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Abstract

We propose four simple event-shape variables for semi-inclusive e+e− → 4-jet events. The
observables and cuts are designed to be especially sensitive to subleading aspects of the event
structure, and allow to test the reliability of phenomenological QCD models in greater detail.
Three of them, θ14, θ∗, and C(1/5)

2 , focus on soft emissions off three-jet topologies with a
small opening angle, for which coherence effects beyond the leading QCD dipole pattern are
expected to be enhanced. A complementary variable, M2

L/M
2
H , measures the ratio of the

hemisphere masses in 4-jet events with a compressed scale hierarchy (Durham y23 ∼ y34), for
which subleading 1 → 3 splitting effects are expected to be enhanced. We consider several
different parton-shower models, spanning both conventional and dipole/antenna ones, all tuned
to the same e+e− reference data, and show that a measurement of the proposed observables
would allow for additional significant discriminating power between the models.

1 Introduction

General-purpose event generators (see [1–4] for recent reviews) aim to give a complete description
of high-energy interactions, down to the level of individual particles. They are extensively used as
research vessels for exploring new approaches to phenomenological questions within and beyond the
Standard Model, and they are relied upon to provide explicit simulations of high-energy reactions
in a broad variety of contexts. The achievable accuracy depends both on the inclusiveness of the
chosen observable and on the sophistication of the calculation itself. An important driver for the
latter is obviously the development of improved theoretical models; but it also depends crucially on
the available constraints on the remaining free parameters. Using existing data to constrain these is
referred to as generator tuning.

The main experimental reference for final-state radiation and fragmentation studies is the process
e+e− → Z/γ∗ → hadrons. Prior to and during the LEP era, a large set of event measurements
were performed (see, e.g., [5–8]) and used to constrain the shower and hadronization models of the
day, such as HERWIG [9], JETSET/PYTHIA [10], and ARIADNE [11]. Most of the relevant analyses
were corrected to the particle level and have subsequently been encoded in RIVET [12]. This makes
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it straightforward to apply almost the same comprehensive battery of tests to any model today1. A
main question we wish to examine in this study is whether the existing constraints are sufficient in the
context of present-day models. The reasons to ask this question are threefold.

Firstly, current parton-shower models are, in fact, quite sophisticated, at least as far as pure final-
state radiation effects are concerned. For instance, they all include colour coherence (though the way
this is achieved differs from model to model), the inclusion of dominant contributions of two-loop
splitting kernels by suitable renormalization-scale choices (e.g., µR ∝ p⊥), and effects of momen-
tum conservation (again with individual models employing different “recoil” strategies), and several
even incorporate further subleading aspects such as gluon-polarization or helicity-conservation ef-
fects. Their precision is therefore typically much better than their nominal “leading-logarithmic”
(LL) labels indicate; in comparison with the experimental uncertainties at LEP, differences on observ-
ables dominated by LL effects are typically too small to show up clearly (cf., e.g., [24]). It is therefore
interesting to study whether more information can be extracted from variables designed to remove LL
contributions and isolate specific subleading aspects.

Secondly, over the last decade, several completely new parton-shower models have been formu-
lated [25–34], in the context of a new generation of MC generators such as HERWIG++ [31, 35],
PYTHIA 8 [36], SHERPA [37], and VINCIA [29]. Many of the new shower models build on the co-
herent QCD dipole-antenna formalism [38–41] and aim explicitly at facilitating combinations with
higher-order matrix elements [32,42–44] (so-called “matching”). These models were not present dur-
ing the main era of eemeasurements, and hence could not directly inform the selection of observables.
Thus, it is natural at this point to reconsider whether there are additional interesting observables, which
could provide further non-trivial constraints on modern generators.

Thirdly, the desire for reliable descriptions of jet production and jet substructure for signal and
background estimates at the LHC is causing the subleading aspects of shower models and matrix-
element matching strategies to come under increasing scrutiny, in particular in the context of the
interplay between matching and tuning. While all shower and matching strategies are designed to
have the same leading behaviours, they do exhibit differences at subleading levels, making subleading-
sensitive observables especially interesting for cross checks.

In this paper, we are interested mainly in inclusive four-jet observables sensitive to coherence
properties and to effective 1 → 3 splittings. The starting points are the θ∗ variable proposed in [31],
θ14 and M2

L/M
2
H proposed in [45], and the energy correlation functions proposed in [46]. The former

two, θ∗ and θ14, are designed to be sensitive to the coherent emission of a soft fourth jet from a three-
parton state (with cuts restricting the opening angles of the jets, as will be described below), with
a radiation pattern dictated by colour coherence. In particular, they can be used to test whether the
angular distribution of the fourth jet is well described by a three-parton system represented by partons /
dipoles / antennae, and how this description depends upon the choice of shower ordering variable. The
latter two variables, M2

L/M
2
H (the ratio of hemisphere masses) and the energy correlation functions,

have sensitivity to the effective description of 1 → 3 splittings and the energy spectrum of the fourth
jet, respectively, as will be discussed below. For all observables, we impose an explicit cut on the
Durham kT resolution scale of the fourth jet, y34 > 0.0045 (corresponding to ln(y34) > −5.4), thus
restricting it to be in the perturbative domain and avoiding possible contamination from B decays.

We examine six different parton-shower models: the default angular-ordered parton shower of
HERWIG++ [25], the p⊥- and virtuality-ordered dipole showers of HERWIG++ [31], the default p⊥-
ordered shower of PYTHIA 8 [26], and the p⊥- and m2

ant-ordered antenna showers of VINCIA [29].

1With a few notable exceptions not available for direct hadron-level MC comparisons, like the four-jet angles [13–15],
observables directly sensitive to coherence [16], and colour-reconnection constraints [17–23].
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The salient properties of each shower model will be summarized briefly in section 2. As a cross
check, and to ensure a fair comparison between the models, we tune all of them to the same reference
data in section 3. The main study of soft-jet and event-shape variables is presented in section 4.
Finally, we round off with conclusions in section 5.

