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Abstract

The strange contribution to the electric and magnetic form factors of the nucleon is determined at a range of discrete
values of Q2 up to 1.4 GeV2. This is done by combining recent lattice QCD results for the electromagnetic form
factors of the octet baryons with experimental determinations of those quantities. The most precise result is a small
negative value for the strange magnetic moment: Gs

M(Q2 = 0) = −0.07 ± 0.03 µN . At larger values of Q2 both the
electric and magnetic form factors are consistent with zero to within 2-sigma.
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1. Introduction

A quantitative determination of the contribution of
non-valence flavour quarks to nucleon observables re-
mains a fundamental challenge of hadronic physics.
Since such contributions must arise entirely through in-
teractions with the vacuum, their sign and magnitude
provide key information regarding the nonperturbative
structure of the nucleon; their determination within non-
perturbative QCD constitutes a test of a level of impor-
tance comparable to that of the Lamb shift for QED.
Strange quarks, as the lightest sea-only flavour, are ex-
pected to play the largest role.

Recent years have seen extensive experimental ef-
forts directed at measuring strangeness in the nucleon.
The strange electromagnetic form factors in particular
have been determined from experiments at JLab (G0,
HAPPEX) [1–7], MIT-Bates (SAMPLE) [8, 9], and
Mainz (A4) [10–12]. Probing a range of values of Q2

up to ≈ 0.94 GeV2, the combined data sets constrain the
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strange contribution to the nucleon form factors to be
less than a few percent but are consistent with zero to
within 2-sigma [13]. The status of the strange form fac-
tors from theory is less clear; predictions from various
quark models cover a very broad range of values [14–
19], and the large computational cost of all-to-all prop-
agators has so far limited direct lattice QCD studies to
large pion masses and single volumes [20, 21].

Here we determine the strangeness contributions to
the nucleon electromagnetic form factors indirectly
from lattice QCD. Under the assumption of charge sym-
metry, one can combine experimental measurements of
the nucleon form factors with lattice QCD determina-
tions of the connected (or ‘valence’ quark) contribu-
tions to deduce the disconnected (or ‘sea’ quark) com-
ponents [22]. This method has been applied previously
to determine the strange magnetic form factor at Q2 =

{0, 0.23} GeV2 [23, 24] and the strange electric form
factor at Q2 = 0.1 GeV2 [25] from quenched lattice
QCD studies. We extend that work to six discrete val-
ues of the momentum transfer using the results of new
dynamical 2 + 1–flavour lattice QCD simulations from
the CSSM/QCDSF/UKQCD Collaborations [26, 27].
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2. Strange form factors

Our calculation is based on the recent lattice inves-
tigation and analysis reported in Refs. [26, 27]. Those
studies determine the connected quark contributions to
the electric and magnetic form factors of the outer-ring
octet baryons using 2 + 1–flavour lattice QCD simula-
tions extrapolated to infinite volume and to the physical
pseudoscalar masses. That extrapolation is performed
using a formalism based on connected chiral perturba-
tion theory [28, 29].

The extraction of the strange electromagnetic form
factors from the extrapolated lattice results follows the
procedure introduced in Refs. [30, 31]. Under the as-
sumption of charge symmetry, which is an exact sym-
metry of QCD if one neglects QED and the light quark
mass difference (i.e., assuming mu = md), one may ex-
press the electromagnetic form factors of the proton and
neutron as [22]

p = euup + eddp + ON , (1)

n = edup + eudp + ON . (2)

Here, p and n denote the physical (electric or magnetic)
form factors of the proton and neutron and up and dp

represent the connected u and d quark contributions to
the proton form factor. The disconnected quark loop
term, ON , may be decomposed into individual quark
contributions:

ON =
2
3
`Gu −

1
3
`Gd −

1
3
`Gs, (3)

=
`Gs

3

1 − `Rs
d

`Rs
d

 , (4)

where charge symmetry has been used to equate `Gu =
`Gd and the ratio of s to d disconnected quark loops is
denoted by `Rs

d = `Gs/ `Gd.
Rearranging Eqs. (1), (2) and (4) to isolate the strange

quark loop contribution `Gs yields two independent ex-
pressions which are direct consequences of QCD under
the assumption of charge symmetry:

`Gs =

 `Rs
d

1 − `Rs
d

 [2p + n − up] , (5)

`Gs =

 `Rs
d

1 − `Rs
d

 [p + 2n − dp] . (6)

In principle, given a suitable estimate of `Rs
d, these ex-

pressions may be simply evaluated; the total form fac-
tors p and n are well known experimentally and the con-
nected contributions up and un may be calculated on the
lattice.

