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Abstract: In this work we present the results of our investigation of SU(2)
gauge theory with two Dirac fermions in the adjoint representation, also
known as Minimal Walking Technicolour. We have done numerical lat-
tice simulations of this theory at two different values of the gauge coupling
and several fermion masses. Our results include the particle spectrum and
the mass anomalous dimension. The spectrum contains so far unconsidered
states, a fermion-gluon state and flavour singlet mesons. The mass anomal-
ous dimension is determined from the scaling of the masses and the mode
number. The remnant dependence of the universal mass ratios and mass an-
omalous dimension on the gauge coupling indicates the relevance of scaling
corrections.

1. Introduction

New strongly interacting gauge theories are interesting possibilities for an extension of
the Standard Model of particle physics. This leads to the general theoretical question
about possible realisations of these interactions and, in particular, whether a dynam-
ics and a particle spectrum completely different from QCD can be observed. These
questions motivate the investigation of SU(N) gauge theories with fermions in higher
representations of the gauge group.

An example for such kind of extensions of the Standard Model are Technicolor theories
[1, 2]. They provide a more natural representation of the electroweak sector by intro-
ducing a new strongly interacting sector on a higher energy scale. The Higgs particle
emerges as a bound state of particles in the new sector. In order to generate fermion
masses, a further extension of this sector is required, leading to an Extended Technicolor
theory, which is expected to become relevant at an even much higher energy scale, see
[3, 4] for reviews.

Based on phenomenological considerations, constraints for Technicolor realisations
have been derived, even though their concrete implications might severely depend on
the chosen phenomenological model. In particular, the low energy effective theory that
arises from the Extended Technicolor theory should explain the fermion masses without
being in conflict with electroweak precision measurements. This requires an enhance-
ment of the fermion condensate compared to other operators in the effective theory.
Furthermore the appearance of the Higgs particle without other similar bound states
requires a mechanism for the generation of a strong mass hierarchy with a light scalar.
This can not be achieved by a simple modification of standard QCD.

In the Walking Technicolor approach both of these non-QCD like features are a conjec-
tured consequence of a near conformal behaviour of the gauge coupling [5]. The running
of the gauge coupling typically decreases with an increasing number of fermions, which
is already evident from the perturbative beta function. With a suitable set of fermions a
conformal window appears, in which the running terminates at an infrared fixed point,
where the theory becomes scale independent. The upper boundary of the conformal
window, where the fixed point disappears due to the loss of asymptotic freedom, is de-

2



termined by the perturbative running in the weak coupling regime, whereas the lower
boundary can only be investigated by non-perturbative methods. Several analytical
[6, 7, 8] and numerical lattice studies [9, 10, 11, 12, 13, 14, 15, 16, 17] have been ded-
icated to the investigation of the conformality of different gauge theories. For a review
concerning the lattice results see [18, 19, 20, 21].

The possible realisations of strong interactions that might be relevant for extensions
of the Standard Model are a main motivation for our current investigation of theories
with fermions in the adjoint representation of the gauge group. The adjoint represent-
ation is particularly interesting among the higher representations of the gauge group.
This representation is employed in several interesting theories, including supersymmetric
Yang-Mills theory and Technicolor candidates. Theories with fermions in higher repres-
entations are favoured in this approach since they allow for a near conformal behaviour
with a relatively small number of fermions. In particular, the theory with Nf = 2 Dirac
fermions in the adjoint representation of SU(2), called Minimal Walking Technicolor
(MWT), has interesting applications in phenomenological models [22]. In addition, the
related questions about the size of the conformal window and theories with different
realisations of strong interactions are also of general theoretical interest.

Other interesting gauge theories with fermions in the symmetric and anti-symmetric
tensor representation are related to models in the adjoint representation by largeNc equi-
valence. This leads to constraints for the conformal window of models in the symmetric
representation that can be deduced from the adjoint one [23].

In this work we present our results for Minimal Walking Technicolor, including a
comparison to our previous studies of supersymmetric Yang-Mills theory. We focus on
conditions related to the Technicolor approach: the near conformal behaviour, the ap-
pearance of a light scalar particle, and a large mass anomalous dimension. Our results
include the investigation of states that have not been considered so far, and the de-
termination of the mass anomalous dimension with a new method similar to the one
introduced in [24] for the determination of the mode number.

The existence of an infrared fixed point is a universal feature of a given theory, but
the direct determination of the conformality from the running of the coupling might be
biased by technical difficulties and the scheme dependence. An alternative approach
for the determination of universal properties like the existence of the fixed point and
the mass anomalous dimension is the investigation of mass deformed theories. The
conformal behaviour of such a theory manifests itself in the particle spectrum. In the
first approximation the masses M of all states should scale to zero according to M ∝
m1/(1+γ∗), where m is the residual quark mass, and the mass anomalous dimension γ∗

is the same for all states [25]. This hyperscaling should be observable if m is below a
certain threshold. It is quite different from the chiral symmetry breaking scenario, where
a clear separation between the pseudo-Nambu-Goldstone bosons (pNGb) and the rest of
the spectrum appears at small m, and eventually the mass of the pNGb goes to zero in
the chiral limit, whereas the masses of the other particles remain finite. It is in general
difficult to discern to which of the two classes the considered theory belongs, since one is
always restricted to a limited range of m in the lattice simulations, and the chiral limit
m = 0 can only be reached by extrapolation. An additional difficulty is the influence of
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the gauge coupling, which is expected to be irrelevant at the infrared fixed point, but can
in principle still be nearly marginal, i. e. the scaling exponent is y0 . 0. The inclusion
of the related scaling corrections has been the subject of recent investigations [26]. It
turned out that the inclusion of these correction was essential to arrive at universal
results from simulations with different lattice actions. In our current work we want to
investigate the significance of these scaling corrections without a complete analysis of
these effects that would require a larger number of simulations. The investigation of
these effects is important since they might explain the differences in various estimations
of the universal behaviour of Technicolor candidates.

