomalous dimensions in the RG
equation of the effective potential

0 = µ
d

dµ
V =

(
µ
∂

∂µ
+
∑

βλ
∂

∂λ
+ γh

∂

∂h
+ γs

∂

∂s

)
V , (15)

where we denote the couplings and mass parameters of the theory collectively as λ,
β = µ ∂

∂µ
λ and γh = µ ∂

∂µ
Zh and likewise for the field s. This relation can in turn also

be used to deduce some of the β-functions. This is due to the fact that the leading
explicit µ-dependence results from the loop corrections while the other terms in the
RG equation obtain contributions from the tree level potential. We will use this to
deduce the β-functions of the scalar operators in the EFTs that we will set up in
the following. A complete list of beta functions can be found in appendix B.

3.1 Hierarchy of effective field theories

We start the RG analysis at the UV scale and then successively lower the scale and
construct the relevant EFTs on the way. In the present context there are two VEVs
(h and s) which complicates the analysis. The spectrum depends on the VEVs and
this has an impact on how the EFT has to be set up. In general, there is no straight-
forward way to resum all the leading logs using the usual RG methods (not even in
the SM, but large logs from light particles are not expected to contribute strongly
to the potential, since this would lead to IR divergences in the limit of vanishing
masses). Several papers in the literature have proposed solutions to this problem
that rely on a generalized MS multiscale approach [10, 11, 12, 13, 14]. We will follow
a related but slightly different route here. Motivated by the results in the one-loop
approximation, one can study the vacuum decay only in the two directions where
one of the two VEVs is constant, namely along (h,w) and (w, s). This allows us
to construct the EFTs in all relevant regions of the scalar field space as we will see
below. A schematic representation of our procedure and its different regions can be
found in figure 2.

The UV (Region I). Consider the UV scale, where h is of similar size as M
(region I). In this regime, almost all masses are of order M , the sole exception being
the flavon that could potentially (in case of very small coupling) be significantly
lighter than that. However, the resulting large logs are not so relevant. First,
parametrically the singlet mass scales as m2

σ ∼ λss
2 which is typically not so far

from M . Besides, when the flavon is much lighter than M , its overall contribution
is small and hence not really relevant. In summary, the fact that the logs in this
sector are not properly resummed cannot have a large impact on the total potential.
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h
SM mσ w

s

M

v
mφ

w
mσ
θ

λ̄

Rg I

Rg IIRg IIIRg IV

√
λs ε

Figure 2: Schematic construction of the RG-improved effective potential in case of large
scale separation v � mσ � w as described in the text. Heavy fermions that are integrated
out at µUV ∼ M lead to higher dimensional operators e.g. λ̄ h4s8/M8 (which is the
operator of the same dimension as the b quark mass term). λ̄ also runs, mainly due to the
one-loop contribution by the bottom quarks, which we take into account. For scales below
mσ the new physics direction is ignored, and the resummation of logs can be performed
the same way as in the SM. We define the free parameters of the model at the scales
shown in the picture. The scale separation between the different mass scales in the FN
mechanism is set by

√
λs and ε. The different regions in the effective potential landscape

are described in the text.

The contribution from the FN quark sector to the running of the different oper-
ators can be read of from

Tr (M †
QMQ)2 =

1

4

(
2M2s2 + 2(M2 + s2)2 + 2M2Y 2

b h
2 + Y 4

b h
4
)
. (16)

Hence in this regime, the FN quarks contribute significantly to the running of the
cosmological constant (CC), the Higgs and flavon quartic couplings as well as the
Higgs mass sector (which will induce a hierarchy problem). Accordingly, if all SM
fermions are implemented in the FN sector, a very large negative contribution to
the Higgs quartic will quickly drive the effective potential to negative values which
we have seen before in figure 1. However one should be cautious at this point. The
exact result relies on the concrete FN realization we have chosen. In principle, the
FN sector can include a large number of bosonic degrees of freedom beyond the
threshold M with sizable couplings to the Higgs that can counteract this effect.
This number probably does not even need to be large in comparison to the O (> 60)
heavy quarks induced in a full FN treatment of the SM as has been argued before.
Since any conclusions concerning the UV are so strongly model-dependent we will
ignore any instability that arises beyond the FN scale M even though they are severe
in the sense that the s direction is not stabilized by the SM particle content. Our
attention will instead be on the question whether the light FN b quark induces an
instability at scales below M .
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The EFT below the FN quarks (Regions II+III). Below M the heavy quarks
are integrated out and we do the corresponding matching to an effective field theory
(called FN EFT in the following). The matching scale is of order µ ∼ w ∼ M/5.
In principle the separation between w and M could be larger increasing the size
of region II in figure 2 which would on the other hand require O (> 1) Yukawa
couplings and/or a different charge assignment in the FN sector. In order to perform
the matching, the one-loop contributions from the FN quarks can be expanded in
h/M and s/M . This expansion will lead to a set of operators of form

