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The goal of this note is to show that the Riemann-Hilbert fabto find multivalued analytic
functions withSL(2, C)-valued monodromy on Riemann surfaces of genus zeromjitianc-
tures can be solved by taking suitable linear combinatidtissoconformal blocks of Liouville
theory atc = 1. This implies a similar representation for the isomonodwotau-function. In
the casen = 4 we thereby get a proof of the relation between tau-functems conformal
blocks discovered in [GIL]. We briefly discuss a possible lapgion of our results to the
study of relations between certaWi = 2 supersymmetric gauge theories and conformal field
theory.

1. Introduction

The problem to describe isomonodromic deformations ofrangi differential equations has

attracted a lot of attention in the past. This is due to thsterice of a large number of ap-
plications in various areas of mathematics and theorgpicgsics, as well as the mathematical
beauty and depth of the problem itself.

A first striking relation with quantum field theory was exhéd in a series of papers of Sato,
Miwa and Jimbo which appeared at the end of the 1970’s, searticplar [SMJ79], and
[SMJ80] for areview. The results include the identificatidithe isomonodromic tau-functions,
the generating functions for the Hamiltonians of the isootomic flows, with certain corre-
lation functions in a quantum field theory of chiral free féoms.

The main result of this paper is another relation betweerfocoral field theory and the
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isomonodromic deformation problem: The tau-functionsifmmonodromic deformations of
flat SL(2)-connections om-punctured spheres coincide with certain linear combomeatof the
Liouville conformal blocks at = 1. This result leads in particular to a proof of the relation
between Liouville conformal blocks and the tau-functioriPainlevé VI that was discovered in
[GIL].

We are going to show that our result can be understood as aef$mrsonization of the fermionic
representations of tau-functions. To this aim we are goinghow that our construction is
essentially equivalent to a bosonic construction of theated twist fields whose insertion
generates a singularity for the fermion field with specifiedn@dromy. In our approach the
twist fields are constructed from the chiral vertex opesatdithe Virasoro algebra.

Expressing the isomonodromic tau-functions in terms ofukitbe conformal blocks appears
to have certain advantages compared to the previously kmepmesentations. The famous
formula for the asymptotics of Painlevé VI found by Jimb, [for example, is an easy con-
sequence. More generally, one may take advantage of theugaresults known about the
Liouville conformal blocks in order to get detailed infortitam on the isomonodromic tau-
functions. Conversely, one may use this connection to figlfzinon-trivial new results about
the Liouville conformal blocks at = 1 [ILT].

As an interesting application we are going to show how thenknalgebro-geometric solutions
of the Schlesinger system ah ,, [KK] arise from conformal blocks of the Ashkin-Teller catl
model [Za] ZZ].

In the conclusions we’ll discuss a possible application af @sults to the study ot/ = 2
supersymmetric gauge theories: They can be used to commeottently discovered relations
between certain classes.&f = 2, d = 4 supersymmetric gauge theories on the one hand, and
two-dimensional conformal field theories on the other hand.

The paper is organised as follows. In Secfibn 2 we review #se&cformulation of the Riemann-
Hilbert problem together with some basic material on theapeaterization of monodromy
groups. The following Sectionl 3 collects the necessary dpacknd on Liouville conformal
blocks. Our main result is described in Section 4. We defifiaita linear combinations of
the Virasoro conformal blocks, and show that the resultesothe Riemann-Hilbert problem.
Section 5 describes how to reformulate our results to gesario construction of twist fields
creating singularities for fermion fields with specified mdromy. The following Section 6 de-
scribes two applications: We first rederive Jimbo’s formfolathe asymptotics of Painlevé VI
from our results, and show that specializing our constomdtd Ashkin-Teller conformal blocks
reproduces the algebro-geometric solutions found inl [KK}he conclusions we indicate inter-
esting directions for future research including the aian to supersymmetric gauge theories
mentioned above.