2 Theory Models

Parton showers are not guaranteed to respect coherence. For example, in a traditional shower based
on the collinear DGLAP formalism [47–49], the linear sum of n DGLAP splitting kernels (one for
each parton in an n-parton state) can substantially overcount the amount of wide-angle soft radiation
in comparison, e.g. [50], with (n+1)-parton matrix elements. Physically speaking, if we approximate
the radiation from an n-parton (“colour-multipole”) state by the incoherent sum of n monopole terms,
there is a substantial risk that highly important destructive-interference effects will be neglected, lead-
ing to double counting of soft gluon emission.

It was found in the early eighties [51], that DGLAP-based parton showers can nonetheless be
brought to agree with the correct soft limits of QCD (up to azimuthal averaging effects), by choosing
the shower ordering variable to be proportional to energy times angle. This is the basis of the angular-
ordered showers [25] in HERWIG++, which is the first shower model we include in our study.

An alternative DGLAP-based shower model is that of PYTHIA 8, the second model included in
our study. In this framework [26], small opening angles are reinterpreted as corresponding to highly
boosted colour dipoles. The resulting Lorentz-boosted DGLAP radiation patterns combined with an
ordering in transverse momentum of the dipoles are used to obtain approximately coherent results.

A more formal definition of showers based on colour dipoles can be obtained by replacing the
DGLAP splitting kernels by intrinsically coherent radiation functions such as Catani-Seymour (CS)
dipole functions [39] or QCD antenna functions (also called Lund dipoles) [38, 40]. These reproduce
the leading collinear and soft singularities of QCD amplitudes for each single emission without the
need of a particular phase-space restriction as present in angular-ordered showers. They can, however,
differ in the ordering variable, affecting multiple emissions and hence potentially higher-order coher-
ence properties. Another difference is the recoil strategy taken, which can lead to differences at the
level of next-to-leading logarithms or beyond. In order to explore these ambiguities more fully, we
include four different variants of dipole-antenna shower models in our study, two based on a dipole
formalism and two based on antennae, with differences as follows.

For each radiation term, the dipole formalism identifies a single parton as the emitter, with a
colour partner assigned to be the spectator. The recoil is constrained to be purely longitudinal, in
the rest frame of the dipole pair. By itself, the dipole radiation function only accounts for half of the
soft singularity of the dipole pair, and there is no collinear singularity associated with the spectator.
There is a separate radiation term in which the roles of the two are reversed, such that the sum is
correct in all the infrared limits. The preferred choice of ordering variable is transverse momentum,
p⊥dip, the relative transverse momentum of the splitting products with collinear direction defined by
the spectator. This defines the third model included in this study. As a fourth option, we consider
ordering in the virtuality of the splitting products, qdip (see table 1 for precise definitions).

In the antenna formalism, there is no unique distinction between emitters and spectators. Instead,
a single antenna radiation function captures the collinear limits of both of the colour partners together
with their full soft singularity, and a 2 → 3 kinematics map is used, which smoothly interpolates
between the two collinear limits (both parents generally acquire some recoil). In this context, it has
been shown explicitly [44] that the choice of p⊥ as evolution variable absorbs all logarithms through
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Radiation Kinematics Ordering variable
functions (a.k.a. recoils) for gluon emissions

1 HERWIG++ DGLAP Global q̃2 =
Q2

IM
4
IK

Q2
K(M2

IK−Q
2
I−Q

2
K)

(default)

2 PYTHIA 8 DGLAP Dipole p2⊥evol =
Q2

I(M
2
IK−Q

2
K)(Q2

I+Q
2
K)

(M2
IK+Q2

I)
2

(default)

3 HERWIG++ Dipole Dipole p2⊥dip =
Q2

IQ
2
K(M2

IK−Q
2
I−Q

2
K)

(M2
IK−Q

2
I)

2

dipole p2⊥
4 HERWIG++ Dipole Dipole q2dip = Q2

I

dipole virtuality

5 VINCIA

antenna p2⊥

Antenna Antenna p2⊥ant =
Q2

IQ
2
K

M2
IK

6 VINCIA Antenna Antenna m2
ant = min(Q2

I , Q
2
K)

antenna mass

Table 1: The six shower models considered in this paper. The ordering variables shown correspond
to I → ij for the DGLAP models, the same with K as the spectator for the CS dipole models, and to
IK → ijk for the antenna ones. We use the notationQ2

I = (pi+pj)
2, Q2

K = (pj +pk)
2, andM2

IK =
(pI + pK)2 = (pi + pj + pk)

2. The PYTHIA 8 evolution variable is defined as p2⊥evol = z(1− z)Q2
I

with z = (M2
IK −Q2

K)/(M2
IK +Q2

I) the fraction of the light-cone momentum of parton I carried by
parton i, in the DGLAP functions, P (z).

second order in αs (i.e., up to and including α2
s lnQ2 corrections), hence this is the preferred choice,

defining the fifth shower model in our study. As an alternative, we also consider ordering in antenna
mass, which is known to exhibit an α2

s lnQ2 discrepancy with respect to second-order QCD [44].

A systematic comparison of the salient differences between these six different shower models is
given in Tab. 1. Contours of constant value of each of the corresponding evolution variables are shown
in Fig. 1, over the triangular dipole branching phase space. Labelling the pre- and post-branching
partons by IK → ijk, the axes of the plots are defined by the dimensionless branching invariants
Q2
I/M

2
IK and Q2

K/M
2
IK , so that the collinear singularities lie along the axes and the soft singular-

ity lies at (0,0). Note that the DGLAP- and dipole-based evolution variables, 2–4, correspond to the
evolution of a single parton, I , hence the corresponding radiation functions only have collinear singu-
larities along the y axis; the antenna evolution variables, 5–6, correspond to the evolution of the IK
antenna, with collinear singularities along both axes.

