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Abstract

We describe an implementation of a subtraction scheme in the nonrelativistic-
QCD treatment of heavy-quarkonium production at next-to-leading-order in the
strong-coupling constant, covering S- and P -wave bound states. It is based on the
dipole subtraction in the massless version by Catani and Seymour and its extension
to massive quarks by Phaf andWeinzierl. Important additions include the treatment
of heavy-quark bound states, in particular due to the more complicated infrared-
divergence structure in the case of P -wave states.
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1 Introduction

In next-to-leading-order (NLO) perturbative calculations in quantum field theory, the
phase space integrations of real corrections generally produce infrared (IR) divergences,
which have to be regularized. The standard choice for this is dimensional regularization,
where the integrations are done in D = 4 − 2ǫ space-time dimensions, so that the IR
divergences show up as poles in ǫ, ready to be canceled by other contributions. The
problem is that the squared matrix elements are, apart from the simplest examples, so
complicated that they have to be integrated numerically, in four dimensions. To combine
both ingredients, the analytic singularity cancellation in D dimensions and the numerical
phase space integration in four dimensions, two basic types of calculational schemes have
been devised: slicing schemes and subtraction schemes.

In phase space slicing schemes, the real-correction phase space is split into two parts,
with the separation lines enclosing the IR-singular regions at close distances. Since, in
the vicinity of the IR divergences, both the squared matrix elements and the phase space
factorize into simple expressions, the analytic integration in D dimensions is feasible,
while the part outside the enclosed region is free from singularities, ready for numerical
integration. Both contributions depend on the specific choice of phase space cut, but
the sum of both contributions is independent of it. Most calculations of inclusive heavy-
quarkonium production and decay within the factorization formalism [1] of nonrelativistic
QCD (NRQCD) [2] have been implemented with a two-cutoff phase space slicing scheme
as outlined in Ref. [3]. In particular, this includes our previous calculations [4]. There
are, however, two principal disadvantages of the phase space slicing scheme: First, one
cannot avoid a residual numerical dependence of the result on the slicing parameters and,
second, the numerical integration over the finite real-correction phase space part has to be
done to very high precision because there is a strong cancellation between the two phase
space parts.

On the other hand, in subtraction schemes, certain simple subtraction terms with
the same divergences as the real corrections are subtracted from the latter, enabling a
numerical integration. The subtraction terms are then separately integrated analytically
in D dimensions, and the results are added back. To our knowledge, the only NLO
calculations of inclusive quarkonium production so far performed in this way are those
of Ref. [5] in the color singlet model, based on Catani-Seymour dipole subtraction for
massless quarks [6]. Since only color singlet S-wave states were involved, the subtraction
terms of Ref. [6] were sufficient.

In this paper, we describe an implementation of a subtraction scheme for inclusive
quarkonium hadroproduction within NRQCD, which can handle all intermediate S- and
P -wave color singlet and color octet states. In addition to the massless Catani-Seymour
scheme [6], our implementation is built upon its extension to massive particles by Phaf and
Weinzierl [7]. However, we have to take special care of the structures of the amplitudes
when projected onto heavy-quark bound states. In particular, new kinds of subtraction
terms have to be introduced in the case of P -wave state production.

The outline of this paper is as follows: In section 2, we describe the structure of the
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appearing amplitudes projected onto the different Fock states and their soft and collinear
limits. The divergence cancellation is explained in section 3. The subtraction scheme used
is in detail presented in section 4. Details about the implementation of phase space cuts
as well as numerical tests of our extended dipole subtraction approach follow in section 5.
Section 6 contains a brief summary. In Appendix A, we collect the expressions through
order O(ǫ0) for the integrated Catani-Seymour and Phaf-Weinzierl dipoles needed in our
study, in a form that already includes mass factorization counterterms.

2 Cross sections and their limits

2.1 Cross sections in NRQCD factorization

In the framework of QCD and NRQCD factorization, the cross section for the inclusive
hadroproduction of heavy quarkonium H is given by

dσ(AB → H +X) =
∑

a,b,X

∑

n

∫

dxadxb fa/A(xa)fb/B(xb)〈OH [n]〉dσ̂(ab → QQ[n] +X),

(1)
with the partonic cross sections

dσ̂(ab→ QQ[n] +X) =
1

Ncol(n)Npol(n)

1

2(p1 + p2)2
dPS

× Fsym(X)

ncol(a)npol(a)ncol(b)npol(b)
‖|ab→ QQ[n] +X〉‖2. (2)

Here, a and b are the colliding QCD partons with four-momenta p1 and p2. fa/A(xa) is
the parton distribution function (PDF) to find parton a with a longitudinal-momentum
fraction xa inside the colliding hadron A. X collectively denotes the partons that are
produced besides the quarkonium H , and Fsym(X) are its quantum mechanical symmetry
factors for identical particles in the final state. Q is bottom for bottomonium production
and charm for a charmonium production. n is the QQ Fock state, for our purposes 3S1,
1S0,

1P1, or
3PJ in a color singlet or color octet state. The color state is marked by upper

indices 1 or 8 in square brackets, like for example in the color octet 3P
[8]
1 state. Ncol(n) = 1

if n is a color singlet state and C2
A − 1 = 8 if it is a color octet state, and Npol is the D-

dimensional number of polarization degrees of freedom of state n. We recall that CF = 4/3
and CA = 3 are color factors of the QCD gauge group SU(3). In making the Ncol and Npol

factors explicit, we follow Ref. [9]. 〈OH [n]〉 is the corresponding nonperturbative NRQCD
long-distance matrix element (LDME). ncol(a) and npol(a) are the number of colors and
theD-dimensional number of polarizations of parton a. dPS is the Lorentz-invariant phase
space element. As a convention used throughout this paper, the bra vector is a matrix
element, and in squaring the matrix element a summation of the degrees of freedom of
all external particles is always understood implicitly. This convention is adopted from
Catani, Seymour [6], Phaf, and Weinzierl [7], who do, however, include the ncol factors
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in the amplitude vectors, albeit not the npol factors. In our choice of normalization, all
averaging factors are explicit. Another thing to note is that the summation of external
degrees of freedom includes the spin and orbital-angular-momentum quantum numbers
ms and ml of the QQ[n] state, even if the polarization vectors stand outside the amplitude

vectors. Hereby, in the case of a n = 3P
[1/8]
J state, this summation is always restricted to

the subspace with definite J .
In our study, we are interested in observables where quarkonium H has nonvanishing

transverse momentum pT . Therefore, the partonic Born cross sections and their virtual
corrections already correspond to 2 → 2 processes kinematically, namely

g + g→ QQ[n] + g, (3)

g + q→ QQ[n] + q, (4)

q + g→ QQ[n] + q, (5)

q + q→ QQ[n] + g, (6)

while, for the real corrections, we are led to consider the 2 → 3 kinematics processes

g + g→ QQ[n] + gg/qq, (7)

g + q→ QQ[n] + qg, (8)

q + g→ QQ[n] + qg, (9)

q + q→ QQ[n] + gg/qq/q′q′, (10)

q + q→ QQ[n] + qq, (11)

q + q′ → QQ[n] + qq′, (12)

where g is a gluon and q a light quark or antiquark (specifically u, d, s, u, d, s for
charmonium and, additionally, c and c for bottomonium), q its antiparticle, and q′ another
light quark or antiquark different from q and q. As already stated above, the four-momenta
of the incoming partons are p1 and p2. The four-momenta of the outgoing QCD partons
are p3 and, for the real corrections, also p4. The four-momenta of the heavy quark and
antiquark that form the QQ[n] state are parameterized by p0

2
+ q and p0

2
− q, so that

p0 is the four-momentum of the QQ[n] state and 2q the relative four-momentum of the
two constituent heavy quarks. We assume that the mass of the QQ[n] state is twice the
heavy-quark mass mQ, p

2
0 = 4m2

Q, while we take the other partons to be massless.

The amplitudes |ab→ QQ[n]+X〉 are evaluated from the usual QCD amplitudes with
amputated Q and Q spinors |A〉 as

|1S [1/8]
0 〉 = Tr

[

C1/8 Π0 |A〉
]

|q=0, (13)

|3S [1/8]
1 〉 = ǫα(ms)Tr

[

C1/8 Πα
1 |A〉

]

|q=0, (14)

|1P [1/8]
1 〉 = ǫβ(ml)

∂

∂qβ
Tr
[

C1/8 Π0|A〉
]

|q=0, (15)

|3P [1/8]
J 〉 = ǫα(ms)ǫβ(ml)

∂

∂qβ
Tr
[

C1/8 Πα
1 |A〉

]

|q=0, (16)
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where C1 = 1√
2CA

and C8 =
√
2Te are color projectors with e being the color index of the

cc color octet state. Π0 and Πα
1 are the spin projectors [9],

Π0 =
1

√

8m3
Q

(

/p0
2

− /q −mQ

)

γ5

(

/p0
2

+ /q +mQ

)

, (17)

Πα
1 =

1
√

8m3
Q

(

/p0
2

− /q −mQ

)

γα
(

/p0
2

+ /q +mQ

)

. (18)

2.2 Soft limits

Let us consider a generic Born amplitude,

pi→ = |Born〉. (19)

Then, the expression for the scattering amplitude with an additional gluon j with mo-
mentum pj attached to the line of an outgoing parton i is in the limit of pj being soft
given by the eikonal approximation,

pi + pj→ pi→

pj→
c

a b

∣

∣

∣

∣

∣

∣

∣

pj soft

= gs
pi · ǫ∗(pj)
pi · pj

Ti|Born〉. (20)

Here, gs is the QCD gauge coupling, and Ti acts on |A〉 by inserting at the appropriate
place Tc if parton i is an outgoing quark or incoming antiquark, −Tc if parton i is an
incoming antiquark or outgoing quark, and ifabc if parton i is a gluon.

