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Abstract

We calculate theO(αs) corrections to the double differential decay width dΓ77/(ds1 ds2)
for the process B̄ → Xsγγ originating from diagrams involving the electromagnetic
dipole operator O7. The kinematical variables s1 and s2 are defined as si = (pb −
qi)

2/m2
b , where pb, q1, q2 are the momenta of b-quark and two photons. We introduce

a nonzero mass ms for the strange quark to regulate configurations where the gluon
or one of the photons become collinear with the strange quark and retain terms which
are logarithmic in ms, while discarding terms which go to zero in the limit ms → 0.
When combining virtual- and bremsstrahlung corrections, the infrared and collinear
singularities induced by soft and/or collinear gluons drop out. By our cuts the photons
do not become soft, but one of them can become collinear with the strange quark.
This implies that in the final result a single logarithms of ms survives. In principle
the configurations with collinear photon emission could be treated using fragmentation
functions. In a related work we found that similar results can be obtained when simply
interpreting ms appearing in the final result as a constituent mass. We do so in the
present paper and vary ms between 400 MeV and 600 MeV in the numerics. This
work extends a previous paper of us, where only the leading power terms w.r.t. the
(normalized) hadronic mass s3 = (pb − q1 − q2)

2/m2
b were taken into account in the

underlying triple differential decay width dΓ77/(ds1ds2ds3).

http://arxiv.org/abs/1403.4502v1


1 Introduction

Inclusive rare B-meson decays are known to be a unique source of indirect information about
physics at scales of several hundred GeV. In the Standard Model (SM) all these processes
proceed through loop diagrams and thus are relatively suppressed. In the extensions of the
SM the contributions stemming from the diagrams with “new” particles in the loops can be
comparable or even larger than the contribution from the SM. Thus getting experimental
information on rare decays puts strong constraints on the extensions of the SM or can even
lead to a disagreement with the SM predictions, providing evidence for some “new physics”.

To make a rigorous comparison between experiment and theory, precise SM calculations
for the (differential) decay rates are mandatory. While the branching ratios for B̄ → Xsγ [1]
and B̄ → Xsℓ

+ℓ− are known today even to next-to-next-to-leading logarithmic (NNLL)
precision (for reviews, see [2,3]), other branching ratios, like the one for B̄ → Xsγγ discussed
in this paper, are systematically only known to leading logarithmic (LL) precision in the
SM [4–7]. In [8] the NLL result for the contribution associated with the photonic dipole
operator O7 was worked out for B̄ → Xsγγ in a certain approximation (details see below).
In contrast to B̄ → Xsγ, the current-current operatorO2 has a non-vanishing matrix element
for b → sγγ at order α0

s precision, leading to an interesting interference pattern with the
contributions associated with the electromagnetic dipole operatorO7 already at LL precision.
As a consequence, potential new physics should be clearly visible not only in the total
branching ratio, but also in the differential distributions.

As the process B̄ → Xsγγ is expected to be measured at the planned Super B-factories,
it is necessary to calculate the differential distributions to NLL precision in the SM, in order
to fully exploit its potential concerning new physics. The starting point of our calculation is
the effective Hamiltonian, obtained by integrating out the heavy particles in the SM, leading
to

Heff = −4GF√
2

V ⋆
tsVtb

8
∑

i=1

Ci(µ)Oi(µ) , (1.1)

where we use the operator basis introduced in [9]:

O1 = (s̄LγµT
acL) (c̄Lγ

µTabL) , O2 = (s̄LγµcL) (c̄Lγ
µbL) ,

O3 = (s̄LγµbL)
∑

q(q̄γ
µq) , O4 = (s̄LγµT

abL)
∑

q(q̄γ
µTaq) ,

O5 = (s̄LγµγνγρbL)
∑

q(q̄γ
µγνγρq) , O6 = (s̄LγµγνγρT

abL)
∑

q(q̄γ
µγνγρTaq) ,

O7 = e
16π2 m̄b(µ) (s̄Lσ

µνbR)Fµν , O8 = gs
16π2 m̄b(µ) (s̄Lσ

µνT abR)G
a
µν .

(1.2)

The symbols T a (a = 1, 8) denote the SU(3) color generators; gs and e, the strong and
electromagnetic coupling constants. In eq. (1.2), m̄b(µ) is the running b-quark mass in the
MS-scheme at the renormalization scale µ. As we are not interested in CP-violation effects
in the present paper, we made use of the approximation VubV

∗

us ≪ VtbV
∗

ts when writing eq.
(1.1). We also put the mass of the strange quark to zero which in principle enters O7, because
in this paper we will work out only terms which are logarithmic in ms or independent of ms.

While theWilson coefficients Ci(µ) appearing in eq. (1.1) are known to sufficient precision
at the low scale µ ∼ mb since a long time (see e.g. the reviews [2,3] and references therein),
the matrix elements 〈sγγ|Oi|b〉 and 〈sγγ g|Oi|b〉, which in a NLL calculation are needed
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to order g2s and gs, respectively, are not known yet. To calculate the (Oi,Oj)-interference
contributions for the differential distributions at order αs is in many respects of similar
complexity as the calculation of the photon energy spectrum in B̄ → Xsγ at order α2

s

needed for the NNLL computation. There, the individual interference contributions, which
all involve extensive calculations, were published in separate papers, sometimes even by two
independent groups (see e.g. [10] and [11]). It therefore cannot be expected that the NLL
results for the differential distributions related to B̄ → Xsγγ are given in a single paper.

As a first step towards a NLL prediction for B̄ → Xsγγ, we calculated in 2011 the O(αs)
corrections to the (O7,O7)-interference contribution to the double differential decay width
dΓ/(ds1ds2) at the partonic level, using an approximation where only the leading power
w.r.t. the (normalized) hadronic mass were retained in the underlying triple differential
decay width dΓ77/(ds1ds2ds3) [8]. The variables s1 and s2 are defined as si = (pb − qi)

2/m2
b ,

where pb and qi denote the four-momenta of the b-quark and the two photons, respectively
and s3 denotes the normalized hadronic mass of the final state, i.e. s3 = (pb − q1 − q2)

2/m2
b .

At order αs there are contributions to dΓ77/(ds1ds2) with three particles (s-quark and two
photons) in the final state and a gluon in the loop [virtual corrections] and tree-level contribu-
tions with four particles (s-quark, two photons and a gluon) in the final state [bremsstrahlung
corrections].

As we will discuss in section 2, we work out the QCD corrections to the double differential
decay width in the kinematical range

0 < s1 < 1 ; 0 < s2 < 1− s1 .