12κλ(m,n)
(Ybh)msn

Mm+n−4
. (17)

We enumerate all operators up to order O(h4) and O(s8):

λ(0,0) = 1
16

(−1 + 2LM) , λ(0,2) = 1
8
(1 + 3LM) ,

λ(0,4) = 23
96

+ 1
8
LM , λ(0,6) = − 1

480
, λ(0,8) = 17

2240
,

λ(2,0) = 1
8
LM , λ(2,2) = 1

16
,

λ(2,4) = 1
32
, λ(2,6) = − 1

24
, λ(2,8) = 1

64
,

λ(4,0) = 1
16

(1 + LM) , λ(4,2) = − 1
48
,

λ(4,4) = − 29
960

, λ(4,6) = 43
3360

, λ(4,8) = 1
40320

(7067− 2520LM) , (18)

where we defined LM = log(M2/2µ2). Furthermore, there is the contribution from
the bottom

12κ
Y 4
b h

4s8

16M8

(
log

[
Y 2
b h

2s4

2µ2M4

]
− 3

2

)
. (19)

Notice that the logarithmic contribution reproduces explicitly the β-function al-
ready inferred in (16). The only non-renormalizable operators that contain loga-
rithmic contributions are λ(4,8) and the bottom contribution in (19). As required
the µ-dependence cancels between these two contributions since the UV theory is
renormalizable and the logs are related to the divergences in dimensional regular-
ization. So logarithmic contributions can only appear in renormalizable operators.

This changes in the EFT that is not renormalizable. The EFT at one-loop
level will contain the contribution from the bottom quark (19) but not the logs
produced by the heavy quarks in (18). This is consistent with the fact that the
β-function in the EFT will not contain the contributions from the heavy quarks.
At the same time, the EFT will have to include the higher dimensional operators
from (18) in order to make the matching possible. These operators contribute to the
Higgs and flavon masses and hence also will participate in the one-loop running and
also run themselves. For example, the flavon one-loop contribution will contribute
a term of form λ(2,6)λ(0,6) to the β-function of λ(2,8). All these contributions are of
two-loop order and quantitatively not important to our analysis. First of all, the
coefficients λ(m,n) are small and second, in the electroweak minimum these operators
are suppressed by εm and hence do not contribute much to the scalar masses and
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VEVs. The sole exception to this argument is the operator λ̄ ≡ λ(4,8) that obtains
a substantial β-function from the bottom quark, see (19). It is also this operator,
that produces a large β-function for s ∼ M and fosters the naive expectation that
there might be a unstable direction in the scalar potential.

The EFT contains the same degrees of freedom as the UV theory but the two
heavy FN quarks. The tree level scalar potential contains equation (2) and the
operator

λ̄

4
h4
( s
M

)8

. (20)

The one-loop contribution from the bottom quark induces a running of this operator.
In turn, this operator also contributes to the one-loop effective potential through its
contribution to the Higgs and flavon masses. This effect will be neglected since it is
parametrically suppressed by powers of w/M and v/M .

In the matching, the operator λ̄ is matched to the results from the UV theory in
(18). In essence, λ̄ is a small positive number and basically vanishes at scale M 3.
The five remaining parameters of the scalar potential are fixed by the scalar masses,
VEVs and mixing as before. This is conceptually somewhat cumbersome since not
all parameters are fixed at the same scale but numerically quite easy to implement.
We define parameters at the scales depicted in figure 2.

