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Abstract: We introduce a method to compute one-loop soft functions for exclusive N -

jet processes at hadron colliders, allowing for different definitions of the algorithm that

determines the jet regions and of the measurements in those regions. In particular, we

generalize the N -jettiness hemisphere decomposition of ref. [1] in a manner that separates

the dependence on the jet boundary from the observables measured inside the jet and

beam regions. Results are given for several factorizable jet definitions, including anti-kT ,

XCone, and other geometric partitionings. We calculate explicitly the soft functions for

angularity measurements, including jet mass and jet broadening, in pp → L + 1 jet and

explore the differences for various jet vetoes and algorithms. This includes a consistent

treatment of rapidity divergences when applicable. We also compute analytic results for

these soft functions in an expansion for a small jet radius R. We find that the small-R

results, including corrections up to O(R2), accurately capture the full behavior over a large

range of R.

ar
X

iv
:1

70
4.

08
26

2v
2 

 [
he

p-
ph

] 
 2

6 
Ju

l 2
01

7

mailto:dbertolini@lbl.gov
mailto:dkolodru@mit.edu
mailto:duff.neill@gmail.com
mailto:piotr.pietrulewicz@desy.de
mailto:iains@mit.edu
mailto:frank.tackmann@desy.de
mailto:w.j.waalewijn@uva.nl


Contents

1 Introduction 1

2 Jet measurements and jet algorithms 5

2.1 Generalized N -jettiness measurements 5

2.2 Jet algorithms 6

2.3 Factorization for different observable choices 9

3 General hemisphere decomposition at one loop 13

4 L+ 1 jet production at hadron colliders 19

4.1 Setup 19

4.2 Computation of the soft function 20

4.3 Summary of corrections 27

4.4 Full numerical results 29

5 Conclusions 33

A Analytic contributions for pp→ L+ 1 jet 34

A.1 Hemisphere soft function correction 34

A.2 Corrections at O(R2) 36

B Numerical evaluation of soft function integrations 38

B.1 Integration bounds for the conical measure 38

B.2 Power suppression of boundary integrals 40

C Analytic corrections for pp→ dijets 41

References 43

1 Introduction

Exclusive jet processes, i.e. those with a fixed number of hard signal jets in the final state,

play a crucial role in the Large Hadron Collider (LHC) physics program. Many important

processes, such as Higgs or W/Z boson production or diboson production, are measured in

different exclusive jet bins. Furthermore, jet substructure techniques have become increas-

ingly important both in Standard Model and in new physics analyses, and the associated

observables often exploit the properties of a fixed number of subjets. Theoretical predic-

tions at increasingly high precision are needed to match the increasing precision of the

data. Compared to color-singlet final states, the presence of jets makes perturbative QCD
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calculations more challenging and the singularity structure more complicated. Further-

more, a fixed number of jets is imposed through a jet veto, which restricts the phase space

for additional collinear and soft emissions, and generates large logarithms that often need

to be resummed to obtain predictions with the best possible precision.

Soft Collinear Effective Theory (SCET) [2–5] provides a framework to systematically

carry out the resummation of logarithms to higher orders by factorizing the cross section

into hard, collinear, and soft functions, and then exploiting their renormalization group

evolution. Schematically, the cross section for pp→ N jets factorizes for many observables

in the singular limit as

σN = HN ×
[
BaBb

N∏

i=1

Ji

]
⊗ SN , (1.1)

where the hard function HN contains the virtual corrections to the partonic hard scatter-

ing process, the beam functions Ba,b contain parton distribution functions and describe

collinear initial-state radiation. The jet functions Ji describe final-state radiation collinear

to the direction of the hard partons, and the soft function SN describes wide-angle soft

radiation. The resummation of large logarithms is achieved by evaluating each component

at its natural scale and then renormalization-group evolving all components to a common

scale. For an interesting class of observables, the jet and beam functions are of the inclusive

type and do not depend on the precise definition of the jet regions. They are known for

a variety of jet and beam measurements, typically at one loop or beyond [6–20]. Hard

functions are also known for many processes at one loop or beyond (see e.g. ref. [21] and

references therein). In this paper, we focus on determining the soft functions that appear

for a wide class of jet algorithms and jet measurements. The resummation at NLL′ and

NNLL requires the soft function at one loop. Compared to the beam and jet functions,

the perturbative calculation of the soft function generally requires a more sophisticated

setup, since it depends not only on the measurements made in the jet and beam regions,

but also on the angles between all jet and beam directions and the precise definition of the

jet boundaries.

N -jettiness [22] is a global event shape that allows one to define exclusive N -jet cross

sections in a manner that is particularly suitable for higher-order analytic resummation.

The calculation of the one-loop soft function for exclusive N -jet processes using N -jettiness

has been carried out for arbitrary N in ref. [1]. There, N -jettiness is used both as the

algorithm to partition the phase space into jet and beam regions and as the measurement

performed on those regions. To simplify the calculation, the version of N -jettiness used in

ref. [1] was taken to be linear in the constituent four-momenta pµi ,

thrust-like N -jettiness: TN =
∑

i

min
m

{
2qm · pi
Qm

}
=
∑

i

min
m

{
nm · pi
ρm

}
. (1.2)

This is essentially a generalization of beam thrust [23] to the case of N jets. In eq. (1.2)

the sum runs over the four-momenta pµi of all particles that are part of the hadronic final

state, and the minimization over m runs over the beams and N jets identified by the
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reference momenta qµm = Emn
µ
m or lightlike vectors nµm = (1, n̂m), where Em is the jet

energy. The directions n̂m for the beams are fixed along the beam axis and for the jets are

predetermined by a suitable procedure. Finally, the Qm or ρm = Qm/(2Em) are dimension-

one or dimension-zero measure factors. The minimization in eq. (1.2) assigns each particle

to one of the axes, thus partitioning the phase space into N jet regions and 2 beam regions.

This definition of N -jettiness depends only on the choices of jet directions n̂m and measure

factors ρm, which determine the precise partitioning and in particular the size of the jet

and beam regions. For the cross section with a measurement of TN , the TN → 0 singular

region is fully described by a factorization formula of the form in eq. (1.1) with inclusive

jet and beam functions [22, 23]. As TN → 0, different choices of jet axes often differ only

by power-suppressed effects in the cross section.

N -jettiness can also be used more generally as a means of defining an exclusive jet

algorithm, which partitions the particles in an event into a beam region and a fixed number

of N jet regions [22, 24]. Here particle i is assigned to region m for which some generic

distance measure dm(pi) is minimal. These regions are defined by

region m =
{

particles i : where dm(pi) < dj(pi) for all j 6= m
}
. (1.3)

This partitioning can be obtained from a generalized version of N -jettiness defined by

TN ({n̂m}) =
∑

i

pT i min
{
d1(pi), . . . , dN (pi), da(pi), db(pi)

}
. (1.4)

Here the dm jet measures depend on pre-defined jet axis n̂m, while the beam measures da
and db are defined with fixed beam axes along ±ẑ. Infrared safety requires that all particles

in the vicinity of the axis nµm = (1, n̂m) are assigned to the respective mth region. More

precisely the measures have to satisfy dm(pi) < dj(pi) for all j 6= m in the limit pµi → Ein
µ
m.

Different choices of the dm correspond to different N -jettiness partitionings, and include

for example the Geometric, Conical, and XCone measures [1, 22, 25–27]. The measure in

eq. (1.2) corresponds to taking pT idm(pi) = (nm · pi)/ρm. The two beam regions can be

combined into a single one by defining the common beam measure

d0(pi) = min{da(pi), db(pi)} . (1.5)

Given a common beam region with a single beam measure d0(pi), we can always divide

it into two separate beam regions for η > 0 and η < 0 by taking for example da(pi) =

[1 + θ(−ηi)]d0(pi) and db(pi) = [1 + θ(ηi)]d0(pi).

Constructing a full jet algorithm requires in addition to the partitioning an infrared-safe

method to determine the jet axes n̂m. This could be done by simply taking the directions

of the N hardest jets obtained from a different (inclusive) jet algorithm. For a standalone

N -jettiness based jet algorithm, the axes can be obtained by minimizing N -jettiness itself

over all possible axes,

TN = min
n̂1,...,n̂N

TN ({n̂m}) , (1.6)

as in refs. [24, 27].
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For the calculations in this paper, we consider a very general set of distance measures

for determining the partitioning into jet and beam regions as in eq. (1.4), and a different

set of fairly general infrared safe observables measured on these regions. We explore and

compare properties of different jet partitionings in sec. 2.2. For the measured observables

we consider the generic version of N -jettiness variables, T (m), given by

T (m) =
∑

i∈ regionm

fm(ηi, φi) pT i . (1.7)

Here, ηi, φi, and pT i denote the pseudorapidity, azimuthal angle, and transverse momentum

of particle i in region m. The dimensionless functions fm encode the angular dependence

of the observable and in the collinear limit behave like an angularity, see sec. 2.1. When

considering a single beam region we have a common beam measurement T (0) = T (a) +T (b).

Earlier analytic calculations of N -jettiness cross sections have all been done for the case

where the observable and partitioning measure coincide, fm = dm, in which case the total

N -jettiness used for the partitioning is equal to the sum over the individual measurements

TN =
∑

m T (m).

The exact definition of the axes n̂m is irrelevant for the calculation of the soft function.

For our purposes we can therefore separate the jet-axes finding from the partitioning and

measurement, and we will assume predetermined axes obtained from a suitable algorithm.

However, one should make sure to use recoil-free axes [11] for angularities to avoid SCETII-

type perpendicular momentum convolutions between soft and jet functions. This is ensured

if one defines the axes through a global minimization as in eq. (1.6).

In this paper, we determine factorization theorems, which describe the singular per-

turbative contributions in the TN → 0 limit for these generic versions of N -jettiness. We

then establish a generalized hemisphere decomposition for computing the corresponding

one-loop soft function. We carry out the computations explicitly for a number of interest-

ing cases. As underlying hard process we consider color-singlet plus jet production, and we

discuss results for generic angularities as jet measurements. For the beam measurement we

discuss different types of jet vetoes, including beam thrust, beam C parameter, and a jet-

pT veto. We also discuss different partitionings, including anti-kT [28] and XCone [27, 29].

We find that the one-loop soft function can be written in terms of universal analytic con-

tributions and a set of numerical integrals, which explicitly depend on the partitioning and

observable (i.e. the specific definitions of the dm and fm). We show that fully analytical

results can be obtained in the limit of small jet radius R. Furthermore, we show that the

small-R expansion works remarkably well for the soft function even for moderate values of

R, if one includes corrections up to O(R2).

The rest of the paper is organized as follows. In sec. 2, we discuss in more detail the

generalized definition of N -jettiness, jet algorithms, and relevant factorization theorems.

In sec. 3, we discuss the generalized hemisphere decomposition to calculate the one-loop

soft function. In sec. 4, we discuss the explicit results for the case of single-jet production.

We conclude in sec. 5. Details of the calculations are given in app. A and app. B, and

results for dijet production are discussed in app. C.
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2 Jet measurements and jet algorithms

In this section, we discuss the general properties we assume for the jet measurements and

for the jet algorithms (partitioning). We consider the cross section for events with at least

N hard jets in the final state with transverse momenta pJT,m≥1 ∼ pJT ∼ Q, where Q denotes

the center-of-mass energy of the hard process. In sec. 2.1 we define the generalized form

of N -jettiness measurements, in sec. 2.2 we discuss and compare different jet algorithms,

and in sec. 2.3 we present the form of the factorization theorems for different choices of jet

and beam measurements.

2.1 Generalized N-jettiness measurements

Assuming a partitioning of the phase space into N jet regions (m = 1, . . . , N) and two

beam regions (m = a, b), the observable that we will study is defined in each region m by

the sum over all particle momenta (but excluding the color-singlet final state),1

T (m) =
∑

i∈ regionm

T (m)(pi) with T (m)(pi) = fm(ηi, φi) pT i . (2.1)

Here ηi and φi denote the pseudorapidity and azimuthal angle of the particle i. The

associated jet and beam axes are normalized lightlike directions, and are given in terms of

these coordinates by

nµm≥1 =
1

cosh ηm

(
cosh ηm, cosφm, sinφm, sinh ηm

)
, nµa,b = (1, 0, 0,±1) . (2.2)

The fm in eq. (2.1) are dimensionless functions encoding the angular dependence of the

observable. To satisfy infrared safety, we require that T (m) → 0 for soft and nm-collinear

emissions, implying in particular that

lim
ηi→∞

fa(ηi, φi)e
−ηi = 0 , lim

ηi→−∞
fb(ηi, φi)e

ηi = 0 , lim
ηi→ηm,φi→φm

fm≥1(ηi, φi) = 0 . (2.3)

For definiteness we will consider the case that the asymptotic behavior of T (m) in the

vicinity of its axis is given by an angularity measurement, which holds for all common

single-differential observables, i.e.,

T (m)(pi)
pµi→Ein

µ
m−→ cm

(
nm · pi

)βm
2
(
n̄m · pi

)1−βm
2 , (2.4)

with βm > 0 and some normalization factors cm. Defining γ ≡ βa = βb, this is equivalent

to

fa(ηi, φi)
ηi→∞−→ ca e

(1−γ)ηi , fb(ηi, φi)
ηi→−∞−→ cb e

−(1−γ)ηi ,

fm≥1(ηi, φi)
(ηi,φi)→(ηm,φm)−→ cm (2 cosh ηm)1−βm

[
(ηi − ηm)2 + (φi − φm)2

]βm
2
. (2.5)

We will discuss several examples in secs. 3 and 4. The behavior of fm determines whether

the associated collinear and soft sectors are described by a SCETI-type or SCETII-type

theory. The case γ = βm = 2 corresponds to the standard SCETI situation with a thrust-

like measurement T (m)(pi) ∼ nm · pi.
1We consider only cases without unconstrained phase space domains, i.e. no regions with nonzero area

in (η, φ) coordinates where fm = 0.
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2.2 Jet algorithms

Given a set of jet and beam axes {nm}, the partitioning of the phase space into jet and

beam regions is determined by the distance measures dm(pi). As shown in eq. (1.3), particle

i is assigned to region m if dm(pi) < dj(pi) for all j 6= m, i.e., when it is closest to the mth

axis.