In order to focus on the pure shower aspects and make the models more directly comparable,
a few non-default choices have been made in the context of our study. In particular for VINCIA,
ME corrections at both LO [43] and NLO [44] were switched off, and we use the smoothly-ordered
showers [43] with a one-loop running of αs. The HERWIG++ dipole-shower simulations likewise
used a one-loop running and no matrix-element corrections nor NLO matching has been applied. For
the default shower models (angular-ordered in HERWIG++ and p⊥evol-ordered in PYTHIA), we use the
respective default settings, which includes matrix-element corrections for the first emission, for both
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Figure 1: Illustration of the progression of the shower evolution variables over the dipole phase space,
for each of the models listed in Tab. 1. Note that 2–4 correspond to radiation functions whose only
singularities lie along the y axis, while 1, 5, and 6 have singularities along both the x and y axes.

codes, and one-loop (two-loop) running for PYTHIA (HERWIG++), respectively. As a cross-check, we
investigated the effect of including NLO matching for the p⊥dip-ordered dipole shower of HERWIG++
and found that the four-jet observables, which we study here, are not sensitive to these corrections.
An enlarged set of results, including plots of the last-mentioned study and strong vs. smooth ordering,
will be included in [52].

3 Tuning

In order to compare the models on as equal a footing as possible, we first adjust (“tune”) the shower
and hadronization parameters of each model to the same set of existing LEP measurements. We per-
form this tuning with the PROFESSOR [53] tuning system, via analyses that are encoded in RIVET [12],
for all shower models. This relatively agnostic (automated) tuning approach also makes it possible to
make (relatively) objective statements concerning whether each shower model is able to describe the
existing data with a similar quality2.

The goodness-of-fit per degree of freedom provides information about how well data measure-

2With the caveats that not all relevant model parameters were included in the tuning, that the importance (weight)
associated with (each bin of) each histogram is subjective, that the MC statistics are limited, and that the χ2 measure of
difference does not take theoretical uncertainties of any kind into account.
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ments are described by the predictions of Monte Carlo (MC) event generators. It is defined as

χ2

Ndof
=

∑
O
wO

∑
b∈O

(fb(~p)−Rb)2/∆2
b∑

O
wO|b ∈ O|

, (1)

with reference value Rb and total error ∆b of the data per bin b and observable O. The true MC
response is modelled by a set of functions fb(~p). These functions are replaced by the true MC response
MCb(~p), if real MC runs are used. The observables’ weights wO enter in the calculation of the
goodness-of-fit as well as in the number of degrees of freedom.

3.1 Observables and Parameters

As observables for the tuning we use event shapes, identified-particle spectra, jet rates, particle mul-
tiplicities and b-quark fragmentation functions, provided by the ALEPH [5, 54], DELPHI [6] and
OPAL [55] experiments and by the Particle Data Group PDG [56]. The observables and their weights
can be found in Tabs. 5-7 in the appendix.

The parameters for the hadronization and shower models of HERWIG++, PYTHIA 8 and VINCIA,
that we readjust here, can be found in Tabs. 9 and 10 in the appendix, together with a short description.

After performing a first tune with HERWIG++ we obtain flat distributions in χ2 for two parameters,
the soft scale µsoft,FF and the smearing parameter Clsmr. Therefore, we keep Clsmr fixed at its default
value and set µsoft,FF to zero for a slight increase of the value of the shower cutoff. This approach
leads to slightly smaller values in the goodness-of-fit values since the minimization works better due
to the reduction of the dimensionality of the parameter space.

To get a good description of the MC response by the interpolation function of PROFESSOR, we
use a fourth-order polynomial. Due to fixing those parameters which exhibit flat distributions in χ2,
as explained above, we remain with six parameters for each combination of shower and hadronization
model. The minimal possible number of MC runs needed for the tuning is defined by the number of
coefficients for the polynomial; here we need at least 210 runs. To get reasonable results we perform
oversampling of about a factor 3, leading to 650 MC runs with different randomly selected values
of the parameters that are tuned. We use 500 randomly selected runs 300 times to interpolate the
generator response and check the quality of the interpolation by comparing the χ2 of the interpolation
response with real MC runs at certain parameter values. By removing parameter regions where the
interpolation did not work sufficiently well we increase the quality of the interpolation. Unfortunately
we cannot remove all bad regions for HERWIG++ since the values of some observables are not a
smooth function of the gluon mass in the region where the MC predictions fit the data well. This is
backed by the possibility of new splitting processes for higher gluon masses. We use the 300 different
run combinations again in the tuning step where the goodness-of-fit is minimized in order to obtain the
parameters that describe the observables best. Afterwards we perform real MC runs for these different
parameter sets and calculate the real χ2/Ndof to get the best tune.

3.2 Tuning Results

This section presents the results of the tuning process, starting with a short overview in terms of the
total χ2/Ndof values for the different shower models. In order to validate the results of the tuning,
we apply different analysis tools. The results for the p2⊥dip-ordered dipole shower are presented as an
example for HERWIG++ and for the p2⊥ant-ordered shower as an example for VINCIA. The parameter
values obtained by the best tune are listed in the appendix, in Tab. 11 for HERWIG++ and in Tab. 12
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χ2/Ndof for
Default Parameter Values Best Tune

HERWIG++ q̃2-Ordered Shower 20.2 16.9
HERWIG++ p2⊥dip-Ordered Dipole Shower 348.5 23.0
HERWIG++ q2dip-Ordered Dipole Shower 358.2 25.3
VINCIA p2⊥ant-Ordered Shower 7.1 6.4
VINCIA m2

ant-Ordered Shower 15.6 9.2
PYTHIA 8 p2⊥evol-Ordered Shower 8.0 7.4

Table 2: The total χ2/Ndof values for the different shower models, for the default values of the pa-
rameters and the best tune.

for PYTHIA 8 and VINCIA. In addition, the default values and the scanned range are shown for the
different parameters.

