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ABSTRACT

Quasi-elastic scattering of the vector bosons W and Z is a sensitive probe
of the details of electroweak symmetry breaking, and a key process at future
lepton colliders. We discuss the limitations of a model-independent effective-
theory approach and describe the extension to a class of Simplified Models
that is applicable to all energies in a quantitative way, and enables realis-
tic Monte-Carlo simulations. The framework has been implemented in the
Monte-Carlo event generator WHIZARD.
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1 Introduction

After the discovery of a Higgs-like particle at the LHC, and without clear signals of new physics,
the focus of particle physics has moved towards a detailed study of the electroweak symmetry
breaking sector [1]. Regarding observable processes at colliders, the most striking effect of the
Higgs boson is a delicate cancellation in the scattering of on-shell electroweak vector bosons
(VBS). This cancellation would be spoiled by any deviation from the minimal Standard Model
(SM). Therefore, the study of high-energy electroweak vector-boson scattering is an important
part of the physics program of a future lepton collider [2,3,4,5].

At high energies, the electroweak gauge bosons effectively decompose into four gauge bosons
W±,0

µ , B0
µ with two transverse polarization components, and three scalar Goldstone bosons w±,0

which correspond to the longitudinal polarization components of W and Z. Consequently, the
high-energy scattering amplitudes of W and Z bosons can be broken down into scattering of
Goldstone bosons, gauge bosons, and a mixed mode, respectively.

Gauge-boson interactions respect unitarity. The calculated scattering amplitudes of scalar
Goldstone bosons are unitary only if they are part of a gauge multiplet which transforms
linearly. Without any Higgs boson, there is no linear realization, and therefore the calculated
scattering amplitudes of Goldstone bosons rise with energy, in violation of the unitarity limit [6,
7]. Conversely, the SM Higgs boson implements a linear realization, so it cancels this rise. This
is also true for any other Higgs-sector incarnation in a linear representation. Actually, with the
measured small Higgs mass of mH = 125 GeV, the asymptotic value of the Goldstone-boson
scattering amplitude is rather suppressed, and the quasi-elastic scattering of W and Z bosons
in the SM is dominated by the transversal degrees of freedom.

The ILC and CLIC colliders will probe the VBS processes

V V → V V with V = W+,W−, Z (1)

embedded in the class of processes

e−e+ → ℓℓ′V V with ℓ, ℓ′ = e±, ν, (2)

where the initial vector bosons of process (1) are represented, in (2), by virtual vector bosons
radiated from the incoming electron and positron, respectively [8,9,2]. The virtual particles are
space-like with a typical off-shellness pT (ℓ) ∼ mW . The final-state vector bosons decay into
leptons or quarks and are off-shell only by ΓW,Z .

The ILC/CLIC environment essentially fixes the total energy of the leptonic process. This
results in a spectrum of the V V invariant mass mV V , which falls down with increasing value
of mV V [10,11,12]. This situation is more favorable than at the LHC, where the analogous
processes are further suppressed by the steeply falling parton distribution functions.

The physical question is whether the SM is correct, as an effective theory, up to the energy
scale which is accessible in the collider experiment. VBS processes are especially important,
because they directly probe the Higgs sector, and because the SM prediction is strongly sup-
pressed. Any small deviation can result in a large effect, if sufficiently high energies can be
reached.
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2 Effective Theory

Traditionally, deviations from the SM prediction are parameterized by an effective Lagrangian
which contains, in addition to the renormalizable (SM) part, a series of higher-dimensional
effective operators with prefactors of order 1/Λd−4. Here, d is the dimension of the operator.
The scale Λ is unknown. If the operator is the result of tree-level exchange of a new particle,
Λ is of the order of the particle mass m. If it is the result of a radiative correction, Λ is rather
of the order 4πm. If it is the result of a strong interaction, e.g., a composite nature of the SM
particles, Λ indicates the compositeness scale.

In the effective Lagrangian of gauge bosons, Goldstone bosons, and Higgs, the leading
dimension d is six. If we only consider operators which do not affect vector-boson self-energies
or trilinear couplings, they start at d = 8. Such interactions are generated by tree-level exchange
of new particles, if they exist.