For m ≥ 1, the distance measures dm(pi) ≡ dm(R,nm, p
J
T,m, ηi, φi) can depend on the

jet size parameter R and the jet transverse momentum pJT,m. In sec. 2.3, we will show

that for TN � pJT and for well-separated jets and beams and sufficiently large jet radii,

the differential cross section in the T (m) can be factorized into hard, collinear, and soft

contributions. This requires a jet algorithm which exhibits soft-collinear factorization, such

that m-collinear emissions are sufficiently collimated to not be affected by different distance

measures dj 6=m and do not play a role for the partitioning of the event. Furthermore, the

recoil on the location of the jet axes due to soft emissions is power suppressed for the

description of the soft dynamics.2 Thus the partitioning of soft radiation in the event

can be obtained by comparing the distance measures dm for soft emissions with respect to

N + 2 fixed collinear directions independently of the axes finding and the jet and beam

measurements.

We consider the following examples of partitionings for comparisons of numerical re-

sults:

I: Conical Measure (equivalent to anti-kT for isolated jets) [24]:

d0(pi) = 1 , dm≥1(pi) =
R2
im

R2
. (2.6)

II: Geometric-R Measure [25]:

d0(pi) = e−|ηi| , dm≥1(pi) =
nm · pi

ρτ (R, ηm) pT i
=

1

ρτ (R, ηm)

R2
im

2 cosh ηm
. (2.7)

III: Modified Geometric-R Measure [27]:

d0(pi) =
1

2 cosh ηi
, dm≥1(pi) =

nm · pi
ρC(R, ηm) pT i

=
1

ρC(R, ηm)

R2
im

2 cosh ηm
. (2.8)

IV: Conical Geometric Measure (XCone default) [27]:

d0(pi) = 1 , dm≥1(pi) =
2 cosh ηm(nm · pi)

R2 pT i
=
R2
im

R2
, (2.9)

where ρτ and ρC are discussed below, and the distances in azimuthal angle and rapidity

are given by

Rim ≡
√

(ηi − ηm)2 + (φi − φm)2 ,

Rim ≡
√

2 cosh(ηi − ηm)− 2 cos(φi − φm) . (2.10)

2Note that for angularities with βm ≤ 1 the recoil due to soft radiation does matter for the description

of the collinear dynamics [11].
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Figure 1. Jet regions (in the limit TN � pJT ) in the η-φ-plane for different partitionings for R = 1

and different ηm = 0, 1, 2 (top row) and ηm = 0 and different R = 1.2, 0.8, 0.4 (bottom row). The

conical measure, which is equivalent to anti-kT , is shown in yellow, the geometric-R measure in

light blue, the modified geometric-R in blue dashed, and the conical geometric measure (XCone

default) in red dashed.

Since these measures only depend on ηi and φi, we can obtain explicit jet regions in the

η-φ plane. The jet regions for an isolated jet with R = 1 at different jet rapidities and

different R at central rapidity are shown in fig. 1. For small R all distance metrics approach

a conical partitioning, which means in particular that the deviations from this shape are

suppressed by powers of R.

For isolated jets the conical distance measure includes all soft radiation within a dis-

tance R in η-φ coordinates from the jet axis into the jet. Thus, in this case the soft

partitioning is equivalent to the one obtained in the anti-kT algorithm [28], which first

clusters collinear energetic radiation before clustering soft emissions into the jets (allowing

thus for soft-collinear factorization [30]). As explained above, the algorithm for the jet-axes

finding is irrelevant for the description of the soft dynamics and the soft function depends

only on the soft partitioning with respect to fixed collinear axes. Thus, the soft function

for anti-kT jets and N -jettiness jets with the conical measure are identical for isolated jets.

For overlapping jets, the anti-kT and N -jettiness partitionings differ. The distance

metrics in the anti-kT algorithm between soft and the clustered collinear radiation depend

also on the transverse momenta of the jets, which starts to matter in the singular region

TN � pJT once two jets start to overlap, i.e. for Rlm < 2R. In this case, anti-kT assigns soft
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Figure 2. Partitioning (in the limit TN � pJT ) for three overlapping jets with pJT,1 = 2pJT,2 = 4pJT,3
and R = 1 with distance > R between their axes. The N -jettiness partitioning with the conical

distance measure is shown on the left and the anti-kT partitioning on the right.

radiation in the overlap region to the more energetic jet, while the N -jettiness partitioning

remains purely geometric. This is illustrated in fig. 2, for three jets with different transverse

momenta that share common jet boundaries. When the distance between two clusters of

energetic collinear radiation drops below R, anti-kT clustering will merge these into a single

jet, while the N -jettiness partitioning still gives two closeby jets, thus exhibiting a very

different behavior.

The (modified) geometric-R measures in eqs. (2.7) and (2.8) have the feature that

pT idm(pi) ∼ nm · pi is linear in the particle momenta pi, as for the pure geometric measure

in eq. (1.2) from which they are derived. The geometric-R measure was first used in ref. [25]

to study the jet mass for pp→ H+1 jet, taking advantage of the fact that the soft function

for this type of measure was computed in ref. [1]. The parameters ρτ (R, ηm) and ρC(R, ηm)

are determined by requiring the area in the η-φ-plane for an isolated jet with rapidity ηm
to be πR2, i.e. by solving

∫ π

−π
dφ

∫ ∞

−∞
dη θ

[
d0(η)− dm(ρ, ηm, η, φ)

]
= πR2 . (2.11)

The solution for ρ in terms of ηm and R can be computed analytically in an expansion for

small R, which gives

ρτ (R, ηm) = R2 1+tanh |ηm|
2

{
1 +

2R

π
θ(R− |ηm|)

[√
1− η

2
m

R2
− |ηm|

R
arccos

ηm
R

]
+O(R2)

}
,

ρC(R, ηm) = R2

{
1 +

R2

4

(
1− 3 tanh2ηm

)
+O(R4)

}
. (2.12)

Note that the kink at ηm = 0 leads to O(R) corrections for ρτ for |ηm| < R. The full R

dependence is obtained numerically. In fig. 3, we show ρτ and ρC as functions of R for

ηm = 0 and as functions of ηm for R = 1.
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Figure 3. Behavior of ρτ (R, ηJ) and ρC(R, ηJ) for the geometric-R and modified geometric-R

measures as functions of R at ηJ = 0 (left panel) and of ηJ for R = 1 (right panel).

Compared to the conical measure the shapes of the jet regions are more irregular for the

geometric-R measures, as seen in fig. 1. In particular the beam thrust measure in eq. (2.7)

has a cusp at η = 0 due to the absolute value in the beam distance measure, which is not

present for the smooth beam C-parameter measure in eq. (2.8). Furthermore, we also see

a distortion from the circular shape for large jet rapidities towards an elongated shape,

which is common to both measures since their beam distance measures become identical

in the forward region.

Finally, the conical geometric measure was introduced in ref. [27] and corresponds to

the XCone default measure. It is designed to combine the linear dependence of pT idm≥0(pi)

on the particle momenta of the geometric measures with a nearly conical shape, as can be

seen in fig. 1. One can show that deviations from the circular shape are only of O(R4) and

still independent of the jet rapidity, since the distance measures in eq. (2.9) only depend

on the differences with respect to the jet coordinates. The jet area is πR2 up to very small

corrections of O(R6), which reach only ≈ 1% even for large R = 1.2.

2.3 Factorization for different observable choices

In this section we display the form of the factorized cross section for pp→ L+N jets, where

L denotes a recoiling color-singlet state, with generic observables in the limit TN � pJT . The

observables can be categorized according to their parametric behavior close to the jet and

beam axes into SCETI-type and SCETII-type cases. For notational simplicity we assume

that the same observable is measured in each jet region (which asymptotically behaves

like eq. (2.4) with β ≡ βm≥1). We will mainly focus on the properties of the relevant soft

function, which also encodes all dependence of the singular cross section on the distance

measure used for the partitioning.

The scaling of the modes in the effective theory follows in general from the con-

straints on radiation imposed by the N -jettiness measurements T (m) in eq. (2.1) with

m = a, b, 1, . . . , N , the jet boundaries determined by the distance measures in eq. (2.21)

and potential hierarchies in the hard kinematics. We work in a parametric regime with
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T (m) � pJT and without additional hierarchies in the jet kinematics (which corresponds

to a generic SCET setup), i.e. assuming hard jets with pJT,m ∼ Q, large jet radii R ∼ 1,

well-separated collinear directions nl · nm ∼ 1, and nonhierarchical measurements in the

different regions T (l) ∼ T (m). The parametric scaling of the collinear and soft modes is

then given by

na,b-collinear: pµna,b ∼ p
J
T (λ

4
γ , 1, λ

2
γ )na,b ,

nm≥1-collinear: pµnm ∼ pJT (λ
4
β , 1, λ

2
β )nm ,

soft: pµs ∼ pJT (λ2, λ2, λ2) , (2.13)

where we adopt the scaling λ2 ∼ TN/pJT , and give momenta in terms of lightcone co-

ordinates pµ = (n · p, n̄ · p, p⊥)n with respect to the lightcone direction n = (1, n̂) and

n̄ = (1,−n̂). The properties of the factorization formulas depend on the values of β and

γ and the resulting invariant mass hierarchies between the soft and collinear modes. If

β, γ 6= 1 the associated collinear fluctuations live at a different invariant mass scale than

the soft modes, leading to a SCETI-type description. Otherwise at least one collinear

mode is separated from the soft modes only in rapidity, giving rise to a SCETII-type the-

ory involving rapidity divergences for the individual bare quantities and a dependence on

an associated rapidity RG scale ν in the renormalized quantities [16, 31]. Being fully dif-

ferential in the hard kinematic phase space ΦN and all N -jettiness observables T (m), the

factorization formulae for the four cases with β, γ = 1 and β, γ 6= 1 read:3

A) γ 6= 1, β 6= 1 (SCETI beams and SCETI jets): (n ∈ a, b, 1, . . . N)

dσκ(ΦN )

dT (a) · · · dT (N)
=

∫ (∏

n

dkn

)
tr
[
Ĥκ
N (ΦN , µ) ŜκN

({
T (m) − cmkm

}
, {nm}, {dm}, µ

)]

× ωγ−1
a Ba

(
ωγ−1
a ka, xa, µ

)
ωγ−1
b Bb

(
ωγ−1
b kb, xb, µ

) N∏

j=1

ωβ−1
j Jj(ω

β−1
j kj , µ) .

(2.14)

B) γ = 1, β 6= 1 (SCETII beams and SCETI jets):

dσκ(ΦN )

dT (a) · · · dT (N)
=

∫ (∏

n

dkn

)
tr
[
Ĥκ
N (ΦN , µ) ŜκN

({
T (m) − cmkm

}
, {nm}, {dm}, µ,

ν

µ

)]

×Ba
(
ka, xa, µ,

ν

ωa

)
Bb

(
kb, xb, µ,

ν

ωb

) N∏

j=1

ωβ−1
j Jj(ω

β−1
j kj , µ) . (2.15)

3We do not include effects from Glauber gluon exchange here. For active-parton scattering their pertur-

bative contributions start at O(α4
s) [32, 33] and can be calculated and included using the Glauber operator

framework of ref. [34]. For proton initial states the factorization formulae also do not account for spectator

forward scattering effects, since the Glauber Lagrangian of ref. [34] has been neglected.
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C) γ 6= 1, β = 1 (SCETI beams and SCETII jets):

dσκ(ΦN )

dT (a) · · · dT (N)
=

∫ (∏

n

dkn

)
tr
[
Ĥκ
N (ΦN , µ) ŜκN

({
T (m) − cmkm

}
, {nm}, {dm}, µ,

ν

µ

)]

× ωγ−1
a Ba

(
ωγ−1
a ka, xa, µ

)
ωγ−1
b Bb

(
ωγ−1
b kb, xb, µ

) N∏

j=1

Jj

(
kj , µ,

ν

ωj

)
.

(2.16)

D) γ = 1, β = 1 (SCETII beams and SCETII jets):

dσκ(ΦN )

dT (a) · · · dT (N)
=

∫ (∏

n

dkn

)
tr
[
Ĥκ
N (ΦN , µ) ŜκN

({
T (m) − cmkm

}
, {nm}, {dm}, µ,

ν

µ

)]

×Ba
(
ka, xa, µ,

ν

ωa

)
Bb

(
kb, xb, µ,

ν

ωb

) N∏

j=1

Jj

(
kj , µ,

ν

ωj

)
. (2.17)

In eqs. (2.14)–(2.17) the hard function Ĥκ
N encodes the hard interaction process for the

partonic channel

κa(qa)κb(qb)→ κ1(q1)κ2(q2) · · ·κN (qN ) + L(qL) , κ = {κa, κb;κ1, . . . , κN} (2.18)

in terms of the massless (label) momenta qµm = ωmn
µ
m/2, which satisfy partonic (label)

momentum conservation

qµa + qµb = qµ1 + · · ·+ qµN + qµL , (2.19)

where qµL is the total momentum of the recoiling color-singlet final state. The xa,b and label

momenta for the initial states are defined via

qµa,b = ωa,b
nµa,b
2
≡ xa,bEcm

nµa,b
2

. (2.20)

The jet functions Jm≥1 and beam functions Ba, Bb describe the final-state and initial-

state collinear dynamics, respectively, and ŜκN denotes the soft function. Ĥκ
N and ŜκN are

matrices in color space. The cm are the normalization factors of the observable as defined

in eq. (2.4). Due to the requirement T (m) � pJT the collinear modes do not resolve the jet

boundaries, such that the jet functions are of the inclusive type and have been computed

at one-loop in ref. [11] for arbitrary values β > 0.4 Note that in the jet functions, for cases

C and D (β = 1), a rapidity regularization in close correspondence to refs. [16, 31] leads to

an additional dependence on the scale ratio ν/ωm.

The factorization for the pure SCETI case, for β = γ = 2, is well studied in the

literature [1, 22] and has been applied to phenomenological predictions for single-jet pro-

duction [25]. Also, both cases A and B have been studied in ref. [27] (with the focus on

β = 2). In this work, we present for the first time cases C and D, and we will focus on

those in the following discussion. These represent a generalization of the previous cases,

4For β = 2 they have been computed before in refs. [6, 7, 9].
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and assume that the jet and beam axes are insensitive to effects due to mutual recoil or to

recoil from soft emissions.