Quality of the Overall Description

The goodness-of-fit function per degree of freedom, χ2/Ndof, is listed in Tab. 2 for each of the shower
models included in the study, before and after tuning. The previous (default) tunes of VINCIA and
PYTHIA 8 already describe the existing LEP measurements very well. The description of the LEP data
by the default angular-ordered tune of HERWIG++ is fine as well. Therefore only small improvements
in the quality of the description of LEP data are achieved. Note that the angular-ordered shower is
the only one that describes the mean particle multiplicities better than the other observables. In the
context of the string-based models, one would presumably need to include the spin- and flavour-
sensitive parameters in the tuning as well, to reoptimize the agreement with the mean identified-
particle multiplicities. We did not look into this here, since the four-jet observables we investigate
are not sensitive to the particle composition, and since including these parameters would have greatly
inflated the dimensionality of the parameter space.

For the HERWIG++ dipole shower, for ordering in transverse momentum as well as for ordering
in virtuality, the tuning greatly improved the quality of the description of the LEP data. The goodness-
of-fit values are reduced by factors up to 17.

In terms of the overall description of the LEP data, VINCIA with ordering in transverse momentum
fits the data the best, followed by PYTHIA 8 and VINCIA with m2

ant-ordering. Especially the two p⊥-
ordered models achieve very similar χ2/Ndof values and hence cannot be told apart using the present
data, nor does the mass-ordered version of VINCIA stand out very clearly after retuning. (Among the
event shapes, the in- and out-of-plane p⊥ distributions exhibit the most significant individual discrep-
ancies with the data. We suspect colour-reconnection effects may play a role for these distributions,
an issue which is still very actively investigated [32, 57–61].) The three shower models interfaced to
the cluster hadronization model in HERWIG++ come in at somewhat higher overall χ2/Ndof values.

We note that all the LEP measurements used PYTHIA [62] or JETSET [62] to generate MC event
samples for the detector correction, hence there may be a small systematic bias favouring the string-
based models (here PYTHIA 8 and VINCIA). HERWIG event samples were used as well, to estimate
the systematic uncertainties. Therefore, the experiments claim that the observable distributions are
independent of the underlying MC generator for the detector corrections within the experimental
systematics.
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Validation

The distribution of the χ2/Ndof values of the 300 tunes, each based on 500 randomly selected runs
at different parameter points, are plotted in Figs. 2 and 3 for two parameters for the HERWIG++
p2⊥dip-ordered dipole shower and for VINCIA with ordering in p2⊥ant. Narrow distributions indicate
that the observables are very sensitive to this parameter. Broader distributions are obtained if either
the observables are less sensitive to a parameter or, as for the Lund parameters aL and bL, if two
parameters are highly correlated.

In order to verify the result of the generator tuning with PROFESSOR we perform real MC runs
where we change only one parameter with randomly distributed values and set all other parameters
to their new tuned value. We reproduce the histograms at the same parameter points by using the
interpolation function calculated by PROFESSOR to model the MC response. The distribution of the
goodness-of-fit is shown with respect to the parameter value for two different parameters for the
HERWIG++ p2⊥dip-ordered dipole shower and for VINCIA with ordering in p2⊥ant in Figs. 4 and 5.
The χ2/Ndof value is split for the different groups of observables where the lines correspond to the
interpolation result and the points to the real MC runs. The single observables enter in the calculation
of the goodness-of-fit for a group of observables with the same weight as for the calculation of the
overall χ2/Ndof. By comparing the interpolation with the real generator response, the quality of the
interpolation function can be evaluated as well. Figs. 4 and 5 show that the parameter values of the best
tune, marked by the vertical line, are clearly favoured, mostly driven by event shapes. As mentioned
above, we were not able to remove all regions for HERWIG++ where the interpolation did not work
sufficiently well. This leads to the different χ2/Ndof values for interpolation and MC runs. Since the
quality of the interpolation is disrupted by the possibility for new splitting processes for higher gluon
masses, identified particle spectra and mean multiplicities cannot be described very well. This affects
of course also the other parameters. As shown in Fig. 5, the interpolation works better for VINCIA,
where interpolation and generator response agree perfectly.

Besides the χ2/Ndof distribution of the parameters we have shown here, we obtain parameters
with flatter distributions as well. In addition some parameters prefer to be at the limit of the scanned
range as occurring for example for the strong coupling αS within the tuning of PYTHIA 8 and VINCIA

with m2
ant-ordering.

3.3 Eigentunes

To estimate the uncertainty in the MC predictions in connection with changing the parameter values
during the tuning, so-called eigentunes are performed. The parameters are varied along the eigen-
vectors in parameter space where the eigenvectors are obtained by certain changes, ∆χ2/Ndof, in
χ2/Ndof. For each parameter two eigenvectors, one in the “+” and one in the “−” direction, exist.
If the goodness-of-fit were distributed as a true χ2 function ∆χ2/Ndof = 1 would correspond to a
one sigma deviation and ∆χ2/Ndof = 4 to a two sigma deviation from the minimum (i.e., the central
tune), etc.

Given, however, that none of the models achieves a χ2/Ndof ≤ 1, the eigentunes can at most
be used to give a rough indication of the range of accessible model variations near the respective
minimum for each model. This is still valuable, as it can help us determine whether the central tunes
of two (or more) different theory models could easily be retuned to give the same result or not, on a
given observable (overlapping versus non-overlapping eigentune variation ranges).

We calculate two sets of eigentunes with PROFESSOR, corresponding to one- and two-sigma devi-
ations, and perform MC runs to obtain envelopes around the central tune for each of the six different
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curves show the χ2/Ndof for the different types of observables and the blue curve the combination of
all observables. Points correspond to the real MC and lines to the interpolation result.
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theory models. For the four-jet observables we propose (see section 4), we find that the model differ-
ences are larger than the individual eigentune envelopes. Hence we conclude that these observables do
have sensitivity to distinguish between the theory models within the limits of the tuning uncertainty.
For all further studies we will use the central tunes.

4 Results

We consider hadronic Z events (photon ISR is switched off) and use the Durham kT clustering al-
gorithm [63] to cluster all events back to two jets, keeping track of the intermediate clustering scales
along the way. The 3 → 2 clustering scale is denoted y23 = k2T3/m

2
Z , and so on for higher jet num-

bers. We require both y23 and y34 to be greater than 0.0045, to obtain an inclusive 4-jet event sample
with minimal contamination from B decays and lower (non-perturbative) scales.