In a QCD-like theory asymptotic freedom implies that the continuum limit is at van-
ishing gauge coupling. The dependence of physical quantities on the gauge coupling is
hence essential to determine the universal continuum limit. On the other hand, in a
theory in the conformal window the gauge coupling is usually assumed to be irrelevant
as long as it is not in the strong or weak coupling regime. However, the position and even
the existence of the infrared fixed point are not known a priori and hence one cannot
rely beforehand on these assumptions.

A comparison with supersymmetric Yang-Mills theory, which is clearly below the
conformal window, might help to resolve the differences between the conformal and the
chiral symmetry breaking scenario. In such a comparison it is important to choose a
comparable lattice realisation since lattice artefacts might have a significant influence
on the scaling behaviour.

This paper is organised as follows: in Section 2 we present an overview of the general
chiral symmetry pattern and the continuum formulation of adjoint QCD. In Section 3
we present our general setup for the numerical investigations of MWT including the
considered lattice action. In Section 4 we discuss the range of the simulation parameters.
Section 5 summarises our numerical results for the particle spectrum of this theory with
a focus on the most important states, the glueball, the fermionic spin 1/2 state, and
the scalar singlet meson. This includes details about the uncertainties in the numerical
estimations. Estimates for the mass anomalous dimension from the particle spectrum
and the mode number are provided in Section 6. We also include a short explanation
of the method for the mode number estimation since it is different from the one used
in earlier investigation of this theory. In Section 7 we finally discuss implications of our
results and possible directions for further investigations.

2. Chiral symmetry breaking scenario and conformality

in adjoint QCD

The MWT theory investigated in this work is SU(2) adjoint QCD with two Dirac fer-
mions (Nf = 2). The Lagrangian of adjoint QCD has the following form

L = Tr



−1

4
FµνF

µν +
Nf
∑

i=1

ψ̄i( /D +m0)ψi



 . (1)
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Here ψ is a Dirac-Fermion in the adjoint representation of SU(2) with the covariant
derivative

Dµψ = ∂µψ + ig[Aµ, ψ] . (2)

The adjoint representation is consistent with the Majorana condition λ = CλT , which
means that each Dirac fermion ψk can be decomposed into two Majorana fermions
λi, and the two Majorana flavours are not mixed by the action. In particular using
ψk = 1√

2
(λ2k + iλ2k+1) one gets

L = Tr



−1

4
FµνF

µν +
1

2

2Nf
∑

k=1

λ̄k( /D +m)λk



 . (3)

In this way, theories with an odd number of Majorana flavours can be considered to have
half integer Dirac flavours.

Chiral symmetry breaking results from the formation of a condensate in the massless
theory or from a mass term. In our present case the breaking pattern is different from
QCD and related to the transformation properties of the Majorana flavours. The left
handed and right handed Weyl components of the 2Nf Majorana field are, however, not
independent since they are related by the Majorana condition. Considering the action
formulated in terms of Majorana fermions in the Weyl representation one observes the
chiral symmetry breaking pattern [27]

SU(2Nf ) → SO(2Nf) . (4)

As a consequence, there are 2N2
f + Nf − 1 pseudo Nambu-Goldstone bosons (pNGb)

generated in adjoint QCD, if the chiral symmetry is broken by the chiral condensate as
in QCD. The chiral symmetry for the Dirac fermions, SU(Nf) ×SU(Nf ) ×U(1)V broken
to SU(Nf )V × U(1)V , is of course included as a subgroup of the above SU(2Nf). In
particular, the unbroken SO(2Nf ) contains always the vector-like U(1)V and the same
pseudoscalar mesonic states (pions), which can be formulated with Dirac fermions for
Nf > 1, provide a signal for pNGb. For Nf < 2 the operator ψTCγ5ψ describes a pNGb
[17]. This signal can also be used for chiral symmetry breaking in supersymmetric
Yang-Mills theory considered in a partially quenched setup [27]. In the chiral limit the
spectrum is expected to be separated into the light pNGb and the other heavier states.

If the theory is inside the conformal window, a completely different behaviour of the
spectrum is expected. In the conformal limit, where the fermions become massless,
there is no remnant mass scale. The beta function approaches the infrared fixed point
in this limit. Consequently all masses scale to zero according to M ∝ m1/(1+γ∗) with
the renormalised quark mass m and the mass anomalous dimension γ∗ at the fixed
point. The ordering of the different states is not determined in this scaling relation.
Nevertheless, one might expect a light scalar as an approximate dilaton due to the
restoration of dilatation symmetry in the conformal limit. Indeed, several investigations
have found indications for a light scalar in (near) conformal theories. Even though all
masses scale to zero, their ratios can be extrapolated to the conformal limit. It seems
that these ratios are a universal characteristic for each (near) conformal theory [28].
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3. Minimal Walking Technicolor on the lattice

Our lattice formulation of the theory employs the Wilson gauge action built from the
plaquette variables Up and the Wilson-Dirac operator in the adjoint representation. In
its basic form the lattice action reads

SL = β
∑

p

(

1 − 1

Nc
Re trUp

)

+
∑

xy,Nf

ψ̄nf
x (Dw)xyψ

nf
y , (5)

where Dw is the Wilson-Dirac operator

(Dw)x,a,α;y,b,β = δxyδa,bδα,β

−κ
4

∑

µ=1

[(1 − γµ)α,β(Vµ(x))abδx+µ,y

+(1 + γµ)α,β(V †
µ (x− µ))abδx−µ,y

]

. (6)

The hopping parameter κ is related to the bare fermion mass via κ = 1/(2m0 + 8),
and the index Nf runs over the number of different fermion flavours, where Nf = 2 for
MWT.

The link variables Uµ(x) are in the fundamental representation of the gauge group
SU(2). The adjoint gauge field variables Vµ(x) in the Wilson-Dirac operator are the
corresponding elements in the adjoint representation. They are defined by [Vµ(x)]ab =
2 tr[U †

µ(x)T aUµ(x)T b], where T a are the generators of the gauge group normalised such
that 2 tr[T aT b] = δab.