The recoil of the jet axis due to collinear radiation can be relevant for β > 1 (see

e.g. ref. [35]), but as discussed in ref. [27], is avoided by properly aligning the jet axes.

For β ≤ 1, the jet axis can in addition recoil against soft radiation, leading to nontrivial

perpendicular momentum convolutions between the jet, beam, and soft functions for recoil-

sensitive axes (see e.g. refs. [11, 36]). Recoil-free jet axes avoiding this issue can be defined,

e.g., through a global minimization of N -jettiness,

TN = min
n1,...,nN

∑

i

∑

m=a,b,1,...,N

T (m)(pi)

= min
n1,...,nN

∑

i

∑

m=a,b,1,...,N

fm(ηi, φi) pT i
∏

l 6=m
θ(dl(pi)− dm(pi)) . (2.21)

Other sets of axes deviating by only a sufficiently small amount, i.e. by an angle � λ2/β,

yield the same result up to power corrections.

The measurement in the beam region requires a separate discussion, as the beam axes

are fixed by the collider setup. However, one can still avoid transverse momentum convo-

lutions by making a less granular measurement of the jet energies or transverse momenta,

with a procedure analogous to the one discussed in ref. [27]. Momentum conservation in

the direction transverse to the beam implies

kµT ≡ p
µ
T,a + pµT,b = qµT,L +

N∑

m=1

pµT,m, (2.22)

where pT,m is the transverse component of the m-th jet momentum, so that measurements

of the jet transverse momenta (or of the pT of a recoiling leptonic state) within a bin

size ∆pJT � pJTλ
2/γ for γ > 1 and ∆pJT � pJTλ

2 for γ ≤ 1 allow one to integrate over the

unresolved transverse momenta and eliminate residual transverse momentum convolutions.

This leads to the appearance of the common beam functions which are known at one-loop

for γ = 1 and γ = 2 [12–15].

The soft function, which we are primarily interested in here, depends on the measure-

ments T (m) in the different regions, the angles between any collinear directions nl ·nm, and

the distance measures dm involving the jet radius. If either a jet or beam measurement is

SCETII type, it also involves a dependence on the rapidity renormalization scale ν besides

the invariant mass scale µ. The (bare) soft matrix element is defined as

ŜκN
(
{km}, {nl}, {dm}

)
=
〈

0
∣∣∣Ŷ †κ ({nl})

∏

m

δ(km − T̂ (m)) Ŷκ({nl})
∣∣∣0
〉
. (2.23)

Here T̂ (m) denotes the operator that measures T (m) on all particles in region m, i.e.

T̂ (m)|Xs〉 =
∑

i∈Xs

T (m)(pi)
∏

l 6=m
θ
[
dl(pi)− dm(pi)

]
|Xs〉 . (2.24)

The color matrix Ŷκ({nl}) is a product of N + 2 soft Wilson lines pointing in the collinear

directions na, nb, n1, . . . , nN . For a given partonic channel, each of these is given in the
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Figure 4. One loop contributions to the soft function with multiple collinear legs. The vertical

line denotes the final-state cut. Diagrams (a) and (b) vanish in Feynman gauge and dimensional

regularization, while (c) and (d) lead to eq. (3.2).

color representation of the associated external parton with the appropriate path-ordering

prescription. In the following, we use a normalization such that the tree level result for ŜκN
is diagonal in color space, Ŝ

κ(0)
N = 1N

∏
m δ(km).

The full one-loop soft function for processes with at least one final state jet is so far only

known for specific cases. In ref. [1] it has been computed for the thrust-like N -jettiness with

β = γ = 2 using them simultaneously for the measurement and partitioning as in eq. (1.2).

In ref. [37] the one-loop soft function for angularities with β > 1 in e+e− collisions has

been calculated also for a common measurement and partitioning. In the following we will

extend these calculations to arbitrary angularity measurements (including jet mass) and jet

vetoes (including a standard transverse momentum veto) at pp-colliders with the separate

partitionings as described in sec. 2 (including the anti-kT case). At one loop, our results

with a global measurement in the beam region are identical to those for the corresponding

jet-based vetoes.

3 General hemisphere decomposition at one loop

The Feynman diagrams for the computation of the one-loop soft function are displayed in

fig. 4. The virtual diagrams vanish in pure dimensional regularization and the real radiation

contribution associated with only one collinear direction vanish in Feynman gauge due to

n2
i = 0. Thus the one-loop expression is given as a sum over real radiation contributions

from different color dipoles each associated with two external hard partons,

Ŝ
bare(1)
N ({km}, {nm}, {dm}) =

∑

i<j

Ti ·Tj Sij({km}, {dm}) (3.1)

with i, j = a, b, 1, . . . , N and

Sij({km}, {dm}) = −2g2
(eγEµ2

4π

)ε ∫ ddp

(2π)d

(
ν

2p0

)η ni · nj
(ni · p)(nj · p)

× 2πδ(p2) θ(p0)F ({km}, {dm}, p) . (3.2)
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We have included a factor to account for the regularization of possible rapidity divergences.

Since (ν/(2p0))η → (ν/n̄i ·p)η for pµ → (n̄i ·p)nµi /2, the common expressions for the rapidity

regularized jet and beam functions can be used. By contrast, naively applying the Wilson

line regulator in refs. [16, 31] for every single collinear direction would give the factor

( ν

|n̄i · p− ni · p|
) η

2 ×
( ν

|n̄j · p− nj · p|
) η

2 pµ→(n̄i·p)
n
µ
i
2−→

( ν

n̄i · p
)η 1

|n̂i · n̂j |η/2
. (3.3)

The additional factor |n̂i · n̂j |−η/2 leads to different finite O(η0) terms, which would lead to

a hard function that differs from the standard MS result, and hence we chose not to use this

regulator here. While refs. [16, 31] chose the spatial p3-component for the regularization,

in particular to preserve analyticity properties for virtual corrections, we choose here to

only introduce a regulator for real radiation corrections, for which the energy component

is suitable.5 This is related to a moment of the exponential rapidity regulator used in

ref. [39].

The function F incorporates the phase-space constraints on the single soft real emis-

sion. In terms of the N -jettiness measurements T (m)(p) with given distance measures

dm(p) for m = a, b, 1, . . . N it reads

F ({km}, {dm}, p) =
∑

m

δ(km − T (m)(p))
∏

l 6=m
δ(kl) θ(dl(p)− dm(p)) . (3.5)

To compute the integral in eq. (3.2) for arbitrary (one-dimensional) measurements and

a general phase-space partitioning we generalize the hemisphere decomposition employed in

ref. [1]. Our method is based on the fact that the full (IR, UV, rapidity) divergent structure

of the soft function contribution Sij is reproduced using arbitrary (IR safe) measurements

T̃ (i), T̃ (j) that asymptotically satisfy eq. (2.4), and using arbitrary distance measures

{d̃k}, with the only requirement that emissions in the vicinity of the axes ni and nj have

to be assigned to regions i and j, respectively. Having found a combination of measures

that allows for an analytic calculation one can then compute the mismatch to the correct

measurement and phase-space partitioning in terms of finite (numerical) integrals.

The most straightforward choice to enable an analytic calculation with the same sin-

gular structure as the full result is to employ directly angularities as measurements in the

regions i, j which are defined by thrust hemispheres, i.e. to use

T̃ (i)(p) = ci (ni · p)
βi
2 (n̄i · p)1−βi

2 , T̃ (j)(p) = cj(nj · p)
βj
2 (n̄j · p)1−

βj
2 (3.6)

5Rapidity regulators that only act on the real radiation contributions have been used earlier in the

literature [38] (the regulator we use for our multi-jet situation differs from theirs). An alternative would

be a rapidity regulator for the dipole that preserves analyticity and hence can be used for both real and

virtual corrections in Sij , of the form ( ν ni · nj
2|ni · p− nj · p|

)η
. (3.4)

This regulator does not have an obvious interpretation as coming from the soft Wilson lines.
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with the distance measures

d̃i(p) =
ni · p
ρi

, d̃j(p) =
nj · p
ρj

, d̃k 6=i,j(p) =∞ . (3.7)

We have included factors ρi, ρj to allow for the possibility of nonequal hemisphere regions

i and j, which we will exploit in sec. 4 to analytically calculate the result in the small-R

limit. Taking into account the difference to the actual jet boundaries and measurement,

we decompose the measurement function F for the dipole correction Sij as

F ({kl}, {dl}, p) = F̃i<j({kl}, p) + ∆Fi<j({kl}, p) + F̃j<i({kl}, p) + ∆Fj<i({kl}, p)
+

∑

m=a,b,1,...,N

Fmij ({kl}, {dl}, p) , (3.8)

with all indices distinguishing separate beam regions a, b and

F̃i<j({kl}, p) = δ
(
ki − T̃ (i)(p)

)
θ
(nj · p

ρj
− ni · p

ρi

) ∏

l 6=i
δ(kl) ,

∆Fi<j({kl}, p) =
[
δ
(
ki − T (i)(p)

)
− δ
(
ki − T̃ (i)(p)

)]
θ
(nj · p

ρj
− ni · p

ρi

) ∏

l 6=i
δ(kl) ,

F iij({kl}, {dn}, p) =
[
δ
(
ki − T (i)(p)

)
δ(kj)− δ

(
kj − T (j)(p)

)
δ(ki)

]

× θ
(ni · p

ρi
− nj · p

ρj

)
θ
(
dj(p)− di(p)

) ∏

l 6=i,j
θ
(
dl(p)− di(p)

)
δ(kl) ,

Fm 6=i,jij ({kl}, {dn}, p) =
[
δ
(
km − T (m)(p)

)
δ(ki)− δ

(
ki − T (i)(p)

)
δ(km)

]

× θ
(nj · p

ρj
− ni · p

ρi

)
θ
(
di(p)− dm(p)

)∏

l 6=i
θ
(
dl(p)− dm(p)

)
δ(kl)

+ (i↔ j) . (3.9)

The terms F̃j<i, ∆Fj<i, and F jij in eq. (3.8) are defined in analogy by replacing i ↔ j

in these expressions for F̃i<j , ∆Fi<j and F iij . A specific example for this hemisphere

decomposition is illustrated in fig. 5.

The F̃i<j denote the measurement of T̃ (i) in the hemisphere i, which can be computed

analytically and encodes all divergences. The measurement contribution ∆Fi<j is present

if T (i) is not identical to the angularity T̃ (i). It corrects for this mismatch within the

hemisphere boundaries and therefore does not depend on the final partitioning. Since T (i)

and T̃ (i) yield the same collinear and rapidity divergences and also the soft divergences

cancel in the difference of the two IR-safe observables this is a finite correction. The

remaining pieces F kij correct the measurement with the hemisphere boundaries to the actual

partitioning given in terms of the distance measures {dh}. Here the superscript m indicates

that the measurement of T (m) instead of T (i) or T (j) needs to be performed in the associated

phase space region where dm is minimal. For m = i and m = j this corresponds to the

boundary mismatch corrections between the regions i and j. The only singularities in the

phase space mismatch regions are soft IR divergences which cancel between two IR safe

measurements, such that the corresponding correction to the soft function is also finite and
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Figure 5. Illustration of the hemisphere decomposition of the measurement function in eq. (3.8)

into analytic contributions containing all divergent corrections. The remaining finite corrections

accounting for the mismatch in measurement or partitioning can be computed by numerical inte-

grations. The color of the filling indicates which variable is measured. For simplicity we illustrate

a case where the correction F iij vanishes.

can be calculated numerically in terms of finite (observable and partitioning dependent)

integrals.

We decompose the contribution of the ij dipole to the soft function in direct corre-

spondence with eq. (3.8)

Sij({kl}, {nk}, {dm}) = S̃i<j({kl}, ŝij) + ∆Si<j({kl}, ŝij) + S̃j<i({kl}, ŝij) + ∆Sj<i({kl}, ŝij)
+

∑

m=a,b,1,...,N

Smij ({kl}, {dn}, ŝij) , (3.10)

where the terms on the right-hand side distinguish between two beam regions with separate

measurements.

The expressions for the individual terms follow by replacing the measurement F ({kl}, {dn}, p)
in eq. (3.1) by the corresponding term in eq. (3.8). The hemisphere corrections to the soft

function S̃i<j and S̃j<i have been calculated analytically for βi = 2 in [1]. For βi 6= 1 the

result has been given in ref. [37] in terms of a finite numerical integral. The latter can be

evaluated analytically and vanishes for ρi = ρj . This yields the bare result

S̃βi 6=1
i<j ({kl}, ŝij) =

αs
4π

1

βi − 1

∏

l 6=i
δ(kl)

{
8

µ ξi<j
L1

(
ki

µ ξi<j

)
− 4

ε

1

µ ξi<j
L0

(
ki

µ ξi<j

)
(3.11)
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+ δ(ki)

[
2

ε2
− π2

6
− (βi − 2)(βi − 1) θ

( ρi
ρj
ŝīj − 1

)
ln2
( ρi
ρj
ŝīj

)]
+O(ε)

}
,

with the rescaling factor ξi<j given in terms of the angular term ŝij , with

ξi<j ≡ ci
( ρi
ρj
ŝij

)βi−1

2
, ŝij ≡

ni · nj
2

=
1− cos θij

2
, ŝīj ≡

n̄i · nj
2

=
1 + cos θij

2
. (3.12)

The plus distributions Ln are defined as

Ln(y) ≡
[
θ(y) lnn y

y

]

+

. (3.13)

For βi = 1 the computation is carried out in app. A which gives the result

S̃βi=1
i<j ({kl}, ŝij) =

αs
4π

∏

l 6=i
δ(kl)

{
8

µ ci
L1

(
ki
µ ci

)
− 8

µ ci
L0

(
ki
µ ci

)[
1

η
+ ln

(
ν

µ

√
ρi
ρj
ŝij

)]

+ δ(ki)

[
4

η ε
− 2

ε2
+

4

ε
ln

(
ν

µ

√
ρi
ρj
ŝij

)
+
π2

6
+ θ
( ρi
ρj
ŝīj − 1

)
ln2
( ρi
ρj
ŝīj

)]

+O(η, ε)

}
. (3.14)

The hemisphere results S̃j<i are given by simply replacing i↔ j in eqs. (3.11) and (3.14).