We write the SM Lagrangian, excluding fermions, in the form

Lmin =− 1

2
tr [WµνW

µν ]− 1

2
tr [BµνB

µν ] (3)

− 1

2
tr
[

(DµH)†DµH
]

− µ2

4
tr
[

H†H
]

+
λ

16

(

tr
[

H†H
])2

, (4)

where we use the notation

DµH = ∂µH+ igWµH− ig′HBµ (5)

Wµν = ∂µWν − ∂νWµ + ig [Wµ,Wν ] (6)

Bµν = ∂µBν − ∂νBµ (7)

with the fields

Wµ = W a
µ

τa

2
, Bµ = Ba

µ

τ 3

2
, H =

1

2

(

v + h− iw3 −i
√
2w+

−i
√
2w− v + h+ iw3

)

. (8)

The Higgs field, which includes the Goldstone bosons, is represented here as a 2× 2 hermitian
matrix1.

The possible anomalous effective interactions which directly influence VBS processes contain
higher powers and higher derivatives of these building blocks, for instance the two dimension-
eight operators

LS,0 =FS,0 tr
[

(DµH)†(DνH)
]

× tr
[

(DµH)†(DνH)
]

LS,1 =FS,1 tr
[

(DµH)†(DµH)
]

× tr
[

(DνH)†(DνH)
]

which modify the pure Goldstone-boson part of VBS.

1The matrix form allows for simply relating the higher-dimensional operators to corresponding operators in
the no-Higgs scenario [13,14,15,16]. Alternatively, by breaking down the matrix into columns, we can relate to
the operators in Higgs-doublet notation [17,18,19,20]
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Augmenting the SM Lagrangian by a complete (and minimal) set of additional operators
with unknown coefficients, we can model the behavior of the collider processes in a certain
energy range, represented by mV V . Experiment would determine or limit the values of those
coefficients [2,21,3,1].

In VBS processes, we are in the special situation that the interesting operators have dimen-
sion eight, and the SM contribution is small. This is in contrast to the analogous situation in
W pair production [18,22] or VBS without light Higgs [9]. Just slightly above the point where
the anomalous effect becomes detectable, the squared amplitude rises steeply (∼ s4) in relation
to the SM reference distribution, and crosses the unitarity bound. This severely limits the use
of the effective theory.

3 Beyond the Limit

This situation is rather unsatisfactory. In essence, there is no model-independent description of
high-energy VBS that is both different from the SM and phenomenologically useful. It would
be possible to switch to a top-down description where all observables are calculated within a
specific model. Unfortunately, while we know some non-SM models of the Higgs sector such as
multi-Higgs doublet models, the really interesting cases of strong interactions or compositeness
where large effects are possible, are rather uncertain.

We therefore propose to model the physics of VBS by an improved effective theory, as an
attempt to make the effective theory consistent with general principles of quantum theory, and
to cover a wide class of possible extensions into the energy range where no definite predictions
exist [24,25].

The first step is the unitarization of the low-energy effective theory. Given an arbitrary
approximation to the true S matrix, we may resum the scattering in such a way that the result
is unitary, without losing information or introducing arbitrary new parameters. A simple appli-
cation is Dyson resummation, which turns an intermediate on-shell particle into a Breit-Wigner
resonance. This recipe, which is known as the K-matrix [23] or inverse-amplitude unitariza-
tion procedure, is particularly simple if we are dealing with a 2 → 2 scattering process. If we
diagonalize the V V → V V scattering amplitudes in the high-energy limit, VBS satisfies this
condition. Given a correctly normalized real-valued diagonal amplitude A(s), the unitarized
amplitude reads

AK(s) = A(s)/(1− iA(s)). (9)

If, as in VBS with anomalous contributions, A(s) rises without bound for increasing energy,
the asymptotic value is always AK(∞) = i, which is the maximum absolute value consistent
with unitarity. The unitarized amplitude asymptotically saturates the unitarity limit. For low
energies where |A(s)| ≪ 1, it coincides with the effective-theory result. The coefficients of the
higher-dimension operators thus describe the slope of the approach to saturation.