Let us now consider a generic real-correction amplitude in the limit where a certain
gluon j with momentum pj is soft,

→pj

Real
c

c

∣

∣

∣

∣

∣

∣

∣

∣

pj soft

= |pj soft〉. (21)

Since this implies the sum of all those diagrams where gluon j is in turn attached to all the
other external-particle lines of the corresponding Born diagrams, application of Eq. (20)
yields

|pj soft〉 = gs

(

(

p0
2
+ q
)

· ǫ∗(pj)
(

p0
2
+ q
)

· pj
Tc +

(

p0
2
− q
)

· ǫ∗(pj)
(

p0
2
− q
)

· pj
Tc +

4
∑

i=1
i 6=j

pi · ǫ∗(pj)
pi · pj

Ti

)

∣

∣Born
〉

. (22)
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For definiteness, we evaluate these soft limits using the axial gauge, p0 · ǫ(pj) = 0, so that
the gluon polarization sum takes the form

Παβ(pj) ≡
∑

pol

ǫα(pj)ǫ
∗
β(pj) = −gαβ +

p0αpjβ + pjαp0β
p0 · pj

− p20pjαpjβ
(p0 · pj)2

. (23)

Applying the projectors and squaring the matrix elements then yields

‖|1S [1/8]
0 , pj soft〉‖2 = S1(

1S
[1/8]
0 ; pj), (24)

‖|3S [1/8]
1 , pj soft〉‖2 = S1(

3S
[1/8]
1 ; pj), (25)

‖|1P [1/8]
1 , pj soft〉‖2 = S1(

1P
[1/8]
1 ; pj) + S2(

1P
[1/8]
1 ,1S

[1/8]
0 ; pj) + S3(

1S
[1/8]
0 ; pj), (26)

‖|3P [1/8]
J , pj soft〉‖2 = S1(

3P
[1/8]
J ; pj) + S2(

3P
[1/8]
J ,3S

[1/8]
1 ; pj) + S3(

3S
[1/8]
1 ; pj), (27)

with

S1(n; pj) = g2s

4
∑

i,k=1
i,k 6=j

Παβ(pj)piαpkβ
pi · pj pk · pj

〈n, Born|TiTk|n, Born〉, (28)

S2(n,m; pj) = 4g2s

4
∑

i=1
i 6=j

Παβ(pj)piα
pi · pj p0 · pj

ǫβ(ml)〈n,Born|Ti(Tc −Tc)|m,Born〉, (29)

S3(m; pj) = 4g2s
Παβ(pj)

(p0 · pj)2
ǫ∗α(ml)ǫβ(ml)〈m,Born|(Tc −Tc)(Tc −Tc)|m,Born〉. (30)

Defining T0 ≡ −T1 −T2 −T3 = Tc +Tc, we can write

S1(n; pj) = g2s

4
∑

k=1
k 6=j

〈n,Born|






−

4
∑

i=1
i 6=j

pi · pk
pi · pj pk · pj

TiTk −
2p0 · pk

pk · pj p0 · pj
T0Tk

+
p20

(p0 · pj)2
T0Tk

)

|n,Born〉

= g2s

4
∑

i=0
i 6=j

4
∑

k=0
k 6=i,j

(

− pi · pk
pi · pj pk · pj

+
p2i

(pi · pj)2
)

〈n,Born|TiTk|n,Born〉

=−g2s
4
∑

i=0
i 6=j

4
∑

k=0
k 6=i,j

(

2pi · pk
pi · pj (pi + pk) · pj

− p2i
(pi · pj)2

)

〈n,Born|TiTk|n,Born〉,(31)

S2(n,m; pj) = 4g2s

4
∑

i=1
i 6=j

(

−pβi
pi · pj p0 · pj

+
p0 · pi pβj

pi · pj(p0 · pj)2
−

p20p
β
j

(p0 · pj)3

)

×ǫβ(ml)〈n,Born|Ti(Tc −Tc)|m,Born〉, (32)
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S3(m; pj) = 4g2s

(

− gαβ

(p0 · pj)2
−

p20p
α
j p

β
j

(p0 · pj)4

)

×ǫ∗α(ml)ǫβ(ml)〈m,Born|(Tc −Tc)(Tc −Tc)|m,Born〉. (33)

The S2 and S3 terms, which only appear in squared amplitudes of P -wave states, are
specific for our study.

2.3 Collinear limits

Let us first consider the limit where an incoming parton with momentum pi is collinear
to the outgoing parton with momentum pj . In this limit the divergent contributions stem
from the diagrams with i→ (ij) + j splitting,

Born

→ pj

pi→ pij→ . (34)

If we define p⊥ to be the transverse momentum of p(ij) in the rest frame of the incoming
partons, then we can define the fraction x of the longitudinal momentum of i taken away
by (ij) as

p(ij) = xpi +O(p⊥), (35)

pj = (1− x)pi +O(p⊥), (36)

2pi · pj =
−p2⊥
1− x

+O(p3⊥). (37)

Then, the squared matrix element factorizes in the collinear limit as

‖|pj ini. coll. pi〉‖2 =
ncol(i)

ncol((ij))npol((ij))

g2s
x(pi · pj)

〈Born|P̂i,(ij)(x, p⊥)|Born〉

×
{

δss′ if i is a quark or antiquark

ǫ∗µ(pi)ǫν(pi) if i is a gluon
, (38)

where the indices s and s′ or µ and ν are the spin or polarization indices of particle i,
and P̂i,(ij)(x) are the spin-dependent D-dimensional Dokshitzer-Gribov-Lipatov-Altarelli-
Parisi (DGLAP) [10] splitting functions, which, up to order O(ǫ), are given by

P̂qq(x, p⊥) = δss′CF

(

1 + x2

1− x
− ǫ(1− x)

)

, (39)

P̂qg(x, p⊥) = δss′CF

(

1 + (1− x)2

x
− ǫx

)

, (40)
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P̂gq(x, p⊥) =
1

2

(

−gµν + 4x(1− x)
pµ⊥p

ν
⊥

p2⊥

)

, (41)

P̂gg(x, p⊥) = 2CA

(

−gµν
(

x

1− x
+

1− x

x

)

− 2(1− ǫ)x(1 − x)
pµ⊥p

ν
⊥

p2⊥

)

. (42)

Here, (ij) and j are labeled q if the corresponding particle is a quark or antiquark and g
if it is a gluon. We insert unity noticing that T(ij) = −

∑4
k=0
k 6=i,j

Tk and so obtain

‖|pj ini. coll. pi〉‖2 =
ncol(i)

ncol((ij))npol((ij))

−g2s
x(pi · pj)

4
∑

k=0
k 6=i,j

〈Born|P̂i,(ij)(x, p⊥)
T(ij)Tk

T2
(ij)

|Born〉

×
{

δss′ if i is a quark or antiquark

ǫ∗µ(pi)ǫν(pi) if i is a gluon
, (43)

where we note that T2
(ij) = CF if (ij) is a quark or antiquark, and CA if (ij) is a gluon.

If the two outgoing partons 3 and 4 are collinear, the dominant contributions stem
from diagrams where there is a (34) → 3 + 4 splitting,

Born

→ p4

→ p3
p34
→

. (44)

If we define p⊥ to be the transverse momentum of p3 in the rest frame of the incoming
partons, then we can define the fraction z of the longitudinal momentum of (34) taken
away by 3 as

p3 = zp(34) +O(p⊥), (45)

p4 = (1− z)p(34) +O(p⊥), (46)

2p3 · p4 =
−p2⊥

z(1− z)
+O(p3⊥). (47)

The squared matrix element then factorizes as

‖|p3 final coll. p4〉‖2 =
g2s

p3 · p4
〈Born|P̂(34),3(z, p⊥)|Born〉

=− g2s
p3 · p4

4
∑

k=0
k 6=3,4

〈Born|P̂(34),3(z, p⊥)
T(34)Tk

T2
(34)

|Born〉, (48)

where the indices s and s′ or µ and ν within P̂(34),3 are the open spin or Lorentz indices
of particle (34) in the Born amplitude.
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Figure 1: Overview of the IR-singularity structure and its cancellations.

3 Cancellation of IR divergences

The IR divergences associated with the soft and collinear limits discussed in sections 2.2
and 2.3 are to a large extent canceled by contributions of the virtual corrections, as
shown in Fig. 1. A part of the initial-state collinear divergences is, however, absorbed
in the PDFs, while the S3 contributions to the soft divergences are canceled by LDME
renormalization contributions. These two additional ingredients are described in this
section.

3.1 PDF redefinition and PDF evolution

As for the initial-state collinear divergences of an i → (ij) + j splitting, a part of it is
absorbed by an MS redefinition of the PDF f(ij)/A(y), which then becomes dependent on
the factorization scale µf ,

f(ij)/A(y, µf) ≡ f(ij)/A(y)−
g2s
8π2

(

4πµ2
r

µ2
f

e−γE

)ǫ
1

ǫ

∫ 1

y

dx

x
P+
i,(ij)(x)fi/A

(y

x

)

, (49)

where µr is the renormalization scale and P+
i,(ij)(x) is one of the regularized DGLAP

splitting functions,

P+
qq(x) = CF

(

1 + x2

(1− x)+
+

3

2
δ(1− x)

)

, (50)

P+
qg(x) = CF

1 + (1− x)2

x
, (51)

P+
gq(x) =

1

2

(

x2 + (1− x)2
)

, (52)
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P+
gg(x) = 2CA

(

x

(1− x)+
+

1− x

x
+ x(1− x)

)

+

(

11

6
CA − nf

3

)

δ(1− x), (53)

with nf being the number of active quark flavors, for us 3 for charmonium production
and 4 for bottomonium production. Next, we solve Eq. (49) for f(ij)/A(y). Using these
f(ij)/A(y) functions in the general formula (1), a mass factorization counterterm,

dσ̂MFC(a + b+QQ[n] +X) =





∑

(ij)

∫

dxP+
a,(ij)(x)dσ̂Born((ij) + b→ QQ[n] +X)

+
∑

(ij)

∫

dxP+
b,(ij)(x)dσ̂Born(a+ (ij) → QQ[n] +X)





g2s
8π2

(

4πµ2
r

µ2
f

e−γE

)ǫ
1

ǫ
, (54)

arises, where parton (ij) carries the fraction x of the splitting parton’s momentum. In
Fig. 1, this contribution is indicated as the box labeled PDF redefinition. The DGLAP
equations governing the evolution of the scale-dependent PDFs follow seamlessly after
differentiating Eq. (49) with respect to µf .