We will now explicitly display the corrections to the hemisphere results in eqs. (3.11)

and (3.14) in terms of finite integrals that can be computed numerically. Depending on

the specific partitioning and N -jettiness measurement, different integration variables can

be appropriate, e.g. the rapidity η and azimuthal angle φ in the lab frame (i.e. coordinates

with respect to the beam axis) or the relative rapidity η′ and azimuthal angle φ′ in a

boosted frame where the collinear directions ni and nj are back-to-back. The former is

usually more convenient for the conical (anti-kT ) distance measure in eq. (2.6) since the

integration boundaries are just circles in the η-φ plane, while the geometric measures in

eqs. (2.7)–(2.9) involve naturally the momentum projections ni · p, nj · p for which the

variables η′, φ′ are usually more practical (see refs. [1, 37]). For definiteness we use here

beam coordinates, since our general N -jettiness measurements for pp→ N jets in eq. (2.1)

and also the distance measures in eqs. (2.6)–(2.9) are displayed in terms of those, and

since our main focus will be the anti-kT case. First we write the momentum projections in

eqs. (3.2), (3.6) and (3.7) as

nk · p = pT gk(η, φ) , n̄k · p = pT gk̄(η, φ) (3.15)

with

ga(η, φ) ≡ g0(η, φ) = e−η ,

gb(η, φ) ≡ g0̄(η, φ) = eη ,

gm>0(η, φ) =
cosh(η − ηm)− cos(φ− φm)

cosh ηm
,

gm̄>0(η, φ) =
cosh(η + ηm) + cos(φ− φm)

cosh ηm
. (3.16)
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Keeping only the ε-dependence in the phase space integration of eq. (3.2) which is required

to regulate the soft singularities, we can write the correction terms as

∆Si<j({kl}, ŝij) = −αs
π2

µ2ε

∫ ∞

0

dpT

p1+2ε
T

∫ π

−π
dφ

∫ ∞

−∞
dη

ŝij
gi(η, φ) gj(η, φ)

∆Fi<j({kl}, p) +O(ε) ,

(3.17)

and similarly for Smij . We can then use that

µ2ε

∫ ∞

0

dpT

p1+2ε
T

[
δ(ki) δ

(
km − pT fm(η, φ)

)
− δ
(
ki − pT fi(η, φ)

)
δ(km)

]

= δ(ki)
1

µ
L0

(km
µ

)
− 1

µ
L0

(ki
µ

)
δ(km)− ln

(
fm(η, φ)

fi(η, φ)

)
δ(ki) δ(km) +O(ε) . (3.18)

To obtain the correction ∆Si<j we replace in eq. (3.18) km → ki, fm → f̃i = ci g
βi/2
i g

1−βi/2
ī

giving

∆Si<j({kl}, ŝlm) =
αs
π
I1,i<j(fi, ŝij)

∏

l

δ(kl) (3.19)

in terms of the angle dependent integral I1,i<j which depends only on the observable T (i)

(via fi) and the angle ŝij ,

I1,i<j(fi, ŝij) =
ŝij
π

∫ π

−π
dφ

∫ ∞

−∞
dη ln

(
fi(η, φ)

ci[gi(η, φ)]βi/2 [gī(η, φ)]1−βi/2

)
1

gi(η, φ) gj(η, φ)

× θ
(gj(η, φ)

ρj
− gi(η, φ)

ρi

)
. (3.20)

Similar expressions appear also in ref. [40] in computations of soft corrections for general

event shapes in e+e−-collisions. Finally, the non-hemisphere correction Smij can be written

as (see also refs. [1, 37])

Smij ({kl}, {dn}, ŝij) =
αs
π

{[
δ(km)

1

µ
L0

(ki
µ

)
− 1

µ
L0

(km
µ

)
δ(ki)

]
Im0,ij({dl}, ŝij)

∏

l 6=i,m
δ(kl)

+ Im1,ij({dl}, fi, fm, ŝij)
∏

l

δ(kl)

}
+ (i↔ j) , (3.21)

in terms of the integrals Im0,ij (and Im0,ji), which depends on the partitioning and the angle

ŝij , and the integrals Im1,ij (and Im1,ji), which in addition depend on the measurements T (i)

(T (j)) and T (m). These are given by

Im0,ij({dl}, ŝij) =
ŝij
π

∫ π

−π
dφ

∫ ∞

−∞
dη

1

gi(η, φ) gj(η, φ)

× θ
(gj(η, φ)

ρj
− gi(η, φ)

ρi

) ∏

l 6=m
θ
(
dl(η, φ)− dm(η, φ)

)
, (3.22)

Im1,ij({dl}, fi, fm, ŝij) =
ŝij
π

∫ π

−π
dφ

∫ ∞

−∞
dη ln

(
fm(η, φ)

fi(η, φ)

)
1

gi(η, φ) gj(η, φ)

× θ
(gj(η, φ)

ρj
− gi(η, φ)

ρi

) ∏

l 6=m
θ
(
dl(η, φ)− dm(η, φ)

)
. (3.23)
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The above expressions allow for a determination of the N -jet soft function at one-

loop for arbitrary measurements and distance measures. In practice, evaluating these

integrals can be quite tedious, since the phase-space constraints can lead to slow or unstable

numerical evaluations. For the one-jet case and distance measures we consider next we solve

for the integration limits allowing for fast and precise numerical integrations.

4 L+ 1 jet production at hadron colliders

4.1 Setup

As a concrete example for the comparison of numerical results we discuss the case pp→ L+1

jet. Choosing φJ = 0 without loss of generality the lightcone direction of the jet is given

by

nµJ = (1, n̂J) =
(

1,
1

cosh ηJ
, 0, tanh ηJ

)
, (4.1)

In this case we partition the phase space only into a single jet and a beam region and the

observable is given by

T1 =
∑

i

{
TB(pi), for dB(pi) < dJ(pi) ,

TJ(pi), for dJ(pi) < dB(pi) .
(4.2)

For TB ≡ T (0) and TJ ≡ T (1) we use the parameterizations in eq. (2.1) to specify the

observable. As jet observables we consider angularities defined by

Angularity T βJ : fβJ (ηi, φi) = RβiJ (4.3)

where RiJ denotes the distance of the emission i with respect to the jet axis as defined

in eq. (2.10). Among these is for β = 2 the observable T β=2
J (pi) = 2 cosh ηJ(nJ · pi)

corresponding directly to the measurement of the jet mass, m2
J ' pJTT

β=2
J , as exploited in

refs. [25, 41, 42]. In contrast to eq. (3.6), which is the more common definition in e+e−

collisions, we have defined the angularities in a way which is invariant under boosts along

the beam direction and corresponds to the measurement for the Conical Geometric case

in ref. [27] with the specification γ = 1 (including the XCone default and the Recoil-Free

default). For β = 1 the definition in eq. (4.3) also corresponds to the default way to study

N -subjettiness [26].

As measurements of the beam region observable (or jet vetoes) we discuss

beam thrust T τB (γ = 2) : f τB(η) = e−|η| ,

C-parameter T CB (γ = 2) : fCB (η) =
1

2 cosh η
,

transverse energy T pTB (γ = 1) : fpTB (ηi) = 1 . (4.4)

These choices include both SCETI-type observables (beam thrust and C-parameter) and

SCETII-type observables (transverse energy). Thus, with the various choices for TB and

TJ , we cover all possible combinations of observable types for which the factorization was

discussed in sec. 2.3.
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4.2 Computation of the soft function

The color space for the soft function Sκ1 with three external collinear directions is one-

dimensional and we write the one-loop expression in analogy to eq. (3.1) as

S
κ(1)
1 ({kj}, {dj}, ηJ) = Ta ·Tb Sab({kj}, {dj}, ηJ) + Ta ·TJ SaJ({kj}, {dj}, ηJ)

+ Tb ·TJ SbJ({kj}, {dj}, ηJ) , (4.5)

where SbJ can be inferred from SaJ due to symmetry,

SbJ({kj}, {dj}, ηJ) = SaJ({kj}, {dj},−ηJ) . (4.6)

For a pure gluonic channel κ = {g, g; g} the color factors are

Ta ·Tb = Ta ·TJ = Tb ·TJ = −CA
2
, (4.7)

while for the channel κ = {g, q; q} (and in analogy for its permutations)

Ta ·Tb = Ta ·TJ = −CA
2
, Tb ·TJ =

CA
2
− CF , (4.8)

The expressions for the Feynman diagrams of the corrections Sab and SaJ are given by

eq. (3.2) with N = 1.

Following the hemisphere decomposition in sec. 3, for the beam-beam dipole correction

Sab the full hemisphere corrections, i.e. without considering the jet region, can be computed

analytically for the measurements in eq. (4.4). Thus the contributions F̃a<b, F̃b<a, ∆Fa<b
and ∆Fb<a in eq. (3.8) can be represented by a single function Fwhole

B encoding the full

measurement of the beam region observable TB in the whole phase space. We therefore

write the measurement function F as6

F ({kj}, {dj}, ηJ , p) = Fwhole
B ({kj}, p) + F Jab({kj}, {dj}, ηJ , p) ,

Fwhole
B ({kj}, p) = δ

(
kB − pT fB(η)

)
δ(kJ) ,

F Jab({kj}, {dj}, ηJ , p) =
[
δ(kB) δ

(
kJ − pT fJ(η, φ)

)
− δ
(
kB − pT fB(η)

)
δ(kJ)

]

× θ
(
dB(η)− dJ(η, φ)

)
, (4.9)

which is illustrated in fig. 6. The analytic corrections Swhole
ab corresponding to Fwhole

B can

be easily obtained from eqs. (3.11) and (3.14) (and using eq. (3.20) for the C-parameter),

see also e.g. refs. [16, 43, 44],

Swhole,τ
ab ({kj}) =

αs
4π

δ(kJ)

{
16

µ
L1

(
kB
µ

)
− 8

µε
L0

(
kB
µ

)
+

[
4

ε2
− π2

3

]
δ(kB) +O(ε)

}
,

Swhole,C
ab ({kj}) =

αs
4π

δ(kJ)

{
16

µ
L1

(
kB
µ

)
− 8

µε
L0

(
kB
µ

)
+

[
4

ε2
− π2

]
δ(kB) +O(ε)

}
,

Swhole,pT
ab ({kj}) =

αs
4π

δ(kJ)

{
16

µ
L1

(
kB
µ

)
− 16

µ
L0

(
kB
µ

)[
1

η
+ ln

(
ν

µ

)]

+ δ(kB)

[
8

η ε
− 4

ε2
+

8

ε
ln

(
ν

µ

)
+
π2

3

]
+O(η, ε)

}
. (4.10)

6Compared to sec. 3 we perform here the decomposition for a single beam region.
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Figure 6. The hemisphere decomposition adapted to the case of a beam-beam dipole (i = a,

j = b). The circle indicates the jet region defined by dB(p) > dJ(p).

The remaining correction SJab due to the angularity measurement in the jet region is of

O(R2), i.e. the jet area, and is given by

SJab({kj}, {dj}, ηJ) =
αs
π

{
IJ0,ab({dj}, ηJ)

[
δ(kJ)

1

µ
L0

(kB
µ

)
− 1

µ
L0

(kJ
µ

)
δ(kB)

]

+ IJ1,ab({dj}, {fj}, ηJ) δ(kB) δ(kJ)

}
,

IJ0,ab({dj}, ηJ) =
1

π

∫ π

−π
dφ

∫ ∞

−∞
dη θ

(
dB(η)− dJ(η, φ)

)
,

IJ1,ab({dj}, {fj}, ηJ) =
1

π

∫ π

−π
dφ

∫ ∞

−∞
dη ln

(
fJ(η, φ)

fB(η)

)
θ
(
dB(η)− dJ(η, φ)

)
. (4.11)

IJ0,ab corresponds just to the jet area in the η-φ plane and is identical to R2 for the conical

and the geometric-R measures, while for the conical geometric measure there are deviations

of O(R6).

In order to compute the integrals for the beam-jet dipoles, one can follow the hemi-

sphere decomposition as presented in sec. 3 which yields numerical corrections of O(1) and

logarithmically enhanced terms for small R. However, we will present here a more efficient

adaption of this decomposition exploiting the fact that for the measurements considered

in this section the soft function can be computed analytically in an expansion in terms of

the jet radius R. As already discussed in ref. [42] this provides a fairly good approximation

for not too large values of R. In the following we will compute numerically only devia-

tions from these results, such that the numerical integrals will scale with powers of R thus

avoiding large cancellations for R� 1.7

First, we can choose in eq. (3.9) the parameter ρJ such that for R � 1 it yields a

conical shape for the jet region with an active area πR2. In this limit all distance measures

considered here lead to the same partitioning as shown in fig. 1 with deviations being

suppressed by R. Using eq. (3.16) the associated condition for the parameter ρJ reads for

the aJ-dipole (with ρa = 1)

∫ π

π
dφ

∫ ∞

−∞
dη θ

[
ρJ e

−η − R2
iJ

2 cosh ηJ

]
= πR2 . (4.12)

7We have checked that the numerical results from the two alternative decompositions agree.
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Expanding the phase space constraint in the small-R limit gives an analytic relation for

ρJ ,

ρJ(R) = ρRJ
[
1 +O(R)

]
with ρRJ = R2 1 + tanh ηJ

2
. (4.13)

The soft function corrections due to the measurement of angularities in the jet hemisphere

can be computed analytically. If the corrections due to the measurement of the beam

region observable in the beam hemisphere can also be computed analytically, all remaining

numerical corrections will be automatically small for R � 1. This is the case for the

transverse energy veto, where eq. (3.14) provides an exact hemisphere result for arbitrary ρ.