Concerning the virtual corrections, all singularities (after ultra-violet renormalization) are
due to soft gluon exchange and/or collinear gluon exchange involving the s-quark. Concern-
ing the bremsstrahlung corrections (restricted to the same range of s1 and s2), there are
also singularities due to soft- and/or collinear gluons, but there are additional kinematical
situations where one of the photons is emitted collinear to the s-quark. While the singu-
larities induced by gluons cancel when combining virtual- and bremsstrahlung corrections,
those associated with collinear photons remain, as discussed in detail in section 4. In ref. [8]
we found, however, that there are no singularities associated with collinear photon emission
in the double differential decay width when only retaining the leading power w.r.t. to the
(normalized) hadronic mass s3 = (pb−q1−q2)

2/m2
b in the underlying triple differential distri-

bution dΓ77/(ds1ds2ds3). The results in ref. [8] were obtained within this “approximation”.

The main goal of the present paper is to go beyond this approximation. When doing
so, the singularities induced by collinear photon emission from the strange quark remain in
the final perturbative result and additional concepts like parton fragmentation functions of a
quark into a photon are needed [12]. In our recent work [13] on the tree-level contributions of
the operators Ou

1,2 to the branching ratio for the process B̄ → Xdγ, we found that the results
involving fragmentation functions are similar to those obtained by providing the quark q
which radiates an (almost) collinear photon with an appropriately chosen constituent mass
mq. The approach using constituent masses was also used in ref. [14], where the analogous
contributions to B̄ → Xsγ were investigated.

As the approach with a constituent mass is technically easier and, more importantly, be-
cause the fragmentation functions are not known accurately as discussed in [13], we interpret
ms, which we originally introduce as a regulator of collinear singularities, as a constituent
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mass in the present paper and retain all terms of the type logn(ms), while neglecting power
terms in ms, as well as terms of the form mn

s log
m(ms), which tend to zero in the limit

ms → 0. As the virtual- and bremsstrahlung corrections in [8] were calculated for a massless
strange quark (which means dimensional regularization of collinear singularities), we have
to redo both parts in the present work.

Before moving to the detailed organization of our paper, we should mention that the
inclusive double radiative process B̄ → Xsγγ has also been explored in several extensions of
the SM [5, 7, 15]. Also the corresponding exclusive modes, Bs → γγ and B → Kγγ, have
been examined before, both in the SM [6,16–24] and in its extensions [15,20,21,25–33]. We
should add that the long-distance resonant effects were also discussed in the literature (see
e.g. [6] and the references therein). Finally, the effects of photon emission from the spectator
quark in the B-meson were discussed in [16, 20, 34].

The remainder of this paper is organized as follows. In section 2 we work out the double
differential distribution dΓ77/(ds1ds2) in leading order, i.e., without taking into account
QCD corrections to the matrix element 〈sγγ|O7|b〉. In this section we also give the order
α0
s results when including the effects of the operators O1 and O2. Section 3 is devoted to

the calculation of the virtual corrections of order αs to the double differential decay width
in a scheme where the collinear singularities are regulated using a nonzero strange quark
mass ms. In section 4 the corresponding gluon bremsstrahlung corrections to the double
differential width are worked out. In section 5 virtual- and bremsstrahlung corrections are
combined and the result for the double differential decay width is given. As our analytic
results (in particular those for the bremsstrahlung corrections) are rather lengthy, we prefer
to give certain parts of our results in the form of fits which involve simple “basis functions”.
In section 6 we illustrate the numerical impact of the NLL corrections. A comparison with
the results in [8], where only the leading power w.r.t. the (normalized) hadronic mass s3
was retained at the level of the triple differential decay width dΓ77/(ds1ds2ds3), is also done
in this section. The main text of our paper ends with a short summary in section 7. The
appendices A, B and C contain intermediate results and technical ingredients.

2 Leading order result

In this section we discuss the double differential decay width dΓ77/(ds1ds2) at lowest order
in QCD, i.e. α0

s. The dimensionless variables s1 and s2 are defined everywhere in this paper
as

s1 =
(pb − q1)

2

m2
b

; s2 =
(pb − q2)

2

m2
b

. (2.1)

At lowest order the double differential decay width is based on the diagrams shown in Fig. 1.
The variables s1 and s2 form a complete set of kinematically independent variables for the
three-body decay b → sγγ. Their kinematical range is as follows:

0 ≤ s1 ≤ 1 ; 0 ≤ s2 ≤ 1− s1 .

The energies E1 and E2 in the rest-frame of the b-quark of the two photons are related to
s1 and s2 in a simple way: si = 1 − 2Ei/mb. As the energies Ei of the photons have to
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Figure 1: The diagrams defining the tree-level amplitude for b → sγγ associated with O7

are shown. The four-momenta of the b-quark, the s-quarks and the two photons are denoted
by pb, ps, q1 and q2, respectively.

be away from zero in order to be observed, the values of s1 and s2 can be considered to be
smaller than one. By additionally requiring s1 and s2 to be larger than zero, we exclude
collinear photon emission from the s-quark, because (ps + q1)

2 = (pb − q2)
2 = s2m

2
b > 0 and

(ps+ q2)
2 = (pb− q1)

2 = s1m
2
b > 0. Using these cuts, ms can be safely put to zero at leading

order. It is also easy to implement a lower cut on the invariant mass squared s of the two
photons by observing that s = (q1 + q2)

2 = 1 − s1 − s2. To parametrize all the mentioned
conditions in terms of one parameter c (with c > 0), one can proceed as suggested in [5]:

s1 ≥ c , s2 ≥ c , 1− s1 − s2 ≥ c . (2.2)

Applying such cuts, the relevant phase-space region in the (s1, s2)-plane is shown by the
shaded area in Fig. 2. Our aim in this paper is to work out the double differential decay
width in this restricted area of the s1 and the s2 variable also when discussing the gluon
bremsstrahlung corrections1. To exhibit the singularity structure of the virtual corrections

������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������

������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������

s1

s2

1

1

Figure 2: The relevant phase-space region for (s1, s2) used in this paper is shown by the
shaded area.

discussed in the next section in a transparent way, it is useful to give the leading-order
spectrum in d = 4− 2ǫ dimensions. We obtain

dΓ
(0,d)
77

ds1 ds2
=

α2 m̄2
b(µ)m

3
b |C7,eff(µ)|2G2

F |VtbV
∗

ts|2Q2
d

1024 π5

(

µ

mb

)4ǫ

r (2.3)

1In this case, the normalized invariant mass squared s of the two photons reads s = 1−s1−s2+s3, where
s3 is the normalized hadronic mass squared. The condition 1− s1 − s2 ≥ c then still eliminates two-photon
configurations with small invariant mass.
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with

r =
[r0 + ǫ(r1 + r2 + r3 + r4)] (1− s1 − s2)

(1− s1)
2 s1 (1− s2)

2 s2
. (2.4)