This procedure relies on the assumption that the dif-
ference between the experimental numbers and the con-
nected lattice simulation results for the form factors may
be entirely attributed to contributions from disconnected
quark loops, i.e., that all other systematic effects are un-
der control. To allow for any as-yet undetermined lat-
tice systematics, we average Eqs. (5) and (6) resulting
in a form where only the connected contribution to the
combination (up + dp) needs to be determined from the
lattice:

`Gs =

 `Rs
d

1 − `Rs
d

 [3
2

(p + n) −
1
2

(up + dp)Latt.

]
. (7)

As will be described in Sec. 2.1, the additional system-
atic uncertainty on (up + dp) is approximated by that
on the isovector combination (up − dp). The latter may
be determined by direct comparison with experiment as
contributions from disconnected u and d loops are equal
and hence cancel.

In the following sections we discuss each of the three
inputs into Eq. (7):

• The lattice values for (up + dp).

• The experimental p and n form factors.

• The ratio `Rs
d = `Gs/`Gd.

2.1. Lattice determination of up and dp

Lattice values for the connected u and d quark contri-
butions to the proton electric and magnetic form factors,
up and dp, are taken from Refs. [26, 27]. As discussed
above, we include an additional systematic uncertainty
on these results in addition to that quoted in the original
papers.

We estimate that the unaccounted-for systematic un-
certainty of (up+dp) will be similar to that of the isovec-
tor combination (up − dp). As the latter should agree
with experiment if all systematic effects are under con-
trol (recalling that disconnected contributions cancel in
this combination), the difference between lattice and ex-
perimental results (up − dp)Latt. − (p − n)Exp. provides
an estimate of the remaining uncertainty. We take the
largest value of this difference, evaluated at the six sim-
ulation values of Q2, as a conservative estimate. The
experimental numbers for the form factors p and n are
taken from the Kelly [32] or Arrington and Sick [33] pa-
rameterisations. Section 2.2 gives details of the way in
which the results using each parameterisation are com-
bined.

This procedure is followed for both the electric and
magnetic form factors. As will be illustrated in Ta-
ble 1 in Sec. 4, the additional uncertainty included in
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Figure 1: Loop diagrams which are included in the estimate of `Rs
d

from effective field theory. Fig. 1(b) is included for the electric form
factor only. The solid, dashed and wavy lines denote octet baryons,
mesons and photons respectively.

this fashion is significant and larger than the statistical
uncertainty in the determination of the strange magnetic
form factor. For the electric form factor it is a modest
contribution of a size similar to or smaller than the sta-
tistical uncertainty.

2.2. Experimental p and n form factors

The experimental proton and neutron electromag-
netic form factors p and n are taken from the param-
eterisations of experimental results by Kelly [32] and
Arrington and Sick [33] (the latter is used only on its
quoted range of validity, Q2 < 1 GeV2). The entire
calculation, including the additional estimate of lattice
systematics described in Sec. 2.1, is performed using
each parameterisation. The average central value of the
two sets of results is taken as the best-estimate of the
strange form factors. Half of the difference between
the two central values is included as an estimate of the
parameterisation-dependent uncertainty. As shown in
Table 1 in Sec. 4, this contribution to the uncertainty is
small.

2.3. Estimate of the ratio `Rs
d

We derive an estimate for the disconnected quark-
loop ratio `Rs

d = `Gs/`Gd using a model based on chiral
effective field theory, as also done in Refs. [23–25]. In
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Figure 2: Estimate of `Rs
d from effective field theory with finite-range

regularisation for the electric (dashed green) and magnetic (solid blue)
form factors.

that formalism `Rs
d is given by the ratio of loop diagram

contributions to the electromagnetic form factors, where
the relevant loop integrals are weighted by the appro-
priate ‘disconnected’ chiral coefficients for the s and d
quarks [24, 25, 28].