However, for a general veto (including beam thrust and C-parameter) we have not obtained

an analytic hemisphere result. To avoid large numeric corrections from the term ∆Fa<J
in eq. (3.9), we can instead decompose the hemisphere measurement function Fa<J into a

piece without constraints due to a jet region and its measurement, calculated analytically in

ref. [42], and a subtraction term in the jet hemisphere (with the measurement of the beam

region observable), which can be computed in a series expansion in R. For the correction

SaJ we thus write F as

F ({kl}, {dn}, ηJ , p) = Fa<J({kl}, R, ηJ , p) + FJ<a({kj}, R, ηJ , p) +
∑

m=J,B

FmaJ({kl}, {dn}, ηJ , p)

= Fwhole
B ({kl}, p)− F̃BJ<a({kl}, R, ηJ , p) + FJ<a({kl}, R, ηJ , p)

+ ∆FBJ<a({kl}, R, ηJ , p) +
∑

m=J,B

FmaJ({kl}, {dn}, ηJ , p) , (4.14)

where

Fwhole
B ({kl}, ηJ , p) = δ

(
kB − pT fB(η)

)
δ(kJ) ,

F̃BJ<a({kl}, R, ηJ , p) = δ
(
kB − pT f̃B(η − ηJ)

)
δ(kJ) θ

(
na · p−

nJ · p
ρRJ

)
,

FJ<a({kl}, R, ηJ , p) = δ(kB) δ
(
kJ − pT fJ(η, φ)

)
θ
(
na · p−

nJ · p
ρRJ

)
,

∆FBJ<a({kl}, R, ηJ , p) =
[
δ
(
kB − pT f̃B(η − ηJ)

)
− δ
(
kB − pT fB(η)

)]
δ(kJ)

× θ
(
na · p−

nJ · p
ρRJ

)
,

FBaJ({kl}, {dn}, ηJ , p) =
[
δ
(
kB − pT fB(η)

)
δ(kJ)− δ(kB) δ

(
kJ − pT fJ(η, φ)

)]

× θ
(
dJ(η, φ)− dB(η)

)
θ
(
na · p−

nJ · p
ρRJ

)
,

F JaJ({kl}, {dn}, ηJ , p) =
[
δ(kB) δ

(
kJ − pT fJ(η, φ)

)
− δ
(
kB − pT fB(η)

)
δ(kJ)

]

× θ
(
dB(η)− dJ(η, φ)

)
θ
(nJ · p

ρRJ
− na · p

)
. (4.15)

Here the expanded measurement of the beam region observable in the jet region is denoted

by T̃B = pT f̃B(η − ηJ) with

f̃B(η − ηJ) ≡ fB(ηJ) eηJ−η =
na · p
pT

fB(ηJ) eηJ . (4.16)
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Figure 7. The general adapted version of the hemisphere decomposition for the case of a beam-jet

dipole (i = a, j = J). The first line represents terms which can be calculated analytically, while

the second and third line contain finite, numerical corrections which vanish in the small R limit.

The corresponding decomposition of the soft function is given by

SaJ({kl}, {dn}, ηJ , p) = Swhole
aJ ({kl}, ηJ , p)− S̃BJ<a({kl}, ηJ) + SJ<a({kl}, R, ηJ)

+ ∆SBJ<a({kl}, R, ηJ) +
∑

m=J,B

SmaJ({kl}, {dn}, ηJ) , (4.17)

where each individual term is given by replacing the measurement F ({kl}, {dn}, p) in

eq. (3.1) by the corresponding term in eq. (4.14). This decomposition is illustrated in

fig. 7. We now discuss the different pieces in turn, giving the associated results.

The term Fwhole
B corresponds to the measurement of the beam observable within the

complete phase space without constraints due to the jet region. In the context of pp→ L+1

jet this correction was calculated in [42] for the measurements in eq. (4.4) and denoted by

SB therein.8 The bare corrections are given by

Swhole,τ
aJ ({kl}, ηJ) =

αs
4π

δ(kJ)

{
16ηJ θ(−ηJ)

1

µ
L0

(kB
µ

)
+ δ(kB)

[
−8ηJ

ε
θ(−ηJ)

− 4 Li2
(
e−2|ηJ |

)
− 8η2

J θ(−ηJ)
]

+O(ε)

}
,

8For an energy veto at e+e− collisions the associated “inclusive” correction to the one-loop soft function

has been first computed in [45]. For pp→ dijets also the correction from the jet-jet dipole can be calculated

for a pT -veto [46].
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Swhole,C
aJ ({kl}, ηJ) =

αs
4π

δ(kJ)

{
8 ln
(1 + tanh ηJ

2

) 1

µ
L0

(kB
µ

)
+ δ(kB)

[
−4

ε
ln
(1 + tanh ηJ

2

)

+ 4 Li2

(1 + tanh ηJ
2

)
+ 2 ln2

(1− tanh ηJ
2

)
− 8 ln2(2 cosh ηJ)− 2π2

3

]

+O(ε)

}
,

Swhole,pT
aJ ({kl}, ηJ) =

αs
4π

δ(kJ)

{
1

µ
L0

(kB
µ

)[
−8

η
+

4

ε
− 8 ln

(νe−ηJ
µ

)]

+ δ(kB)

[
4

η ε
− 4

ε2
+

4

ε
ln
(νe−ηJ

µ

)
+
π2

3

]
+O(η, ε)

}
. (4.18)

The measurement of the beam region observable leads to a different divergent behav-

ior for radiation collinear to the jet axis than for the jet measurement. This requires the

computation of the analytic piece −F̃BJ<a (in the jet hemisphere) to correct for this mis-

match. For its calculation we employ a measurement T̃B which is linear in the momentum

component na · p and identical to the beam observable TB in the vicinity of nJ (i.e. for

η → ηJ), see eq. (4.16). In dimensional regularization the associated correction gives just

the result for the hemisphere contribution in [1] (with an appropriate rescaling factor),

S̃BJ<a({kl}, R, ηJ) =
αs
4π

δ(kJ)

{
8R

µfB(ηJ)
L1

(
kBR

µfB(ηJ)

)
− 4

ε

R

µ fB(ηJ)
L0

(
kBR

µfB(ηJ)

)

+

[
2

ε2
− π2

6

]
δ(kB)

}
. (4.19)

The term FJ<a corresponds to the measurement of the jet observable in the rescaled jet

hemisphere. The results for the angularities defined in eq. (4.3) can be obtained analytically

from the hemisphere results in eqs. (3.11) and (3.14) and a finite correction coming from

eq. (3.20). The latter accounts for the difference of the boost invariant jet angularity in

eq. (4.3) from the generic definition in eq. (3.6) and is calculated in app. A. In total we

obtain

Sβ 6=1
J<a({kl}, R, ηJ) =

αs
4π

δ(kB)

β−1

{
8

µRβ−1
L1

(
kJ

µRβ−1

)
− 4

ε

1

µRβ−1
L0

(
kJ

µRβ−1

)
(4.20)

+ δ(kJ)

(
2

ε2
− π2

6
− 2(β − 1)(β − 2) θ(R− 1) ln2R

)
+O(ε)

}
,

Sβ=1
J<a({kl}, R, ηJ) =

αs
4π

δ(kB)

{
8

µ
L1

(
kJ
µ

)
− 8

µ
L0

(
kJ
µ

)[
1

η
+ ln

(
νR

2µ cosh ηJ

)]
(4.21)

+ δ(kJ)

(
4

η ε
− 2

ε2
+

4

ε
ln

(
νR

2µ cosh ηJ

)
+
π2

6
+ 2 θ(R− 1) ln2R

)

+O(η, ε)

}
.

The analytic contributions in the small R limit are given by

SaJ({kl}, R, ηJ) = Swhole
aJ ({kl}, ηJ) + S̃BJ<a({kl}, R, ηJ) + SJ<a({kl}, R, ηJ) +O(R1,2)

(4.22)
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where the displayed terms are O(R0) corrections and depend only logarithmically on R.

They are independent of the specific partitioning (jet definition), and for R � 1 yield

the full result up to power corrections. In the context of an effective theory for a small

jet radius the soft radiation is factorized into different types of soft modes [42, 46–48].

The measurement Fwhole
B applies to wide-angle soft radiation, which does not resolve the

jet region but depends on the Wilson line of the jet. The corrections S̃BJ<a and SJ<a
correspond to the results for the matrix elements of “soft-collinear” and “collinear-soft”

modes, respectively, in the nomenclature of ref. [47]. These are boosted and constrained

by the jet boundary. In the limit R � 1 the beam-jet dipoles give the same results,

SaJ = SbJ , and the Wilson lines from the beams a and b fuse giving a total color factor

TJ · (Ta + Tb) = −T2
J [41].

The measurement corrections ∆FBJ<a, F
B
aJ and F JaJ can be in general not computed

analytically, but are again finite corrections that allow for a numerical evaluation. The

term ∆FBJ<a corrects the subtraction in the jet hemisphere from the measurement in the

beam region with f̃B to the correct observable fB. As in sec. 3 we can write this correction

in terms of an integral in η-φ coordinates,

∆SBJ<a({ki}, R, ηJ) =
αs
π

∆IB1,aJ(fB, R, ηJ) δ(kB) δ(kJ) , (4.23)

with

∆IB1,aJ(fB, R, ηJ) =
1

2π

∫ π

−π
dφ

∫ ∞

−∞
dη

eη−ηJ

cosh(η − ηJ)− cosφ
ln

(
eηJfB(ηJ)

eηfB(η)

)
θ
(
na · p−

nJ · p
ρRJ

)

= θ(R− 1)

[∫ R−1

0
dxh1(fB, ηJ , x) +

∫ R+1

R−1
dxh2(fB, R, ηJ , x)

]

+ θ(1−R)

∫ R+1

1−R
dxh2(fB, R, ηJ , x) , (4.24)

where we have defined the integration variable x ≡ eη−ηJ and

h1(fB, ηJ , x) =
2x

|x2 − 1| ln

(
fB(ηJ)

xfB(ηJ + lnx)

)
,

h2(fB, R, ηJ , x) =

[
1− 2

π
arctan

( |x− 1|
x+ 1

√
(1 + x)2 −R2

R2 − (x− 1)2

)]
h1(fB, ηJ , x) . (4.25)

This correction depends also only on the specific shape of the hemisphere for a given value

of R, but not on the general partitioning. Since the full integrand does not exhibit singular

behavior close to the jet axis (i.e. for η → ηJ and φ→ 0), it scales with the jet area for a

smooth measurement in the beam region, i.e. ∆IB1,aJ is O(R2).9

The terms FBaJ and F JaJ correct for the difference between the actual jet definition

(through the partitioning) and the employed jet hemisphere with scaling parameter ρRJ .

9We have checked numerically that for the transverse momentum veto with fB(η) = 1 the integral

∆IB1,aJ vanishes for R ≤ 1 and gives −4 ln2R for R > 1 as implied by the full analytic hemisphere result in

eq. (3.14).
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Their contribution to the soft function directly corresponds to eq. (3.21). SBaJ is given by

SBaJ({kl}, {dn}, ηJ) =
αs
π

{
IB0,aJ({dn}, ηJ)

[
δ(kB)

1

µ
L0

(kJ
µ

)
− 1

µ
L0

(kB
µ

)
δ(kJ)

]

+ IB1,aJ({dn}, {fn}, ηJ) δ(kB) δ(kJ)

}
, (4.26)

where the relevant integrals depend now on the specific distance measures and are given

by

IB0,aJ({dn}, ηJ) =
1

2π

∫ π

−π
dφ

∫ ∞

−∞
dη

eη−ηJ

cosh(η − ηJ)− cosφ
(4.27)

× θ
(
dJ(η, φ)− dB(η)

)
θ
(
R2eηJ−η − 2 cosh(η − ηJ) + 2 cosφ

)
,

IB1,aJ({dn}, {fn}, ηJ) =
1

2π

∫ π

−π
dφ

∫ ∞

−∞
dη

eη−ηJ

cosh(η − ηJ)− cosφ
ln

(
fB(η)

fJ(η, φ)

)

× θ
(
dJ(η, φ)− dB(η)

)
θ
(
R2eηJ−η − 2 cosh(η − ηJ) + 2 cosφ

)
.

In analogy, SJaJ is given by

SJaJ({kl}, {dn}, ηJ) =
αs
π

{
IJ0,aJ({dn}, ηJ)

[
δ(kJ)

1

µ
L0

(kB
µ

)
− 1

µ
L0

(kJ
µ

)
δ(kB)

]

+ IJ1,aJ({dn}, {fn}, ηJ) δ(kB) δ(kJ)

}
, (4.28)

with

IJ0,aJ({dn}, ηJ) =
1

2π

∫ π

−π
dφ

∫ ∞

−∞
dη

eη−ηJ

cosh(η − ηJ)− cosφ
(4.29)

× θ
(
dB(η, φ)− dJ(η)

)
θ
(

2 cosh(η − ηJ)− 2 cosφ−R2eηJ−η
)
,

IJ1,aJ({dn}, {fn}, ηJ) =
1

2π

∫ π

−π
dφ

∫ ∞

−∞
dη

eη−ηJ

cosh(η − ηJ)− cosφ
ln

(
fJ(η, φ)

fB(η, φ)

)

× θ
(
dB(η, φ)− dJ(η)

)
θ
(

2 cosh(η − ηJ)− 2 cosφ−R2eηJ−η
)
.

These integrals scale individually as O(R), but yield in total O(R2) contributions, as

explained in app. B.2.10 We will discuss in app. B how the numerical evaluation of these

integrals can be carried out efficiently by explicitly determining the integration domains.

While a full analytic calculation of these does not seem feasible in general, it is possible

to compute them in an expansion for R� R0 (where R0 denotes the generic convergence

radius where the expansion breaks down). We calculate the terms at O(R2) in app. A.2.

Such an expansion has been also applied in [49, 50] for the inclusive jet mass spectrum

where it was found that O(R4) corrections have a negligible impact for phenomenologically

relevant values of R.

10This holds only for a smooth measurement in the beam region. For the beam thrust veto and |ηJ | < R

the resulting total correction is of O(R) due to the kink at η = 0.
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4.3 Summary of corrections

To give a transparent overview of all corrections we display in the following the structure

of the full (renormalized) soft functions for all combinations β 6= 1, β = 1 and γ = 1, 2.