In r we retained terms of order ǫ1, while discarding terms of higher order. The individual
pieces r0, . . . , r4 read

r0 = −48s32s
3
1 + 96s22s

3
1 − 56s2s

3
1 + 8s31 + 96s32s

2
1 − 192s22s

2
1 + 112s2s

2
1 − 56s32s1 +

112s22s1 − 96s2s1 + 8s1 + 8s32 + 8s2 (2.5)

r1 = −16s22s
3
1 + 16s2s

3
1 − 16s32s

2
1 + 48s22s

2
1 − 32s2s

2
1 + 16s21 + 16s32s1 −

32s22s1 − 16s2s1 + 16s22 (2.6)

r2 = −r0 log (s1) ; r3 = −r0 log (s2) ; r4 = −r0 log (1− s1 − s2) . (2.7)

In eq. (2.3) the symbols m̄b(µ) and mb denote the mass of the b-quark in the MS-scheme
and in the on-shell scheme, respectively and C7,eff(µ) is the effective Wilson coefficient of
the operator O7 at the low scale (µ ∼ mb), which has an expansion in αs as follows:

C7,eff(µ) = C0
7,eff(µ) +

αs(µ)

4π
C1

7,eff(µ) . (2.8)

This Wilson coefficient is known for a long time (see ref. [9] and references therein). Note
that in this section only the lowest order part C0

7,eff of C7,eff is needed in eq. (2.3), while
in the following sections the C1

7,eff piece has to be retained.

In d = 4 dimensions, the leading-order spectrum (in our restricted phase-space) is ob-
tained by simply putting ǫ to zero, obtaining

dΓ
(0)
77

ds1 ds2
=

α2 m̄2
b(µ)m

3
b |C7,eff(µ)|2G2

F |VtbV
∗

ts|2Q2
d

1024 π5

(1− s1 − s2)

(1− s1)2s1(1− s2)2s2
r0 . (2.9)

For completeness, we also list the order α0
s result which takes into account the remaining

contributions of the operators O1, O2 and O7. Using m̂c = mc/mb, one gets [7, 35] when
adapted to the operator basis in eq. (1.2)

dΓ
(0)
remaining

ds1ds2
=

α2 m5
b G2

F |VtbV
∗

ts|2
1024 π5

×
{

4Q4
u

(

C2(µ) +
4

3
C1(µ)

)2
(s1 + s2)

(1− s1 − s2)2
∣

∣1− s1 − s2 − 4 m̂2
c arcsin2(z)

∣

∣

2

+16QdQ
2
u

(

C2(µ) +
4

3
C1(µ)

)

C7,eff(µ)
(

1− s1 − s2 − 4 m̂2
c Re

(

arcsin2(z)
))

}

,(2.10)
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where we identified m̄b(µ) with mb (which is correct at lowest order). The argument of the
arcsin function reads z =

√

(1− s1 − s2)/(4 m̂2
c), where m̂2

c is tacitly understood to have a
small negative imaginary part.

In Fig. 3 we show the LL results based on eq. (2.9) (dashed line) and the corresponding
ones when also including the contributions in eq. (2.10) (solid line). The numerical values of
the input parameters and of the Wilson coefficients are listed in tables 1 and 2, respectively.
We see that for µ = mb/2 the (O7,O7) contribution is by far the dominant one. This can
be easily understood from eq. (2.10), because the combination

(

C2(µ) +
4
3
C1(µ)

)

is almost
zero at this scale. This is no longer true at µ = mb or µ = 2mb, therefore the effects of the
remaining terms become more important.

Figure 3: Double differential decay width dΓ(0)/(ds1ds2) at leading order (α0
s) as a function

of s1 for s2 fixed at s2 = 0.2. The dashed line shows the result when only the (O7,O7)
interference is taken into account, while the solid line shows all contributions associated
with O1, O2 and O7. In the frames 1), 2) and 3) the renormalization scale is chosen to be
µ = mb/2, µ = mb and µ = 2mb, respectively.
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Parameter Value

mb 4.8 GeV
mc/mb 0.29
mt 175 GeV
mW 80.4 GeV
mZ 91.19 GeV
GF 1.16637× 10−5 GeV−2

VtbV
∗

ts 0.04
Vcb 0.04
BRsl 0.1049
α−1 137

αs(MZ) 0.119

Table 1: Values of the relevant input parameters

αs(µ) C0
7,eff(µ) C1

7,eff(µ) C0
1(µ) C0

2 (µ)

µ = mW 0.1213 −0.1957 −2.3835 0 1
µ = 2mb 0.1818 −0.2796 −0.1788 −0.3352 1.0116
µ = mb 0.2175 −0.3142 0.4728 −0.4976 1.0245
µ = mb/2 0.2714 −0.3556 1.0794 −0.7117 1.0478

Table 2: αs(µ) and the Wilson coefficients C0
7,eff(µ), C

1
7,eff(µ), C

0
1 (µ), C

0
2(µ) at different

values of the renormalization scale µ.

3 Virtual corrections

We now turn to the calculation of the virtual QCD corrections, i.e. to the contributions
of order αs with three particles in the final state. The diagrams defining the (unrenor-
malized) virtual corrections at the amplitude level are shown in Fig. 4. As the diagrams
with a self-energy insertion on the external b- and s-quark legs are taken into account in
the renormalization process, these diagrams are not shown in Fig. 4. In order to get the
(unrenormalized) virtual corrections dΓbare

77 /(ds1ds2) of order αs to the decay width, we have
to work out the interference of the diagrams in Fig. 4 with the leading order diagrams in
Fig. 1.

From the technical point of view, the calculation was made possible by the use of the
Laporta Algorithm [36] (see also [37, 38]) to identify the needed Master Integrals and by
applying the differential equation method to solve them. As we used these techniques also
in [8], we refer to section 7 of that paper which contains the technical details and the
corresponding references. In appendix B we present, however, a technical issue which is
specific for the present work, viz. a useful parametrization of the three-particle phase-space
where one particle is massive.

In addition, we have to work out the counterterm contributions to the decay width. They
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can be split into two parts, according to

dΓct
77

ds1ds2
=

dΓ
ct,(A)
77

ds1ds2
+

dΓ
ct,(B)
77

ds1ds2
. (3.1)

Part (A) involves the Lehmann, Symanzik, Zimmermann (LSZ) factors
√

ZOS
2b and

√

ZOS
2s

b sO
7

q
1

q
2

b sO
7

q
2

q
1

b sO
7

q
1

q
2

b sO
7

q
2

q
1

b sO
7

q
1 q

2

b sO
7

q
2

q
1

b sO
7

q
1

q
2

b sO
7

q
2 q

1

b sO
7

q
1 q

2

s b sO
7

q
2 q

1

s b sO
7

q
1 q

2

b sO
7

q
2 q

1

b sO
7

q
1 q

2

b sO
7

q
2 q

1

b sO
7

q
1 q

2

b sO
7

q
2 q

1

Figure 4: The diagrams defining the one-loop amplitude for b → sγγ associated with O7 are
shown. Diagrams with self-energy insertions on the external quark-legs are not shown.

for the b- and s-quark field, as well as the self-renormalization constant ZMS
77 of the operator

O7 and ZMS
mb

renormalizing the factor m̄b(µ) present in the operator O7. The explicit results
for these Z-factors are given to relevant precision in Appendix C. For part (A) we get

dΓ
ct,(A)
77

ds1ds2
=
[

δZOS
2b + δZOS

2s + 2 δZMS
mb

+ 2 δZMS
77

] dΓ
(0,d)
77

ds1ds2
, (3.2)

where dΓ
(0,d)
77 /(ds1ds2) is the leading order double differential decay width in d-dimensions,

as given in eq. (2.3).

b sO
7

q
1 q

2

b

b b b b sO
7

q
2 q

1

b

b b b

Figure 5: Counterterm diagrams with a δmb insertion, see text.
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The counterterms defining part (B) are due to the insertion of −iδmbb̄b in the internal
b-quark line in the leading order diagrams as indicated in Fig. 5, where

δmb = (ZOS
mb

− 1)mb .