The SM EFT (Region IV). The next threshold occurs at the mass scale of the
FN scalar mass and the running changes slightly for h < mσ. We would like to setup
again an EFT, but this time also integrate out the flavon degree of freedom. Below
the threshold, we expand mσ in the VEVs in order to obtain a potential in which
the logarithmic contributions are VEV-independent, just as in the contributions in
equation (18). This is essential for the setup and it guarantees that, after renor-
malizing the operators of dimension four, the impact of the heavy FN flavon field
is encoded in higher dimensional operators that cease importance at small energy
scales. Contrary to the case of the FN quarks, the mass will not admit an expansion
around s ' 0. Instead, it is natural to expand the mass around minimum of the
potential 4, s ∼ w. This leads to m2

σ ' 3λss
2−λsw2 +λmh

2/2 for small mixing and

3 Notice that this matching also absorbs the divergences in the higher dimensional operators
that are present in the EFT but are absent in the UV theory by construction.

4Notice that when expanding the FN quark masses this difference is irrelevant and expanding
around the minimum of the potential does in fact also lead to (18).
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Σφ

Figure 3: The Daisy diagrams that need to be resummed in the UV theory for accurate
matching.

to

1

4
m4
σ

(
log[m2

σ/µ
2]− 3

2

)
→[

9

4
λ2
σLs +

9λmλsh
2

16w2
− 9λ2

mh
4

128w4

]
(s2 − w2)2

+

[
3w2λ2

s(Ls − 1) +
3

4
λmλsLsh

2 +
3λ2

mh
4

32w2

]
(s2 − w2)

+
1

2
w4λ2

s(−3 + 2Ls) +
1

2
w2λmλs(−1 + Ls)h

2

+
1

16
λ2
mLsh

4 , (21)

where Ls = log[2w2λs/µ
2]. Again, from these renormalizable operators one can read

off the contributions from the flavon to the various β-functions. This potential has
to be matched to the low energy EFT (i.e. the SM) that does not even contain the
flavon as a dynamical degree of freedom. In order to integrate out the flavon, the
equation of motion of the flavon has to be solved and reinserted into the effective
action [19]. This will induce further higher dimensional operators for the Higgs scalar
that we will however neglect. The flavon direction in the SM is not present and thus
we depict it as ‘grayed-out’ region (Region IV) in figure 2. The SM concludes the
chain of EFTs that have to be set up to study the effective potential. In the next
subsection we discuss some subtleties of the matching procedure before we present
numerical results.

3.2 Matching method and resummation

In this section will discuss an issue in constructing the correct EFT in more detail:
matching in the scalar sector and resummation. The issue is that we encounter a
hierarchy problem in the UV theory. To be specific, the expansion in (18) contains
contributions to the operator h2 that are of order M2. This leads to very large
threshold effects.

11



At first this does not seem to pose a problem. However, once the one-loop
contributions of the Higgs and Goldstone bosons are inspected, a discrepancy in the
two theories arises. The bare parameters are quite different in the two theories (due
to the threshold effects) and hence the tree level masses in the scalar sector. While
in the EFT the tree level Higgs mass is of EW scale, the tree level Higgs mass in
the UV theory is of order κM2.

This discrepancy arises due to the breakdown of perturbation theory. The very
same contribution that leads to a large threshold effect in the Higgs mass also
leads to a large Higgs self-energy Σφ. This large self-energy has to be resummed in
order to recover the convergence of perturbation theory. The corresponding class of
diagrams are the Daisy diagrams (see Fig. 3) and the whole procedure is akin to the
resummation performed in [20, 21, 22] to solve the Goldstone boson catastrophe.

In essence, this leads to an effective potential where the threshold effects also
show up in the one-loop contributions of the scalar fields in the UV theory, e.g.

nGκ

4

(
−(m2 + ∆m2) + (λ+ ∆λ)φ2 +

λm
2
w2

)2

×

[
−3

2
+ log

(
−(m2 + ∆m2) + (λ+ ∆λ)φ2 + λm

2
w2

µ2

)]
. (22)

The resulting effective potential can then be straight-forwardly matched to the IR
theory since the arguments in the logarithm now coincide in the IR and UV theories.
We do this numerically for all renormalizable operators in the EFT as well as the λ̄
operator and at both threshold scales µ ∼ ms and µ ∼M .