The basic lattice action has been applied in earlier studies of MWT [9, 11, 29]. In our
simulations we use an improved version of this lattice action with a tree-level Symanzik
improved gauge action and stout smearing for the link fields in the Wilson-Dirac operator
[30]. It is expected that these modifications reduce the lattice artefacts. In most of our
runs the stout smearing is iterated three times with the smearing parameter ρ = 0.12.

Our numerical lattice simulations have been performed with the two-step polynomial
hybrid Monte Carlo (PHMC) algorithm [31]. This algorithm is based on polynomial
approximations of the inverse powers of the lattice action. The first polynomial gives
a crude approximation which is corrected by the second polynomial. This correction is
especially important near zero fermion mass, where the inverse power has a singularity.
In our simulations we have chosen the second polynomial in such a way that the lower
bound of the approximation interval was by about a factor 10 smaller than the smallest
occurring eigenvalues. In this case the approximation is already so good that in practice
no further correction by a reweighting factor is necessary.

4. Simulation parameters and continuum limit

In a confining gauge theory with a mass gap the lattice spacing is determined by the
coupling constant β. It can be defined in terms of a scale setting quantity such as
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Figure 1: The results for the mass spectrum of MWT at β = 1.5. The masses, pseudo-
scalar decay constant, and string tension σ as a function of the renormalised
fermion mass mPCAC in lattice units, see Table 5 in Section A.

the Sommer scale r0 or the string tension
√
σ. Due to asymptotic freedom, the lattice

spacing decreases as β is increased.
Close to the fixed point in a conformal gauge theory β is an irrelevant parameter

which implies only a weak dependence on this parameter. In the conformal theory the
continuum limit can be defined only in terms of the lattice spacing in units of the volume,
the only remaining scale. Nevertheless, the theories in the conformal window are still
asymptotically free and the continuum limit corresponds to the limit where β goes to
infinity. Consequently a relevant dependence on β is expected further away from the
infrared fixed point and closer to the Gaussian fixed point. In a first approximation the β
dependence appears as a correction of the scaling close to the fixed point. This has been
investigated in a finite size scaling analysis [26], where an agreement between results
from different lattice action has been possible in this way. The connection between
scaling corrections and discretisation errors has been pointed out in [21].

A finite mass breaks conformal symmetry and implies further corrections to the simple
scaling picture. The mass term in the action is a relevant parameter and the renorm-
alisation group flow hence does not approach the infrared fixed point. However the
running of β is still expected to be rather weak at least for smaller masses. At a fixed
mass, the influence of lattice artefacts can be investigated by comparing different values
of β, where the largest value corresponds to the smallest lattice spacing.

In fact, in numerical simulations it is for several reasons impossible to reach the limit
of an exactly vanishing fermion mass. In a conformal theory this limit would introduce

7



0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

0.05 0.1 0.15 0.2 0.25 0.3 0.35

M
/m

P
S

amPCAC

√
σ/mPS

mV/mPS
mspin− 1

2

/mPS

m0++/mPS
Fπ/mPS
mS/mPS

mPV/mPS
323 × 64
483 × 64
643 × 64

Figure 2: The ratio between the different quantities and the pseudoscalar meson mass
at β = 1.5. The plot includes a fit assuming an approximately constant value
of these ratios as a function of the fermion mass, see Table 1.

severe finite size effects and hence the interpretation of the particle spectrum would be
difficult. In addition, the range of fermion masses is limited by the updating algorithm,
where the cost of the simulation rises exponentially if the fermion masses are approaching
zero.

The possible range of β values in MWT is constrained from below by the bulk phase
transition. The bare parameters of this transition in our investigations are different
from those in previous investigations, which is related to the change of the gauge action.
With our lattice action we determined the position of the bulk transition to be around
β = 1.4. The control of finite volume effects is important in the investigations of a
conformal theory. Therefore in our first analysis we have chosen β = 1.5, which is not
much above the bulk transition. This allows changing the lattice volume in a wide range.
In a second step we have also done simulations at β = 1.7 to check for possible lattice
artefacts and scaling corrections.

The pseudoscalar meson mass in lattice units in these runs was in the range between
0.9 and 0.2. Finite size effects are generally quite significant in simulations of (near)
conformal theories. We have found that at small lattice volumes the ordering of the
states is significantly changed. The most relevant scale for the finite size effects is the
mass of the lightest bound state, in MWT the 0++ glueball. The finite size effects
lead, however, to a larger mass of this particle, which makes the estimate ambiguous.
Therefore we have considered the mass of the pseudoscalar meson which can be easily
determined quite precisely.
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In general it is possible that there are also phase transitions and indications of de-
confinement at small box sizes. We have checked the distribution of the Polyakov line
at the smaller masses for any signal of a transition. In none of the simulations we have
found an indication for a transition, but at β = 1.5, κ = 0.1350 on the 243 × 64 lattice
there is a significant broadening of the spatial Polyakov line distribution. Therefore we
have excluded this run from the analysis.

A known difficulty of numerical simulations near the continuum limit is the freezing
of the topological charge of the gauge field in the finite physical volume of the simula-
tion (topology freezing). This effect can be made mild by choosing longer Hybrid Monte
Carlo (HMC) trajectories [32, 33]. Therefore, in most cases we ran the PHMC updates
by HMC trajectory of length 2, which mostly resulted in acceptable integrated autocor-
relation times of the topological charge. For the smallest fermion masses, however, this
autocorrelation time is drastically increased to about 500 in HMC time, a value which is
just by a factor of 10 shorter than the total HMC time of the simulations. This problem
is present in the runs at (β = 1.5, κ = 0.135) and (β = 1.7, κ = 0.13). In these cases
the sampling of different topological sectors is poor. As shown below, these are the runs
that are also affected by large finite size effects and therefore they are not considered for
the main results.

5. The lightest particles in Minimal Walking Technicolor

The primary focus of our investigation is the spectrum of lowest lying bound states in
Minimal Walking Technicolor. The bound state spectrum consists of mesonic states,
glueballs, and mixed fermion-gluon states. We consider these states as functions of the
renormalised fermion mass, which we take to be the PCAC mass mPCAC, determined
through the partially conserved axial-vector current relation. In addition to the particle
masses, we have determined the string tension σ from the static quark-antiquark poten-
tial and the pseudoscalar decay constant Fπ.