More precisely, Part (B) consists of the interference of the diagrams in Fig. 5 with the leading
order diagrams in Fig. 1. When the strange quark is massive, there is in principle also an
analogous insertion of −iδmss̄s in internal s-quark lines. δms is, however, proportional to
ms and since we neglect terms in which ms appears power-like, we skip this contribution.

By adding dΓbare
77 /(ds1ds2) and dΓct

77/(ds1ds2), we get the result for the renormalized

virtual corrections to the spectrum, dΓ
(1),virt
77 /(ds1 ds2). It is useful to decompose this result

into two pieces,

dΓ
(1),virt
77

ds1 ds2
=

dΓ
(1,a),virt
77

ds1 ds2
+

dΓ
(1,b),virt
77

ds1 ds2
. (3.3)

The infrared- and collinear singularities are completely contained in dΓ
(1,a),virt
77 /(ds1 ds2).

Explicitly, we obtain (using x4 = m2
s/m

2
b)

dΓ
(1,a),virt
77

ds1 ds2
=

αs

4π
CF

[

4 log(s1 + s2)− 4− 2 log(x4)

ǫ
+ log2(x4)− log(x4)

] (

µ

mb

)2ǫ
dΓ

(0,d)
77

ds1 ds2
(3.4)

where dΓ
(0,d)
77 /(ds1 ds2) is understood to be taken exactly as given in eqs. (2.3) and (2.4),

i.e., by including the terms of order ǫ1 in r. From the explicit expression dΓ
(1,a),virt
77 /(ds1 ds2)

we see that the singularity structure consists of a simple singular factor multiplying the
corresponding tree-level decay width in d-dimensions. We stress that the singularities (rep-
resented by 1/ǫ poles, log(x4) terms and combinations thereof) are entirely due to soft and/or

collinear gluon exchange. The infrared and collinear finite piece dΓ
(1,b),virt
77 /(ds1 ds2) can be

written as

dΓ
(1,b),virt
77

ds1 ds2
=

α2 m̄2
b(µ)m

3
b |C7,eff(µ)|2G2

F |VtbV
∗

ts|2Q2
d

1024 π5

αs

4π
CF ×

(

−4 r0 (1− s1 − s2)

(1− s1)2 s1 (1− s2)2 s2
log

µ

mb

+

∑15
i=1 v̂i

3 (1− s1)3 s1 (1− s2)3 s2

)

(3.5)

where the individual quantities v̂1, . . . , v̂15 are relegated to Appendix A.

4 Bremsstrahlung corrections

We now turn to the calculation of the bremsstrahlung QCD corrections, i.e. to the contribu-
tions of order αs with four particles in the final state. Before going into details, we mention
that the kinematical range of the variables s1 and s2 defined in eq. (2.1) is given in this case
by2 0 ≤ s1 ≤ 1 ; 0 ≤ s2 ≤ 1. Nevertheless, we consider in this paper only the range which is

2Strictly speaking, this range holds for ms = 0 and is modified by powerlike terms of ms, which we neglect
in this paper.
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also accessible to the three-body decay b → sγγ, i.e., 0 ≤ s1 ≤ 1 ; 0 ≤ s2 ≤ 1 − s1 or, more
precisely, by its restricted version specified in eq. (2.2).

The diagrams defining the bremsstrahlung corrections at the amplitude level are shown
in Fig. 6. The amplitude squared, needed to get the (double differential) decay width, can

b s
O

7

q
1

q
2

1 2 3
b s

O
7

q
2

q
1

4 5 6

b s
O

7

q
1

q
2

7 8 9
b s

O
7

q
2

q
1

1 0 1 1 1 2

Figure 6: The diagrams defining the gluon-bremsstrahlung corrections to b → sγγ are shown
at the amplitude level. The crosses in the graphs stand for the possible emission places of
the gluon.

be written as a sum of interferences of the different diagrams in Fig. 6. The four particle
final state is described by five independent kinematical variables (see section B.2).

As already mentioned in section 3, the only source of the singularities in the virtual
corrections in our restricted range of s1 and s2 is due to soft gluon-emission and/or collinear
emission of gluons from the s-quark. When analyzing the bremsstrahlung kinematics, one
finds that there are situations where one of the photons can become collinear with the
s-quark even within the mentioned restricted kinematical range of s1 and s2. While the sin-
gularities related to gluons cancel when combining virtual- and bremsstrahlung corrections,
those stemming from collinear photon emission from the s-quark will remain and manifest
themselves as a term involving a single logarithm log(ms) in the final result.

In our previous paper [8] we realized that for (formally) zero hadronic mass of the (s, g)-
system collinear photon emission is kinematically impossible. As a consequence, we looked
at the triple differential decay width dΓ77/(ds1ds2ds3), where s3 = (ps + pg)

2/m2
b is the

normalized hadronic mass squared and found that the double differential decay width, based
on the triple differential decay width in which only the leading power terms w.r.t. s3 are
retained, leads to a nonsingular result when combined with the virtual corrections, which
we denoted by dΓleading power

77 /(ds1ds2) in ref. [8].

In the present paper, working with a nonzero mass of the strange quark, we go beyond
leading power, keeping all terms which are independent of ms and those which involve
logarithms of ms.

In the present paper we worked out in a first step the triple differential spectrum
dΓ

(1),brems
77 /(ds1ds2ds3), for which we got a fully analytic result, which is however rather

lengthy. To get the double differential spectrum dΓ
(1),brems
77 /ds1ds2 we integrated over s3,

which runs in the interval [m2
s/m

2
b , s1 · s2]. In some terms this integration was done numer-

ically. The final results (after combining with the virtual corrections) are given in a form
where certain parts have been fitted to a set of 42 “basis function”, as the reader will see in
the following section.