2. The Riemann-Hilbert problem

2.1 Formulation of the Riemann Hilbert problem

The fundamental group; of Cy,, := P' \ {z1,..., 2, } hasn generatorsy, . .., , subject to
one relatiory,; oy, o - - - 07, = 1. Representations of m,(Cy,,) in SL(2, C) are specified by
collections of matriced\l, := p(yx) € SL(2,C), k = 1,...,n satisfyingM,, - M,,_ - --- -
M; = 1 up to overall conjugation with elements (2, C). We will be interested in the cases
where the matrices/,, are diagonalizable with fixed eigenvalug€™ ™+, The space of all such
representations of, (Cj ,,) is then2(n — 3)-dimensional.

It will be convenient to choose a base-pajpbn Cy ,,. The dependence on the choiceeivill
turn out to be inessential. We may then represent the gemgratby closed paths starting and
ending aty,. The Riemann-Hilbert problem is to find a multivalued analybatrix function
Y (y) onCy,, such that the monodromy along is represented as

Y(wy) = Y(y) Mk, (2.1)

whereY (v;.y) denotes the analytic continuationbfy) along-.

The solution to this problem is unique up to left multiplicex with single valued matrix func-
tions. In order to fix this ambiguity we need to specify thegsitar behavior ofy’(y), leading
to the following refined version of the Riemann-Hilbert plerh: Find a matrix functiort’ (y)
such that the following conditions are satisfied.

) Y(w) =1,
i) Y(y)is a multivalued, analytic and invertible @ry ,,,
iii) There exist neighborhoods af, £k = 1,...,n whereY (y) can be represented as
Y(y) = Y (y) (y — 2™, My = €™ (2.2)
with Y®(y) being holomorphic and invertible gt= z, andy., . . ., i, € sl(2,C).
If such functionY(y) exists, it is uniquely determined by the monodromy data=

(,ula cet mun)

The refined Riemann-Hilbert problem naturally arises indtugly of rank 2 flat connections on
Co.»- Any flat connection ort, ,, is gauge equivalent to a holomorphic connection of the form
d, — A(y), with A(y) of the form

Ay) = 2 23)

)
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whereA,,... A, € sl(2,C), >°,_, Ay = 0. One may then consider the fundamental matrix
solutionY (y) of the differential equation

QY(y) = A(y)Y(y), (2.4)

dy
normalized byY (y,) = 1. It will automatically satisfy ii) and iii) for certain, . . ., u,, pro-
vided that the eigenvaluesm,, of A, satisfy the conditior2m; ¢ Z. Any representatiop :
m(Co.n) — SL(2,C) can be realized as monodromy representation of such a funcgstem,
which means that a solution to the Riemann-Hilbert problermtilated will generically exist.
The Riemann-Hilbert correspondence between flat conmeatip— A(y) and representations
p: m(Con) — SL(2,C) allows us to identify the moduli spackly..(Cy ) of flat s((2, C)-
connections oty ,, with the so-called character varieityom (7, (Cy ,,), SL(2, C))/SL(2, C).

2.2 Trace coordinates

Useful sets of coordinates fav14,.(Cy ,,) are given by the trace functiors, := tr p(v) asso-
ciated to any simple closed curgeon C,,,. Minimal sets of trace functions that can be used
to parameterizéM .. (Cy ) can be identified using pants decompositions. In order te hai
form notations let us replace the punctuees . ., z, by little holes obtained by cutting along
non-intersecting simple closed curvgssurrounding the punctureg, £ = 1,...,n, respec-
tively. A pants decomposition is defined by cuttig,, alongn — 3 simple closed curves,,
r=1,...,n—30onC,. This will decompos&’ ,, into a disjoint union of. — 2 three-holed
sphere£373, t=1,...,n—2. The collectionC = {~1,...,7,-3} of curves will be called the
cut system.

To each curvey, € C let us associate the union of the two three-holed spherés@iva~, in

its boundary, a four-holed sphefg ,. It will be assumed that the curves, r = 1,...,n — 3

are oriented. The orientation ¢f allows us to introduce a natural numbering of the boundaries
of Cj .. We may then consider the curvgsand; which encircle the pairs of boundary com-
ponents of’g , with numberg(1, 2) and(2, 3), respectively. The corresponding trace functions
will be denoted ad’, andL;. The collection of pairs of trace functio(s’, L}),r = 1,...,n—3

can be used to parameterizég,.(Cj ).