3.3 EFT instabilities

Consider first the effective potential in the regions below the FN threshold, in par-
ticular w � (h ' s) → M where instabilities from the presence of the b quark are
expected (Region II). To assess this regime, the theory is run from the electroweak
scale h = µ ' v to the scale of the flavon VEV h = µ ' w and finally to the energy
scale of the FN quarks along h = s = µ→M . All relevant logarithms are resummed
and this is the regime where the instability in the effective potential should occur if
the naive argument from the introduction was correct and the increased running in
the quartic Higgs coupling was disastrous. From the analysis it should be clear by
now that this will not be the case. In figure 4 we show that the flavon EFT including
the light b quark does not induce any instabilities below the Froggatt Nielsen scale
in the regions (h→M,w) and (w, s→M), and that the instability only appears by
matching the model dependent UV model we described in section 2. So in essence,
for w & εM the running enhances the operator λ̄ in the IR instead of destabilizing
the potential in the UV.

However, other constraints can potentially be relevant. For example the operator
λ̄ could become very large due to running and violate perturbative unitarity in the
limit where the mass M is moved to very large scales rendering the EFT construction
invalid. This is also not the case, since this would require a very large hierarchy
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Figure 4: Effective potential along the axes from figure 2. The left part of the plots are
identical and show the potential for fixed s = w and variable h. Beyond this point, we
show the potential along the h-direction (left) and s-direction with h = w (right). The
dashed line corresponds to the tree level EFT. In this figure we have chosen the NP scales
to be mσ = 2 TeV and M = 5 × 105 TeV. The measured Cabibbo angle then requires
w = εM ' 105 TeV. In both plots the scalar mixing angle is set to θ = 0.

between the UV scale M and the flavon mass ms and in turn a tiny coupling λs.
Thus, in general the b quark has minimal impact on vacuum stability below the FN
threshold.

To visualize again the different effects, we first show the effective potential of
the SM extended with a scalar but without the quarks (figure 5). We chose θ = 10◦

deliberately such that the mixing instability becomes severe. The point where we
match the flavon theory to the SM EFT is indicated by a green pentagon whereas
the EW minimum of the potential is indicated by a blue triangle. The instability
develops in the would-be EFT region in a Froggatt-Nielsen model via tree level
mixing. In figure 6, we show in comparison the FN EFT matched to the UV at the
red circle (the size of Region II thus shrinks to zero). The FN EFT does not develop
an instability due to the b-quark contribution because of the presence of the higher
dimensional operators at s ∼ M/

√
2, in fact the higher dimensional operators even

cure most of the unstable regions from figure 5 to make the matching at the UV scale
possible. In the bottom right it can be seen that the SM-like instability scale in the
EFT is insensitive to displacements in 〈s〉 which refutes the naive expectation that
the running in λ from the FN contribution leads to an instability issue. The unstable
island inside region III is due to the mixing operator which is a free parameter in
the FN model.

Since the potential is in this regime to good approximation quadratic, the tun-
neling to this island happens via a Fubini bounce with action S ' 8π2/(3|λ|).
Tunneling requires λ < 0.1 which is never achieved in our model for the instability
generated by mixing.
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Figure 5: EFT landscape for the SM matched to a SM+complex scalar with mσ = 2 TeV,
w = 105 GeV and θ = 10◦. The flavon direction is destabilized by mixing. The vacuum
stability of the SM+complex scalar in a DM context has quantitatively been discussed in
[23, 24].
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Figure 6: UV completion (M = 5× 105 GeV, mσ = 2 TeV) with the UV model matched
to the flavon EFT at µ = φ = w. The white island corresponds to the residual instability
region from figure 5 that is left over once the light b quark and higher dimensional operators
are taken into account.
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4 Conclusion

In this work, we studied the vacuum stability of Froggatt-Nielsen models. Main
motivation for this analysis are models with varying Yukawa couplings, as employed
in baryogenesis scenarios [5]. In this context, the stability analysis leads to some
open questions [7] that partially are not well posed due to the fact that the cutoff of
this setup is expected to be very low. Here, we demonstrate this issue by studying
an explicit Froggatt-Nielsen setup, which is one possibility to induce varying Yukawa
couplings (other examples are extradimensions or composite Higgs models [25]).

On the technical side, we use the effective potential improved by the renormal-
ization group running. Above the UV threshold we use the full Froggatt-Nielsen
model while below the threshold we use an effective theory that contains the SM
(with a light b quark) and the flavon. It turns out that an accurate matching of the
models also requires a resummation of self-energies (see Section 3.2).

A new source of instability can be mixing between the Higgs and flavon, but tak-
ing phenomenological constraints into account leads to a lifetime of the electroweak
vacuum that exceeds the age of the Universe.