Since eqs. (3.11) and (3.14) encode the full µ- and ν-dependence of the soft function,

one can directly read off the counterterms for the soft function absorbing all 1/ε- and

1/η-divergences. These result in the well-known one-loop anomalous dimensions for the

associated soft function defined by

µ
d

dµ
Sκ1 ({ki}, {di}, ηJ , µ, ν) =

∫
dk′B dk′J γ

κ
S1

({ki − k′i}, ηJ , µ, ν)Sκ1 ({k′i}, {di}, ηJ , µ, ν) ,

ν
d

dν
Sκ1 ({ki}, {di}, ηJ , µ, ν) =

∫
dk′B dk′J γ

κ
S1,ν({ki − k′i}, µ)Sκ1 ({k′i}, {di}, ηJ , µ, ν) . (4.30)

The ν-anomalous dimension is only present for β = 1 or γ = 1. The explicit one-loop

expressions for all cases read

γ
κ(1)
S1,β 6=1,γ=2({ki}, ηJ , µ) =

αs(µ)

4π
2Γ0

{
T2
J

1

β − 1

1

µ
L0

(kJ
µ

)
δ(kB)

+ (T2
a + T2

b)
1

µ
L0

(kB
µ

)
δ(kJ) + (T2

a −T2
b) ηJ δ(kJ) δ(kB)

}
,

γ
κ(1)
S1,β 6=1,γ=1({ki}, ηJ , µ, ν) =

αs(µ)

4π
2Γ0

{
T2
J

1

β − 1

1

µ
L0

(kJ
µ

)
δ(kB)

+
[
−(T2

a + T2
b) ln

(ν
µ

)
+ (T2

a −T2
b) ηJ

]
δ(kJ) δ(kB)

}
,

γ
κ(1)
S1,β=1,γ=2({ki}, ηJ , µ, ν) =

αs(µ)

4π
2Γ0

{
(T2

a + T2
b)

1

µ
L0

(kB
µ

)
δ(kJ)

+
[
−T2

J ln
( ν

2µ cosh ηJ

)
+ (T2

a −T2
b) ηJ

]
δ(kJ) δ(kB)

}
,

γ
κ(1)
S1,β=1,γ=1({ki}, ηJ , µ, ν) =

αs(µ)

4π
2Γ0 δ(kJ) δ(kB)

{
−(T2

a + T2
b + T2

J) ln
(ν
µ

)

+ T2
J ln(2 cosh ηJ) + (T2

a −T2
b) ηJ

}
, (4.31)

for the µ-anomalous dimensions with Γ0 = 4 being the coefficient of the one-loop cusp

anomalous dimension. The ν-anomalous dimensions are given by

γ
κ(1)
S1,ν,β 6=1,γ=1({ki}, µ) =

αs(µ)

4π
2Γ0(T2

a + T2
b)

1

µ
L0

(kB
µ

)
δ(kJ) , (4.32)

γ
κ(1)
S1,ν,β=1,γ=2({ki}, µ) =

αs(µ)

4π
2Γ0 T2

J

1

µ
L0

(kJ
µ

)
δ(kB) ,

γ
κ(1)
S1,ν,β=1,γ=1({ki}, µ) =

αs(µ)

4π
2Γ0

{
(T2

a + T2
b)

1

µ
L0

(kB
µ

)
δ(kJ) + T2

J

1

µ
L0

(kJ
µ

)
δ(kB)

}
.

For β 6= 1 and γ = 2, i.e. SCETI jet and beams, the renormalized result for the
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one-loop soft function reads

S
κ(1)
1,β 6=1,γ=2({ki}, {di}, ηJ , µ) =

αs(µ)

4π

{
Ta ·Tb

[
16

µ
L1

(kB
µ

)
δ(kJ)

+ sab,B({di}, ηJ)
( 1

µ
L0

(kB
µ

)
δ(kJ)− 1

µ
L0

(kJ
µ

)
δ(kB)

)
+ sab,δ({di}, {fi}, ηJ) δ(kB) δ(kJ)

]

+ Ta ·TJ

[
1

β − 1

8

µ
L1

(kJ
µ

)
δ(kB) +

8

µ
L1

(kB
µ

)
δ(kJ)

+ saJ,B({di}, ηJ)
1

µ
L0

(kB
µ

)
δ(kJ) + saJ,J({di}, ηJ)

1

µ
L0

(kJ
µ

)
δ(kB)

+ saJ,δ({di}, {fi}, ηJ) δ(kJ) δ(kB)

]
+ Tb ·TJ

[
ηJ ↔ −ηJ

]}
, (4.33)

For β 6= 1 and γ = 1, i.e. a SCETI jet and SCETII beams, the result reads

S
κ(1)
1,β 6=1,γ=1({ki}, {di}, ηJ , µ, ν) =

αs(µ)

4π

{
Ta ·Tb

[
16

µ
L1

(kB
µ

)
δ(kJ)− 16

µ
L0

(kB
µ

)
ln
(ν
µ

)
δ(kJ)

+ sab,B({di}, ηJ)
( 1

µ
L0

(kB
µ

)
δ(kJ)− 1

µ
L0

(kJ
µ

)
δ(kB)

)
+ sab,δ({di}, {fi}, ηJ) δ(kB) δ(kJ)

]

+ Ta ·TJ

[
1

β − 1

8

µ
L1

(kJ
µ

)
δ(kB) +

8

µ
L1

(kB
µ

)
δ(kJ)− 8

µ
L0

(kB
µ

)
ln
(ν
µ

)
δ(kJ)

+ saJ,B({di}, ηJ)
1

µ
L0

(kB
µ

)
δ(kJ) + saJ,J({di}, ηJ)

1

µ
L0

(kJ
µ

)
δ(kB)

+ saJ,δ({di}, {fi}, ηJ) δ(kJ) δ(kB)

]
+ Tb ·TJ

[
ηJ ↔ −ηJ

]}
, (4.34)

For β = 1 and γ = 2, i.e. a SCETII jet and SCETI beams, the result reads

S
κ(1)
1,β=1,γ=2({ki}, {di}, ηJ , µ, ν) =

αs(µ)

4π

{
Ta ·Tb

[
16

µ
L1

(kB
µ

)
δ(kJ)

+ sab,B({di}, ηJ)
( 1

µ
L0

(kB
µ

)
δ(kJ)− 1

µ
L0

(kJ
µ

)
δ(kB)

)
+ sab,δ({di}, {fi}, ηJ) δ(kB) δ(kJ)

]

+ Ta ·TJ

[
8

µ
L1

(
kJ
µ

)
δ(kB)− 8

µ
L0

(
kJ
µ

)
ln

(
ν

2µ cosh ηJ

)
δ(kB) +

8

µ
L1

(kB
µ

)
δ(kJ)

+ saJ,B({di}, ηJ)
1

µ
L0

(kB
µ

)
δ(kJ) + saJ,J({di}, ηJ)

1

µ
L0

(kJ
µ

)
δ(kB)

+ saJ,δ({di}, {fi}, ηJ) δ(kJ) δ(kB)

]
+ Tb ·TJ

[
ηJ ↔ −ηJ

]}
, (4.35)

For β = 1 and γ = 1, i.e. SCETII jet and beams, the result reads

S
κ(1)
1,β=1,γ=1({ki}, {di}, ηJ , µ, ν) =

αs(µ)

4π

{
Ta ·Tb

[
16

µ
L1

(kB
µ

)
δ(kJ)− 16

µ
L0

(kB
µ

)
ln
(ν
µ

)
δ(kJ)

+ sab,B({di}, ηJ)
( 1

µ
L0

(kB
µ

)
δ(kJ)− 1

µ
L0

(kJ
µ

)
δ(kB)

)
+ sab,δ({di}, {fi}, ηJ) δ(kB) δ(kJ)

]

+ Ta ·TJ

[
8

µ
L1

(
kJ
µ

)
δ(kB)− 8

µ
L0

(
kJ
µ

)
ln

(
ν

2µ cosh ηJ

)
δ(kB) +

8

µ
L1

(kB
µ

)
δ(kJ)
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− 8

µ
L0

(kB
µ

)
ln
(ν
µ

)
δ(kJ) + saJ,B({di}, ηJ)

1

µ
L0

(kB
µ

)
δ(kJ) + saJ,J({di}, ηJ)

1

µ
L0

(kJ
µ

)
δ(kB)

+ saJ,δ({di}, {fi}, ηJ) δ(kJ) δ(kB)

]
+ Tb ·TJ

[
ηJ ↔ −ηJ

]}
, (4.36)

Using the analytic results in eqs. (4.10), (4.18), (4.19) and (4.20) the coefficients of the

distributions are given by

sab,B({di}, ηJ) = 4IJ0,ab({di}, ηJ) ' 4R2 ,

sab,δ({di}, f τB, fβJ , ηJ) = −π
2

3
+ 4IJ1,ab({di}, f τB, fβJ , ηJ) ,

sab,δ({di}, fCB , fβJ , ηJ) = −π2 + 4IJ1,ab({di}, fCB , fβJ , ηJ) ,

sab,δ({di}, fpTB , fβJ , ηJ) =
π2

3
+ 4IJ1,ab({di}, fpTB , fβJ , ηJ) ,

saJ,B({di}, ηJ) = 8(ηJ + lnR)− 4IB0,aJ({di}, ηJ) + 4IJ0,aJ({di}, ηJ) ,

saJ,J({di}, ηJ) = −8 lnR+ 4IB0,aJ({di}, ηJ)− 4IJ0,aJ({di}, ηJ) ,

saJ,δ({di}, f τB, fβJ , ηJ) = −4 Li2
(
e−2|ηJ |

)
+ 4η2

J [θ(ηJ)− θ(−ηJ)]

+ 2 ln2R
[
2β − (β − 2)θ(R− 1)

]
+ 8|ηJ | lnR−

π2

6

β

β − 1
δβ 6=1

+ 4∆IB1,aJ(f τB, R, ηJ) + 4
∑

m=B,J

Im1,aJ({di}, f τB, fβJ , ηJ) ,

saJ,δ({di}, fCB , fβJ , ηJ) = 4 Li2

(1+tanh ηJ
2

)
− 2 ln2

(1+tanh ηJ
2

)
+ 4η2

J + 8 lnR ln(2 cosh ηJ)

+ 2 ln2R
[
2β − (β − 2)θ(R− 1)

]
− π2

6

[
4 +

β

β − 1
δβ 6=1

]

+ 4∆IB1,aJ(fCB , R, ηJ) + 4
∑

m=B,J

Im1,aJ({di}, fCB , fβJ , ηJ) ,

saJ,δ({di}, fpTB , fβJ , ηJ) = 2β ln2R
[
2− θ(R− 1)

]
+
π2

6

[
2− β

β − 1
δβ 6=1

]

+ 4
∑

m=B,J

Im1,aJ({di}, fpTB , fβJ , ηJ) , (4.37)

where δβ 6=1 = 1 for β 6= 1 and zero otherwise. The numerical integrals IJ0,ab and IJ1,ab are

defined in eq. (4.11), IB0,aJ and IB1,aJ are defined in eq. (4.27), IJ0,aJ and IJ1,aJ are defined in

eq. (4.29) and ∆IB1,aJ(fB, R, ηJ) is given in eq. (4.24).

As one can see from eq. (4.37) the soft function contains Sudakov double logarithms

lnR and ln eηJ which deteriorate the perturbative expansion of the soft function for a

small jet radius and forward jets and may require an all-order resummation. This can

be achieved by additional factorization of the soft function in the framework of SCET+

theories as discussed e.g. in refs. [42, 47, 48, 51–53].

4.4 Full numerical results

We now compare the contributions to the soft function, shown through plots of the various

coefficients sab, saJ of the distributions defined in eq. (4.37). Our main focus is on the jet
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Figure 8. The coefficient sab,δ for the various distance measures and with the small R results

for beam thrust (left column), C-parameter (middle column) and pT (right column) for a jet mass

measurement (β = 2) for ηJ = 0 (top row) and |ηJ | = 1 (bottom row) as function of R. For the pT
measurement including the analytic corrections at O(R2) yield already the exact result for anti-kT .
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Figure 9. Same as fig. 8, but for R = 1 as function of ηJ .

mass measurement (β = 2) but we also show a few results for a jet angularity measurement

with β = 1 in fig. 13. We consider the various partitionings described in sec. 2.2 and beam

region observables in eq. (4.4).

The contributions from the beam-beam dipole sab,δ are shown in fig. 8 for ηJ = 0 and

|ηJ | = 1 as a function of R, and in fig. 9 for R = 1 as function of ηJ . The results deviate from

the O(R0) result away from R = 0, in particular also for the phenomenologically relevant

values R ∼ 0.5. However, including the O(R2) corrections, the analytic contributions agree

very well with the exact results for central rapidities even for values as large as R ∼ 1.

These O(R2) corrections are the same for all distance measures, which explains why they

behave very similar, and they are enhanced by logarithms of the jet radius, as can be seen

from eqs. (A.15) and (A.22). For the transverse momentum beam measurement with a

conical anti-kT jet (red curves in the right panels of figs. 8 and 9), there are in fact no
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R results. These are independent of the specific measurements in the beam and jet regions. Shown

are saJ,B for ηJ = −1, 0, 1 in terms of R (left), saJ,J for ηJ = 0 as function of R (middle) and for

R = 1 as function of ηJ (right).
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Figure 11. The coefficient saJ,δ for the various distance measures and with the small R results

for beam thrust (left column), C-parameter (middle column) and pT (right column) for a jet mass

measurement (β = 2) for ηJ = 0 (top row), ηJ = 1 (middle row) and ηJ = −1 (bottom row) as

function of R.

higher order R corrections beyond O(R2) for sab,δ. Otherwise, the next corrections are

O(R4) except for the beam thrust case with |ηJ | . R where they are O(R3) due to the

kink at η = 0. This explains the larger deviation between the analytic O(R2) beam thrust
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Figure 12. Same as fig. 11 but for R = 1 as function of ηJ .
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Figure 13. The coefficients sab,δ (top row) and saJ,δ (bottom row) for a jet angularity with β = 1,

for the various distance measures and with the small R results for a pT jet veto in the beam region,

for ηJ = 0 in terms of R (left column) and for R = 1 in terms of ηJ (right column).

result and the exact result for ηJ = 0 as seen in the top-left panel of fig. 8. At large jet

rapidities there are sizable differences between the geometric-R measures and the conical

(and conical geometric) measure, which is due to the different jet shapes illustrated in

fig. 1.