A closely related set of coordinates tdg,:(Cy ,,) iS obtained by parameterizing, and L} in
terms of complex numbefg,, 7,.) as

L’ = 2cos2no,, (2.5a)
(sin(270,))? LT = Cy(0,)e™ + Cy(o,) + C_(0,) e, (2.5b)



where
Cyi(o,) =—4 H sinm(o, 4+ s(o] — o5))sinw(o, + s(o} — 0})), (2.6a)
s==x1
Co(o,) = 2 [ cos 2ma} cos 2mal + cos 2ma7 cos 2oy ] (2.6b)

— 2cos 270, | cos 2ma] cos 2mo’ + cos 2maY cos 2moy]

C_(0,) = =4 [ [ sinw(o, + s(o] + 03)) sinw(a, + (o} + 0})). (2.6¢)

s==£1
In order to definer}, i = 1,...,4in (2.6) let us note that the boundary@f , with labeli may
either be a curve,. € C, or it must coincide with a curv&, surrounding puncture,. We will
identify o] = o,- in the first case, while] will be identified with an eigenvalue ¢f;, otherwise.

The collection of datdo,., 7..), = 1,...,n — 3 will be denoted as$o, 7). We observe that the
coordinateqo, 7) are forn = 4 close relatives of the parameters used_in [Ji]. They are also
closely related to the coordinates used in [NRS].

2.3 Isomonodromic deformations and tau-function

Let us briefly recall the well-known relations to the isomdramic deformation problem.
Given a solutiorY (y) to the Riemann-Hilbert problem we may define an associatedemion
A(y) as

Aly) = Aylz) = (9,Y () - (Y(y) ", (2.7)
It follows from (2.2) that
A
va»-%;y_%. (2.8)

It is well-known that variations of the positions will not change the monodromies of the
connectionA(y) provided that the matrix residuel, = A (z) satisfy the following equations,

A, A
1k By Ay = _Zil’_,: . (2.9)
azlAk _ Yo — Zk [Ak,Al] I 7& l, I£k Yo l

)
Yo — 21 Rk — 2

In the limity, — oo one finds the Schlesinger equations

Ap, A
5%Ak:_§:Li_ﬂ’
2k — 2l
A#Z (2.10)
@Ak:[“ J k1.

2k — 2



The Schlesinger equations define Hamiltonian flows, geeétay the Hamiltonians

L 1 2 . tI‘(AkAl)
Hk = 5 resyzzk tI'A (y) = Z#Zk ﬁ s (211)

using the Poisson structure

P
y—y'’

(Al AW) ) = [ A<y>®1+1®A<y'>], (2.12)

whereP denotes the permutation matrix. The tau-functign) is defined as the generating
function for the Hamiltoniang/,,,

Hy = 0., log7(z). (2.13)

Integrability of [2.13) is ensured by the Schlesinger eiguat(2.10).

3. Chiral vertex operators and conformal blocks

Let us introduce the necessary definitions and results orefiresentation theory of the Vira-
soro algebra which has generatérs n € Z and relations

[Ln ) Lm] = (n - m)Ln-i-m + (n2 - 1)5n+m,0 . (314)

C
—n
12
Although we will ultimately be interested in the case- 1, it will be useful to consider more
general values af in some of our arguments. Highest weight representatiyrare generated

from vectorsa) which satisfy
Lila) =0, n>0, Lyla) = A.la), (3.15)

whereA, = a(Q — «) if cis parameterized as= 1 + 6Q*. The representationg, can be
decomposed into the so-called energy-eigenspaces

Vo~ P VI, (3.16)

HEZZO

defined by the conditiofigv = (A, + n)v for all v € V.