Our main conclusion is that the problems of stability are generally not more
severe than in the Standard Model. Universally, we find that instead of leading
to stability issues in the UV, the FN dynamics is such that the effective potential
is increased once the Yukawa couplings start to vary. For example, if the Yukawa
couplings change due to a phase transition in the FN sector, the potential difference
between these two phases is so large that it overcompensates the increase in running
in the Higgs quartic coupling that naively leads to the instability. This is essentially
due to the fact that the operators that contribute to the increased running in the
Higgs quartic coupling (due to a dependence on the flavon VEV) are generated by
additional FN quarks and hence these operators vanish close to the UV scale. The
behavior in the far UV depends crucially on the concrete model which is why no defi-
nite conclusions can be drawn in this regime. Our analysis can be straight-forwardly
generalized to a setup where all fermions obtain masses via the FN mechanism.
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A Comparing with experimental constraints

In this section we discuss various experimental constraints that are of relevance
in a realistic Froggatt-Nielsen scenario. We discuss the two kind of constraints
which are the most relevant to our discussion. First we briefly discuss bounds from
flavor physics which put the most stringent constraints in realistic Froggatt-Nielsen
scenarios. We discuss constraints for the scalar mixing angle in order to get an
estimate on what values are reasonable to consider in the main part of our analysis.

A.1 Bounds from meson mixing

The dynamics of Meson systems are expected to yield strong experimental con-
straints on a Froggatt-Nielsen mechanism realized at TeV scale. Meson bounds for
the Froggatt-Nielsen mechanism have already been discussed in full detail in [15].
The Lagrangian of the SM Yukawa couplings is given by

Lyuk = −
(
yuij q̄

i
LHd

j
R + ydij q̄

i
LH̃u

j
R

)
+ h.c . (23)

In the effective FN EFT this becomes

Lyuk = −

Y u
ij

(√
2S

M

)ndij

q̄iLHd
j
R + Y d

ij

(√
2S

M

)nuij

q̄iLH̃u
j
R

+ h.c (24)

with Y d,u
ij ∼ O (1). In the broken phase we have

H =
1√
2

(
0

v + φ(x)

)
and S =

w + σ(x) + ia(x)√
2

. (25)

We fit the Y u,d
ij parameters to obtain measured observables. Choosing

Y d =

 0.51− 0.18i −0.38 + 1.11i −1.02− 0.58i
−1.33− 0.43i −0.77− 0.68i −0.38 + 0.99i
−0.94− 0.88i −0.04 + 0.52i 0.55 + 0.82i

 , (26)

Y u =

−0.63− 0i −1.38 + 0.05i −1.41− 0.25i
0.09 + 0.52i −0.26 + 0.55i 0.55 + 0.96i
0.73 + 0.24i 0.56− 0.16i 0.47− 0.21i

 , (27)

gives acceptable values matching the observed quark masses and mixing angles.
Here the suppression of the SM masses and CKM matrix elements is set by the
Cabibbo angle θ12 ∼ ε ∼ w

M
= 0.2 and the Froggatt-Nielsen charges FN(q). We use

the following convention

ndij = FN(qiL) + FN(djR)− FN(H), (28)

nuij = FN(qiL) + FN(ujR) + FN(H). (29)
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Kaon CK D-Meson CD B-Meson CBd B-Meson CBs
(2008) |Re C2| 1.9× 10(−14)

|Im C2| 9.3× 10(−17)

|Re C4| 3.6× 10(−14)

|Im C4| 1.9× 10(−17)

|C2| 1.6× 10(−13) 7.2× 10(−13) 5.6× 10(−11)

|C4| 4.8× 10(−14) 2.1× 10(−13) 1.6× 10(−11)

(2014) |Re C2| 5.2× 10(−15) 1.6× 10(−13)

|Im C2| 1.8× 10(−17) 2.3× 10(−14)

|Re C4| 1.0× 10(−15) 4.2× 10(−14)

|Im C4| 3.7× 10(−18) 6.8× 10(−15)

|C2| 2.8× 10(−13) 3.8× 10(−12)

|C4| 8.4× 10(−14) 1.2× 10(−12)

Table 1: List of used values for the Wilson coefficients (in units 1/GeV2) [26, 27]. We only
use absolute values of the Wilson coefficients. For the Kaon system generalized bounds
exist depending on the sign of the contribution which would slightly improve the bound.