As the details of the calculations are similar to those in [8], we refer to section 7 of that
paper, where the used techniques are described in some detail. In Appendix B we give,
however, a useful formula for the parametrization of the 4-particle phase-space for the case
where one of the particles is massive.
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5 Final result for the decay width at order αs

The complete order αs correction to the double differential decay width dΓ77/(ds1 ds2) is ob-
tained by adding the renormalized virtual corrections from section 3 and the bremsstrahlung
corrections discussed in section 4. We obtain (using x4 = m2

s/m
2
b)

dΓ
(1)
77

ds1 ds2
=

α2 m̄2
b(µ)m

3
b |C7,eff(µ)|2G2

F |VtbV
∗

ts|2Q2
d

1024 π5
×

αs

4π
CF

[ −4 r0 (1− s1 − s2)

(1− s1)2 s1 (1− s2)2 s2
log

µ

mb

+ f + g log(x4) + h

]

, (5.1)

where r0 is given in eq. (2.5). The first two terms in the square bracket correspond to the
leading power result, calculated in the scheme where ms is different from zero, according to
the present paper. These two terms are exactly the same as in our previous paper [8] where
the leading power terms where calculated in the scheme with ms = 0. This coincidence,
which has to hold of course, provides a nontrivial check of our calculation. The remaining
two terms g and h encode all the non-leading power terms which are calculated for the first
time in the present paper.

We now turn to the individual terms f , g and h. As just explained, f is the same as in
ref. [8] (see eq. (5.2) there). For g we obtain

g =
16 g1 log(s1)

s1(1 + s1)3(1− s2)
+

16 g2 log(s2)

s2(1 + s2)3(1− s1)
+

16 g3 log(1− s1)

s2(1 + s2)3
+

16 g4 log(1− s2)

s1(1 + s1)3
+

16 g5 (s1 + s2) log(s1 + s2) + 16 g6 (1 + s1) (1 + s2)

(1− s1)s1(1 + s1)3(1− s2)s2(1 + s2)3(s1 + s2)
(5.2)

where the functions g1,...,g6 read

g1 = −2s1
5 − 2s2s1

4 − s2
2s1

3 + 2s2s1
3 + 9s1

3 + s2
2s1

2 + 4s2s1
2 +

17s1
2 + 8s2s1 + 8s1 + 2s2

2 + 2 (5.3)

g2 = g1(s1 ↔ s2) (5.4)

g3 = −2s1s2
4 + 6s2

4 − 4s1s2
3 + 12s2

3 − 4s1s2
2 + 10s2

2 + s1s2 − s2 − s1 − 1 (5.5)

g4 = g3(s1 ↔ s2) (5.6)
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g5 = −3s2
4s1

6 − 4s2
3s1

6 − 7s2
2s1

6 − 2s1
6 − 4s2

5s1
5 − 3s2

4s1
5 + 8s2

3s1
5 +

5s2
2s1

5 − 6s1
5 − 3s2

6s1
4 − 3s2

5s1
4 + 36s2

4s1
4 + 58s2

3s1
4 + 31s2

2s1
4 −

15s2s1
4 − 8s1

4 − 4s2
6s1

3 + 8s2
5s1

3 + 58s2
4s1

3 + 64s2
3s1

3 + 10s2
2s1

3 −
32s2s1

3 − 8s1
3 − 7s2

6s1
2 + 5s2

5s1
2 + 31s2

4s1
2 + 10s2

3s1
2 − 46s2

2s1
2 −

35s2s1
2 − 6s1

2 − 15s2
4s1 − 32s2

3s1 − 35s2
2s1 − 12s2s1 − 2s1 −

2s2
6 − 6s2

5 − 8s2
4 − 8s2

3 − 6s2
2 − 2s2 (5.7)

g6 = 4s2
4s1

6 + s2
3s1

6 − 4s2
2s1

6 − 5s2s1
6 + 4s1

6 + 8s2
5s1

5 + 9s2
4s1

5 −
10s2

3s1
5 − 18s2

2s1
5 + 2s2s1

5 + 9s1
5 + 4s2

6s1
4 + 9s2

5s1
4 − 12s2

4s1
4 −

29s2
3s1

4 − 14s2
2s1

4 + 22s2s1
4 + 8s1

4 + s2
6s1

3 − 10s2
5s1

3 − 29s2
4s1

3 −
28s2

3s1
3 + 3s2

2s1
3 + 18s2s1

3 + 5s1
3 − 4s2

6s1
2 − 18s2

5s1
2 − 14s2

4s1
2 +

3s2
3s1

2 + 12s2
2s1

2 + 3s2s1
2 + 2s1

2 − 5s2
6s1 + 2s2

5s1 + 22s2
4s1 +

18s2
3s1 + 3s2

2s1 + 4s2
6 + 9s2

5 + 8s2
4 + 5s2

3 + 2s2
2 (5.8)

The exact expression for the function h in eq. (5.1) is very lengthy. We therefore write an
ansatz of the form

h =

∑42
i=1 c

h
i ui

(1− s1)3s1(1− s2)3s2
, (5.9)

where the “basis functions” ui are given in eq. (5.12) and where the coefficients chi (see Table
3) are obtained from a fit to the exact function h. For simpler use of our results and to make
the present paper self-contained, we also provide a fitted version for the function f according
to

f =

∑42
i=1 c

f
i ui

(1− s1)3s1(1− s2)3s2
. (5.10)

The coefficients cfi are also shown in Table 3. We stress here that the fitted versions of h
and f approximate the exact functions very accurately in the whole phase-space, even when
choosing the parameter c as small as 1/100 (see eq. (2.2)).
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The basis functions ui (which, like the exact functions h and f , are all symmetric in s1
and s2) are chosen as

u1 = 1, u2 = s1 + s2, u3 = s21 + s22, u4 = s1s2, u5 = s31 + s32, u6 = s21s2 + s1s
2
2,

u7 = log(s1) + log(s2), u8 = s1 log(s1) + s2 log(s2), u9 = s2 log(s1) + s1 log(s2),

u10 = s21 log(s1) + s22 log(s2), u11 = s21 log(s2) + s22 log(s1),

u12 = s1s2 log(s1) + s1s2 log(s2), u13 = s21s2 log(s1) + s1s
2
2 log(s2),

u14 = s21s2 log(s2) + s1s
2
2 log(s1), u15 = s31 log(s1) + s32 log(s2),

u16 = s31 log(s2) + s32 log(s1), u17 = log2(s1) + log2(s2),

u18 = s1 log
2(s1) + s2 log

2(s2), u19 = s2 log
2(s1) + s1 log

2(s2),

u20 = s21 log
2(s1) + s22 log

2(s2), u21 = s21 log
2(s2) + s22 log

2(s1),

u22 = s1s2 log
2(s1) + s1s2 log

2(s2), u23 = s21s2 log
2(s1) + s1s

2
2 log

2(s2),

u24 = s21s2 log
2(s2) + s1s

2
2 log

2(s1), u25 = s31 log
2(s1) + s32 log

2(s2), (5.11)

u26 = s31 log
2(s2) + s32 log

2(s1), u27 = log(s1) log(s2),

u28 = (s1 + s2) log(s1) log(s2), u29 =
(

s21 + s22
)

log(s1) log(s2),

u30 = s1s2 log(s1) log(s2), u31 =
(

s21s2 + s1s
2
2

)