The considered mesonic states include the pseudoscalar ones created by ψ̄iγ5δijψj in
the singlet and ψ̄iγ5τ

a
ijψj , a = 1, 2, 3, in the triplet channel, where τa are the Pauli

matrices, corresponding to the adjoint eta prime meson (ma–η′) and the pseudoscalar
meson (mPS), respectively. The triplet and singlet channel for the operator ψ̄iψj cor-
respond to the scalar meson (mS) and the adjoint f0 (ma–f0

) meson. In addition, also
the vector meson (mV), created by ψ̄iγkψj (k in spatial direction), and the pseudovector
meson (mPV) in the triplet channel, created by ψ̄iγ5γkψj , have been considered. In the
current analysis we have also measured the scalar glueball (m0++) and a mixed fermion-
gluon state with spin 1/2 (m1/2).

The results for the masses of the different states are shown in Figs. 1, 2, 3 and 4. First
of all, it can clearly be observed that the mass hierarchy is different from the one in the
chiral symmetry breaking scenario. Instead of the would-be Goldstone particle (mPS)
the scalar (0++) glueball is the lightest state in the theory. Furthermore, the ratios of
different quantities divided by mPS are not divergent in the zero fermion mass limit,
as it would be the case for Goldstone particles. Instead, they approach approximately
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constant values. These observations are consistent with a conformal behaviour of the
theory.

At the smallest fermion masses, in particular for κ = 0.135 at β = 1.5, the results
deviate significantly from the expected constant mass ratios. The vector meson mass
ratio is relatively stable, but for the glueball even an inversion of the mass hierarchy with
mPS < m0++ is observed. The ratios of string tension and pseudoscalar decay constant
over mPS raise in this region, see Fig. 5. A similar observation has been made for the
string tension in [11], where it has been traced back to a finite size effect at small mPSL.
We therefore conclude that the inverted mass hierarchy at these small fermion masses is
not a physical feature, but rather a finite size effect. A more detailed investigation of this
effect would require simulations on very large lattices, which is beyond the scope of our
current investigations. In the estimates of the mass ratios we have therefore excluded
the run at β = 1.5, κ = 0.1350 and, for the same reason, the run at β = 1.7, κ = 0.1300.

In spite of the limitations on the mass ranges, we are able to provide estimates for the
universal ratios between the different observables and the pseudoscalar meson mass mPS.
These are based on at least two values of the mass for each β. The results are shown in
Table 1, where also the results of [29] are presented for comparison. The general ordering
of the masses at both β values is preserved, but all the ratios of masses to mPS decrease
from β = 1.5 to β = 1.7. For the meson masses the changes are below 8%, and for the
spin 1/2 state they are slightly larger. The glueball mass, however, gets corrections of
the order of 50%. Consequently, the gap between the glueball and the meson masses
is significantly increased at the larger β value. This considerable difference cannot be
explained by the slightly different range of mPCAC in units of mPS for β = 1.5 and β = 1.7.
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In particular, the amPS range is consistent for the two β values. Therefore we conclude
that towards the continuum limit the difference between the scalar glueball and the rest
of the spectrum is in fact increased.

We would like to note that the data in [29] are all approximately between our results
at β = 1.5 and β = 1.7. Hence it seems that our results at the coarse lattice spacing
have larger lattice artefacts, while the finer lattice spacing is closer to the continuum
limit than in [29]. The string tension deviates from this observation, but the values
provided in the literature show a considerable variance and hence seem to be subject to
significant systematic uncertainties. The uncertainties in our measurements are indic-
ated by the broad plateau estimation of the mass ratio, see Fig. 5. Further details of
our measurement can be found in Section 5.1.

Our arguments concerning the continuum limit in this section are based simply on
the asymptotic freedom of the gauge theory, which implies a decreasing lattice spacing
approaching β = ∞. If we assume that the theory is already close the the conformal
fixed point, the differences between the results in Table 1 are an indication for scaling
corrections. These effects seem to be relevant and to produce a significant correction for
the mass ratio of the scalar glueball and the pseudoscalar meson mass.

5.1. Scalar glueball and string tension

The 0++ glueball appears to be the lightest scalar particle in MWT. Despite a possible
mixing with the scalar singlet meson operators, it seems to have a reasonable overlap
with the ground state in the scalar sector as will be detailed in Section 5.2. Hence it
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Figure 5: Further details concerning the plot in Fig. 2. These Figures now include the
data at κ = 0.1350 too. The left hand side shows the string tension and the
pseudoscalar decay constant. On the right hand side the complete set of ratios
is shown in the lower mass region.

provides the signal for a possible Higgs-like bound state in MWT. In some cases we
have also obtained an estimate for the 0−+ glueball mass (see Table 2). It appears to be
lighter than the pseudoscalar singlet meson, but the systematic uncertainties are quite
large.

We determine the 0++ glueball mass using as interpolating operator the fundamental
plaquette built from four links and the 0−+ is given by the product of eight links with
suitable shape. In order to reduce the contamination from excited states and thus
determining the effective mass already at small time-slice separations we used the vari-
ational method based on APE smeared operators. In total, between L = 16 and L = 20
smearing levels were used in the variational method, each separated by 4 or 5 steps; the
smearing parameter was fixed to ǫAP E = 0.5.

Fig. 6 shows an example of the fitted mass value for different ranges [tmin, tmin + l]. A
clear plateau appears already at tmin = 2. Using this approach we can determine the
mass value with a relative error starting from 10% for some ensembles.

For a theory in the confined phase, the potential between a static quark-antiquark pair
in the fundamental representation grows linearly at large separations. The coefficient of
the linear rise is the string tension σ. In a theory with adjoint matter the chromoelectric
field is not screened and σ is a well defined quantity. In a conformal theory the string
tension will vanish in the limit of massless fermions.