Results for the beam-jet dipole coefficients saJ,B and saJ,J are shown in fig. 10 and

these coefficients are independent of the measurements in the beam and jet regions. For

central rapidities both coefficients differ very little between different distance measures.

Away from ηJ = 0 there are noticeable differences between the geometric-R, modified

geometric-R and conical (anti-kT and XCone) measures, as can be seen in the right panel

of fig. 10. In fig. 11 we plot saJ,δ for ηJ = −1, 0, 1 as function of R and in fig. 12 for

R = 1 in terms of ηJ . Once again results are shown for the beam-thrust, C-parameter and

pT -measurements and β = 2. Compared to the beam-beam dipole, the coefficients are not

any more symmetric in ηJ ↔ −ηJ . Furthermore, the O(R2) corrections are not universal
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for different partitionings, which can lead to sizable deviations for R ∼ 1, especially for

forward jets. This is clearly visible for saJ,J , as shown in the right panel of fig. 10, or

e.g. for saJ,δ with ηJ = 1 shown in the middle row of fig. 11. The analytic results including

O(R2) corrections that are shown correspond to the conical partitioning. The difference

with respect to the exact result is very small up to values of R ∼ 2 for all measurements in

the beam region, suggesting that the effective expansion parameter is R/R0 with R0 & 2.

For the geometric-R measures the corresponding O(R2) corrections (not shown) are also

close to the full results for R . 1, but deviate much stronger for large values of R.

In general, the results for anti-kT and XCone jets are almost identical for isolated jets

and reasonable values of the jet radius, as expected from the very similar shapes displayed

in fig. 1. This will be different when the distance between jets becomes less than 2R, as

illustrated in fig. 2. Furthermore, since the shape of isolated anti-kT and XCone jets is

invariant under boosts along the beam axis, the results for the corresponding soft function

coefficients sab,B, sab,δ, saJ,δ, saJ,J and saJ,δ do not depend on the jet rapidity when using

the (boost invariant) pT -measurement in the beam region.

For different values of β the qualitative behavior looks similar. To illustrate this, we

display the coefficients sab,δ and saJ,δ for β = 1 and the pT -measurement in fig. 13. The

most noticeable differences between the distance measures are again between the (modified)

Geometric-R and the conical measures away from central rapidity.

5 Conclusions

In this paper we worked out a general setup to calculate one-loop soft functions for exclusive

N -jet processes at hadron colliders. This method applies to any jet algorithm that satisfies

soft-collinear factorization, and for generic infrared- and collinear safe jet measurements

and jet vetoes, as long as they reduce to an angularity in the limit where they approach

the jet/beam axis. The soft function is calculated using a hemisphere decomposition of the

phase space, extending the approach that was used in ref. [1] to calculate the N -jettiness

soft function. The divergences are extracted analytically, such that numerical computations

only arise for the finite terms.

We also demonstrated how the method works in practice, providing explicit expressions

for single jet production pp→ L+ 1 jet for several cases: angularities as jet measurements,

beam thrust, C-parameter, and transverse momentum as jet vetoes, and anti-kT and XCone

as jet algorithms. We optimized our method by expanding the finite corrections in the jet

radius R, obtaining a fully analytical result in the limit R � 1. It turns out that the

remaining (numerical) contributions are rather small, even for relatively large values of R,

thus improving the stability.

With the soft functions discussed in this paper, one can calculate resummed cross-

section at NNLL or NLL′ accuracy for exclusive jet processes at the LHC. This same soft

function also enters in jet substructure calculations, see e.g. the 2-jettiness calculation

of ref. [54], and the subtraction techniques could prove useful for other jet substructure

calculations as found in ref. [52].
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A Analytic contributions for pp→ L+ 1 jet

In this appendix we collect some details about the analytic calculation of several soft

function corrections for pp→ L+ 1 jet discussed in sec. 4. We discuss the jet hemisphere

correction to the soft function for angularity measurements in app. A.1, and compute the

analytic results for the O(R2) terms of the soft function coefficients in eq. (4.37) for anti-kT
in app. A.2.

A.1 Hemisphere soft function correction

We perform the calculation of the jet hemisphere correction for the boost-invariant angu-

larities defined in eq. (4.3), i.e. Sa<J in eq. (4.17). It is given by the integral

SJ<a({kl}, ρ, ηJ)= −2
(µ2eγE

4π

)ε
g2

∫
ddp

(2π)d
na · nJ

(na · p)(nJ · p)
2πδ(p2)θ(p0)FJ<a({km}, ρ, ηJ , p),

(A.1)

with the size of the hemisphere adjusted by the parameter ρ and the measurement given

by

FJ<a({km}, ρ, ηJ , p) = δ
(
kJ − pTRβJ

)
θ
(
na · p−

nJ · p
ρ

)
δ(kB) , (A.2)

in analogy to eq. (4.15). Here RJ ≡ RsJ denotes the distance of the soft emission with

momentum pµ with respect to the jet direction in azimuth-rapidity space as defined in

eq. (2.10). Let us define the momentum projection pk along a generic light-like direction

nk and the angular distance between two light-like directions ŝij as

pk ≡ nk · p , ŝij ≡
ni · nj

2
=

1− cos θij
2

. (A.3)
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For any ij-dipole, the gluon four-momentum can be decomposed as

pµ =
pi

2ŝij
nµj +

pj
2ŝij

nµi + pµ⊥ij , (A.4)

with the integration measure given by

d4−2εp =
p1−2ε
⊥ij
2ŝij

dpi dpj dp⊥ij dΩ2−2ε . (A.5)

The boost-invariant jet angularity can be expressed in this basis, by first writing

pTRβJ = (2pj cosh ηj)
β/2(pT )1−β/2, (A.6)

and then substituting

pT =
p⊥ijG(q, φ)

q
with q =

pj
p⊥ij

. (A.7)

The function G(q, φ) is given in general by

G(q, φ) =

(
ŝaj +

ŝai
ŝij

q2 − 2

√
ŝaj ŝai
ŝij

q cosφ

) 1
2
(
ŝbj +

ŝbi
ŝij

q2 − 2

√
ŝbj ŝbi
ŝij

q cos(φ−∆φij)

) 1
2

.

(A.8)

Here φ is the azimuthal angle in the two-dimensional ⊥ij-space, and ∆φij is the difference

in azimuth (with respect to the beam axis) between the dipole directions i and j. Thus

the jet angularity can be written as

pTRβJ = p⊥ij q
β−1 [G(q, φ)]1−β/2 (2 cosh ηJ)β/2 . (A.9)

Let us specialize to the case i = a and j = J . The hemisphere phase space is given by

Hemisphere J < a: θ(q0 − q), q0 =
√
ρ ŝaJ , (A.10)

with ŝaJ = e−ηJ/(2 cosh ηJ). For the case β > 1, dimensional regularization regulates all

the divergences. Using the basis of eq. (A.4), after the trivial integrations and changing

variable from pJ to q, eq. (A.1) reads

SJ<a({kl}, ρ, ηJ) = − 2g2

(2π)3−2ε

(µ2eγE

4π

)ε (2 cosh ηJ)βε

k1+2ε
J

δ(kB)

×
∫

dΩ2−2ε

∫ q0

0

dq

q1−2ε(β−1)

[
G(q, φ)

]ε(2−β)
. (A.11)

Performing the integrals and expanding in ε,

SJ<a({kl}, ρ, ηJ) =
αs
4π

δ(kB)

β − 1

[
8

µ rβ−1
L1

(
kJ

µ rβ−1

)
− 4

ε

1

µ rβ−1
L0

(
kJ

µ rβ−1

)

+ δ(kJ)

(
2

ε2
− π2

6
− 2(β − 1)(β − 2) I

)
+O(ε)

]
, (A.12)
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where r = (2 cosh ηJ e
−ηJρ)1/2 and

I =
1

π

∫ π

−π
dφ

∫ q0

0

dq

q
ln [2 cosh ηJ G(q, φ)] = θ(r − 1) ln2 r . (A.13)

Setting ρ = ρJR(R, ηJ) as defined in eq. (4.13) yields r = R and thus the result in eq. (4.20).

For the case β = 1, one can see from eq. (A.11) that an additional rapidity regulator

is needed as q → 0, which can be chosen to be (ν/2p0)η, as discussed below eq. (3.2).

Following a similar procedure, one obtains the result of eq. (4.21).

Alternatively, one can get the hemisphere soft function for boost-invariant angularities

by adding the finite correction in eq. (3.20) to eqs. (3.11) and (3.14), which correspond to

the standard angularities in e+e−-collisions defined in eq. (3.6). Using the same variables

defined above, one gets

4I1,J<a = −2(β − 2)

π

∫ π

−π
dφ

∫ q0

0

dq

q
ln

[
2 cosh ηJ G(q, φ)

1 + e2ηJ q2 − 2eηJ q cosφ

]

= −2(β − 2)

[
θ(R− 1) ln2R− 2 θ

( ReηJ

2 cosh ηJ
− 1
)

ln2
( ReηJ

2 cosh ηJ

)]
. (A.14)

By adding this correction to eqs. (3.11) and (3.14), with cJ = (2 cosh ηJ)β−1, one recovers

again the results in eqs. (4.20) and (4.21).

A.2 Corrections at O(R2)

Here we outline the analytic calculation of the soft function corrections in eq. (4.37) at

O(R2) in the small jet radius expansion. A similar computation has been performed in

ref. [50] for a jet mass measurement in dijet processes close to the kinematic threshold. We

give the results for a conical (anti-kT ) jet with the measurement of arbitrary jet angularities

and general smooth jet vetoes (including in addition the beam thrust case).

First, we consider the contributions from the beam-beam dipole. Here the O(R2) cor-

rections are the leading contributions that account for the jet region. Since the deviations

between the jet boundaries for different partitionings are in addition power suppressed by

the jet radius all sets of distance measures discussed in sec. 2 lead to the same result at

O(R2). The term sab,B in eq. (4.37) corresponds to the jet area giving sab,B = 4R2. The

coefficient sab,δ is given by the integral in eq. (4.11), which yields at O(R2)

sab,δ =
4

π

∫ ∞

−∞
d∆η

∫ π

−π
dφ
(β

2
ln
[
(∆η)2 + φ2

]
− ln fB(ηJ)

)
θ
(
R2 − (∆η)2 − φ2

)
+O(R4)

= 2R2
[
β
(
2 lnR− 1

)
− 2 ln fB(ηJ)

]
+O(R4) . (A.15)

In fact, for conical jets and a transverse momentum veto, i.e. fB(η) = 1, any higher order

corrections in R vanish, so that eq. (A.15) provides already the exact one-loop result for

this case.

Next, we discuss the contributions from the beam-jet dipole, which in general differ

for different partitionings. The corrections for real radiation inside the jet region can be
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written as

S
(J)
aJ = −αs

2π
eγEεµ2ε

√
π

Γ(1
2 − ε)

1

k1+2ε
J

[
I

(J)
aJ,R�1 + (I

(J)
aJ − I

(J)
aJ,R�1)

︸ ︷︷ ︸
=∆I

(J)
aJ

]
, (A.16)

where I
(J)
aJ,R�1 denotes the leading small-R result at O(1) and ∆I

(J)
aJ contains all corrections

which are suppressed by the jet size. The latter term can be expanded in ε and is given up

to O(ε) by

∆I
(J)
aJ =

1

π

∫ ∞

−∞
d∆η

∫ π

−π
dφ θ

[
dB(ηJ + ∆η)− dJ(ηJ + ∆η, φ,R)

]
(A.17)

×
[(

e∆η

cosh ∆η − cosφ
− 2

(∆η)2 + φ2

)

+ 2ε

(
e∆η
(β

2 ln
[
2 cosh ∆η − 2 cosφ

]
− ln|sinφ|

)

cosh ∆η − cosφ
− β ln

[
(∆η)2 + φ2

]
− 2 ln|φ|

(∆η)2 + φ2

)]
.

Expanding the integrand in R yields for conical jets

∆I
(J,kT )
aJ

∣∣∣
O(R2)

= R2

[
1

2
+ ε

(
7

6
− β

2
+ (β − 1) lnR+ ln 2

)]
. (A.18)

The corrections for real radiation inside the beam region can be similarly written as

S
(B)
aJ = −αs

2π
eγEεµ2ε

√
π

Γ(1
2 − ε)

1

k1+2ε
B

[
I

(B)
aJ,R�1 + (I

(B)
aJ − I

(B)
aJ,R�1)

︸ ︷︷ ︸
=∆I

(B)
aJ

]
. (A.19)

Here ∆I
(B)
aJ acts as a subtractive contribution inside the jet region and is given by

∆I
(B)
aJ = − 1

π

∫ ∞

−∞
d∆η

∫ π

−π
dφ θ

[
dB(ηJ + ∆η)− dJ(ηJ + ∆η, φ,R)

]

×
[(

e∆η

cosh ∆η − cosφ
− 2

(∆η)2 + φ2

)

+ 2ε

(
e∆η(ln fB(η)− ln|sinφ|)

cosh ∆η − cosφ
− 2(ln fB(ηJ)− ln|φ|)

(∆η)2 + φ2

)]
. (A.20)

Expanding the integrand in R yields for conical jets and a smooth function fB(η)

∆I
(B,kT )
aJ = −R2

[
1

2
+ ε

(
7

6
− lnR+ ln fB(ηJ) +

2f ′B(ηJ) + f ′′B(ηJ)

fB(ηJ)
−
(f ′B(ηJ)

fB(ηJ)

)2
+ ln 2

)]
.

(A.21)

Using eqs. (A.16), (A.18), (A.19) and (A.21) the soft function coefficients at O(R2) for the

beam-jet dipole contributions read for anti-kT jets

s
(kT )
aJ,J

∣∣∣
O(R2)

= −s(kT )
aJ,B

∣∣∣
O(R2)

= −R2 ,

s
(kT )
aJ,δ

∣∣∣
O(R2)

= R2

[
β lnR− β

2
− ln fB(ηJ)− 2f ′B(ηJ) + f ′′B(ηJ)

fB(ηJ)
+
(f ′B(ηJ)

fB(ηJ)

)2
]
. (A.22)
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Since the beam thrust veto has a kink at η = 0, eq. (A.22) does not fully determine all

power suppressed terms up to O(R2) if |ηJ | < R. In this case the next-to leading correction

is of O(R) and the additional contribution with respect to eq. (A.22) reads

∆s
(kT )
aJ,δ = θ(1− |x|)

{
16R

π

[√
1− x2 + |x|(ln(2|x|)− 1) arccos|x| − |x|

2
Cl2

(
arccos(1− 2x2)

)]

+
4R2

π

[
π

2

(
θ(−x)− θ(x)

)
+ 3x

√
1− x2 + arcsin(x)− 2x|x| arccos|x|

)]
+O(R3)

}
,

(A.23)

where x ≡ ηJ/R and the Cl2(θ) ≡ Im[Li2(eiθ)].