log(s1) log(s2),

u32 =
(

s31 + s32
)

log(s1) log(s2), u33 = log(1− s1) + log(1− s2),

u34 = s1 log(1− s1) + s2 log(1− s2), u35 = s2 log(1− s1) + s1 log(1− s2),

u36 = s21 log(1− s1) + s22 log(1− s2), u37 = s21 log(1− s2) + s22 log(1− s1),

u38 = s1s2 log(1− s1) + s1s2 log(1− s2), u39 = s21s2 log(1− s1) + s1s
2
2 log(1− s2),

u40 = s21s2 log(1− s2) + s1s
2
2 log(1− s1), u41 = s31 log(1− s1) + s32 log(1− s2),

u42 = s31 log(1− s2) + s32 log(1− s1).
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i cfi chi i cfi chi
1 1587.9373 2808.0884 22 3839.3787 8582.3121
2 −17820.810 −27.836761 23 2149.8019 −3182.8383
3 5739.2134 −127198.90 24 −2969.4126 −3814.5375
4 79681.671 150427.73 25 1116.5578 7876.6985
5 10672.929 123605.68 26 −51.926335 21.979815
6 −25630.099 −61571.822 27 −6.3461975 0.42501969
7 206.57293 370.16329 28 −198.78562 243.20576
8 −6055.4090 −4884.2816 29 −14.663373 3294.2178
9 −1482.1360 261.69714 30 −5234.3840 −11486.898
10 −13734.475 −59064.539 31 −8078.6742 −6953.1246
11 2458.1907 2819.9778 32 463.51078 1842.0350
12 2578.7004 19493.274 33 −318.01486 5524.1650
13 10698.372 29647.891 34 1007.5887 −13495.877
14 1305.9739 4481.7110 35 17220.702 9331.2971
15 −4990.6306 −52868.520 36 −1072.8013 10698.386
16 −1135.5247 −3655.2789 37 21912.257 20102.580
17 17.550558 25.751857 38 −29656.816 −17993.661
18 −1255.7842 −2016.3069 39 12526.044 8586.7318
19 −97.667743 −87.275478 40 −20491.027 −18933.831
20 −755.27587 −18097.634 41 382.47503 −2723.1301
21 135.25687 26.410005 42 2606.0012 2408.5233

Table 3: Coefficients cfi and chi , which occur in the fits of the functions f and h, see eqs.
(5.10) and (5.9).

The order αs correction dΓ
(1)
77 /(ds1ds2) in Eq. (5.1) to the double differential decay width

for b → Xsγγ is the main result of our paper.

6 Numerical illustrations

In the previous sections we calculated the virtual- and bremsstrahlung QCD corrections
associated with the operatorO7. While in the previous paper [8] only the leading power terms
in s3 (s3 is the normalized hadronic mass squared) were taken into account in the underlying
triple differential decay width dΓ77/(ds1ds2ds3), we performed a complete calculation in the
present paper. As there are configurations where one of the photons can become collinear
with the strange quark, we introduced a finite massms which we consider to be of constituent
type. While the result based on leading power terms is finite in the limit ms → 0, the full
result depends on ms through a single logarithm of the form log(x4) = log(m2

s/m
2
b). In the

numerics we will vary ms between 400 MeV and 600 MeV.

The NLL prediction reads

dΓ77

ds1ds2
=

dΓ
(0)
77

ds1ds2
+

dΓ
(1)
77

ds1ds2
(6.1)
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where the first- and second term of the r.h.s. are given in eqs. (2.9) and (5.1), respectively.

To illustrate our results, we first rewrite the MS mass m̄b(µ) in eq. (6.1) in terms of the pole
mass mb, using the one-loop relation

m̄b(µ) = mb

[

1− αs(µ)

4π

(

8 log
µ

mb

+
16

3

)]

.

We then insert C7,eff(µ) in the expanded form (2.8) and expand the resulting expression for
dΓ77/(ds1ds2) w.r.t. αs, discarding terms of order α2

s. This procedure defines the full NLL

result and also the version where only the leading power terms are retained in dΓ
(1)
77 /(ds1ds2).

The corresponding LL result is obtained by discarding the order α1
s term. The numerical

values for the input parameters and for this Wilson coefficient at various values for the scale
µ, together with the numerical values of αs(µ), are given in Table 1 and Table 2, respectively.

In Fig. 7 the LL result, the NLL result based on the leading power contribution and the
full NLL result are shown by the dotted, the dashed and the solid lines, respectively. Among
the three solid lines, the highest, middle and lowest curve correspond to ms = 400 MeV,
ms = 500 MeV and ms = 600 MeV, respectively.

From Fig. 7, where s2 is fixed at s2 = 0.2, we see that for s1 ≤ 0.4 the NLL result is
dominated by the leading power result obtained in our previous paper [8], while this is no
longer true for larger values of s1. In these plots s1 = 0.8 corresponds to the maximal value
of the leading order kinematics. In other words the point (s1 = 0.8, s2 = 0.2) lies on the
“diagonal line” characterized by 1 − s1 − s2 = 0 in Fig. 2. That is why the dotted curves
becomes zero at s1 = 0.8. This also holds for the virtual corrections which have the same
kinematical range. The full kinematical range in the (s1, s2)-plane for the bremsstrahlung
process is, however, larger than the window considered in this paper. For this reason the solid
lines do not go to zero at s1 = 0.8. However, the leading power terms of the bremsstrahlung
corrections have similar features as the virtual corrections and go to zero for s1 = 0.8 (as
seen from the dashed curves). A more detailed investigation shows that the leading power
contributions only give a good approximation of the NLL result when one is sufficiently away
from the line 1− s1 − s2 = 0 in the (s1, s2)-plane.

The comparison of the full NLL corrections with the corresponding leading power pieces
is basically of “historic” interest; it is more important to compare the LL curves (dotted)
with the full NLL ones (solid). Form Fig. 7 one concludes that the NLL corrections to the O7

are crucial. We stress that the QCD corrections involving the operators O1 and O2, which
we did not consider in our paper, also will be important. Therefore, the issue concerning the
reduction of the µ dependence at NLL precision cannot be addressed in a meaningful way
at this level.

To get the branching ratio for B̄ → Xsγγ as a function of the cut-off parameter c defined
in eq. (2.2), we integrate the double differential spectrum over the corresponding range in s1
and s2, divide by the semileptonic decay width and multiply with the measured semileptonic
branching ratio. For the purpose of this paper it is sufficient to take the lowest order formula
for the semileptonic decay width, reading

Γsl =
m5

b G
2
F |Vcb|2

192π3
g(mc/mb) , (6.2)
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with the phase space factor

g(z) = 1− 8 z2 + 8 z6 − z8 − 24 z4 log(z) . (6.3)

Figure 7: Double differential decay width dΓ77/(ds1ds2), based on the operator O7 only, as
a function of s1 for s2 fixed at s2 = 0.2. The dotted, the dashed and the solid lines show the
LL result, the NLL when only retaining leading power terms as in ref. [8] and the full NLL
result of the present paper, respectively. Among the three solid lines, the highest, middle and
lowest curve correspond to ms = 400 MeV, ms = 500 MeV and ms = 600 MeV, respectively.
In the frames 1), 2) and 3) the renormalization scale is chosen to be µ = mb/2, µ = mb and
µ = 2mb, respectively. See text for details.