Strong ordering corresponds to y23 � y34 � . . ., while events with, e.g., y34 ∼ y23 should
be more sensitive to the ordering condition and to the effective 1 → 3 splitting kernels. Further,
we may in principle also keep track of which “side” each clustering step happens on, which can
give us an additional handle on the relative contributions to the four-jet rate from “opposite-side”
1→ 2⊗ 1→ 2 splittings versus “same-side” 1→ 3 ones. Within the context of this study, however,
we only explicitly used the former requirement (y23 ∼ y34), in the context of the definition of the
M2
L/M

2
H variable, though we note that the latter (same-side vs opposite-side sequential clusterings)

is implicitly present along the M2
L/M

2
H axis.

4.1 Observable 1: θ14

We consider the event at the stage when it has been clustered back to four jets, and order the jets
in hardness. To be sensitive to coherence we constrain the angles between the jets such that the
first (hardest) jet lies back-to-back to a near-collinear jet pair, formed by the second and third jet;
θ12 > 2π/3, θ13 > 2π/3 and θ23 < π/6. From this near-collinear three-jet state we probe the
emission angle of the soft fourth jet with respect to the first jet, θ14.

Before presenting the main results for θ14, we note that, for HERWIG++ with default shower and
hadronization parameters an enhancement for small values of θ14 shows up due to surprisingly large
non-perturbative effects. This enhancement decreases for the dipole shower due to changing the values
of the hadronization parameters throughout the tuning, but unfortunately not for the angular-ordered
shower. By checking the influence of the hadronization parameters on the shape of the distribution of
θ14, we identify the mass exponent for daughter clusters, Psplit, as the cause of the enhancement. By
keeping it fixed at a value of 0.6 during the tuning, we achieve a better agreement between hadron level
and parton level for the normalized distribution of θ14, which we regard as physically more reasonable
given the cut of y34 > 0.0045. This distribution is shown in the upper row of Fig. 6 for keeping Psplit
fixed on the right and for no constraints on the left. We see that the influence of hadronization is
reduced strongly by keeping the hadronization parameter fixed. However, some sensitivity to non-
perturbative effects is still left for small values of the observable θ14. The HERWIG++ dipole shower
gives similar results in the comparison of the angular observables on hadron and parton level. In
addition we show this comparison in the lower row of Fig. 6 for PYTHIA 8 and the p2⊥ant-ordered
shower of VINCIA. For PYTHIA 8 we can see a small enhancement for small values of θ14 as well,
whereas the predictions of VINCIA agree well with each other.

To compare the predictions of the different theory models, Fig. 7 shows the normalized distribution
of θ14 in the upper left plot.
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Figure 6: A comparison of the normalized distribution of θ14 on hadron (red solid) and parton level
(blue dashed). The upper row shows the predictions of the HERWIG++ angular ordered shower, where
Psplit is kept fixed in the right plot and no constraints in the left plot. In the lower row the same plot is
shown for PYTHIA 8 and the p2⊥ant-ordered shower of VINCIA.

To show the differences more clearly and reduce the observable to a simpler quantity with better
statistics, we divide the full θ14 range into three regions labelled “Towards” (small θ14), “Central”
(intermediate θ14), and “Away” (large θ14). We may then consider the ratio between regions,

AS(x) =

∑
x1<x<x2

y(x)∑
x3<x<x4

y(x)
. (2)

In the “Towards” region, the first and fourth jet are collinear, while they are back-to-back in the
“Away” region. Events where the fourth jet is a wide-angle emission from the three-jet system pop-
ulate the “Central” region. We consider nine different possibilities for the exact divisions between
the regions, listed in Tab. 3 and corresponding roughly to looser or tighter cuts. The ratios of the
integrated θ14 rates for each of the nine different region definitions are shown in Fig. 7.

Since large non-perturbative effects occur in the towards region for the HERWIG++ shower mod-
els, we consider the ratio of the central to away region to be the most robust observable. This ratio
reflects the relative amount of soft wide-angle emissions to emissions where the first jet lies back-to-
back to all other jets in the event. Compared to the angular-ordered shower, the HERWIG++ dipole
shower with q2dip-ordering predicts up to 30% higher values for this ratio; a very significant differ-
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Figure 7: Upper Left: normalized distribution of the angular observable θ14. Other plots: ratios of
different regions with respect to the definition of the region, cf Tab. 3. The solid curves refer to
the HERWIG++ showers, the angular-ordered default shower in blue, the p2⊥dip-ordered in green and
the q2dip-ordered dipole shower in red respectively. The dashed lines refer to the VINCIA shower with
m2

ant-ordering in violet and p2⊥ant-ordering in pink and to the PYTHIA 8 shower in teal. The ratio plots
show the deviation of the showers with respect to the HERWIG++ angular-ordered default shower. The
vertical error bars indicate the expected 1σ statistical error with 5 · 105 hadronic Z decays.
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Central/Towards Central/Away Towards/Away

# Central Region Towards Region Away Region Towards region

1 0.4 < θ14/π < 0.6 θ14/π < 0.3 θ14/π > 0.6 θ14/π < 0.3
2 0.4 < θ14/π < 0.6 θ14/π < 0.2 θ14/π > 0.7 θ14/π < 0.3
3 0.4 < θ14/π < 0.6 θ14/π < 0.4 θ14/π > 0.8 θ14/π < 0.3
4 0.45 < θ14/π < 0.55 θ14/π < 0.3 θ14/π > 0.6 θ14/π < 0.2
5 0.45 < θ14/π < 0.55 θ14/π < 0.2 θ14/π > 0.7 θ14/π < 0.2
6 0.45 < θ14/π < 0.55 θ14/π < 0.4 θ14/π > 0.8 θ14/π < 0.2
7 0.35 < θ14/π < 0.65 θ14/π < 0.3 θ14/π > 0.6 θ14/π < 0.4
8 0.35 < θ14/π < 0.65 θ14/π < 0.2 θ14/π > 0.7 θ14/π < 0.4
9 0.35 < θ14/π < 0.65 θ14/π < 0.4 θ14/π > 0.8 θ14/π < 0.4

Table 3: Definition of the different regions for the asymmetry of θ14. Columns 2–5 specify the limits
for the regions and the first column gives the numbering. The ratio of the central to towards region is
built with the 2nd and 3rd column, central to away with the 2nd and 4th and towards to away uses the
4th and 5th column.

ence. The predictions of the p2⊥dip-ordered dipole shower of HERWIG++ are very similar to the ones
of PYTHIA 8 and lower than the predictions of all other shower models. VINCIA with both ordering
variables agrees with the result of the HERWIG++ angular-ordered shower within the statistical errors.