3.1 Chiral vertex operators

Chiral vertex operatorgj ; (») can be defined as operators that mgp— Vs, such that

L, Vﬁogﬁl(z) — Vﬁczﬁl(z) L, = 2"(z0, + Aq(n + 1))‘/50;61(2) ) (3.17)



We have in particular

Vi (2)|Br) = N(Bo, o, Br) 227272072 [ B5) + O(2) |, (3.18)

with a normalization factoV (5., a, 1) that will be specified later. It is well-known that the
conditions[(3.17) define®» *2-~%2 V%, (z) uniquely in the sense of formal power series in
— — n o (e k TL
Vig (2) = 28 8= N 0m e (n), Wes(n): VY VI (3.19)
n=0
It has furthermore been argued In [T03] that the compositigh, (2)V;. 5, (w) of such vertex
operators exists fdtw/z| < 1, and that matrix elements such as

(om [ Vals, s o)V 5, (na) - Vi, (22) [ o ) (3.20)

are represented by absolutely convergent power serigsi. 1,k =2,...,n — 2.

From each chiral vertex operatuf; ; (») one may generate a family of vertex operators called
descendants dfg, ; (2). The descendants of;. 5, (2) are labelled by the vectors ,, and the
descendant correspondingdos V,, will be denoted a¥d/s 5 [v](z). The descendants may be
defined by means of the recursion relations

Vs lla)](z) = Vi (2), (3.21a)
Vg [L-1v](2) = 0.Vg, 5 [0](2) (3.21b)
Vs [L-2v](z) =:T(2)Vg 5 [v](2) 1, (3.21c)

where the following notation has been usedin (3.21c):
L T()Vaa (2) = D 2" L Ve )(2) + > 2 F 2V V(=) Ly (3.22)
k<—1 k>—1

The recursion relationg (3.21) suffice to defivig,; [L_,v](z) for all n > 0 thanks to the
Virasoro algebrd(3.14).

Using the descendants one may define a trilinear @ym: V,, ® V,, ® V., — Cas

6073('113 X Vg X Ul) = <’U3 | ez [ ](Z) | V1 > . (323)

aszaq

This trilinear form can be identified with the conformal btaassociated to the three-punctured
sphereCy s.

The definition of descendants allows us to introduce anotlasr to compose chiral vertex
operators. We may e.g. consider

Vi [V, o) (w = 2)on ] (2), (3.24)

Bsau



which is defined a priori as a formal power serieswin- z. Quadrilinear forms such as

Coa(v4®...®@v) := (| V, a4a1 [VBOZ‘Z [vg](w — 2)vy } (2)|v1), (3.25)

will define absolutely convergent seriesun— = for all vy, . .., v; of finite energy. The quadri-
linear formsCy 4(v4 ® ... ® v1) can be identified with conformal blocks associated to the-fou
punctured spher€, 4.

By using the two types of composition of chiral vertex operaintroduced above one may con-
struct conformal blocks associated to arbitrary pants mgasitions ofn-punctured spheres.

3.2 Degenerate fields

Of particular importance for us will be the special case wher= —b/2, assuming thaf) is
represented a@ = b + b~ 1. If furthermores3, and 3, are related ag, = 3, F b/2, the vertex
operators)s(y) = s, s(y) == Vﬁ_lb/fb/w (y) are well-known to satisfy a differential equation
of the form

0505,,5(y) + 0% T(y)s, s(y) = 0, (3.26)
with normal ordering defined ifn_(3.22). The chiral vertex @persy s, (y) are called degener-
ate fields. It follows from[(3.26) that matrix elements sush a

Fla;Blzlyoly) = (on | ¥s(y0)is(y) | ©), (3.27)
| @> = Vao;n-;(ls—i-s’)%ﬁnfs (Zn_l)vﬁan 325n 4(2" 2) Vﬁoﬁll (ZZ)VOH O(Zl)| 0>

will satisfy the partial differential equaticBgpzF = 0, with

n—1

1 & Ay 19 < A 1 9
Dppyz = —— + 2 __ 4 — + T 4 —) , 3.28
o oy*  (y—v)? Yy — Y o kz:; (y—2x)*  y— 20z ( )
together with a similar differential equation fgg. Using this differential equation it may be
shown thatF(«; 8| 2| yo | v ), considered as a function gf can be analytically continued to a

multivalued analytic function ot ,,.