Using the input parameters in Tables 1 and 2, we get the branching ratios shown in Table
4 for the values c = 1/100 (upper half) and c = 1/50 (lower half) at µ = mb/2, µ = mb

and µ = 2mb. In the columns “O7” only the operator O7 is taken into account, while the
number in the columns “all” also takes into account the lowest order contributions involving
the operators O1 and O2 (according to eq. (2.10)).
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O7 all O7 all O7 all
µ = mb/2 µ = mb/2 µ = mb µ = mb µ = 2mb µ = 2mb

LL 3.96 3.96 3.10 3.11 2.45 2.53
NLL1 3.81 3.81 2.37 2.39 1.60 1.68
NLL2 3.35 3.34 2.08 2.10 1.41 1.49
NLL3 2.97 2.97 1.85 1.87 1.25 1.33

LL 2.40 2.40 1.87 1.89 1.48 1.55
NLL1 2.39 2.39 1.49 1.51 1.01 1.08
NLL2 2.17 2.17 1.35 1.37 0.91 0.99
NLL3 1.99 1.99 1.24 1.26 0.84 0.91

Table 4: Branching ratios for B̄ → Xsγγ in units of 10−7. The upper half of the table is for
c = 1/100 and lower half for c = 1/50. LL is the leading logarithmic result. NLL1, NLL2

and NLL3 are the results where the NLL corrections to the O7 contributions are included,
using ms = 400 MeV, ms = 500 MeV and ms = 600 MeV, respectively. See text for more
information.

7 Summary

In the present work we calculated the O(αs) corrections to the decay process B̄ → Xsγγ
originating from diagrams involving the electromagnetic dipole operator O7. This calcula-
tion involves contributions with three particles in the final state and a gluon in the loop
(virtual corrections) and tree-level contributions with four particles in the final state (gluon
bremsstrahlung corrections).

We introduced a nonzero mass ms for the strange quark to regulate configurations where
the gluon or one of the photons become collinear with the strange quark and retained terms
which are logarithmic in ms, while discarding terms which go to zero in the limit ms →
0. When combining virtual- and bremsstrahlung corrections, the infrared and collinear
singularities induced by soft and/or collinear gluons drop out. By our cuts the photons do
not become soft, but one of them can become collinear with the strange quark. This implies
that in the final result a single logarithms of ms survives. We interpret ms appearing in the
result as a constituent mass and vary it between 400 MeV and 600 MeV in the numerics.

We find that the NLL corrections to the double differential spectrum dΓ77/(ds1ds2) are
large in general. Depending on the point in the (s1, s2)-plane, they can modify the LL
predictions by up to 50% in both directions, which means that not only the normalization,
but also the shapes of the distributions are modified, as can be seen e.g. in Figure 7.

We also compared our new results with those obtained in an earlier paper [8], where only
the leading power terms w.r.t. s3 in the underlying triple differential spectrum dΓ77/(ds1ds2ds3)
were retained.
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A Explicit results for the functions v̂i defining the vir-

tual corrections

The functions v̂i appearing in eq. (3.5) read

v̂1 = 16(1− s1 − s2)
[(

96− 2π2
)

s41s
4
2 +

(

11π2 − 291
)

s41s
3
2 +

(

300− 19π2
)

s41s
2
2+

(

12π2 − 117
)

s41s2 +
(

12− 3π2
)

s41 +
(

11π2 − 291
)

s31s
4
2 +

(

894− 36π2
)

s31s
3
2+

(

48π2 − 936
)

s31s
2
2 +

(

348− 21π2
)

s31s2 +
(

2π2 − 15
)

s31 +
(

300− 19π2
)

s21s
4
2+

(

48π2 − 936
)

s21s
3
2 +

(

1044− 60π2
)

s21s
2
2 +

(

26π2 − 426
)

s21s2 +
(

18− π2
)

s21−
π2
(

s51s
3
2 − 3s51s

2
2 + 3s51s2 − s51 + s31s

5
2 − 3s21s

5
2 + 3s1s

5
2 − s52

)

+
(

12π2 − 117
)

s1s
4
2 +

(

348− 21π2
)

s1s
3
2 +

(

26π2 − 426
)

s1s
2
2 +

(

210− 14π2
)

s1s2+
(

π2 − 15
)

s1 +
(

12− 3π2
)

s42 +
(

2π2 − 15
)

s32 +
(

18− π2
)

s22 +
(

π2 − 15
)

s2
]

v̂2 = −96s1s2 (1− s1)
3 (1− s2)

2 (1− s1 − s2) (2− 3s2) log (s1)

v̂3 = 48s1s2 (1− s1)
2 (1− s2)

2 (1− s1 − s2)
(

s1 − s21 + 2s2 − s1s2
)

log2 (s1)

v̂4 = −96 (1− s1)
2 (1− s2)

2s2
(

s41 + 2s2s
3
1 − 2s31 + s22s

2
1 − 4s2s

2
1 + s21 − 2s22s1+

3s2s1 − 2s1 + s22 + 1
)

log (s1) log (s1 + s2)

v̂5 = 48 (1− s1) (s2 − 1) 2s2 (1− s1 − s2)
(

6s2s
3
1 − 6s31 − 11s2s

2
1 + 15s21+

3s2s1 − 9s1 + 2) log (1− s1)

v̂6 = 96 (1− s1) (s2 − 1) 2
(

s2s
5
1 − s51 + 2s22s

4
1 − 5s2s

4
1 + 3s41 + s32s

3
1 − 5s22s

3
1+

8s2s
3
1 − 2s31 − s32s

2
1 + 4s22s

2
1 − 4s2s

2
1 + s21 − 4s22s1 + 3s2s1 − s1 − s22 + s2

)

×
log (1− s1) log (s1 + s2)

v̂7 = 48 (1− s1) (1− s2)
(

s22s
5
1 − s2s

5
1 − 9s32s

4
1 + 16s22s

4
1 − 8s2s

4
1 + s41 − 9s42s

3
1+

46s32s
3
1 − 67s22s

3
1 + 35s2s

3
1 − s31 + s52s

2
1 + 16s42s

2
1 − 67s32s

2
1 + 84s22s

2
1−

43s2s
2
1 + s21 − s52s1 − 8s42s1 + 35s32s1 − 43s22s1 + 22s2s1 − s1 + s42 − s32+

s22 − s2
)

log2 (s1 + s2)

v̂8 = 96s1 (1− s2)
2 (1− s1 − s2)