Results for jet regions from a different partitioning can be obtained by considering

deviations from the circular jet shape in addition. For the conical geometric distance

measure in eq. (2.9) corresponding to a XCone default jet the results at O(R2) are the

same as for the conical measure (i.e. for an anti-kT jet).

B Numerical evaluation of soft function integrations

We discuss the numerical evaluation of the boundary mismatch integrals IBaJ and IJaJ in

eq. (4.27) for pp → L + 1 jet. To compute them efficiently we need to determine the

integration bounds. These depend on the relations between the distance measures dB(p)

and dJ(p) and between the projections na ·p and nJ ·p/ρJ used for the analytic calculation

of the hemisphere results. We discuss here the explicit boundaries only for the most

important case, the conical (anti-kT ) measure. For the geometric measures (including the

conical geometric XCone measure) one can follow a strategy similar to [1] using coordinates

based on the lightcone projections na · p and nJ · p. Furthermore, we also explain why the

integrals encoding the corrections to the small R limit give only a moderate numerical

impact, even for sizable values of the jet radius.

B.1 Integration bounds for the conical measure

For the conical measure the integration boundaries can be most easily obtained in beam

coordinates η, φ. The conditions from the measurement functions in eq. (4.15) read

FBaJ : R2 < (∆η)2 + φ2 and ρJe
−ηJ cosh ηJ < e∆η(cosh ∆η − cosφ) ,

F JaJ : R2 > (∆η)2 + φ2 and ρJe
−ηJ cosh ηJ > e∆η(cosh ∆η − cosφ) . (B.1)

We use the value ρJ = ρRJ in eq. (4.13), which eliminates the dependence on the jet rapidity

ηJ (in favor of the jet radius R) in the second relation and leads to integrals which are power

suppressed in R. (The computation for arbitrary ρJ can be carried out similarly.) The

associated hemisphere mismatch regions are displayed in fig. 14. For F JaJ the integration

boundaries read∫ ∞

−∞
d∆η

∫ π

−π
dφ θ

(
R2 − (∆η)2 − φ2

)
θ
(nJ · p

ρRJ
− na · p

)

=

∫ ηmax
hemi(R)

η0(R)
d∆η

∫ √R2−(∆η)2

φmax
hemi(∆η,R)

dφ+

∫ R

ηmax
hemi(R)

d∆η

∫ √R2−(∆η)2

0
dφ+ (φ↔ −φ) , (B.2)
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Figure 14. Illustration of the phase space misalignment between the hemisphere jet region with

ρJ = ρRJ (blue, dashed) and a conical jet area (red, solid) for ηJ = 0 and R = 0.5, 1.0, 1.5. The

areas which do not overlap correspond to the integration domains of the integrals IBaJ and IJaJ ,

respectively.

where we have defined

φmax
hemi(∆η,R) = arccos

(
e∆η + (1−R2)e−∆η

2

)
, ηmax

hemi(R) = ln(1 +R), (B.3)

and η0(R) is the solution of the transcendental equation

[η0(R)]2 +
[
φmax

hemi(η0(R), R)
]2

= R2 . (B.4)

For FBaJ we get

∫ ∞

−∞
d∆η

∫ π

−π
dφ θ

(
(∆η)2 + φ2 −R2

)
θ
(
na · p−

nJ · p
ρRJ

)

= θ(R ≤ 1)

[∫ −R

ηmin
hemi(R)

d∆η

∫ φmax
hemi(∆η,R)

0
dφ+

∫ η0(R)

−R
d∆η

∫ φmax
hemi(∆η,R)

√
R2−(∆η)2

dφ

]

+ θ(Rπ>R>1)

[∫ ηπ(R)

−∞
d∆η

∫ π

0
dφ+

∫ −R

ηπ(R)
d∆η

∫ φmax
hemi(∆η,R)

0
dφ+

∫ η0(R)

−R
d∆η

∫ φmax
hemi(∆η,R)

√
R2−(∆η)2

dφ

]

+ θ(R ≥ Rπ)

[∫ −R

−∞
d∆η

∫ π

0
dφ+

∫ ηπ(R)

−R
d∆η

∫ π

√
R2−(∆η)2

dφ+

∫ η0(R)

ηπ(R)
d∆η

∫ φmax
hemi(∆η,R)

√
R2−(∆η)2

dφ

]

+ (φ↔ −φ) , (B.5)

where we have defined

ηmin
hemi(R) = ln(1−R), ηπ(R) = ln(R− 1), (B.6)

and Rπ ≈ 1.28 is the solution of the transcendental equation

ηπ(Rπ) = −Rπ . (B.7)

With these explicit limits the integrals can be evaluated efficiently.
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Figure 15. Illustration of the phase space misalignment between the hemisphere jet region with

ρJ = ρRJ (blue, dashed) and a conical partitioning (red, solid) for ηJ = 0 and R = 0.5, 1.0, 1.5 in the

boosted frame where the jet and beam a are back-to-back. The areas which do not overlap scale as

the integrals IBaJ and IJaJ , respectively. The black dotted lines indicates the analytic result for the

conical measure at O(R). The associated corrections to the coefficients saJ,J , saJ,B correspond to

the areas between the dashed and solid curves.

B.2 Power suppression of boundary integrals

We have seen in fig. 14 that for a small jet radius the jet region from the hemisphere

decomposition with ρRJ and the actual conical partitioning largely overlap giving small

results for the non-hemisphere corrections. However, for R ∼ 1 the areas in the η-φ

plane begin to differ very significantly, which might suggest that the associated corrections

become very large in this regime and the results for the small R-expansion do not provide

a good approximation. As we have seen in sec. 4.4 this turns out not to be the case since

the deviations of the jet areas in the beam coordinates are not representative for the size

of the associated corrections. Instead it is more meaningful to compare the jet areas in

the boosted frame where the jet and beam direction are back-to-back and soft radiation

from the beam-jet dipole aJ is uniform in the respective rapidity-azimuth coordinates η̃,

φ̃. The associated transformation rules between the sets of coordinates are explicitly given

in ref. [37]. In fig. 15 we display the jet regions in these coordinates for the conical measure

(red) and for the hemisphere decomposition with ρJ = ρRJ for different values of R. The

areas which do not overlap correspond directly to the integrals IB0,aJ and IJ0,aJ , respectively,

while IB1,aJ and IJ1,aJ are (logarithmic) moments in these regions. These are individually

of ∼ O(R), which can be also confirmed by an analytic expansion indicated by the black,

dotted line. In total the contributions from FBaJ and F JaJ cancel each other at this order

leading to a net contribution to the soft function of O(R2).11

11For the corrections saJ,B and saJ,J in eq. (4.37) this is obvious since only the difference between the two

mismatch areas in fig. 15 enters. For the correction saJ,δ this holds for measurements which are continuous

functions in η, φ due to the fact that at leading order in R the integrands are constant in these areas.
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C Analytic corrections for pp→ dijets

Beyond single jet production, pp → dijets is another process of phenomenological rele-

vance for measurements like jet mass. The full computation of the associated soft function

corrections for arbitrary jet and beam measurements and partitionings can be carried out

following the hemisphere decompositions discussed in secs. 3 and 4. Here we compute the

analytic corrections for pp→ dijets (j1, j2) in a small R expansion up to terms at O(R2),

whereas the full R dependence can be determined numerically but now including a jet-jet

dipole. For definiteness and simplicity we consider conical jets with a jet mass measure-

ment (i.e. angularity in defined in eq. (4.3) with β = 2) and a pT jet veto. For generic

R < π/2 we can write the renormalized one-loop soft function as12

Ŝ
κ(1)
2 ({ki}, R, η1, η2, µ, ν) =

αs(µ)

4π

{
Ta ·Tb

[
16

µ

(
L1

(kB
µ

)
− L0

(kB
µ

)
ln
(ν
µ

))
δ(k1) δ(k2)

+ sab,B(R)
( 2

µ
L0

(kB
µ

)
δ(k1) δ(k2)− 1

µ
L0

(k1

µ

)
δ(kB) δ(k2)− 1

µ
L0

(k2

µ

)
δ(kB) δ(k1)

)

+ sab,δ(R) δ(kB) δ(k1) δ(k2)

]
+ T1 ·T2

[
8

µ
L1

(k1

µ

)
δ(k2) δ(kB) +

8

µ
L1

(k2

µ

)
δ(k1) δ(kB)

+ s12,J(R,∆η12)
( 1

µ
L0

(k1

µ

)
δ(k2) +

1

µ
L0

(k2

µ

)
δ(k1)

)
δ(kB)

+ s12,B(R,∆η12)
1

µ
L0

(kB
µ

)
δ(k1) δ(k2) + s12,δ(R,∆η12) δ(k1) δ(k2) δ(kB)

]

+ Ta ·T1

[
8

µ
L1

(k1

µ

)
δ(kB) δ(k2) +

8

µ
L1

(kB
µ

)
δ(k1) δ(k2)− 8

µ
L0

(kB
µ

)
ln
(ν
µ

)
δ(k1) δ(k2)

+ sa1,1(R)
1

µ
L0

(k1

µ

)
δ(kB) δ(k2) + sa1,2(R,∆η12)

1

µ
L0

(k2

µ

)
δ(kB) δ(k1)

+ sa1,B(R, η1,∆η12)
1

µ
L0

(kB
µ

)
δ(k1) δ(k2) + sa1,δ(R,∆η12) δ(kB) δ(k1) δ(k2)

]

+ Tb ·T1

[
∆η12 → −∆η12

]
+ Tb ·T2

[
(k1, k2, η1)→ (k2, k1, η2)

]

+ Ta ·T2

[
(k1, k2, η1,∆η12)→ (k2, k1, η2,−∆η12)

]}
, (C.1)

where ∆η12 ≡ η1 − η2 is the difference between the rapidities of the two jets and R1 =

R2 ≡ R < π/2. The replacements in the last line are always with respect to the terms with

the color factor Ta ·T1.

The contributions from the beam-beam dipole are equivalent to the case of single

production given in eq. (4.37) and app. A.2, i.e.

sab,B(R) = 4R2 +O(R4) , sab,δ(R) = −π
2

3
+ 4R2(2 lnR− 1) +O(R4) . (C.2)

12For R < π/2 (i.e. as long as the jet regions do not share a common boundary) the measurements and

partitioning are invariant under boosts along the beam axis, such that this correction mainly depends on

the relative rapidity of the jets ∆η12 and the jet radius. Since the rapidity regularization breaks boost

invariance, there is, however, also a residual dependence on the individual jet rapidities appearing in sa1,B .
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Figure 16. The full coefficients sa1,2 (top) and sa1,δ (bottom) together with the small R for conical

(anti-kT ) jets for a jet mass measurement (β = 2) and a pT veto, for ∆η12 = 1 in terms of R (left)

and for R = 1 in terms of ∆η12 (right).

The contributions from the beam-jet dipoles are also closely related to the ones for

single production given in eq. (4.37) and app. A.2 with the difference that starting at

O(R2) there is now also a correction due to emissions into the phase space region of the

second jet, which concerns the coefficients sa1,2, sa1,B and sa1,δ and can be easily computed

analytically in analogy to app. A.2. We get

sa1,1(R) = −8 lnR−R2 +O(R4) , (C.3)

sa1,2(R,∆η12) = −R2 e−∆η12

cosh2
(

∆η12
2

) +O(R4) ,

sa1,B(R, η,∆η12) = 8 lnR+ 8η +R2

[
1 +

e−∆η12

cosh2
(

∆η12
2

)
]

+O(R4) ,

sa1,δ(R,∆η12) = 4 ln2R(2− θ(R− 1)) +R2(2 lnR− 1)

[
1 +

e−∆η12

cosh2
(

∆η12
2

)
]

+O(R4) .

We demonstrate in fig. 16 that including the terms up to O(R2) gives a very good approx-

imation of the full results, even for R ∼ 1.

The only remaining ingredient is the correction from the jet-jet dipole. The leading

small-R results have been computed in ref. [46], which we have reproduced.13 The O(R2)

13Reference [46] considers a pT -veto with a rapidity cutoff ηcut. For the jet-jet dipole the effect due to

ηcut is power suppressed in 1/eηcut , while for the other dipole contributions it leads to different results than

those given above.
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Figure 17. The full coefficients s12,B (top) and s12,δ (bottom) together with the small R results

for conical (anti-kT ) jets for a jet mass measurement (β = 2) and a pT veto, for ∆η12 = 1 in terms

of R (left) and for R = 1 in terms of ∆η12 (right).

corrections can be computed following app. A.2. This gives

s12,J(R,∆η12) = −8 lnR−R2 tanh2 ∆η12

2
+O(R4) , (C.4)

s12,B(R,∆η12) = −16 ln
(

2 cosh
∆η12

2

)
− 2s12,J(∆η12, R) ,

s12,δ(R,∆η12) = 16 ln2R− 8 ln2
(

2 cosh
∆η12

2

)
+ 2(∆η12)2 − π2

3

+R2
[
2(2 lnR− 1) tanh2 ∆η12

2

]
+O(R4) .

In fig. 17 we compare the full numeric results for these coefficients to the analytic ex-

pressions. Again the small R expansion provides an excellent approximation of the full

result for the jet-jet dipole contribution. Together with the findings for the beam-beam

and beam-jet dipole corrections this indicates that keeping terms up to O(R2) is likely

sufficient for phenomenological purposes.

We remark that for jet vetoes which are not boost invariant, all of the dipoles, in

particular also the jet-jet dipole, depend on the individual jet rapidities. For multijet

processes or an additional recoiling color singlet state the soft function depends in addition

on the separation of the jets in azimuth. The analytic computation for these cases is

significantly more involved.
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