3.3 Braiding and fusion of degenerate fields

The differential equation$ (3.26) satisfied by the degdadields can be used to get a precise
description of the monodromies of the conformal blogksw; 3| z | yo | v ) defined in [(3.2]7).
Let us briefly summarize the relevant results. There areetiva&ys to compose a degenerate
field with a generic chiral vertex operator,

(1) Ve [v2l(2) ¥s(y),
B) -sWV2 s [02](2),

agz—sg,a1

ags

(2) Ols aq [¢s( - Z>U2] (Z> . (329)



Figure 1:A sphere with three holes. The arrows indicate our orientatonventions.

The three wayd (3.29) to compose these vertex operatomsspamnd to having the degenerate
field ¢s(y) located in the vicinity of the boundary components with lalde 2 and 3, respec-

tively, referring to Figureé 11 for the notations. The confainblocks defined using the three
compositions[(3.29) are single valued and analytic in rieaghoods of the black dots marked
in Figurel1 on the boundaries of the three hole€'gf, respectively. We are going to describe
their analytic continuation to the universal cover(gfs. It will be helpful to introduce a sepa-

rate notation for the vertex operatof(y) when it is inserted at the antipodal point of the circle

ly| = const,

Uy (y) = Bs(B)Upsle™™y),  Bsla) = e

The vertex operatorsg; (y) are single-valued in an open neighborhood containing setnoé
the negative real axis. One may naturally consider comipasi{1)’-(3)’ of the form [3.2D), but
with () replaced by’ (y). Regions orCy 3 where the compositions (1)’-(3)’ define single-
valued analytic conformal blocks are neighbourhoods obthall empty circles in Figuig 1.

e B 1 (3.30)

The main building block for the monodromies will be the feliag relations,

¢—sl <y>va2 b Z stssQ a?af% [¢32( - Z)Uz] (Z) (331&)

a3—S15 O41

so==+1

Ve sl (2 va ) = Y F Vool [0, (y — )0 2, (3.31b)
so==1

VL)V e ()= D FEL VL [a](2) ¢, (). (331c)
so==+1

The relevant transport matrices are given respectively as

il _ I'(1+ 516(20; — Q))I'(s20(Q — 205))
T e T(5 + s1blas — Q/2) — sablay; — Q/2) + ssb(ar — Q/2))
valid if the vertex operatorg} ; (z) are normalized vid (3.18) with/ (a3, ay, ;) = 1.

(3.32)
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Remarkl. Comparing with the Moore-Seiberg formalism let us note that

F[Ql} = F|:a2 —b/2

51,52 a3z al :|8182

o[22 782, (3.33a)

|
Q1 —815;02—525 a3 a1

hEee], (3.33b)

013—81%;042—82%[ a3 a1

as a2 (3.33c)

as—&%;m—sz% [—5/2 al

23] _— [—b/2 042:|
S$1,82 T a3 a1 Jgqs9

F[13} = F|: a3 g

51,52 —-b/2 a1 :|8182

The relevant fusion matrices are related to each other bgytmenetries

Flez b2 =F[e] =Fl ] (3.34)
together with
Fle 2] =Flo 2. (3.35)

The definition of the antipodal vertex operatars, (y) in (3.30) is related to the elementary
braid relation

[Vasar @) Vaio()10) 1o = Q5% 0 Ve () Vaso ()1 0) (3.36)

asz,al ai,0 az,a1 " a3,00 az,0

with left hand side defined by means of analytic continuati@kingy encirclez in the anti-
clockwise sense. It is easy to see that the “half-monodroasgd in [[3.3D) is related to the
composition of analytic continuation (3136) with a suitabianslation. It follows that the braid-
ing phase factoB,(«) is related to the factor@®: _ in (3.38) asB,(a) = Q% 2/

asg,0 -b/2,a *

In the normalisation wher&/ (a3, as, 1) = 1 one may observe that the conformal blocks and
the fusion matrices’V? are perfectly analytic with respect to the central chargéVe may

in particular take the limit — 1 without encountering any problem. This is not the case for
the kernel of the integral transformation relating confatimlocks associated to different pants
decompositions.