(

s2s
4
1 − s41 + s22s

3
1 − 4s2s

3
1 + 3s31 − 5s22s

2
1+

8s2s
2
1 − 2s21 + 7s22s1 − 11s2s1 + s1 − 2s22 + 5s2 − 1

)

Li2 (s1)

v̂9 = 96 (1− s1) (1− s2) (1− s1 − s2)
(

s22s
4
1 − 2s2s

4
1 + s41 + 8s32s

3
1 − 17s22s

3
1+
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12s2s
3
1 − 3s31 + s42s

2
1 − 17s32s

2
1 + 32s22s

2
1 − 20s2s

2
1 − 2s42s1 + 12s32s1−

20s22s1 + 20s2s1 − 2s1 + s42 − 3s32 − 2s2
)

Li2 (1− s1 − s2)

v̂10 = v̂2(s1 ↔ s2) v̂11 = v̂3(s1 ↔ s2) v̂12 = v̂4(s1 ↔ s2)

v̂13 = v̂5(s1 ↔ s2) v̂14 = v̂6(s1 ↔ s2) v̂15 = v̂8(s1 ↔ s2) (A.1)

B Relevant phase-space formulas

The fully differential decay width dΓ for a generic process p → p1 + p2 + ... + pn can be
written as

dΓ =
1

2m
|M |2DΦ(1 → n) , (B.1)

where |M |2 is the squared matrix element, summed and averaged over spins and colors of
the particles in the final and initial state, respectively, and m is the mass of the decaying
particle.

In ref. [39] useful parametrizations for the phase-space factors DΦ(1 → n) have been
given for n = 3, 4, for the case when all final-state particles are massive. Among the final-
state particles only the strange quark is massive in our application, which means that the
general formulas simplify. In the following subsections we see that the 3-particle phase-space
can be parametrized in terms of two parameters λ1 and λ2, which run independently in the
range [0, 1], while five such parameters (λ1, ..., λ5) are involved in the 4-particle phase-space.
Of course, all scalar products involved in |M |2 can be expressed in terms of these parameters.

B.1 Phase-space parametrization for the 3-particle final state

In our application we identify p1 with the strange quark and p2, p3 with the two photons and
define x1 = m2

s/m
2
b . Starting from eq. (2.10) of ref. [39], one gets

DΦ(1 → 3) =
m2d−6

b 21−2dπ1−d

Γ(d− 2)
[(1− λ1)λ1]

d−4

2 [(1− λ2)λ2]
d−3 ×

(1− x1)
2d−5[λ2(1− x1) + x1]

2−d

2 dλ1dλ2 . (B.2)

The scalar products of the momenta pi, encoded in the quantities sij = (pi + pj)
2/m2

b , can
be written in terms of the parameters λ1 and λ2 as

s13 = λ2(1− x1) + x1

s12 =
λ1(λ2 − 1)λ2(1− x1)

2 − x1

λ2(x1 − 1)− x1

.

From the observation that s1 = s13 and s2 = s12 one easily gets the expression for the double
differential spectrum dΓ/(ds1ds2).
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B.2 Phase-space parametrization for the 4-particle final state

In our application we identify p1, p2 with the two photons, p3 with the gluon and p4 with
the strange quark and define x4 = m2

s/m
2
b . Starting then from eq. (3.10) of ref. [39], putting

there x1 = x2 = x3 = 0 and performing the substitutions

z1 = 2λ3 − 1, z32 = 2λ5 − 1, s234 = λ1(1− x4) + x4

E2 =
λ1(1− λ2)(1− x4)

2
√
λ1 + x4 − λ1x4

, (B.3)

z31 =
λ1(1− x4)(λ2(1− λ4)− λ4) + (1− 2λ4)x4

λ1(1− x4)(λ2(1− λ4) + λ4) + x4
,

we get the following expression for the phase-space factor:

DΦ(1 → 4) = (4π)−
3d

2 m3d−8
b

22d−7Γ(d−2
2
)

(d− 3)Γ(d− 3)2
(1− x4)

3d−7[(1− λ1)(1− λ2)λ2]
d−3

× λ2d−5
1 [(λ1(1− x4) + x4)(λ1λ2(1− x4) + x4)]

1− d

2 (B.4)

× [(1− λ3)λ3(1− λ4)λ4]
d

2
−2[(1− λ5)λ5]

d−5

2 dλ1dλ2dλ3dλ4dλ5 .

As mentioned above, all λi run independently in the range [0, 1]. All scalar products of the
momenta pi, encoded in the quantities sij = (pi+ pj)

2/m2
b and sijk = (pi+ pj + pk)

2/m2
b , can

be written in terms of the parameters λ1, ..., λ5 as

s234 = λ1(1− x4) + x4 ,

s34 = λ1λ2(1− x4) + x4 ,

s23 =
λ2
1(1− λ2)λ2λ4(1− x4)

2

λ1λ2(1− x4) + x4

, (B.5)

s134 =
λ1(1− x4)[λ2(1− (1− λ1)λ3(1− x4)) + λ3(1− λ1)(1− x4)] + x4

λ1(1− x4) + x4
,

s13 = (s+13 − s−13)λ5 + s−13 ,

where

s±13 =
(1− λ1)λ1λ2(1− x4)

2

(λ1 + x4 − λ1x4)(λ1λ2 + x4 − λ1λ2x4)
{x4[(1− λ3)(1− λ4) + λ3λ4]

+ (1− x4)λ1[λ2(1− λ3)(1− λ4) + λ3λ4] (B.6)

∓ 2
√

(1− λ3)λ3(1− λ4)λ4(λ1 + x4 − λ1x4)(λ1λ2 + x4 − λ1λ2x4)
}

.

From the observation that s1 = s234, s2 = s134 and s3 = s34 one easily gets the expression
for the triple differential spectrum dΓ/(ds1ds2ds3).

C Renormalization constants

In this appendix, we collect the explicit expressions of the renormalization constants needed
for the ultraviolet renormalization in our calculation (see section 3).
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The operator O7, as well as the b-quark mass contained in this operator are renormalized in
the MS scheme [40]:

ZMS
77 = 1 +

4CF

ǫ

αs(µ)

4π
+O(α2

s) ; ZMS
mb

= 1− 3CF

ǫ

αs(µ)

4π
+O(α2

s) . (C.1)

All the remaining fields and parameters are renormalized in the on-shell scheme. The on-shell
renormalization constant for the b-quark mass is given by

ZOS
mb

= 1− CF Γ(ǫ) eγǫ
3− 2ǫ

1− 2ǫ

(

µ

mb

)2ǫ
αs(µ)

4π
+O(α2

s) . (C.2)

while the renormalization constants for the s- and b-quark fields are (q = b or q = s)

ZOS
2q = 1− CF Γ(ǫ) eγǫ

3− 2ǫ

1− 2ǫ

(

µ

mq

)2ǫ
αs(µ)

4π
+O(α2

s) . (C.3)

The various quantities δZ appearing in section 3 are defined to be δZ = Z − 1.
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