Of course, the real physics may behave in a completely different way – as long as the
saturation limit is not exceeded. In accordance with unitarity, the elastic amplitude which
must lie on the Argand circle |A(s)− 1/2| = 1/2, may actually pass the point A = i. This is a
resonance, which can be described by a mass and width parameter.
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We therefore include resonances in the description. In the Higgs-Goldstone sector, the
interacting particles h, w±, z are scalars and have definite quantum numbers regarding weak
isospin (custodial symmetry), so the scattering is diagonalized in terms of spin-isospin eigenam-
plitudes AIJ(s), where I, J is in the range 0, 1, 2. Furthermore, with exact isospin, accessible
resonances have even values of I + J . There are five possibilities: scalar (I = 0 or I = 2),
vector (I = J = 1), or tensor (I = 0 or I = 2). This amounts to five mass and five coupling
parameters, which then determine the resonance widths.

This discussion is not just academic – at sub-GeV energies, QCD behaves in exactly this
way. There, the ρ vector resonance dominates scattering amplitudes, but this need not be the
case for electroweak interactions. In any case, it is reasonable to assume that this approach
covers the dominant effects both in weakly interacting scenarios (such as multi-Higgs models,
a special case where all resonances are scalar) and in the presence of strong interactions and
compositeness.

In summary, we propose to model the physics of vector boson by a Simplified model of
Strong interactions and Compositeness, which we will denote as SSC. At low energies, it
smoothly approaches the SM, and at intermediate energies below the first resonance (if any),
it is equivalent to the generic effective theory. The ingredients are:

1. All particles of the SM, including the Higgs boson

2. The leading higher-dimensional operators, possibly restricted to those that affect the
process in question, with arbitrary coefficients

3. The full set of resonances accessible in Goldstone- (and Higgs) scattering, parameterized
by independent mass and coupling parameters

We emphasize that the resonances, if integrated out, do contribute a shift to the low-energy
anomalous couplings. We do not assume that they are the only contribution.

4 Implementation

While the model is formulated in terms of the high-energy degrees of freedom, it is straightfor-
ward to extend it to the full range of energies [24]. The SM, effective operators, and resonances,
are expressed as a Lagrangian and can thus be evaluated in terms of Feynman rules with off-
shell particles. The model is useful as long as the off-shellness is small compared to the relevant
energy scale. However, at low energies where this is not the case, the unitarization corrections
and the resonance effects disappear. The corrections due to unitarization are not expressible
as a Lagrangian, but they behave as well defined, Lorentz-invariant and gauge-covariant form
factors, so they can be extrapolated off-shell and included in the calculation in a straightforward
way.

The unitarization corrections violate crossing symmetry. Thus, results obtained for V V →
V V processes cannot directly be translated into predictions for the crossed process V ∗ → V V V ,
or vice versa, as it would be possible in the pure SM.

We have implemented this framework in the Monte-Carlo event generator WHIZARD [26,27].
In the upcoming version 2.2 of this generator, the relevant physics models are
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SM : The pure Standard Model as reference

SM ac : Standard Model with anomalous interactions, as a consistent effective theory but
violating unitarity

SSC : The Simplified Model with anomalous interactions, resonances, and K-matrix unita-
rization, as described above

For convenience, there is also the alternative model

AltH : The Simplified Model without the light Higgs boson

This model allows for connecting to older VBS studies in the literature, where the focus was
on the no-Higgs scenario.

5 Conclusions

The SSC approach enables a reasonable evaluation of the sensitivity of a future lepton collider,
regarding the physics of high-energy VBS. It should also be useful for the analysis of real data,
and in particular for combining ILC and CLIC with hadron collider results. If non-SM effects are
actually found, the model should be extended to describe physics phenomenologically in more
detail. For instance, one should allow for weak-isospin violating corrections and independent
couplings to transversal vector bosons. The setup for the Higgs sector will be embedded in the
context of potential new physics in the fermion and gauge sectors, and it should be connected
with specific models of the new interactions at a more fundamental level.

In the opposite, but not unlikely case that no deviations can be detected, the traditional
effective-theory approach loses its value for data analysis at the energies that we want to access
at the ILC and, in particular, at CLIC. Instead, the SSC framework extends the effective theory
and allows us to quantify the precision with which the SM will be verified.
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[21] M. Beyer, W. Kilian, P. Křstonošic, K. Mönig, J. Reuter, E. Schmidt and H. Schröder,
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