We determine the string tension from the expectation value of the Wilson loop 〈W (r, t)〉.
To this purpose we first define the generalised potential:

V (r, t) = ln
〈W (r, t)〉

〈W (r, t+ 1)〉 . (7)

The method consists of two steps: in the first one we determine the static quark-
antiquark potential fitting V (r, t) for every r, in the interval [tmin, tmax = LT/2 − 1],
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State β = 1.5 β = 1.7 Ref. [29]
mV 1.0825(58) 1.051(12) 1.044(43)
mS 1.285(24) 1.190(14) 1.222(52)
mPV 1.329(21) 1.232(13) 1.26(35)
m0++ 0.620(35) 0.398(48) 0.458(15)
Fπ 0.1831(23) 0.15156(72) 0.178(5)√
σ 0.163(15) 0.1352(46) 0.0959(14) – 0.1319(10)

m1/2 0.948(24) 0.86394(52) –
mPCAC range 0.1808(22) – 0.2490(12) 0.2457(12) – 0.26776(42) 0.1872(84) – 0.2323(35)
amPS range 0.29986(46) – 0.58848(98) 0.5360(25) – 0.57247(16) 0.6401(11) – 1.183(1)

Table 1: The masses of the different states in units of the pseudoscalar mass mPS. The
estimation is based on the approximate independence of mPCAC. At β = 1.5 the
results from simulations on 323×64 and 483×64 lattices with a κ range between
0.1325 and 0.1344 are taken into account. The results for β = 1.7 are obtained
from the average of the κ = 0.1285 and κ = 0.1290 simulations on a 323 × 64
lattice. For comparison the results of [29] are shown, where for each state we
have taken the result at the smallest value of m0. Fπ is an estimate from a plot
in [29] and for the string tension we have shown the values for two different m0

since there are considerable deviations. In the last line also the range of the
reference scale mPS in lattice units is provided. Note that Fπ corresponds to
the unrenormalised bare value.

to the function [34]
V (r, t) = V (r) + c1e

−c2t ; (8)

in the second step we fit the potential V (r) to the form of the Cornell potential, in the
interval [rmin, rmax = LS/2 − 1], and we determine the value of the string tension. We
have verified that, compared to supersymmetric Yang-Mills theory, the value of tmin,
in the first fit, has to be increased from the value 2 to the value 3 and the value of
rmin, in the second fit, has to be increased from 2 to 4. As a consequence, the potential
V (r) is characterised by large error bars, in particular at large r/a as can be seen in
Fig. 7, and the final string tension has a relative error ∼ 10 times larger than the case
of supersymmetric Yang-Mills theory.

5.2. Singlet meson states and a second signal for the scalar channel

In our work we investigated the singlet meson sector of MWT for the first time. The
measurement of these states is more challenging than for the rest of the spectrum,
because their correlation functions contain disconnected fermion contributions. For the
calculation of these contributions we have used the same methods that we have already
applied in our studies of supersymmetric Yang-Mills theory. It turns out that there are
significant systematic uncertainties in the measurement of these states and therefore the
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Figure 6: Mass of the 0++ glueball obtained from fitting time slice correlation functions
in a range of time separations [tmin, tmin + l].

reported errors are most likely underestimated. The results for the masses are shown in
Table 2.

The primary aim of these investigation is to obtain a second signal for the scalar
channel. The a–f0 has the same quantum numbers as the 0++ glueball, and hence both
operators have overlap with the ground state in the scalar channel. The overlap with
the ground state might, however, be small such that a significant contribution from
excited states is present. In the case of supersymmetric Yang-Mills theory and one-
flavour adjoint QCD it turned out that there is a reasonable agreement between the two
signals in the scalar channel.

In MWT, the measurement of the connected and disconnected contributions of the
correlators leads to quite different results in the scalar and the pseudoscalar case. While

LS LT β κ ama–f0
ama–η′ amPS amS am0++ am0−+

24 64 1.5 0.1325 0.511(53) 0.634(14) 0.58710(27) 0.767(12) 0.350(25) 0.62(9)

32 64 1.5 0.1335 0.295(70) 0.474(49) 0.44212(28) 0.561(12) 0.260(25) 0.44(5)

48 64 1.5 0.1344 0.320(69) 0.342(36) 0.29986(46) 0.3816(87) 0.180(30) 0.32(4)

32 64 1.7 0.1285 0.515(52) 0.574(28) 0.57247(16) 0.6902(62) 0.230(25) 0.43(1)

32 64 1.7 0.1290 0.419(66) 0.504(31) 0.5360(25) 0.6312(23) 0.210(30) 0.36(2)

Table 2: This Table contains the masses for the singlet mesons a–f0 and a–η′ in lattice
units and, for comparison, also for some triplet mesons and the glueballs.
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for the a–η′ meson the disconnected contribution is almost negligible, see Fig. 8 (rhs), it is
the dominant contribution for the a–f0, as shown in Fig. 8 (lhs). The large disconnected
contribution is the reason for the large difference between mS and ma–f0

. The scalar
singlet meson mass (ma–f0

) is consequently much smaller than the mass in the triplet
channel (mS). Nevertheless, there is no degeneracy with the light scalar glueball. The
mass of the scalar singlet meson is of the order of the pseudoscalar meson mass mPS or
even lighter. It is interesting that in several investigations of near conformal theories a
similar approximate degeneracy between the scalar singlet and the pseudoscalar meson
has been observed [16, 35].

Our results are an indication that the ground state in the scalar channel is dominated
by the glueball state. An analysis of the mixing between the glueball and the a–f0 meson
will provide further information about the overlap of the different operators with the
lightest state.

Taking into account the systematic error in the evaluation of the singlet mesons, the
a–η′ meson is almost degenerate with the pseudoscalar meson. The difference between
these states, which in QCD is related to the axial anomaly, is negligible within the
current precision.
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5.3. Spin one-half states and possible fractionally charged particles

A specific feature of theories with fermions in the adjoint representation of the gauge
group is the presence of mixed fermion-gluon states, which do not occur in QCD. The
most interesting one is a fermionic spin 1/2 particle represented by the operator

Ospin-1/2 =
∑

µ,ν

σµν Tr [F µνλ] . (9)

This particle is of particular importance in supersymmetric Yang-Mills theory, where
this gluino-glue particle is the fermionic member of the scalar supermultiplet of bound
states. Unbroken supersymmetry implies a degenerate mass for all the states of the
supermultiplet, and hence it has the same mass as the lightest scalar and pseudoscalar
particle in this model.