The primary loop diagram relevant to this calculation
is illustrated in Fig. 1(a). For the electric form factor, in
particular, a higher-order diagram (Fig. 1(b)) is impor-
tant as it makes a significant contribution of the opposite
sign to that of Fig. 1(a), resulting in a large cancellation.
While to the order of the calculation in Refs. [26, 27]
this term contributes a constant to GE(Q2) (enforcing
charge conservation at Q2 = 0), this is not a good ap-
proximation for the large Q2 values considered in this
work.

For this reason we include Fig. 1(b), with an esti-
mate of its Q2-dependence, explicitly in our calcula-
tion of `Rs

d for the electric form factor. This is achieved
by calculating the diagram in heavy-baryon chiral per-
turbation theory and modelling the Q2-dependence of
the photon-baryon vertex based on the lattice results of
Ref. [26]. Further details are given in Appendix A.

For both the electric and magnetic form factors the
effect of additionally including loops with decuplet
baryon intermediate states is taken as an estimate of
the uncertainty in the ratio `Rs

d. The errors quoted for
the numerical results in Table 1 in Sec. 4 combine this
estimate in quadrature with that given by allowing the
dipole mass parameter Λ used in the finite-range regu-
larisation scheme to vary between 0.6 and 1.0 GeV. That
regularisation procedure is discussed in Refs. [34–36].
The final values for `Rs

d are shown in Fig. 2.
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3. Strange magnetic moment Gs
M

(Q2 = 0)

For the magnetic form factor at Q2 = 0 there is ad-
ditional information available from experiment as the
hyperon magnetic moments have been measured [37].
We rearrange Eqs. (5) and (6), using the assumption of
charge symmetry, to express the strange magnetic mo-
ment in terms of the hyperon moments [22, 31]:

`Gs =

 `Rs
d

1 − `Rs
d

 [2p + n −
up

uΣ

(
Σ+ − Σ−

)]
, (8)

`Gs =

 `Rs
d

1 − `Rs
d

 [p + 2n −
un

uΞ

(
Ξ0 − Ξ−

)]
. (9)

This rearrangement minimises the propagation of lattice
systematics as only ratios of form factors must be de-
termined from lattice QCD. Of course, as the hyperon
form factors have not been determined experimentally
at non-zero values of Q2, these expressions can at this
stage only be used at Q2 = 0.

The ratios up
M/u

Σ
M and un

M/u
Ξ
M of up quark contribu-

tions to the hyperon form factors, at a range of non-zero
values of the momentum transfer Q2, are taken from
Refs. [26, 27] (raw results are given in Appendix A of
Ref. [27]). We determine the Q2 = 0 values needed
here using a linear extrapolation in Q2, with an addi-
tional experimental constraint provided by the equality
of Eqs. (8) and (9):

up
M

uΣ
M

=
un

M

uΞ
M

(
µΞ0 − µΞ−

µΣ+ − µΣ−

)
+

(
µp − µn

µΣ+ − µΣ−

)
, (10)

where µB denotes the experimental magnetic moment
of the baryon B [37]. This extrapolation is illustrated in
Fig. 3. The fit is performed to the lattice results where
Q2 < 1 GeV2, which display qualitatively linear be-
haviour and for which the linear-fit χ2/d.o.f is accept-
able given the constraint of Eq. (10). Fitting to one less
data point does not change the results appreciably, as
also illustrated in Fig. 3.

The best estimates of the Q2 = 0 ratios of connected
contributions to the baryon magnetic form factors are

up
M

uΣ
M

= 1.096 ± 0.016 and
un

M

uΞ
M

= 1.239 ± 0.090.

(11)
These numbers align remarkably well with those deter-
mined in Ref. [23] using quenched lattice simulation re-
sults (after the application of a theoretical ‘unquench-
ing’ formalism [35]). The resulting value for the strange
magnetic moment (from Eqs. (8) and (9)), convention-
ally defined without the charge factor, is

Gs
M(Q2 = 0) = −0.07 ± 0.03 µN . (12)
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Figure 3: Results from Refs. [26, 27] for the ratios up
M/u

Σ
M and un

M/u
Ξ
M

of connected contributions to the baryon magnetic form factors. The
bands show simultaneous fits, linear in Q2, to the lowest 4 (blue solid
band) or 3 (green dashed band) data points, constrained by Eq. (10) at
Q2 = 0.
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(b) Strange electric form factor of the proton. The blue band indicates
a straight-line fit in Q2 to the lowest-Q2 point, which we use to estimate
the strange electric charge radius.