3.2 LDME renormalization and LDME evolution

In a similar fashion, we have to treat the contributions from the LDME renormalization.
A NLO calculation of the 3S

[8]
1 LDME using NRQCD Feynman rules and an expansion in

1
mQ

after the loop integration yields that it is related to the 3P
[1]
J and 3P

[8]
J LDMEs via

〈OH [3S
[8]
1 ]〉NLO = 〈OH [3S

[8]
1 ]〉LO +

g2s
3π2m2

Q

(

1

ǫUV

− 1

ǫIR

)

×
∑

J

[

CF

2CA
〈OH [3P

[1]
J ]〉+ C2

A − 4

4CA
〈OH [3P

[8]
J ]〉

]

. (55)

This bare operator is both ultraviolet and IR divergent. We remove the ultraviolet sin-
gularity by introducing an MS-renormalized LDME,

〈OH [3S
[8]
1 ]〉(µΛ) ≡ 〈OH [3S

[8]
1 ]〉NLO − g2s

3π2m2
Q

(

4πµ2
r

µ2
Λ

e−γE

)ǫ
1

ǫUV

×
∑

J

[

CF

2CA
〈OH [3P

[1]
J ]〉+ C2

A − 4

4CA
〈OH [3P

[8]
J ]〉

]

, (56)

which depends on the NRQCD factorization scale µΛ. Solving Eqs. (55) and (56) for

〈OH [3S
[8]
1 ]〉LO and using this in the general formula (1), we obtain the contribution

dσ3S
[8]
1 op.ren.

=
∑

a,b,X
2→2

∫

dxadxbfa/A(xa)fb/B(xb)dσ̂(ab → QQ[3S
[8]
1 ] +X)
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× g2s
3π2m2

Q

(

4πµ2
r

µ2
Λ

e−γE

)ǫ
1

ǫ

∑

J

[

CF

2CA
〈OH [3P

[1]
J ]〉+ C2

A − 4

4CA
〈OH [3P

[8]
J ]〉

]

. (57)

Similarly, we obtain

dσ3S
[1]
1 op.ren.

=
∑

a,b,X
2→2

∫

dxadxbfa/A(xa)fb/B(xb)dσ̂(ab→ QQ[3S
[1]
1 ] +X)

× g2s
3π2m2

Q

(

4πµ2
r

µ2
Λ

e−γE

)ǫ
1

ǫ

∑

J

〈OH [3P
[8]
J ]〉, (58)

dσ1S
[8]
0 op.ren.

=
∑

a,b,X
2→2

∫

dxadxbfa/A(xa)fb/B(xb)dσ̂(ab→ QQ[1S
[8]
0 ] +X)

× g2s
3π2m2

Q

(

4πµ2
r

µ2
Λ

e−γE

)ǫ
1

ǫ

[

CF

2CA

〈OH [1P
[1]
1 ]〉+ C2

A − 4

4CA

〈OH [1P
[8]
1 ]〉

]

,(59)

dσ1S
[1]
0 op.ren.

=
∑

a,b,X
2→2

∫

dxadxbfa/A(xa)fb/B(xb)dσ̂(ab→ QQ[1S
[1]
0 ] +X)

× g2s
3π2m2

Q

(

4πµ2
r

µ2
Λ

e−γE

)ǫ
1

ǫ
〈OH [1P

[8]
1 ]〉. (60)

These contributions cancel the S3 contributions of the soft divergences and are labeled
LDME renormalization in Fig. 1. However, we transform them further to cast them into
a form that will be more useful for our purposes. Noticing that

〈2S+1L
[8]
J |(Tc −Tc)(Tc −Tc)|2S+1L

[8]
J 〉 = C2

A − 4

CA
‖|2S+1L

[8]
J 〉‖2 + 8CACF‖|2S+1L

[1]
J 〉‖2,(61)

〈2S+1L
[1]
J |(Tc −Tc)(Tc −Tc)|2S+1L

[1]
J 〉 = 1

C2
A

‖|2S+1L
[8]
J 〉‖2, (62)

we can rewrite Eqs. (57) and (58) as

dσ3S
[1]
1 +3S

[8]
1 op.ren.

=
g2s

12π2m2
Q

(

4πµ2
r

µ2
Λ

e−γE

)ǫ
1

ǫ

∑

a,b,X
2→2

∫

dxadxb fa/A(xa)fb/B(xb)
1

2(p1 + p2)2

× Fsym(X)

ncol(a)npol(a)ncol(b)npol(b)
dPS2

∑

J

[

〈3S [1]
1 ,Born|(Tc −Tc)(Tc −Tc)|3S [1]

1 ,Born〉
Ncol(3S

[1]
1 )Npol(3S

[1]
1 )

×〈OH [3P
[1]
J ]〉+ 〈3S [8]

1 ,Born|(Tc −Tc)(Tc −Tc)|3S [8]
1 ,Born〉

Ncol(3S
[8]
1 )Npol(3S

[8]
1 )

〈OH [3P
[8]
J ]〉

]

. (63)

Recalling our convention regarding the summation of the polarization degrees of freedom,
we observe that Npol(

3S1) = −ǫ∗µ(ms)ǫ
µ(ms) and Npol(

3PJ) = ǫ∗µ(ml)ǫ
∗
ν(ms)ǫ

µ(ml)ǫ
ν(ms),
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so that we can write

dσ3S
[1]
1 +3S

[8]
1 op.ren.

=
∑

a,b,X
2→2

∑

c=1,8

∑

J

∫

dxadxb fa/A(xa)fb/B(xb)
〈OH [3P

[c]
J ]〉

Ncol(3P
[c]
J )Npol(3P

[c]
J )

× 1

2(p1 + p2)2
dPS2

Fsym(X)

ncol(a)npol(a)ncol(b)npol(b)
‖|3P [c]

J , op.ren.〉‖2, (64)

with

‖|3P [c]
J , op.ren.〉‖2 =

g2s
12π2m2

Q

(

4πµ2
r

µ2
Λ

e−γE

)ǫ

gαβ
(

−1

ǫ

)

×ǫ∗α(ml)ǫβ(ml)〈3S [c]
1 ,Born|(Tc −Tc)(Tc −Tc)|3S [c]

1 ,Born〉. (65)

From the terms in Eqs. (59) and (60), we obtain a corresponding expression,

dσ1S
[1]
0 +1S

[8]
0 op.ren.

=
∑

a,b,X
2→2

∑

c=1,8

∫

dxadxb fa/A(xa)fb/B(xb)
〈OH [1P

[c]
1 ]〉

Ncol(1P
[c]
1 )Npol(1P

[c]
1 )

× 1

2(p1 + p2)2
dPS2

Fsym(X)

ncol(a)npol(a)ncol(b)npol(b)
‖|1P [c]

1 , op.ren.〉‖2, (66)

with

‖|1P [c]
1 , op.ren.〉‖2 =

g2s
12π2m2

Q

(

4πµ2
r

µ2
Λ

e−γE

)ǫ

gαβ
(

−1

ǫ

)

×ǫ∗α(ml)ǫβ(ml)〈1S [c]
0 ,Born|(Tc −Tc)(Tc −Tc)|1S [c]

0 ,Born〉. (67)

Finally, we derive the formula for the running of the LDME 〈OH [3S
[8]
1 ]〉(µΛ) with µΛ.

Differentiating Eq. (56) with respect to µΛ, we obtain a renormalization group equation,
with the solution

〈OH [3S
[8]
1 ]〉(µΛ) = 〈OH [3S

[8]
1 ]〉(µΛ,0) +

16

3m2
Q

(

1

β0
ln
αs(µΛ,0)

αs(µΛ)
+

β1
4πβ2

0

(αs(µΛ)− αs(µΛ,0))

)

×
∑

J

[

CF

2CA
〈OH [3P

[1]
J ]〉+ C2

A − 4

4CA
〈OH [3P

[8]
J ]〉

]

, (68)

through NLO in αs. Here, β0 =
11
3
CA − 2

3
nf and β1 =

34
3
C2

A − 2CFnf − 10
3
CAnf . The evo-

lution equations for 〈OH [3S
[1]
1 ]〉(µΛ), 〈OH [1S

[8]
0 ]〉(µΛ), and 〈OH [1S

[1]
0 ]〉(µΛ) may be obtained

similarly and read

〈OH [3S
[1]
1 ]〉(µΛ) = 〈OH [3S

[1]
1 ]〉(µΛ,0) +

16

3m2
Q

(

1

β0
ln
αs(µΛ,0)

αs(µΛ)
+

β1
4πβ2

0

(αs(µΛ)− αs(µΛ,0))

)

×
∑

J

〈OH [3P
[8]
J ]〉, (69)

12



〈OH [1S
[8]
0 ]〉(µΛ) = 〈OH [1S

[8]
0 ]〉(µΛ,0) +

16

3m2
Q

(

1

β0
ln
αs(µΛ,0)

αs(µΛ)
+

β1
4πβ2

0

(αs(µΛ)− αs(µΛ,0))

)