In MWT the spin 1/2 state is relevant for phenomenological considerations, since it
leads to fractionally charged particles, when a naive hypercharge assignment is assumed.
Even though the mass of these particles is unknown, they have been considered to
disfavour the phenomenological relevance of the theory. This was essentially one of the
motivations to consider SO(4) gauge theory as an alternative [36]. On the other hand,
in [37] the existence of such particles has been considered as an alternative dark matter
scenario.

Our results for the mass of the spin 1/2 state are contained in Table 1. They show
that the mass of the spin 1/2 state is well separated from the lightest scalar particle. On
the other hand, it is slightly lighter than the pseudoscalar meson, which means that it
could be one of the first experimentally observable “new physics” states if this theory is
realised in nature.
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Observable β γ∗

mPS 1.5 0.2958(45)
mV 1.5 0.295(26)
Fπ 1.5 0.391(20)

average 1.5 0.300(20)
mPS 1.7 0.289(17)
mV 1.7 0.263(28)
Fπ 1.7 0.265(12)

average 1.7 0.272(11)

Table 3: The values of the mass anomalous dimension determined from the fit of the
particle spectrum. These results are based on a linear fit in a double logarithmic
representation. At β = 1.5 only the result on the 323 × 64 and the 483 × 64
lattices without κ = 0.1350 are considered. At β = 1.7 the values on the
323 × 64 lattice without κ = 0.1300 are taken into account. Only states with
an error less then 10% are included.

6. The mass anomalous dimension

Besides the ratios of different observables, also the mass anomalous dimension γ∗ is an
important universal property of a conformal gauge theory. Given the ratios and the
value of γ∗, the main properties of the theory are determined. The mass anomalous
dimension is of particular importance for phenomenological considerations, since in the
Walking Technicolor scenario a large value of γ∗ is required. We apply two different
methods to determine of γ∗. They are based on the properties of particle spectrum and
of the mode number.

6.1. Scaling of the particle spectrum

The fact that the masses of all states should scale according to the universal formula

M ∝ (mPCAC)1/(1+γ∗) , (10)

can be used to determine the mass anomalous dimension directly from the particle spec-
trum. The simplest way to determine the exponent is a linear fit in a double logarithmic
representation. The results of this fit are shown in Table 3 and Fig. 9. Note that the
data has been restricted to the most relevant subset with the smallest fit errors. The
full set of fit results for all observables spreads over a rather large range of γ∗ between
0.13 and 0.57. However, most of the data have large errors and therefore it is reasonable
to consider only the most precise ones. From these data one obtains a mass anomalous
dimension around γ∗ = 0.3, and there is a tendency towards a smaller value at the larger
β.

The large errors for several observables are a signal that a precise determination of
the mass anomalous dimension requires more control over the parameter range. This
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can be achieved by fits of the mode number, where an ultraviolet and infrared cutoff is
introduced by the fit boundaries. The consistency with the scaling of the spectrum can
then be confirmed subsequently. In the scaling formula also the approximate influence
of the finite volume can be taken into account by expressing the states in units of the
box size L. This scaling with the value of γ∗ obtained from the mode number is shown
in Fig. 10 (see Section 6.2). As can be seen, within the current precision the data of the
particle spectrum are consistent with the scaling obtained from the mode number. Note
that in both cases the value of γ∗ = 0.274 is preferred in comparison to γ∗ = 0.376 by
the smaller chi-square in the linear fit of mPS.

6.2. Mode number

Ns ×Nt β κ fit range γ∗

24 × 64 1.5 0.1325 0.21-0.40 0.39(3)
32 × 64 1.5 0.1335 0.21-0.40 0.38(1)
48 × 64 1.5 0.1344 0.15-0.38 0.380(10)
32 × 64 1.5 0.1350 0.11-0.37 0.375(4)
average 1.5 0.376(3)
32 × 64 1.7 0.1285 0.38-0.57 0.270(15)
32 × 64 1.7 0.1290 0.36-0.59 0.260(20)
32 × 64 1.7 0.1300 0.28-0.50 0.285(15)
average 1.7 0.274(10)
Ref. [38] 0.371(20)
Ref. [41] 0.269(2)(5)
Ref. [45] 0.20(3)
Ref. [12] 0.31(6)
Ref. [11] 0.22(6)
Ref. [21] 0.50(26)

Table 4: The mass anomalous dimension obtained from fits of the mode number. For
comparison we provide also some reference values from the literature obtained
with several different methods: Ref. [38] and [41] are based on the mode number
analysis. In [41] this is done in a volume reduced largeNc gauge theory. Ref. [45]
and [12] apply a Schrödinger functional analysis. Ref. [11] and [21] use finite
size scaling for the determination of the mass anomalous dimension.

The mode number, which is the integrated eigenvalue density of the Dirac operator,
allows for a more precise estimate of the mass anomalous dimension [38, 39, 40]. On the
lattice the most practicable definition is obtained from the spectral density of the Dirac
operator. Let

ρ(ω) =
1

V

∑

k

〈δ(ω − λk)〉 (11)
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be the spectral density of the massless Dirac operator. The mode number ν(Ω), defined
to be the number of eigenvalues of the positive-definite operator D†

wDw below some limit
Ω2, is given by

ν(Ω) = 2
∫ Λ

0
ρ(ω)dω , (12)

where the cutoff for the integral is Λ =
√

Ω2 −m2
R, and mR corresponds to the renorm-

alised quark mass, i. e. is proportional to mPCAC. Finally, the mass anomalous dimension
is obtained from a fit of the mode number (see [38]) according to

ν(Ω) = a1 + a2(Ω2 − a2
3)2/(1+γ∗) . (13)

The constant a1 is expected to scale like m4
PS, and a3 is proportional to mPCAC, but for

our considerations these constants are not relevant.
The projection method used in the earlier investigations of the mode number was first

proposed in [42]. It is based on a rational approximation of the projection operator P

in the region below a certain threshold of the eigenvalues. The mode number is hence
defined as

ν(Ω) = 〈TrP(Ω)〉 , (14)

where the trace is obtained by a stochastic estimate. The projection operator is ap-
proximated by means of a polynomial approximation of the step function h(x) using

P(Ω) ≈ h(X)4 , with X = 1 − 2Ω2
∗

D†
wDw + Ω2

∗
. (15)

The parameter Ω∗ ≈ Ω is adjusted in such a way that the error of the approximation is
minimised (see [42] for further details).