Figure 4: Strange contribution to the electromagnetic form factors of
the proton, for strange quarks of unit charge. The experimental results
(red stars) are taken from Refs. [2, 4, 5, 8, 9, 12].

The uncertainties are dominated by that in the ratio
`Rs

d (see Sec. 2.3); more explicitly Gs
M(Q2 = 0) =

−0.071±0.013±0.025±0.004 µN where the first uncer-
tainty is propagated from the lattice simulation results,
the second contribution comes from the ratio `Rs

d and
the last is that from the experimental determination of
the magnetic moments [37].

4. Results at finite Q2

The results of this analysis for the strange electric and
magnetic form factors of the proton at six discrete non-
zero values of the momentum transfer Q2, and addition-
ally at Q2 = 0 for the magnetic case, are displayed in
Fig. 4 alongside the latest experimental determinations
of those quantities. All results away from Q2 = 0 are

-0.4 -0.2 0.0 0.2 0.4

-0.15

-0.10

-0.05
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0.10

0.15

GM
s
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Figure 5: Comparison of the results of this work (red ellipse) at Q2 =

0.26 GeV2 with available experimental results at similar values of Q2.
The dark and pale green ellipses show 1σ and 2σ results from the A4
Collaboration at Q2 = 0.23 GeV2 [11] while the blue ellipses show
G0 Collaboration results close to Q2 = 0.23 GeV2 [1, 2].

consistent with zero to within 2-sigma. The results for
the strange magnetic form factor favour negative values
which are consistent with recent experimental results.

Since experimental determinations of the strange
form factors are obtained as linear combinations of Gs

E
and Gs

M we also display results at the lowest value of
the momentum transfer, Q2 = 0.26 GeV2, in the Gs

M–
Gs

E plane in Fig. 5. The available experimental results
for similar values of Q2 appear on this figure as ellipses.
The present calculation is consistent with experiment to
within 2-sigma. Numerical results, including a break-
down of the systematic uncertainties in the calculation,
are given in Table 1.

One can also use the results of this analysis to es-
timate the strange electric charge radius of the pro-
ton. We perform a simple calculation using a straight-
line fit in Q2 to the lowest-Q2 result for Gs

E (illustrated
in Fig. 4(b)). This gives 〈r2

E〉
s = 0.0086 ± 0.0043 ±

0.0066 fm2, where the first uncertainty is statistical and
the second systematic (including in quadrature all sys-
tematic uncertainties of Table 1). This is consistent with
the results of Ref. [25] obtained using quenched lattice
simulations. We note that fits including the lowest 2,
3 or 4 points in Q2 all yield results with uncertainties
contained entirely within the quoted range.

Finally, we report that the most precise result of this

5



Q2 (GeV2) Gs
M (µN) Gs

E
0.26 −0.069(12)(44)(15)(78) −0.010(4)(5)(2)(6)
0.50 −0.109(12)(59)(21)(112) −0.014(8)(8)(3)(7)
0.73 −0.136(15)(72)(24)(129) −0.008(15)(11)(1)(13)
0.94 −0.122(20)(83)(20)(136) −0.017(28)(16)(3)(20)
1.14 −0.103(16)(94)(17)(137) 0.053(34)(24)(40)(24)
1.33 −0.115(20)(103)(18)(135) 0.141(57)(35)(153)(36)

Table 1: Results for the strange electric and magnetic form factors of the proton at the six non-zero values of Q2 investigated here. The first
uncertainty quoted comes from the lattice values for the connected u and d quark contributions to the proton form factors, taken from Refs. [26, 27],
while the second is the additional systematic uncertainty included as described in Sec. 2.1. The third uncertainty is that propagated from the factor(
`Rs

d/(1 −
`Rs

d)
)

(see Sec. 2.3). The last uncertainty is that from the Kelly parameterisation of the experimental p and n form factors [32], combined
in quadrature with the parameterisation uncertainty in those results for Q2 < 1 where we use two parameterisations as described in Sec. 2.2.