×
[

CF

2CA

〈OH [1P
[1]
1 ]〉+ C2

A − 4

4CA

〈OH [1P
[8]
1 ]〉

]

, (70)

〈OH [1S
[1]
0 ]〉(µΛ) = 〈OH [1S

[1]
0 ]〉(µΛ,0) +

16

3m2
Q

(

1

β0
ln
αs(µΛ,0)

αs(µΛ)
+

β1
4πβ2

0

(αs(µΛ)− αs(µΛ,0))

)

×〈OH [1P
[8]
1 ]〉. (71)

4 Dipole subtraction for quarkonium production

4.1 General setup

In a preliminary version, not yet taking into account kinematic cuts, we write the partonic
NLO corrections as

∫

dσ̂ =

∫

dPS3
dσ̂real
dPS3

+

∫

dPS2
dσ̂virtual + dσ̂MFC + dσ̂op. ren.

dPS2

=

∫

dPS3

(

dσ̂real
dPS3

− dσ̂subtr
dPS3

)

+

∫

dPS2

(

dσ̂virtual + dσ̂MFC + dσ̂op. ren.
dPS2

+ [dx]

∫

dPSdipole
dσ̂subtr
dPS3

)

. (72)

Here, dPS2 is the two-particle phase space element, and dPS3 is the three-particle phase
space element, which factorizes in some way, as either dPS3 = dPS2dPSdipole or dPS3 =
dPS2dx dPSdipole, where dPSdipole are certain dipole phase space elements and dx matches
its counterpart within dσ̂MFC as defined in Eq. (54). The subtraction terms dσ̂subtr are
defined in terms of some kinematic variables in the parameterization of dPSdipole and
certain 2 → 2 kinematics momenta {p̃i} appearing in dPS2, which are in turn in some
way mapped onto the 2 → 3 kinematics momenta {pi}. The idea is that dσ̂subtr matches
dσ̂real in all singular limits. Therefore, the first bracket on the right-hand side of Eq. (72)
is free of divergences and can be integrated numerically in four dimensions. On the other
hand, dσ̂subtr is simple enough that it can be analytically integrated in D dimensions over
dPSdipole. The IR poles of dσdipole then become explicit as ǫ−1 and ǫ−2 poles and cancel the
singularities of dσvirtual + dσ̂MFC + dσ̂op. ren., so that the second bracket on the right-hand
side of Eq. (72) is also finite and can be integrated numerically over dPS2 or dPS2dx in
four dimensions, too. So the task is to construct appropriate expressions for dσsubtr and
dPSdipole with the corresponding momentum mappings.

4.2 Subtraction term

From Eqs. (31), (43), and (48), we observe that the sum of all softly and collinearly
divergent terms can be brought into a form that can be approximated in all singular

13



pi pk Definition and Integration Applied Mapping

V ini,S1

ij,k p1 or p2 p0 PW, section 6.1 MapPW6(pi, pj)

V ini,S1

ij,k p1 or p2 p1 or p2 CS, section 5.6 (n = p3 + p4) MapCS(pi)

V ini,S1

ij,k p1 or p2 p3 or p4 CS, section 5.3 MapCS(pi)

V fin,S1

ij,k p0 p1 or p2 PW, section 6.2 MapPW6(pk, pj)

V fin,S1

ij,k p0 p3 or p4 PW, section 5.2 MapPW5.2(pj)

V fin,S1

ij,k p3 or p4 p0 PW, section 5.1 MapPW5.1(pi)

V fin,S1

ij,k p3 or p4 p1 or p2 CS, section 5.2 MapCS(pk)

VS2,ij p1 or p2 Here, Eq. (75) and section 4.5.1 MapPW6(pi, pj)
VS2,ij p3 or p4 Here, Eq. (75) and section 4.5.2 MapPW5.2(pj)
VS3,j Here, Eq. (76) and section 4.5.3 MapPW5.2(pj)

Table 1: List of occurring V terms with given momentum assignments; of where their
definitions and analytic expressions upon integration over the dipole phase spaces may be
found in the Catani-Seymour (CS) [6] and Phaf-Weinzierl (PW) [7] papers and here; and
of momentum mappings, according to the naming scheme of section 4.3, to be applied to
the numerical integrations of the respective dipole terms over dPS3.

limits by the subtraction term

dσ̂subtr(a+ b→ QQ[n] +X)

dPS3

=
1

Ncol(n)Npol(n)

1

2(p1 + p2)2

× Fsym(X)

ncol(a)npol(a)ncol(b)npol(b)
‖|abn, subtr〉‖2, (73)

with

‖|abn, subtr〉‖2 =
4
∑

j=3

2
∑

i=1

4
∑

k=0
k 6=i,j

ncol(i)

ncol((ij))

−1

2pi · pj
1

x
〈n,Born|V ini,S1

ij,k

T(ij)Tk

T2
(ij)

|n,Born〉

+

4
∑

j=3

3
∑

i=0
i 6=1,2,j

4
∑

k=0
k 6=i,j

−1

2pi · pj
〈n,Born|V fin,S1

ij,k

T(ij)Tk

T2
(ij)

|n,Born〉
{

1
x

if k = 1, 2

1 if k 6= 1, 2

+
4
∑

j=3

4
∑

i=1
i 6=j

V β
S2,ij

ǫβ(ml)〈n,Born|T(ij)(Tc −Tc)|m(n),Born〉

+
4
∑

j=3

V αβ
S3,j

ǫ∗α(ml)ǫβ(ml)〈m(n),Born|(Tc −Tc)(Tc −Tc)|m(n),Born〉. (74)

In the respective limits, the initial-state collinear singularities are reproduced by the first
line, the final-state collinear singularities by the second line, the S1 soft divergences by
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the corresponding soft limits of the first and second lines together, and the S2 and S3 soft
divergences in the case of P -wave states by the last two lines. In the regions away from
the soft and collinear limits, there are no additional singularities. We call each of the
terms in the sums a dipole. In the Born amplitudes, particles i and j are replaced by one
particle (ij), which is a gluon, a light quark or the QQ[n] state depending on the collinear
or soft limits to be approximated. Where there is no divergent collinear or soft limit to
be approximated, the contribution is just zero. We note that, in the soft limits, particles
i and (ij) are the same and that, in the soft and final-state collinear limits, x = 1. We

further define m(3P
[1/8]
J ) = 3S

[1/8]
1 and m(1P

[1/8]
1 ) = 1S

[1/8]
0 . Table 1 lists where to find the

explicit expressions for V ini,S1

ij,k and V fin,S1

ij,k in the Catani-Seymour [6] and Phaf-Weinzierl [7]

papers. The factors in Eq. (74) are adjusted so that V ini,S1

ij,k equals V ij
k or V ij,k and V fin,S1

ij,k

equals Vij,k or V k
ij in their notations. The particle (ij) is called an emitter, the particle k

a spectator, and the indices s and s′ or µ and ν within Vij,k are the spin or polarization

indices of particle (ij) in the Born amplitude. The V β
S2,ij

and V αβ
S3,j

terms, which are new,
are given by

V β
S2,ij

= 4g2s

(

− pβi
pi · pj p0 · pj

+
p0 · pipβj

pi · pj(p0 · pj)2
−

p20p
β
j

(p0 · pj)3

)

, (75)

V αβ
S3,j

= 4g2s

(

− gαβ

(p0 · pj)2
−

p20p
α
j p

β
j

(p0 · pj)4

)

, (76)

so as to approximate Eqs. (32) and (33). A pictorial summary of all dipole terms appearing
in our study is given in Fig. 2.

4.3 Momentum mappings

The subtraction term dσ̂subtr in Eq. (73) is defined in terms of 2 → 3 kinematics variables,
but the squared Born amplitudes contained therein describe 2 → 2 processes. Therefore,
we need to map the 2 → 2 kinematics momenta {p̃i} of the squared Born matrix elements
in Eq. (74) to the momenta {pi} of the 2 → 3 kinematics processes. This means that we
need relations of the kind

p̃1 = p̃1(p1, p2, p0, p3, p4) p̃2 = p̃2(p1, p2, p0, p3, p4),

p̃0 = p̃0(p1, p2, p0, p3, p4) p̃3 = p̃3(p1, p2, p0, p3, p4), (77)

which fulfill certain conditions, at least p̃21 = p̃22 = p̃23 = 0, p̃20 = p20 and p̃1 + p̃2 = p̃0 + p̃3.
For dipoles that are to describe a limit where the outgoing momentum p3 or p4 is soft, or
where p3 and p4 are collinear, we also need p̃1 → p1, p̃2 → p2, p̃0 → p0, and p̃3 → p3 + p4
in those limits. For dipoles which are to describe an initial-state collinear limit where the
final-state momentum pj is collinear to the initial-state momentum pa, we need p̃a → xpa,
p̃b → pb, p̃0 → p0 and p̃3 → p3 + p4 − (1 − x)pa, where x = (n · pa − n · pj)/(n · pa), n is
an arbitrary vector, and pb is the momentum of the incoming parton that is not splitting.
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g + g → cc[n] + g :

3
4

1: V fin,S1
g3g4,p0

2: V fin,S1
g3g4,p1

3: V fin,S1
g3g4,p2

3
4

4: V fin,S1

q3q4,p0

5: V fin,S1

q3q4,p1

6: V fin,S1

q3q4,p2

3

4

7: V fin,S1
p0g3,p4

8: V fin,S1
p0g3,p1

9: V fin,S1
p0g3,p2

4

3

10: V fin,S1
p0g4,p3

11: V fin,S1
p0g4,p1

12: V fin,S1
p0g4,p2

3

4

13: V ini,S1
g1g3,p0

14: V ini,S1
g1g3,p4

15: V ini,S1
g1g3,p2

4

3

16: V ini,S1
g1g4,p0

17: V ini,S1
g1g4,p3

18: V ini,S1
g1g4,p2

3

4

19: V ini,S1
q1q3,p0

20: V ini,S1
q1q3,p4

21: V ini,S1
q1q3,p2

3
4

22: V ini,S1
g2g4,p0

23: V ini,S1
g2g4,p3

24: V ini,S1
g2g4,p1

4
3

25: V ini,S1
g2g3,p0

26: V ini,S1
g2g3,p4

27: V ini,S1
g2g3,p1

4
3

28: V ini,S1
q2q3,p0

29: V ini,S1
q2q3,p4

30: V ini,S1
q2q3,p1

q + q → cc[n] + g :