and the following charge assignment

FN

qu,c,tL

qu,c,tR

qd,s,bR

 =

3 2 0
5 1 0
4 2 2

 , FN(H) = 0, FN(S) = −1. (30)

Expanding (24) to first order in v gives

− Lbroken
yuk =

v√
2
yijε

nij q̄iL

(
1 +

φ

v
+
nij σ + inij a

w

)
qjR . (31)

We see that the FN mechanism introduces flavor changing neutral currents (FCNCs)
at 1/m2

σ level but with suppressed couplings proportional to εnij , namely

gu,dij = Y u,d
ij nij

v√
2w

εn
u,d
ij . (32)

The FCNC contribution to meson mixing can be parametrized by the ∆F = 2
operators

H∆F=2
eff =

5∑
k=1

Cij
k Q

ij
k +

3∑
k=1

C̃ij
k Q̃

ij
k , (33)

where for our model the only contributing operators are

Q2 =
(
q̄iRq

j
L

)2
, Q̃2 =

(
q̄iLq

j
R

)2
, Q4 =

(
q̄iRq

j
L

) (
q̄iLq

j
R

)
. (34)

The corresponding tree level Wilson coefficients C2 from t-channel scalar scattering
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Figure 7: Meson mixing exclusion limits for all K, D, Bs, Bd systems in different regions
of the parameter space (left: mσ =

√
2w, right: ma →∞)
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and C4 from s-channel scalar scattering are

C2 =
(
g∗ji
)2
(

1
m2
σ
− 1

m2
a

)
, C̃2 = (gij)

2
(

1
m2
σ
− 1

m2
a

)
,

C4 =
gijgji

2

(
1
m2
σ

+ 1
m2
a

)
. (35)

The numerical values of these are given in table 1 from which we will use the
2014 values. We can use (35) to directly set constraints on the (pseudo-scalar) flavon
masses and on the flavon VEV. We depict these bounds in figure 7. The strength
of the bound strongly depends on both, the experimental bound on Ci and the sup-
pression factor nijgij in the coupling matrices. The most stringent bound arises from
the Kaon-System, whereas the D meson system is the least sensitive. Note that the
factor gij allows for some freedom because of different possible choices of FN charges.
For instance the Kaon bound would be strengthened by choosing FN(dR) = 3 in-
stead of FN(dR) = 4.

A.2 Bounds from scalar mixing

The scalar mixing angle θ between the Higgs and the flavon is constrained by several
techniques (see [28, 29] for an overview). Early constraints for θ come from the
Z-pole measurement at LEP [30] which constrains the signal strength and thus
gHZZ ∼ cos θ,

ξ2 =

(
gBSMHZZ

gSMHZZ

)2

BR (H → SM) , (36)

but only for scalars H with mass below 114 GeV. After the Higgs discovery a general
bound on the mixing angle can be obtained from a combined fit of all Higgs signal
channels from LHC measurements with the use of HiggsSignals [31] including all
Higgs signal data from LHC Run-1 + Run-2

(
36 fb−1

)
from Atlas and CMS. The

general bound for a scalar with branching ratio BR(H → SM) = 1 is

θ <

{
∼ 10 degree mσ . 114 GeV, LEP bound

16.8 degree mσ ∼ 1 TeV, LHC bound
. (37)

We compare these constraints with electroweak precision physics as parametrized
by the oblique (or Peskin-Takeuchi) parameters S, T , U [32], with the current best
fit values [33]

S = 0.05± 0.11, T = 0.09± 0.13, U = 0.01± 0.11. (38)

To leading log approximation and µ = ms the oblique parameters are

S = −π
6

(
1− cos θ2

)
log

mφ

mσ

, T =
3m2

Z

8πm2
W

(
1− cos θ2

)
log

mφ

mσ

, U = 0. (39)

By performing a χ2 test, one sees that the EWPO bound falls short to the LHC
bound.
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Figure 8: On the left the perturbativity bound for varying flavon mass and varying scalar
mixing angle is shown. The flavon VEV is set to w = 1000 GeV. On the right the
perturbativity constraint is shown varying flavon mass and flavon VEV.

For larger flavon masses than TeV scale the mixing angle is suppressed by the
flavon VEV and thus the scalar mixing becomes automatically small and hard to
detect unless λm becomes large because of

tan 2θ =
λmvw

λhv2 − λsw2
∼ λm

v

w
. (40)

Consequently, this relation can also be read as a theoretical constraint on the mixing
angle by requiring perturbativity. Requiring λi < 4π for λm, λh, λs thus also limits
the allowed mixing. From this

2θ .