analysis is that for the strange magnetic moment of the
proton: Gs

M(Q2 = 0) = −0.07 ± 0.03 µN . This number
is non-zero to 2-sigma and an order of magnitude more
precise than the closest experimental results.
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Appendix A. Details of the calculation of `Rs
d

In this section we give further details of the calcu-
lation of the ratio of disconnected loop contributions,
`Rs

d = `Gs/`Gd, described in Sec. 2.3.
The loop diagram shown in Fig. 1(a) gives contribu-

tions to the magnetic and electric form factors of the
proton which depend on the integrals IM and IE respec-

tively:

IM(m,Q2) =

∫
d~k

k2
yu(~k + ~q/2)u(~k − ~q/2)

2ω2
+ω

2
−

, (A.1)

IE(m,Q2) =

∫
d~k

(~k2 − ~q 2/4)u(~k + ~q/2)u(~k − ~q/2)
ω+ω−(ω+ + ω−)

,

(A.2)

where

ω± =

√
(~k ± ~q/2)2 + m2, (A.3)

~q is defined to lie along the z-axis, Q2 = −q2 and u(~k) is
the ultra-violet regulator used in the finite-range regular-
ization scheme. As was done for the chiral extrapolation
of the lattice results used in this calculation [26, 27], we
choose a dipole regulator u(k) =

(
Λ2

Λ2+k2

)2
with a regu-

lator mass Λ = 0.8 ± 0.2 GeV. The dipole form is sug-
gested by a comparison of the nucleon’s axial and in-
duced pseudoscalar form factors [41] and the choice of
Λ is informed by a lattice analysis of nucleon magnetic
moments [42].

For the electric form factor we also consider Fig. 1(b),
as discussed in Sec. 2.3. In the formalism used here, this
diagram contributes a constant to the electric form fac-
tor which is equal in magnitude and opposite in sign to
the contribution from Fig. 1(a) at Q2 = 0, ensuring that
the electric charge remains unrenormalised. We model
the Q2-dependence of Fig. 1(b) by scaling that constant
by an appropriate form factor. This results in a contri-
bution to GE which is identical to that of Fig. 1(a) under
the replacement

IE(mφ,Q2)→ −IE(mφ, 0) ∗Gq
E(Q2). (A.4)

Here Gq
E (for q = {d, s}) is the q quark contribution to

the ‘intermediate’ baryon form factor; it is the average

6



contribution of q quarks to the form factors of the in-
termediate baryons in the loop with a proton external
state, weighted by the appropriate Clebsch-Gordon co-
efficients. We approximate this for the s quark by the
form factor GΣ0,s

E , taken from Ref. [26]. Similarly, we
set Gd

E to the same quantity, but where the strange quark
mass is set equal to the light quark mass in the chiral
extrapolation of Ref. [26].

The contributions of the loop diagrams of Fig. 1 to
the proton electric and magnetic form factors are given
by the loop integrals defined above, weighted by the ap-
propriate chiral coefficients. As the disconnected chiral
coefficients for the d and s quarks are the same (and can-
cel in the ratio), the central values of `Rs

d at each Q2 are
given simply by the ratio of the integrals I(mφ,Q2) with
pion and kaon masses in the loops:

`Rs
dM(Q2) =

IM(mπ,Q2)
IM(mK ,Q2)

, (A.5)

`Rs
dE(Q2) =

IE(mπ,Q2) − IE(mπ, 0) ∗Gd
E(Q2)

IE(mK ,Q2) − IE(mK , 0) ∗Gs
E(Q2)

. (A.6)

The dominant uncertainty in `Rs
d comes from allow-

ing the regulator mass Λ to vary in the range 0.6-
1.0 GeV. This is combined in quadrature with half of the
shift that results from additionally allowing decuplet in-
termediate states in the loops. The calculation including
the decuplet loops proceeds as described above, with
additional terms of the relevant decuplet-intermediate-
state loop integrals (given in Refs. [26, 27]) in both
the numerator and denominator of Eqs. A.5 and A.6,
weighted by the appropriate relative disconnected chi-
ral coefficients which may be found in Ref. [24].
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