3
4

1: V fin,S1
g3g4,p0

2: V fin,S1
g3g4,p1

3: V fin,S1
g3g4,p2

3
4

4: V fin,S1

q3q4,p0

5: V fin,S1

q3q4,p1

6: V fin,S1

q3q4,p2

3

4

7: V fin,S1
p0g3,p4

8: V fin,S1
p0g3,p1

9: V fin,S1
p0g3,p2

4

3

10: V fin,S1
p0g4,p3

11: V fin,S1
p0g4,p1

12: V fin,S1
p0g4,p2

3

4

13: V ini,S1
q1g3,p0

14: V ini,S1
q1g3,p4

15: V ini,S1
q1g3,p2

4

3

16: V ini,S1
q1g4,p0

17: V ini,S1
q1g4,p3

18: V ini,S1
q1g4,p2

3

4

19: V ini,S1

g1q3,p0

20: V ini,S1

g1q3,p4

21: V ini,S1

g1q3,p2

3
4

22: V ini,S1
q2g4,p0

23: V ini,S1
q2g4,p3

24: V ini,S1
q2g4,p1

4
3

25: V ini,S1
q2g3,p0

26: V ini,S1
q2g3,p4

27: V ini,S1
q2g3,p1

4
3

28: V ini,S1

g2q3,p0

29: V ini,S1

g2q3,p4

30: V ini,S1

g2q3,p1

q + g → cc[n] + q :

3
4

1: V fin,S1
q3g4,p0

2: V fin,S1
q3g4,p2

3: V fin,S1
q3g4,p1

4

3

4: V fin,S1
p0g4,p3

5: V fin,S1
p0g4,p2

6: V fin,S1
p0g4,p1

4

3

7: V ini,S1
q1g4,p0

8: V ini,S1
q1g4,p3

9: V ini,S1
q1g4,p2

4

3

10: V ini,S1

g1q4,p0

11: V ini,S1

g1q4,p3

12: V ini,S1

g1q4,p2

3
4

13: V ini,S1
g2g4,p0

14: V ini,S1
g2g4,p3

15: V ini,S1
g2g4,p1

3
4

16: V ini,S1
q2q4,p0

17: V ini,S1
q2q4,p3

18: V ini,S1
q2q4,p1

4
3

19: V ini,S1
q2q3,p0

20: V ini,S1
q2q3,p4

21: V ini,S1
q2q3,p1

(equal quark flavors only)

g + q → cc[n] + q :

3
4

1: V fin,S1
q3g4,p0

2: V fin,S1
q3g4,p2

3: V fin,S1
q3g4,p1

4

3

4: V fin,S1
p0g4,p3

5: V fin,S1
p0g4,p2

6: V fin,S1
p0g4,p1

4

3

7: V ini,S1
g1g4,p0

8: V ini,S1
g1g4,p3

9: V ini,S1
g1g4,p2

4

3

10: V ini,S1
q1q4,p0

11: V ini,S1
q1q4,p3

12: V ini,S1
q1q4,p2

(equal quark flavors only)

3

4

13: V ini,S1
q1q3,p0

14: V ini,S1
q1q3,p4

15: V ini,S1
q1q3,p2

3
4

16: V ini,S1
q2g4,p0

17: V ini,S1
q2g4,p3

18: V ini,S1
q2g4,p1

3
4

19: V ini,S1

g2q4,p0

20: V ini,S1

g2q4,p3

21: V ini,S1

g2q4,p1

Additional dipoles for P -wave states
(include for all subprocesses):

231: VS2,31

232: VS2,32

234: VS2,34

241: VS2,41

242: VS2,42

243: VS2,43

330: VS3,3

340: VS3,4

Figure 2: Numbered list of dipole terms for each of the occurring Born processes with 2 → 2 kinematics. The diagrams
related to the V ini,S1

ij,k and V fin,S1

ij,k terms indicate in which collinear or soft limits the latter contribute. Light-quark lines are
to be summed over all quark flavors.
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Since we cannot fulfill all conditions at the same time, we need different mappings for
different dipoles. The four kinds of momentum mappings we use in our study are the
following.

For all dipoles that do not involve the quarkonium momentum p0, we use the mapping
that follows from Catani-Seymour chapters 5.2 and 5.3, and also 5.6 with n = p3 + p4.
With pa being an initial-state momentum, this mapping implies that

p̃a = xpa, p̃3 = p3 + p4 − (1− x)pa, x =
p3 · pa + p4 · pa − p3 · p4

p3 · pa + p4 · pa
. (78)

It satisfies the conditions for all the limits p3 or p4 soft, p3 collinear to p4, and pa collinear
to either p3 or p4, and we refer to this mapping as MapCS(pa).

For those dipoles that involve the quarkonium momentum p0, an initial-state momen-
tum pa and a massless final-state momentum pf , we use the mapping

p̃a = xpa, p̃0 = p0 + pf − (1− x)pa, x =
pf · pa + p0 · pa − p0 · pf

pf · pa + p0 · pa
(79)

of Phaf-Weinzierl chapters 6.1 and 6.2. It satisfies the conditions for the limits pf soft
and pf collinear to pa, and we refer to it as MapPW6(pa, pf).

If we have a dipole term involving the quarkonium momentum p0 plus two final-state
momenta pf and pg, being p3 and p4 or vice versa, but we are only concerned with the
limit pf soft, we use the mapping of Phaf-Weinzierl chapter 5.2, namely

p̃3 =
1

1− y
pg, p̃0 = p0 + pf −

y

1− y
pg, y =

p0 · pf
pf · pg + p0 · pf + p0 · pg

, (80)

which we call MapPW5.2(pf).
The case involving the final-state momenta p0, pf , and pg, but with p0 being the

spectator, is more complicated, since here, in addition to the condition for pf soft, also
those for pg soft and for pf and pg collinear need to be fulfilled. The momentum mapping
appropriate here is the one of Phaf-Weinzierl chapter 5.1 is

p̃3 = apf + bpg + cp0, p̃0 = (1− a)pf + (1− b)pg + (1− c)p0, (81)

with

a =
1

N

(

1− u− c

yũ0

(

2y(1− u)− ũ0((1− u)y2 + (1− u+ u2)y + u− 2u2)
)

)

,

b =
1

N

(

u+
c

yũ0

(

−2yu− ũ0((1− 2u− u2)y + 1− 3u+ 2u2)
)

)

,

c =
yũ0

(2u− 1− y(1− u))2ũ0 + 4u(1− u)y

(

2u(1− u)− N√
1− v

)

,

N = u2 + (1− u)2 + (1− u)y, (82)
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where

ũ0 =
(pf + pg + p0)

2 − p20
(pf + pg + p0)2

, u =
2pf · pg + 2p0 · pg

(pf + pg + p0)2 − p20
, v =

pf · pg(p0 · pf + p20
2
)

pf · p0(pf · pg + p0 · pg)
.

(83)
We refer to this mapping as MapPW5.1(pf).

We note that the dipole terms in the Catani-Seymour and Phaf-Weinzierl papers were
constructed such that the spin correlation terms of the splitting gluons vanish when con-
tracted with the splitting gluon’s tilde momentum. This property is used in the analytic
integrations as a simplification, but it assumes that the momentum mapping of the cor-
responding chapter is used. A momentum mapping alternative to Eq. (81) is given, for
example, in Eq. (5.9) of Ref. [8], which has the advantage of being symmetric in pf and
pg. But that mapping does not fulfill the contraction property of the dipole terms in
Phaf-Weinzierl chapter 5.1, which we use.

4.4 Phase space factorization

The phase space factorization dPS3 = dPS2[dx]dPSdipole, with dPSdipole depending only
on the external momenta involved in the respective dipole terms, is crucial to facilitate
their analytic integrations over dPSdipole. In the case of dipoles for final-state particles
only, we have dPS3 = dPS2dPSdipole, and, in the case of dipoles involving an initial-state
parton with momentum pa, the factorization is dPS3 = dPS2dx dPSdipole, where x fulfills
p̃a = xpa. The dipole factorization and the analytic integration can be found in the
respective papers where the dipoles are given. The result of the analytic integration then
only depends on the momenta {p̃i} and x. For the reader’s convenience, we copy here the
phase space parameterization of Phaf-Weinzierl chapters 5 and 6, only slightly adjusting
the notation, since they will be the basis for our analytic integration of the V β

S2,ij
and V αβ

S3,j

terms in sections 4.5.1–4.5.3.
The phase space parameterization used in Phaf-Weinzierl chapter 5, involving the

quarkonium momentum p0 and two final-state momenta pf and pg being p3 and p4 or vice
versa, is

dPS3(p1 + p2 → p0 + p3 + p4) = dPS2(p̃1 + p̃2 → p̃0 + p̃3)dPSdipole, (84)

with

dPSdipole =
(4π)ǫ−2

Γ(1− ǫ)
s̃1−ǫũ2−2ǫ

0

∫ 1

0

du(1−u)1−2ǫ(1− ũ0u)
ǫ−1u1−2ǫ

∫ 1

0

dvv−ǫ(1− v)−ǫ, (85)

where ũ0, u, and v are those of Eq. (83) and s̃ = (p̃0+p̃3)
2, which here equals (p0+p3+p4)

2,
so that ũ0 = (s̃− 4m2

Q)/s̃.
The phase space parameterization used in Phaf-Weinzierl chapter 6, involving the

quarkonium momentum p0, an initial-state momentum pa being p1 or p2 and a final-state
momentum pf being p3 or p4, is

dPS3(p1 + p2 → p0 + p3 + p4) = dPS2(p̃1 + p̃2 → p̃0 + p̃3)dx dPSdipole, (86)
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with

dPSdipole =
(4π)ǫ−2

Γ(1− ǫ)
(−ψ̃a)

1−ǫxǫ−1(1− x)1−2ǫ(1− χ̃ax)
ǫ−1

∫ 1

0

dww−ǫ(1− w)−ǫ, (87)

where x is that of Eq. (79),

w =
pa · pf(p0 · pf + p20

2
)

p0 · pf (pa · pf + p0 · pa)
, χ̃a =

(p0 + pf − pa)
2

(p0 + pf − pa)2 − p20
, (88)

and ψ̃a = (p̃0 − p̃a)
2 − 4m2

Q, which here is equal to (p0 + pf − pa)
2 − p20, such that

χ̃a = (ψ̃a + 4m2
Q)/ψ̃a.