{
10 degree mσ & 1 TeV, w ∼ O (TeV)

unconstrained mσ & 1 TeV, w � O (TeV)
(41)

Information on the exact value of w could be extracted in principle from a precision
measurement of the cubic coupling λφφφ which is experimentally unfeasible at the
moment. We show all bounds in figure 8.

B Running and beta functions

Here we give a short summary of the RG-running in the EFT region of FN that
we considered. We further give the MS parameters used throughout this paper as
well as the used beta functions. For the SM, the resummation of large logs in the
effective potential by the RG group is well understood, in particular the running of
the top Yukawa itself leads to a higher instability scale ΛI already at 1-loop. At
higher loop, threshold corrections push ΛI even further to the region where the SM
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is metastable. As input parameters for the SM we have chosen5

g(v) g′(v) g3(v) yt(v) yb(v) m2(v) λ(v)
0.654 0.350 1.128 0.95 0.02 7812 GeV 0.12909 . (42)

The beta functions are defined by

β(full) =
∑
i

κiβ(i) (43)

Here we give the beta functions of the Standard model with an additional Froggatt-
Nielsen mechanism for the generation of the b quark mass term. We neglect all
lighter than b quarks as well as leptons which means that we also do not discuss
the running of SM mixing angles. We work in the MS scheme which means that
we account for different particle thresholds by hand. We differentiate between the
mass scale of the new flavon ms and in principle also the mass scale of the heavy
fermion sector M/

√
2. The running in the UV theory depends however on the UV

completion which is why we consider the running only in the region µ < M/
√

2.
The anomalous dimensions are

γ
(1)
φ = −3y2

t − 3y2
b +

3

4
(3g2 + g′2), (44)

γ(1)
s = 0. (45)

Using the Heaviside theta θm = θ (µ−m):

β
(1)
Λ = 2m4

h + θm
m4
s

2
, (46)

γ
(1)

m2
h

= 12λh + θm
m2
s

m2
h

λm, (47)

γ
(1)

m2
s

= λs + θm
m2

m2
s

λ2
m, (48)

5Throughout the paper we use a slightly lighter top quark mass yt = 0.95 instead of yt = 1.
We do this in order to recover the known instability scale from three-loop calculations that lead
to additional threshold effects not present at 1-loop.
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β
(1)
λ =

(
24λ2

h − 6y4
t − 6y4

b +
9

8
g4 +

3

4
g4g′2 +

3

8
g′2
)

+ θm
λ2
m

2
−

−
(
+3λhg

′2 + 9λhg
2 − 12λhy

2
t − 12y2

bλh
)︸ ︷︷ ︸

=4λγ
(1)
φ

, (49)

β
(1)
λs

= θm

(
18λs

2 +
λ2
m

2
− 4γ(1)

s λs

)
, (50)

β
(1)
λm

= θm
(
λm (6λh + 4λm + 6λs)− 2

(
γ(1) + γ(1)

s

)
λm
)
, (51)

β(1)
gs = −7g3

s , (52)

β(1)
g = −19

6
g3, (53)

β
(1)
g′ = +

41

6
g′3, (54)

β(1)
yt = yt

(
3

2
y2
t −

3

2
y2
b + 3y2

t + 3y2
b − 8g2

s −
9

4
g2 − 17

12
g′2
)
, (55)

β(1)
yb

= 0. (56)

In contrast to the SM the bottom quark Yukawa is not fundamental in the FN EFT
which is why here yb = 0 for all µ. For completeness the bottom quark beta function
in the SM is given by

β(1)
yb

= yb

(
3

2
y2
b −

3

2
y2
t + 3y2

b + 3y2
t − 8g2

s −
9

4
g2 − 3

20
g′2
)
. (57)

The bottom quark in FN rather contributes to the presence of an effective operator
with coupling λ̄ which itself runs. The leading contribution is

β
(1)

λ̄
= −nb

2
Y 4
b − (γ

(1)
φ + 2γ(1)

s )λ̄. (58)

Note that there are contributions to the beta functions due to other higher dimen-
sional operators, e.g.

λ̄ λ

, (59)

but after all these are higher-loop order effects which is why we neglect them.
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