To distinguish between the two evolution variables of VINCIA we can use the ratio of the central
to towards region. This ratio reflects the relative amount of soft wide-angle emission compared to
collinear emission. The predictions of the m2

ant-ordered shower are about 35% higher than the ones
of the p2⊥ant-ordered shower. We expect this behaviour since the m2

ant-ordered shower prefers wide-
angle soft over collinear emissions, see Fig. 1, whereas the p2⊥ant-ordered shower prefers the opposite.

The third ratio, shown in the lower right plot of Fig. 7, is the towards over away region, which
is predicted very similarly by PYTHIA 8, HERWIG++ with p2⊥dip-ordering and VINCIA with m2

ant-
ordering. The predictions of these theory models are 20% to 30% smaller than the one of the angular-
ordered shower of HERWIG++. The q2dip-ordered shower on the other hand produces values up to
40% higher. In both ratios including the away region, we see a 10% to 20% difference between the
predictions of PYTHIA 8 and the p2ant-ordered shower of VINCIA, where PYTHIA 8 produces more
events populating the away region. Thus, we conclude that these ratios have significant discriminating
power between the models, including between PYTHIA 8 and VINCIA which appeared very similar in
the global analysis.

4.2 Observable 2: θ∗

In addition to the cuts for the previous observable, we require the fourth jet to be close in angle to the
near-collinear (23) jet pair, θ24 < π/2, in order to enhance the sensitivity to coherent emission off the
(23) jet system. We then define our second angular observable as the difference in opening angles,
θ∗ = θ24 − θ23, and, similarly to above, we introduce the asymmetry,

Nleft

Nright
=

∑
x<x0

y(x)∑
x>x0

y(x)
, (3)
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Figure 8: The plots show the normalized distribution of the difference in opening angles, θ∗, on the
left and its asymmetry with respect to the asymmetry axis, x0, on the right.

with respect to an arbitrary dividing point, θ∗ = x0, which separates the small-θ∗ region from the
large-θ∗ one. The normalized distribution of θ∗ and the asymmetry (as a function of the dividing
point x0) are shown in Fig. 8. Due to the additional cut on θ24 for this observable, the error bars
are higher and thus the statistical power in discriminating the different theory models smaller. The
only shower model which can be distinguished from the others is the q2dip-ordered dipole shower of
HERWIG++. This model tends to predict more events where the difference in opening angles of the
fourth and third jet is large, compared to the angular-order shower. The p2⊥dip-ordered dipole shower
of HERWIG++ predicts larger values for the asymmetry and therefore more events with a smaller
difference in opening angles.

4.3 Observable 3: C(1/5)
2

Ref. [46] defines the N -point energy correlation function (ECF) as

ECF(N, β) =
∑

i1<i2<...<iN

(
N∏
a=1

Eia

)(
N−1∏
b=1

N∏
c=b+1

θibic

)β
. (4)

where the sum runs over all particles of a jet. To be sensitive to the global event structure we replace
this sum by the sum over all jets in the event. Thus, θi1i2 denotes the angle between two jets i1 and
i2. The ECFs are used to build double ratios

C
(β)
N =

ECF(N + 1, β)ECF(N − 1, β)

(ECF(N, β))2
. (5)

We choose a value of β = 1/5 to give all angles about equal weights and to be sensitive to soft
configurations. Sensitivity to collinear configurations can be achieved by choosing β = 2 and giving
greater angles more weight.
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Figure 9: The plots show the normalized distribution of the 2-point double ratio, C(1/5)
2 , on the left

and its asymmetry with respect to the asymmetry axis, x0, on the right.

In the 4-jet events described in section 4.1 we use the 2-point double ratio

C
(β)
2 =

∑
j1<j2<j3

Ej1Ej2Ej3(θj1j2θj1j3θj2j3)β( ∑
j1<j2

Ej1Ej2θ
β
j1j2

)2 · Evis , (6)

where the sums run over the four jets. Due to the cuts on the angles between the jets, the events look
like three-jet systems to the observable. This system contains two hard jets, jet 1 and jet (23)3, lying
approximately back-to-back and a third soft jet, jet 4. With this notation Eq. (6) can approximately be
written as

C
(β)
2 ≈ E1E23E4(θ1 23θ14θ23 4)

β

(E1E23θ
β
1 23 + E1E4θ

β
14 + E23E4θ

β
23 4)

2
· Evis . (7)

Taking the small energy of jet 4 and the large angle θ1 23 > 2π/3 into account, the denominator can
be reduced to its first term,

C
(β)
2 ≈ E4(θ14θ23 4)

β

E1E23θ
β
1 23

· Evis . (8)

This leaves only the angles relative to the fourth jet and the energies as free parameters. For β = 1/5

all angles are weighted relatively equal and hence C(1/5)
2 is proportional to the energy of the fourth

jet, relative to the remaining energy of the event.
For the normalized distribution of the 2-point double ratio, C(1/5)

2 , we see non-perturbative effects
for HERWIG++ and the m2

ant-ordered shower of VINCIA. For all of these shower models, hadroniza-
tion and decays enlarge the number of events with a harder fourth jet, hence higher values of C(1/5)

2 .