More recently a different method, based on a Chebyshev expansion of ρ, has been
proposed in [24]. We have mainly used a variant of this method, but we also checked
the consistency with the projection method. For the Chebyshev expansion method the
spectrum has to be rescaled to the interval [−1, 1] according to

M =
2D†

wDw − λmax − λmin

λmax − λmin

, (16)

where λmax and λmin are the maximal and minimal eigenvalues of the operator D†
wDw.

The integral of the spectral density ρM of the rescaled operator multiplied by the Cheby-
shev polynomial Tn of order n

cn =
∫ 1

−1
ρM(x)Tn(x) , (17)

is estimated stochastically with NS random Z4 noise vectors vl:

cn ≈ 1

NS

Ns
∑

l

〈vl|Tn(M)|vl〉. (18)

21



0.08 0.10 0.12 0.14 0.16 0.18 0.20

0.37

0.38

γ
Ω

max
=0.313

Ω
max

=0.332
Ω

max
=0.350

Ω
max

=0.367
Ω

max
=0.383

Ω
max

=0.399

0.08 0.10 0.12 0.14 0.16 0.18 0.20
Ω

min

0.5

1.0

1.5

2.0

2.5

χ2 /d
of

0.36 0.37 0.38 0.39 0.40 0.41 0.42
0.24

0.25

0.26

0.27

0.28

γ

Ω
max

=0.559
Ω

max
=0.577

Ω
max

=0.595
Ω

max
=0.612

Ω
max

=0.629
Ω

max
=0.645

0.36 0.37 0.38 0.39 0.40 0.41 0.42
Ω

min

0.0

1.0

2.0

3.0

χ2 /d
of

Figure 13: Results for γ∗ and χ2/dof for different fit ranges [Ωmin,Ωmax]. Left: lattice
323 × 64, β = 1.5, κ = 0.1350. Right: lattice 323 × 64, β = 1.7, κ = 0.1290.

Based on the orthogonality relations for the Tn, the spectral density ρM is now approx-
imated by

ρM(x) ≈ 1

π
√

1 − x2

Np
∑

k=0

(2 − δk0)cnTn(x). (19)

The eigenvalue density of D†
wDw is obtained from a simple map of the the interval [−1, 1]

back to the original eigenvalue region.
The integral in the definition of the mode number can be performed analytically. In

our measurements we considered polynomials of order Np between 2000 and 4000. As a
check we have compared the results of the two methods with the mode number obtained
from a complete numerical diagonalisation of D†

wDw on small lattices. In addition we
performed measurements with both methods on a small number of configurations on
243 ×64 lattices. The results of these checks are shown in Figures 11 and 12. Additional
investigations and comparisons will be done in the future for further understanding of
the different methods. At the moment, for the present measurements of the anomalous
dimension based on a limited range of Ω both methods are compatible.

The fitting procedure of the mode number ν(Ω) deserves special mention. Because the
fitting data are strongly correlated, to determine correctly the value of χ2/dof, we used
the usual χ2 method, taking into account the correlation matrix. As discussed in [43], to
estimate correctly the value of χ2/dof, the square of the number of fitted data has to be
smaller than the number of configurations used. Because the mode number is measured
on a number of configurations ranging in the interval [100, 1000], the number of fitted
points ranges in the interval [10, 30]. For comparison, the fitting parameters have been
also determined by means of uncorrelated fits, using in this case a number of fitted data
of the order of the number of configurations [44], giving compatible results.

Another issue in the fitting procedure is related to the fact that Eq. (13) can be used
only in a certain intermediate range of eigenvalues, that can be determined only by a
systematic study of the quality and the stability of the fit. As shown in Fig. 13, we fit
the data for different values of the range [Ωmin,Ωmax], looking for values which guarantee

22



−16

−15

−14

−13

−12

−11

−10

−9

−8

−7

−6

−0.4 −0.2 0 0.2 0.4 0.6 0.8 1 1.2

lo
g
(ν
(Ω

)/
(1
2V

))

log(Ω)

β = 1.5 κ = 0.1325
β = 1.5 κ = 0.1335
β = 1.5 κ = 0.1344
β = 1.5 κ = 0.135
β = 1.7, κ = 0.129

β = 1.7, κ = 0.1285
β = 1.7, κ = 0.13

Figure 14: The mode number data that have been used in the final fit to obtain the
results presented in Table 4.

a plateau in χ2/dof ∼ 1 and in the value of the mass anomalous dimension γ∗. Our
results for the mass anomalous dimension are presented in Fig. 14. The results of the
fits are shown in Table 4. In this table we also considered the runs with sizeable finite
size effects, because we assume that these effects only influence the far infrared region
and not the part relevant for the fits. The results for these runs are compatible with the
other runs.

The values of γ∗ obtained via mode number are in reasonable agreement with those
from the mass spectrum, especially for the smaller lattice spacing at β = 1.7.

Our result at β = 1.5 is consistent with [38], where γ∗ = 0.371(20) has been reported.
The value at β = 1.7, however, appears to be significantly smaller. Thus there is still a
remaining β dependence of the mass anomalous dimension, reducing its value towards
larger β values. It is interesting to note that such smaller values have also been reported
in other works, for example in [45].