4.5 Integration of dipoles over dipole phase space

4.5.1 Integration of VS2,ij terms: Initial-state case

To solve the dipole phase space integral of V β
S2,ij

given in Eq. (75) for an initial-state parton
i, we use in the following the momentum mapping in Eq. (79) and the parameterization of
the dipole phase space in Eq. (87) with pa = pi and pf = pj in both equations. Since the
integration result can only depend on the momenta p̃i and p̃0, we start by decomposing

∫

dPSdipoleV
β (ini)
S2,ij

= C1p̃
β
i + C2p̃

β
0 . (89)

Although the component proportional to p̃β0 will vanish upon contraction with ǫβ(ml) in
Eq. (74), we still have to consider it here, since the integral itself does have this component.
We determine C1 by multiplying Eq. (89) with p̃iβ and p̃0β and solving the resulting system
of linear equations and so obtain

C1 =
4g2s
p̃0 · p̃i

[

− p̃0 · pi
p0 · pj pi · pj

+
(p20)

2 p̃i · pj
p̃0 · p̃i(p0 · pj)3

− p20 p0 · pi p̃i · pj
p̃0 · p̃i pi · pj(p0 · pj)2

−p
2
0 p̃0 · pj
(p0 · pj)3

+
p0 · pi p̃0 · pj
pi · pj(p0 · pj)2

]

. (90)

Next, we apply the mapping in Eq. (79), express all appearing scalar products in terms
of ψ̃i, χ̃i, x, 1− x, w, and 1− χ̃ix, and so obtain

C1 =
16g2s

1− χ̃ix

[

wx

ψ̃2
i

− 2x(1− χ̃ix)

ψ̃2
i (1− x)

+
16m2

Qx
2(1− χ̃ix)

ψ̃3
i (1− x)2

−
16m2

Qwx
2

ψ̃3
i (1− x)

+
64m4

Qx
3w

ψ̃4
i (1− x)2

]

.

(91)
We now use the expression in Eq. (87) for the dipole phase space in Eq. (89), perform the
w integration, and expand the result in ǫ using

2(1− x)−1−2ǫ = −1

ǫ
δ(1− x) +

(

2

1− x

)

+

+O(ǫ). (92)
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The result through terms of order O(ǫ0) is then

∫

dPSdipoleV
β (ini)
S2,ij

=
g2s
π2ψ̃i

p̃βi

[

δ(1− x)

(

4πµ2
r

m2
Q

e−γE

)ǫ
(

−1

ǫ
− 2− ln

4m2
Q

ψ̃2
i

)

+
2x(1− χ̃i)(2− x− χ̃ix)

(1− χ̃ix)2

(

1

1− x

)

+

+
3(1− x)

2(1− χ̃ix)2

]

+ (p̃0 term). (93)

4.5.2 Integration of VS2,ij terms: Final-state case

To solve the dipole phase space integral of V β
S2,ij

given in Eq. (75) for a final-state parton
i, we use in the following the momentum mapping in Eq. (80) and the parameterization
of the dipole phase space in Eq. (85) with pf = pj and pg = pi in both equations. The
integration result can then only depend on the momenta p̃3 and p̃0, and we decompose

∫

dPSdipoleV
β (fin)
S2,ij

= C3p̃
β
3 + C4p̃

β
0 . (94)

Although the component proportional to p̃β0 will vanish upon contraction with ǫβ(ml) in
Eq. (74), we still have to consider it here, since the integral itself does have this component.
We determine C3 by multiplying Eq. (94) in turn with p̃3β and p̃0β and solving the resulting
system of linear equations and so obtain

C3 =
8g2s
s̃ũ0

[

2(p20)
2 p̃3 · pj

s̃ũ0(p0 · pj)3
− 2p20 p̃3 · pj p0 · pi
s̃ũ0pi · pj(p0 · pj)2

+
2p20 p̃3 · pi

s̃ũ0p0 · pj pi · pj

− p̃0 · pi
p0 · pj pi · pj

− p20 p̃0 · pj
(p0 · pj)3

+
p0 · pi p̃0 · pj
pi · pj(p0 · pj)2

]

. (95)

Next, we apply the mapping in Eq. (80), express all appearing scalar products in terms
of s̃, ũ0, u, 1− u, v, and 1− ũ0u, and so obtain

C3 =
16g2sv

(1− ũ0u)(1− u)2s̃2ũ0

[

(1− u)2 +
64m4

Q

s̃2ũ20
+

16m2
Q(1− u)

s̃ũ0
−

16m2
Q(1− ũ0u)

s̃ũ20v

−2(1− ũ0u)(1− u)

ũ0v

]

. (96)

Using the expression in Eq. (85) for the dipole phase space in Eq. (94), we can now do
the integrations by identifying hypergeometric functions, which we then expand in ǫ using
the program package HypExp [11]. Our result through order O(ǫ0) is

∫

dPSdipoleV
β (fin)
S2,ij

=
g2s

π2s̃ũ0

(

4πµ2
r

m2
Q

e−γE

)ǫ

p̃β3

[

1

ǫ
− 1

ũ0
ln

4m2
Q

s̃
+ 3 +

1

2
ln

64m10
Q

s̃5ũ40

]

+(p̃0 term). (97)
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4.5.3 Integration of VS3,j terms and incorporation of LDME renormalization

counterterms

To solve the dipole phase space integral of V αβ
S3,j

, we again use the momentum mapping
in Eq. (80) and the parameterization of the dipole phase space in Eq. (85) with pf = pj
and pg = pi. Since the integration result can only depend on the momenta p̃3 and p̃0, we
decompose

∫

dPSdipoleV
αβ
S3,j

= C5g
αβ + C6p̃

α
3 p̃

β
3 + C7p̃

α
0 p̃

β
0 + C8(p̃

α
0 p̃

β
3 + p̃α3 p̃

β
0 ). (98)

Although the components proportional to p̃α0 and p̃β0 will vanish upon contraction with
ǫ∗α(ml)ǫβ(ml) in Eq. (74), we still have to consider them here, since the integral itself
does have these components. We determine C5 and C6 by multiplying Eq. (98) with gαβ,
p̃3αp̃3β, p̃0αp̃0β, and p̃0αp̃3β and solving the resulting system of linear equations and so
obtain

C5 =
4g2s

(p0 · pj)4
(

−2(p20)
2(p̃3 · pj)2

(1− ǫ)s̃2ũ20
+

2p20 p̃0 · pj p̃3 · pj
(1− ǫ)s̃ũ0

− (p0 · pj)2
)

, (99)

C6 =
16g2sp

2
0

(p0 · pj)4
(

−(6− 4ǫ)(p20)
2(p̃3 · pj)2

(1− ǫ)s̃4ũ40
+

(6− 4ǫ)p20 p̃0 · pj p̃3 · pj
(1− ǫ)s̃3ũ30

− (p̃0 · pj)2
s̃2ũ20

)

.(100)

Next, we apply the mapping in Eq. (80) and express all appearing scalar products in
terms of s̃, ũ0, u, 1− u, v, and 1− ũ0u and so obtain

C5 =
16g2s

(1− ǫ)(1− u)2ũ20

[

2p20v

(1− ũ0u)s̃3
− 2p20v

2

(1− ũ0u)2

(

p20
s̃4

+
(1− u)ũ0

s̃3

)

− 1− ǫ

s̃2

]

,(101)

C6 =
64g2sp

2
0v

2

(1− ũ0u)2(1− u)2s̃4ũ20

[

(6− 4ǫ)p20
(1− ǫ)s̃

(

1− ũ0u

ũ20v
− p20
s̃ũ20

− 1− u

ũ0

)

− (1− ũ0u)
2

ũ20v
2

+
2(1− ũ0u)(1− u)

ũ0v
− (1− u)2

]

. (102)

Using the expression in Eq. (85) for the dipole phase space in Eq. (98), we can now do
the integrations by identifying hypergeometric functions, which we then expand in ǫ using
HypExp [11]. Our result through order O(ǫ0) is

∫

dPSdipoleV
αβ
S3,j

=
g2s

12π2m2
Q

(

4πµ2
r

m2
Q

e−γE

)ǫ

gαβ
[

1

ǫ
+

2

3
−

4m2
Q

s̃ũ0
ln

16m6
Q

s̃3ũ20
− 2 ln(2ũ0)

ũ0

]

+
2g2s

3π2s̃4ũ30
p̃α3 p̃

β
3

(

16m4
Q − s̃2 − 8m2

Qs̃ ln
4m2

Q

s̃

)

+ (p̃0 terms). (103)

Let us now consider this result together with Eqs. (64)–(67) and (73). For each partonic
2 → 3 subprocess a + b → cc[n] + X , there is one (are two) contributions of V αβ

S3,j
if X

contains one (two) outgoing gluons and n is a P -wave state. The divergence of each of
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these contributions equals −‖|n, op.ren.〉‖2 with the same partons a and b. Noticing that
Fsym(X) in the dipole subtraction term is 1 (1

2
) if there is one (are two) outgoing gluon(s),

but always 1 in the LDME renormalization contribution, we observe that the divergence
in Eq. (103) is exactly canceled by the contributions from LDME renormalization. Thus,
in our implementation, it is simplest to include the effects of the LDME renormalization
by just using instead of Eq. (103) the expression

(
∫

dPSdipoleV
αβ
S3,j

)

+op.ren.