3The combination of the second and third jet.
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Figure 10: The plots show the normalized distribution of the ratio of jet masses, M2
L/M

2
H , on the left

and its asymmetry with respect to the asymmetry axis, x0, on the right.

We again use the asymmetry, as defined in Eq. (3), to condense the differences between the theory
models into a ratio of integrals. The normalized distribution of the 2-point double ratio, C(1/5)

2 ,
and the according asymmetry are shown in Fig. 9. As indicated by the asymmetry, the p2⊥-ordered
shower models of HERWIG++, PYTHIA 8 and VINCIA give similar predictions. Compared to that,
the prediction of the m2

ant-ordered shower of VINCIA is higher, as expected due to the preference of
soft over collinear emissions during the population of phase-space.

4.4 Observable 4: M2
L/M

2
H

To force a “compressed” scale hierarchy, we impose the cut y34 > 0.5 y23, and plot the ratio M2
L/M

2
H

of the invariant masses (squared) of the jets at the end of the clustering, ordered so that M2
L ≤ M2

H .
With four partons at LO, the light jet mass, ML, is zero if both the 4 → 3 and 3 → 2 clusterings
happen in the same jet, while it is non-zero otherwise. Thus, the region close to zero is sensitive to
events with a 1→ 3 splitting occurring in one of the jets, while the region above ∼ 0.25 is dominated
by opposite-side 1→ 2 splittings.

The normalized distribution of the mass ratio is shown on the left side in Fig. 10. The ratio
plot shows that the difference between the theory models mainly occurs in the region for values
M2
L/M

2
H . 0.3, leaving smaller differences per bin for higher values due to the normalization. To

condense these difference we use the asymmetry, as defined in Eq. (3), whose values are shown on
the right in Fig. 10 with respect to the asymmetry axis, x0. The asymmetry roughly reflects the rel-
ative amount of events with a 1 → 3 splitting occurring in one of the jets, divided by events with
opposite-side 1→ 2 splittings.

Compared to the angular-ordered shower of HERWIG++, the p2⊥dip-ordered dipole shower and
PYTHIA 8 predict a higher value for the asymmetry, whereas the the predictions of VINCIA with
both ordering variables and the q2dip-ordered dipole shower of HERWIG++ are smaller. Both evolution
variables of VINCIA result in the same value for the asymmetry, whereas a difference of 5% to 12%
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occurs between PYTHIA 8 and VINCIA. For PYTHIA 8 and the p2⊥ant-ordered shower of VINCIA we
also see differences up to nearly 20% in the bins for small mass ratios. Thus, this observable can be
used to tell these theory models apart.

Note that we obtain a distribution similar to the mass ratio by using the ECF, defined in Eq. (4).
The 1-point double ratio is defined as

C
(β)
1 =

∑
i<j∈J

EiEjθ
β
ij( ∑

i∈J
Ei

)2 , (9)

where the sum runs over all particles of a jet. By building a ratio similar to the mass ratio we get

C
(β)
1,L

C
(β)
1,H

=

∑
i<j∈JL

EiEjθ
β
ij( ∑

i∈JL
Ei

)2 ·

( ∑
i∈JH

Ei

)2
∑

i<j∈JH
EiEjθ

β
ij

, (10)

with C(β)
1,L ≤ C

(β)
1,H . With the expansion cos θ ≈ 1− θ2/2, the invariant mass squared of two particles

is

M2
ij = EiEj(1− cos θij) ≈ EiEjθ2ij/2 . (11)

By using a value of β = 2, Eq. (10) is approximately equal to the mass ratio and we thus obtain
similar results for the two variables.

5 Conclusions

We have studied four event-shape variables, designed to be sensitive to subleading aspects of the event
structure in semi-inclusive e+e− → 4-jet events, with a cut on y34 > 0.0045. Six different parton-
shower models were compared, available through the HERWIG++, PYTHIA 8, and VINCIA Monte
Carlo codes. These models span a wide range of theoretical ideas, from conventional parton showers
to ones based on dipoles and antennae, with different ordering criteria, different recoil strategies, and
different radiation functions.

To make the comparison as fair and unbiased as possible, we first tuned all the theory models to the
same set of existing LEP measurements, using the PROFESSOR and RIVET tuning tools. We find that
the existing data already provides some discriminating power, with the models using string hadroniza-
tion achieving somewhat lower χ2 values than those based on cluster hadronization4. Therefore, it
is important that we limit ourselves to draw conclusions only from observables that are not very sen-
sitive to non–perturbative effects. VINCIA with ordering in transverse momentum provides the best
overall description of the LEP data. Using just the existing data, however, it is nearly impossible to
tell, e.g., PYTHIA and VINCIA apart, despite significant differences between the shower models. Al-
though the HERWIG++ models are easier to tell apart already using the existing data, we do also see
larger differences between them in the variables proposed here, corroborating our conclusion that the
new observables add significant discriminating power.

4As emphasized in the main body of the paper, however, the unfolding of the data was based on the string model, with
the cluster model only used to evaluate systematics, so there may be a slight bias towards favouring the string model inherent
in the correction procedure, at a level at or below the hadronization component of the systematic uncertainty.
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We have shown that the observables proposed here, which are sensitive to coherence properties
and to effective 1 → 3 splittings, allow for additional significant discriminating power between the
different models, given a sample size of order 500k events or more. The theory models for the shower
implemented in HERWIG++ can clearly be told apart by most of the observables we propose. Depend-
ing on the tuning parameters, however, the cluster model may generate rather large non-perturbative
corrections to the 4-jet rate, especially at low θ14. For the θ14 variable, we therefore also highlighted
the integrated “Central/Away” ratio as an observable that should be particularly robust against cor-
rections at low θ14. As expected and measured with the 4-jet angular observable θ14, we see that the
m2

ant-ordered shower of VINCIA predicts a higher ratio of wide-angle to collinear emissions from a
three-jet system, compared to the p2⊥ant-ordered shower. With the same observables as well as with
the ratio of jet masses, M2

L/M
2
H , we can distinguish between VINCIA and PYTHIA 8. The shower

model of the latter produces more events where one hard jets lies back-to-back to the remaining jets
of the event.