7. Conclusions

We have presented results for the particle spectrum of MWT and general signals for
conformality at two different values for the inverse gauge coupling β and several masses
of the two adjoint Dirac fermions. The structure of the low-lying spectrum of particle
masses shows clear indications for a conformal behaviour. This qualitative observation
was complemented with quantitative results for the universal mass ratios and the mode
number.

Our results at the smaller β value are consistent with earlier investigations in [29]
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for the particle spectrum and [38] for the mode number. At the larger β value we find
significantly lower results for the masses in units of the pseudoscalar mass, especially for
the glueball, and a smaller mass anomalous dimension. This might be an indication that
the mass anomalous dimensions with the unimproved action in [38] and the ones with the
clover improved fermion action in [45] might converge towards a universal value in the
continuum limit, if possible scaling corrections are included. It seems that towards that
limit MWT becomes even more conformal in the sense that the gap between the scalar
particle and the rest of the spectrum is increased and the mass anomalous dimension
gets smaller. In fact, our results indicate that the differences between various numerical
results for the mass anomalous dimension could be rather related to scaling corrections
than to the differences between the considered approaches.

Our work also provides a connection to the large Nc results presented in [41]. The
mass anomalous dimension in conformal SU(Nc) adjoint QCD is expected to depend only
weakly on Nc. Therefore the investigation in a large Nc volume reduced theory might
be a valid approximation. The mass anomalous dimension obtained in this approach is
consistent with our results at β = 1.7.

In addition to these results, we have also been able to investigate particle states in
MWT that have not been considered before. The one with the most interesting phe-
nomenological consequences is the spin 1/2 state. We have found that it is considerably
lighter than the mesons, and therefore it cannot be discarded from the phenomenological
point of view.

The general picture of the particle spectrum in MWT appears to be ordered starting
with low mass pure gluonic states (glueballs), followed by heavier mixed fermion-gluon
objects, and finally the rather heavy triplet mesons.

We have also measured the singlet mesons in the particle spectrum of MWT for the
first time. The most interesting state is the scalar singlet meson, since it provides inde-
pendent information about the light scalar particle in the theory. Due to the dominance
of the disconnected contributions, the mass of this particle is comparable or even below
that of the pseudoscalar meson, the lightest meson in the triplet channel. This is sim-
ilar to the observations reported in other studies [16, 35] of (near) conformal theories.
However, the ground state in this channel seems to be dominated by the gluonic contri-
butions, and hence the mass remains still much higher than that of the scalar glueball.
Therefore it is not sufficient to measure only the mesonic contribution to get a complete
picture for the lightest scalar in this theory.
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A. Data

LS LT β κ a2σ amPCAC aFP S amP S Nconfigs

24 64 1.5 0.13 0.0477(48) 0.22429(88) 0.1573(12) 0.90080(67) 2130

24 64 1.5 0.1315 0.0229(22) 0.16775(25) 0.12891(44) 0.72149(44) 9900

24 64 1.5 0.1325 0.0081(17) 0.128730(46) 0.10634(27) 0.58710(27) 9800

24 64 1.5 0.135 0.0037(40) 0.03136(15) 0.0514(29) 0.1593(20) 1720

32 64 1.5 0.13 0.0388(30) 0.22539(47) 0.1561(13) 0.90030(91) 1480

32 64 1.5 0.1325 0.0109(15) 0.128840(55) 0.10617(40) 0.58848(98) 3448

32 64 1.5 0.1335 0.0035(15) 0.089619(74) 0.08125(28) 0.44212(28) 5627

32 64 1.5 0.135 0.00140(60) 0.030414(45) 0.04204(68) 0.17063(65) 4432

48 64 1.5 0.1344 0.0030(13) 0.054202(59) 0.05645(47) 0.29986(46) 1122

64 64 1.5 0.1344 0.00395(12) 0.05417(11) 0.0576(10) 0.3009(15) 418

32 64 1.7 0.1275 0.00708(41) 0.17697(22) 0.09717(29) 0.66093(22) 5069

32 64 1.7 0.1285 0.00605(21) 0.147091(22) 0.08690(16) 0.57247(16) 11901

32 64 1.7 0.129 0.00461(20) 0.131717(22) 0.08007(14) 0.5360(25) 11891

32 64 1.7 0.13 0.00366(34) 0.100878(47) 0.06591(23) 0.42116(32) 3941

LS LT β κ amV am1/2 am0++ amS amP V

24 64 1.5 0.13 0.9622(12) 0.933(14) 0.490(70) 1.179(97) 1.288(18)

24 64 1.5 0.1315 0.77990(45) 0.727(19) 0.470(25) 0.983(14) 1.029(21)

24 64 1.5 0.1325 0.63742(40) 0.551(23) 0.350(25) 0.767(12) 0.793(21)

24 64 1.5 0.135 0.1802(43) 0.292(13) 0.190(30) 0.400(22) 0.38(11)

32 64 1.5 0.13 0.9628(25) 0.917(18) 0.48(20) 1.223(41) 1.358(29)

32 64 1.5 0.1325 0.6387(11) 0.554(15) 0.390(35) 0.779(19) 0.796(24)

32 64 1.5 0.1335 0.47937(56) 0.406(22) 0.260(25) 0.561(12) 0.585(18)

32 64 1.5 0.135 0.18111(91) 0.282(25) 0.220(35) – 0.299(24)

48 64 1.5 0.1344 0.31963(99) 0.296(12) 0.180(30) 0.3816(87) 0.390(15)

64 64 1.5 0.1344 0.3272(27) 0.248(12) 0.26(15) 0.3700(72) 0.399(37)

32 64 1.7 0.1275 0.69117(32) 0.564(24) 0.280(15) 0.7967(72) 0.832(13)

32 64 1.7 0.1285 0.60436(94) 0.4945(92) 0.230(25) 0.6902(62) 0.7115(56)

32 64 1.7 0.129 0.54693(26) 0.464(22) 0.210(30) 0.6312(23) 0.6514(38)

32 64 1.7 0.13 0.44244(62) 0.394(24) 0.210(25) – 0.479(48)

Table 5: These two tables contain the raw data obtained from the simulations at the
two different β values. All values are provided in lattice units.
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