=
g2s

12π2m2
Q

gαβ
(

2

3
−

4m2
Q

s̃ũ0
ln

16m6
Q

s̃3ũ20
− 2 ln(2ũ0)

ũ0
− ln

m2
Q

µ2
Λ

)

+
2g2s

3π2s̃4ũ30
p̃α3 p̃

β
3

(

16m4
Q − s̃2 − 8m2

Qs̃ ln
4m2

Q

s̃

)

, (104)

which is then finite.

4.5.4 Integration of V
S1,ini
ij,k and V

S1,fin
ij,k terms and incorporation of mass fac-

torization counterterm

There is one subtlety related to the dipole terms of V S1,ini
ij,k in the initial-state collinear limits

p̃i → xpi. In the second bracket of Eq. (72), there is then an apparent mismatch because
dσ̂subtr involves parton i with momentum pi, while dσ̂virtual and dσ̂MFC involve initial-state
parton (ij) with momentum xpi instead. Thus, special care has to be exercised regarding
the differing color and polarization averaging and flux factors. In order to facilitate the
singularity cancellation, it is, therefore, convenient to rewrite the contribution of the
V S1,ini
ij,k terms in dσ̂subtr when appearing in the second bracket of Eq. (72) as

dσ̂subtr(a + b→ QQ[n] +X ;V S1,ini
ij,k ) = −dPS2dx

1

Ncol(n)Npol(n)

1

2x(p1 + p2)2

× Fsym(X)ncol(i)npol(i)

ncol(a)npol(a)ncol(b)npol(b)ncol((ij))npol((ij))
〈n,Born|V ini,S1

ij,k

T(ij)Tk

T2
(ij)

|n,Born〉,(105)

with the terms

V ini,S1

ij,k =

∫

dPSdipole
npol((ij))

npol(i)

1

2pi · pj
V ini,S1

ij,k , (106)

analytically calculated in the Catani-Seymour and Phaf-Weinzierl papers.

Now we consider Eq. (105) together with Eq. (54). Using again the trick
∑4

k=0
k 6=i,j

T(ij)Tk

T2
(ij)

=

−1 and noticing that the effect of double contributions due to j = 3, 4 is balanced by
the symmetry factor Fsym(X) = 1

2
for two gluons in the final state, we observe that we

can incorporate the effect of the mass factorization counterterm completely by using the
expressions

(

V ini,S1

ij,k

)

+MFC
= V ini,S1

ij,k +
g2s
8π2

(

4πµ2
r

µ2
f

e−γE

)ǫ
1

ǫ
P+
i,(ij)(x), (107)
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instead of Eq. (106). For the reader’s convenience, we collect the expressions for
(

V ini,S1

ij,k

)

+MFC

and those for

Vfin,S1

ij,k =

∫

dPSdipole
1

2pi · pj
V fin,S1

ij,k (108)

in Appendix A.

5 Implementation and numerical tests

5.1 Implementation of phase space cuts

The master formula (72) describes a total cross section. The observables we aim to
calculate are, however, cross sections with specific kinematic cuts, for example, on the
transverse momentum pT or the rapidity y of the quarkonium. To this end, we define

p̃2T =
(4m2

Q − t̃)(s̃+ t̃)

s̃
− 4m2

Q, ỹ = ln
s̃+ t̃

x̃2

√

S
(

p̃2T + 4m2
Q

)

, (109)

with

s̃ = (p̃1 + p̃2)
2, t̃ = (p̃0 − p̃1)

2, S = (pA + pB)
2, p̃2 = x̃2pB, (110)

where pA and pB are the momenta of the incoming hadrons. For all momentum mappings,
we then have p̃T → pT and ỹ → y in all singular limits. We can thus refine Eq. (72) to
include the kinematic constraints. For example, the cross section with a phase space cut
pT > pT,min is calculated as

∫

dσ̂ =

∫

dPS3

[

dσ̂real
dPS3

θ(pT − pT,min)−
dσ̂subtr
dPS3

θ(p̃T − pT,min)

]

+

∫

dPS2

[

dσ̂virtual + dσ̂MFC + dσ̂op. ren.
dPS2

θ(pT − pT,min)

+[dx]θ(p̃T − pT,min)

∫

dPSdipole
dσ̂subtr
dPS3

]

. (111)

In the first line of Eq. (111), we integrate over the complete three-particle phase space and
implement the θ functions explicitly. The θ functions then cut out different regions of the
three-particle phase space, depending on the momentum mappings used in each dipole
term. This worsens the convergence of the numerical Monte-Carlo integration, but the θ
functions coincide close to all singular regions, so that the cancellations of the divergent
terms take place. We note that the strong-coupling constant in our implementation is usu-
ally evaluated at a renormalization scale that is chosen to depend on kinematic variables
of the produced quarkonium, e.g., αs(p

2
T ). We then have to substitute αs(p̃

2
T ) in dσ̂subtr.

As for the contributions in the third line of Eq. (111), the analytic integration of the

23



State: 3S18 real corr. dipoles real corr. dipoles

ggg 1,2,3 coll: 2.0041E+08 2.0041E+08 gdd 1,2,3 coll: 1.0428E+06 1.0423E+06

ggg 4,5,6 coll: 1.7072E+06 1.7071E+06 gdd 7,8,9 coll: 2.1892E+06 2.1888E+06

ggg 13,14,15 coll: 1.6866E+11 1.6866E+11 gdd 10,11,12 coll: 2.1572E+05 2.1561E+05

ggg 16,17,18 coll: 1.6879E+07 1.6883E+07 gdd 13,14,15 coll: 2.1516E+09 2.1516E+09

ggg 19,20,21 coll: 1.6429E+10 1.6429E+10 gdd 16,17,18 coll: 3.1073E+09 3.1073E+09

ggg 22,23,24 coll: 1.6866E+11 1.6866E+11 gdd 19,20,21 coll: 6.3923E+08 6.3922E+08

ggg 25,26,27 coll: 1.6866E+11 1.6866E+11 gdd p4 soft: 1.4382E+11 1.4382E+11

ggg 28,29,30 coll: 1.6429E+10 1.6429E+10 dDg 1,2,3 coll: 4.3257E+06 4.3257E+06

ggg p3 soft: 1.2357E+12 1.2357E+12 dDg 4,5,6 coll: 4.1623E+04 4.1624E+04

ggg p4 soft: 1.2357E+12 1.2357E+12 dDg 13,14,15 coll: 8.5966E+08 8.5966E+08

dgd 1,2,3 coll: 2.9102E+05 2.9110E+05 dDg 16,17,18 coll: 8.5894E+04 8.5885E+04

dgd 7,8,9 coll: 3.1100E+05 3.1092E+05 dDg 19,20,21 coll: 1.7684E+08 1.7684E+08

dgd 10,11,12 coll: 6.3894E+04 6.3923E+04 dDg 22,23,24 coll: 8.5966E+08 8.5966E+08

dgd 13,14,15 coll: 2.1869E+10 2.1869E+10 dDg 25,26,27 coll: 8.5966E+08 8.5966E+08

dgd 16,17,18 coll: 2.1516E+09 2.1516E+09 dDg 28,29,30 coll: 1.7684E+08 1.7684E+08

dgd 19,20,21 coll: 2.1516E+09 2.1516E+09 dDg p3 soft: 9.3760E+09 9.3759E+09

dgd p4 soft: 1.6118E+10 1.6119E+10 dDg p4 soft: 9.3760E+09 9.3759E+09

Table 2: Numerical test of the dipole terms for the partonic subprocesses gg → cc[3S
[8]
1 ]+

gg (ggg), dg → cc[3S
[8]
1 ] + dg (dgd), gd → cc[3S

[8]
1 ] + dg (gdd), and dd → cc[3S

[8]
1 ] + gg

(dDg). The coding is as in Fig. 2.

subtraction term over the dipole phase space dPSdipole is not affected by the additionally
imposed phase space cuts, since p̃T only depends on the momenta {p̃i}.

Equation (111) allows for the evaluation of binned cross section distributions, e.g.,
in pT and/or y, which can be directly compared with experimental data. Refining the
binning of such histograms yields approximations to smooth cross section distributions.
To evaluate the latter exactly, however, one needs to replace the θ functions in Eq. (111)
by δ functions, which renders the implementation of the cancellation of divergences quite
nontrivial. We leave the elaboration of this for future work.

5.2 Numerical tests

We now numerically verify the implementation of the individual unintegrated dipole terms.
The subtraction term must match all the real-correction squared matrix elements in the
respective limits. Three dipoles are always needed to reproduce a collinear limit, many
dipoles to reproduce a soft limit. As an illustration, we generate certain phase space
points close to the singularities and evaluate there both the real-correction squared matrix
elements and the corresponding dipole terms. Our results are presented in Tables 2 and
3. From there we observe that the squared matrix elements of the real corrections are
indeed nicely matched by the corresponding subtraction terms constructed as described
above for all the partonic subprocesses, Fock states, and kinematic limits considered.