We round off by emphasizing that a comparison against corrected LEP data would be extremely
interesting, and, we believe, of great importance to constraining the subleading properties of modern-
day QCD models.
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A Tuning Observables, Weights and Parameters

Observable Weight

K∗±(892) spectrum 1.0
ρ spectrum 1.0
ω(782) spectrum 1.0
Ξ− spectrum 1.0
K∗0 spectrum 1.0
φ spectrum 1.0
Σ± spectrum 1.0
γ spectrum 1.0
K± spectrum 1.0

Observable Weight

Λ0 spectrum 1.0
π0 spectrum 1.0
p spectrum 1.0
η′ spectrum 1.0
Ξ0(1530) spectrum 1.0
π± spectrum 1.0
η spectrum 1.0
K0 spectrum 1.0

Table 4: Identified particle spectra and the associated weights, taken from Ref. [6].
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Observable Weight

In-plane p⊥ in GeV w.r.t. sphericity axes 1.0
In-plane p⊥ in GeV w.r.t. thrust axes 1.0
Out-of-plane p⊥ in GeV w.r.t. sphericity axes 1.0
Out-of-plane p⊥ in GeV w.r.t. thrust axes 1.0
Mean out-of-plane p⊥ in GeV w.r.t. thrust axis vs. xp 1.0
Mean p⊥ in GeV vs. xp 1.0
Scaled momentum xp = |p|/|pbeam| 1.0
Log of scaled momentum, log(1/xp) 1.0
Energy-energy correlation, EEC 1.0
Sphericity, S 1.0
Aplanarity, A 2.0
Planarity, P 1.0
D parameter 1.0
C parameter 1.0
1-Thrust 1.0
Thrust major, M 1.0
Thrust minor, m 2.0
Oblatness, O = M −m 1.0
Charged multiplicity distribution 2.0
Mean charged multiplicity 150.0

Table 5: Event shapes and the associated weights, taken from Ref. [6] and [5].

Observable Weight

Differential 2-jet rate 2.0
Differential 3-jet rate 2.0

Observable Weight

Differential 4-jet rate 2.0
Differential 5-jet rate 2.0

Table 6: Jet rates and the associated weights, taken from Ref. [55].
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Parameter Description

Default Shower αMZ
AlphaMZ Strong coupling at the Z0 boson mass

p
min(f)
T pTmin Shower cutoff

Dipole Shower αMZ
AlphaMZ Strong coupling at the Z0 boson mass

µIR,FF IRCutoff Infrared cutoff for final-final dipoles
µ
(f)
soft,FF ScreeningScale Soft scale for final-final dipoles

Hadronization mg,c ConsituentMass Gluon mass
Cl(f)max ClMax Maximum cluster mass
Cl(f)pow ClPow Cluster mass exponent
Cl(f)smr ClSmr Smearing parameter
P

(f)
split PSplit Mass exponent for daughter clusters

Table 9: The table lists the parameters for the HERWIG++ shower and hadronization model. The
shower parameters indicated by the superscript (f) exist in different copies for different splitting
processes and the hadronization with superscript (f) exist in three copies for the different flavours:
(f) = (u, d, s), c, b.

Parameter Description

Shower αS alphaS Strong coupling at the Z0 boson mass
p2min
⊥ cutoffScale Shower cutoff

Hadronization aL aLund Parameter of the Lund symmetric fragmentation function
bL bLund Parameter of the Lund symmetric fragmentation function
aED aExtraDiquark a parameter for diquarks, with total a = aL + aED
σ PTsigma Total width of the fragmentation p⊥

Table 10: The table lists the parameters for the shower model of VINCIA and PYTHIA 8 and for the
Lund hadronization model of PYTHIA 8.
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Default Values Best Tune
Default Dipole Dipole

Parameter Default Dipole Range q̃2 p2⊥dip q2dip

αMZ
0.120 0.100− 0.125 0.123

pmin
T 1.00 GeV (0.50− 1.50) GeV 1.39 GeV
αMZ

0.113 0.100− 0.138 0.128 0.138
µIR,FF 1.41 GeV (0.50− 2.00) GeV 0.78 GeV 0.72 GeV
µsoft,FF 0.24 GeV fixed 0.00 GeV 0.00 GeV
mg,c 0.95 GeV 1.08 GeV (0.67− 3.00) GeV 0.70 GeV 0.70 GeV 0.96 GeV
Clmax 3.25 GeV 4.17 GeV (2.00− 4.50) GeV 3.59 GeV 3.12 GeV 2.73 GeV
Clpow 1.28 5.73 2.00− 10.00 2.59 5.72 2.00
Clsmr 0.78 4.55 fixed 0.78 4.55 4.55
Psplit 1.14 0.77 0.00− 1.40 0.60 0.74 1.33

Table 11: The table lists the parameters with their default value and the scanned range for the tuning
of HERWIG++. The last columns contain the values of the best tune.

Default Values Best Tune
PYTHIA 8 VINCIA VINCIA

Parameter PYTHIA 8 VINCIA Range p2⊥evol p2⊥ant m2
ant

αS 0.138 0.120− 0.139 0.139
p2min
⊥evol 0.40 0.40− 1.00 0.41
αS 0.129 0.120− 0.132 0.129 0.132
p2min
⊥ant 0.60 0.46− 1.00 0.50 0.76
aL 0.30 0.38 0.20− 0.70 0.35 0.38 0.39
bL 0.80 0.90 0.50− 1.50 0.94 0.86 0.71
aED 0.50 1.00 0.50− 0.10 0.95 0.60 0.55
σ 0.304 0.275 0.200− 0.400 0.284 0.264 0.291

Table 12: The table lists the parameters with their default value and the scanned range for the tuning
of PYTHIA 8 and VINCIA. The last columns contain the values of the best tune.
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