To obtain meaningful numerical checks of the implementation of the integrated dipole
terms, also beyond self-consistency, it is indispensable to compare with results obtained
using phase space slicing. This is even more so the case for checks of the implementation
of dipole subtraction in calculations of physical observables of quarkonium production.
Extensive such tests have successfully been performed, for all our integrated dipole terms
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State: 3P21 real corr. dipoles soft S1 soft S2 soft S3

gg2cCgg p3 soft: 4.2128E+10 4.2130E+10 3.7994E+10 -1.5081E+09 5.6437E+09

gg2cCgg p4 soft: 4.2128E+10 4.2130E+10 3.7994E+10 -1.5081E+09 5.6437E+09

dg2cCdg p4 soft: 1.8035E+08 1.8039E+08 4.1168E+07 -2.2504E+07 1.6173E+08

gd2cCdg p4 soft: 5.5345E+09 5.5347E+09 4.9728E+09 -3.0023E+08 8.6211E+08

dD2cCgg p3 soft: 8.9238E+07 8.9252E+07 1.6245E+07 8.2038E+06 6.4803E+07

dD2cCgg p4 soft: 8.9234E+07 8.9252E+07 1.6245E+07 8.2038E+06 6.4803E+07

State: 1P18 real corr. dipoles soft S1 soft S2 soft S3

gg2cCgg p3 soft: 1.1062E+11 1.1062E+11 1.1374E+11 -1.1212E+10 8.0929E+09

gg2cCgg p4 soft: 1.1062E+11 1.1062E+11 1.1374E+11 -1.1212E+10 8.0929E+09

dg2cCdg p4 soft: 3.6100E+08 3.6101E+08 3.5567E+08 -2.1288E+07 2.6633E+07

gd2cCdg p4 soft: 1.4423E+10 1.4424E+10 1.4588E+10 -1.2053E+09 1.0405E+09

dD2cCgg p3 soft: 1.1020E+08 1.1020E+08 1.0914E+08 -6.5828E+06 7.6456E+06

dD2cCgg p4 soft: 1.1018E+08 1.1020E+08 1.0914E+08 -6.5828E+06 7.6456E+06

Table 3: Numerical test of the dipole terms for the partonic subprocesses gg →
cc[3P

[1]
2 ; 1P

[8]
1 ]+gg (gg2cCgg), dg → cc[3P

[1]
2 ; 1P

[8]
1 ]+dg (dg2cCdg), gd→ cc[3P

[1]
2 ; 1P

[8]
1 ]+dg

(gd2cCdg), and dd→ cc[3P
[1]
2 ;1 P

[8]
1 ]+ gg (dD2cCgg) in the limits where p3 and p4 are soft.

The contributions of the dipoles involving V S1 , V S2, and V S3 are shown separately.

and several phenomenological applications. Presenting them in detail would require to
explain the anatomy of the implementation of phase space slicing in NLO NRQCD calcu-
lations, which reaches beyond the scope of this paper. We will report on such comparisons
in a separate communication [12], in which we will also quantitatively describe how dipole
subtraction outperforms phase space slicing with respect to numerical precision and com-
puting time.

6 Summary

We devised an implementation of a subtraction scheme appropriate for studies of inclusive
quarkonium production at NLO in the NRQCD factorization approach, based on the
dipole subtraction scheme of Refs. [6,7]. We needed to take special care of the specific
structure of the bound-state amplitudes and to include additional subtraction terms in
the case of P -wave states. Our implementation passes all intrinsic tests and yields results
consistent with our previous phase space slicing implementation, which it outruns both
in terms of accuracy and speed.
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A Summary of integrated Catani-Seymour and Phaf-

Weinzierl dipoles

In this appendix, we collect the expressions through order O(ǫ0) for the integrated Catani-
Seymour and Phaf-Weinzierl dipoles that we need in our study. The mass factorization
counterterms are directly included here according to our definitions in Eqs. (107) and
(108). gi, qi, and qi stand for a gluon, light quark, and antiquark with momentum pi, and
we further introduce ξ̃i = (p̃3 − p̃i)

2. Note that our expressions for V ini,S1

ij,p1 or 2
imply that

n = p3 + p4 as in Catani-Seymour chapter 5.6, in line with Table 1. The expressions for
the integrated VS2,ij and VS3,j terms, including the operator renormalization counterterms
in the latter case, can be found in Eqs. (93), (97), and (104). We have

(

V ini,S1

giqj ,p0

)

+MFC
=

g2s
8π2

1

2

[

2x(1− x)− (x2 + (1− x)2)

(

ln
x(1− χ̃ix)

(1− x)2
+ ln

µ2
f

−ψ̃i

)]

, (112)

(

V ini,S1
qiqj ,p0

)

+MFC
=

g2s
8π2

CF

[

x−
(

x+ 2
1− x

x

)(

ln
x(1− χ̃ix)

(1− x)2
+ ln

µ2
f

−ψ̃i

)]

, (113)

(

V ini,S1
qigj ,p0

)

+MFC
=

g2s
8π2

CF

(

4πµ2
r

−ψ̃i

e−γE

)ǫ{

−
(

2

1− x

)

+

ln
µ2
f

−ψ̃i

+ 4

(

ln(1− x)

1− x

)

+

− 2(lnx+ ln(2− χ̃ix))

(

1

1− x

)

+

+ 1− x+ (1 + x)

(

ln
x(1− χ̃ix)

(1− x)2
+ ln

µ2
f

−ψ̃i

)

+ δ(1− x)

[

1

ǫ2
+

1

ǫ

(

ln(2− χ̃i) +
3

2

)

+
π2

12
+ 2 ln(1− χ̃i) ln(2− χ̃i) + 2 Li2(χ̃i − 1)

− 1

2
ln2(2− χ̃i) +

3

2
ln

−ψ̃i

µ2
f

]}

, (114)

(

V ini,S1
gigj ,p0

)

+MFC
=

g2s
8π2

2CA

(

4πµ2
r

−ψ̃i

e−γE

)ǫ{(

− ln x− ln(2− χ̃ix)− ln
µ2
f

−ψ̃i

)(

1

1− x

)

+

+ 2

(

ln(1− x)

1− x

)

+

+

(

2− 1

x
− x+ x2

)(

ln
x(1− χ̃ix)

(1− x)2
+ ln

µ2
f

−ψ̃i

)

+ δ(1− x)

[

1

2ǫ2
+

1

ǫ

(

1

2
ln(2− χ̃i) +

11

12
− nf

6CA

)

+ ln
−ψ̃i

µ2
f

(

11

12
− nf

6CA

)

+ Li2(χ̃i − 1) + ln(1− χ̃i) ln(2− χ̃i)−
1

4
ln2(2− χ̃i) +

π2

24

]}

, (115)

(

V ini,S1
qiqj ,p1 or 2

)

+MFC
=

g2s
8π2

CF

[

1 + (1− x)2

x
ln

(x− 1)ξ̃i
xµ2

f

+ x

]

, (116)

(

V ini,S1
giqj ,p1 or 2

)

+MFC
=

g2s
8π2

1

2

[

(

x2 + (1− x)2
)

ln
(x− 1)ξ̃i
xµ2

f

+ 2x(1− x)

]

, (117)
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(

V ini,S1
qigj ,p1 or 2

)

+MFC
=

g2s
8π2

CF

(

4πµ2
r

s̃
e−γE

)ǫ{

−
(

1 + x2

1− x

)

+

ln
xµ2

f

s̃
+

(

4 ln(1− x)

1− x

)

+

+ 1− x− (1− x) ln
(x− 1)ξ̃i

s̃
+ δ(1− x)

[

1

ǫ2
+

3

2ǫ
+ 2Li2

(

χ̃iψ̃i

s̃+ ψ̃i

)

+
π2

12

]}

, (118)

(

V ini,S1
gigj ,p1 or 2

)

+MFC
=

g2s
8π2

2CA

(

4πµ2
r

s̃
e−γE
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{
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ln
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(

2 ln(1− x)

1− x

)

+

+ δ(1− x)

[

1

2ǫ2
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1

ǫ

(

11

12
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)
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)

+
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24
+

(

11

12
− nf
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)

ln
s̃

µ2
f
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, (119)

(

V ini,S1
qigj ,p3 or 4

)

+MFC
=

g2s
8π2

CF

(

4πµ2
r

−ξ̃i
e−γE
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(
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1− x
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ln
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(
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)

+
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1
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3

2ǫ
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π2

12
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, (120)

(

V ini,S1

giqj ,p3 or 4

)

+MFC
=

g2s
8π2

1

2

[

(x2 + (1− x)2)

(

ln(1− x)− ln
µ2
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−ξ̃i
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+ 2x(1− x)

]

, (121)

(

V ini,S1
qiqj ,p3 or 4

)

+MFC
=

g2s
8π2

CF

[

1 + (1− x)2

x

(

ln(1− x)− ln
µ2
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−ξ̃i

)

+ x

]

, (122)
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gigj ,p3 or 4
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=
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8π2
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(

4πµ2
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+ δ(1− x)

[

1
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ǫ

(
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)
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π2

24
+

(

11

12
− nf
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)

ln
−ξ̃i
µ2
f
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, (123)

Vfin,S1
p0gj ,pk=1or 2

=
g2s
8π2

CF

(

4πµ2
r

−ψ̃k

e−γE

)ǫ{(
2

1− x

)

+

(

ln
2− χ̃kx

1− χ̃kx
− (1− χ̃k)x

2
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+ δ(1− x)

[

1

ǫ

(
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1
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+
1

2
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]}

, (124)

Vfin,S1
p0gj ,p3 or 4

=
g2s
8π2

CF

(

4πµ2
r

s̃ũ20
e−γE
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1

ǫ
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]
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Vfin,S1

qiqj ,pk=1or 2
=

g2s
8π2

1

2

(

4πµ2
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e−γE
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1
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