3.4 Monodromy action on spaces of conformal blocks

Using these ingredients it is straightforward to show thatdanalytic continuation of the matrix
elementsF(«; 8|z | yo |y ) along the closed paths can be expressed as a linear combination
of the matrix element&F (o; 3" | z | yo | y ) having parameters’. that differ from 5, by integer
multiples of the parametédr. In order to have a convenient notation let us define the shift
operators/,. which acts on function® the leftas

Fla;Blzlyoly) Ve = Fla;B—ber[z|yoly), (3.37)

wheree, is the vector inC"~3 with components, ..
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3.4.1 Geometrical set-up

It will be useful for us to refine the pants decompositionsaeds. On each curve in the
extended cut systelfl = {7,.--,72n-3}, Wherev, 5., := & for k = 1,... n let us mark
two points, a black one and a white one. On each pair of paritslabelt? let us introduce

a collection of two non-intersecting ar¢23|;, and [13], that connect marked points on the
boundary components labelled ky 2 and 3, respectively. These contours are depicted in
Figurell.

Let us next note that any generatgrof 7, (Cy,,) may be represented as a concatenation
12 o --- oy Of oriented arcs),, each contained within a three-holed sphefe. It will not
cause a loss of generality to assume that each,aecof the following two types:

e Anarcjil, on C{ 5 running from the marked point on boundary componesittrinion ¢
to the one on boundary componerds depicted in Figuird 1,

e An arcb; connecting the two marked points on boundary componeht’; ; with positive
orientation.

We will assume that the poin, is located on the boundary circtg of Cy ,,. It will be useful
to introduce the notatiofy:”|; for the composite arc@!)” o [ji];, v € Z.

3.4.2 The algorithm

Using the results from Subsectibn3.3 and the definitions f8o4.1 we may now formulate a
simple algorithm for calculating the result of the analytimtinuationF («; 5| z | yo | v ) along
~. We will use the geometrical set-up introduced in Subsa@id.1, in particular the decom-
position of the paths; into a collection of arcs. Note that the basic building bweke close
relatives of the moves introduced [n_(3.31) such as

Voa)Vi [0 (2) = V2, [0 (2) - VA

= > F?;”jsl Vo H [t (g — 2)02] (2) - VA (3.38)

s1==+1

In this way we find that the ardg:”|, are represented by the matrices

S]Z] - F[Jl Tf’ CtV = S[gz ( ) ) (339a)

[71]

where
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. F!

;) is obtained fromF Ul by replacingy; — of, i = 1,2,3 and transpositi(ﬂn
e T!is defined as

(THares = Oaymsy (V)22 (3.39b)

5182 8§1,—52

whereV; is the shift operator which shifts the variahle = «! as defined in equation
(3.37). The operatorg, act to the left in the product of matrices.

e B! is the matrix with elements

(Bg)slsg = 68182 le (al) ° (3390)

Arcs b will be represented by the mati. If ~, is a simple closed curve df, ,, starting and
ending aty, represented by the ordered concatenatian, o- - -ony of the arcs defined above,
we will define

Mp=Ng -Ng_q----- Ny, (3.40)

whereN,, are the2 x 2-matrices associated to the args We may thereby define the sought-for
collection of matricedl, £ = 1, ..., n describing the action of monodromies of the degenerate
fields on spaces of conformal blocks.

One should not forget that the resulting monodromy matriggerator-valued: it is a matrix
which has elements containing the operatgrshifting the parameters.

4. Solving the Riemann-Hilbert problem

We shall now specialize to = 1. For that case we shall replace the parameigrand (3,
by variablesm,, andp, giving the conformal dimensions as,,, = m} andA,, = p?, for
k=1,...,nandr =1,...,n — 3, respectively.

4.1 The construction

Let us now consider,

fs’s(m;p | z | Yo | y) = <mn | w—s’(yO)ws(y) | @s—s’ > ) (441)
‘ @E> = an,l (Zn—l) Ce VmS (23) Vm2 (222) | mq > y

Mp+35,Pn—3 P2,p1 P1,m1

“We are here representing fusion and braid moves by matriiptication from the right to be consistent with
(2.1). This differs from the conventions used(in [DGOT] wiemultiplication from the left was used. The matrices
written below are therefore related to thoselof [DGOT] byg@osition.
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whereV  (z) mapsy,, toV,, andy,(y) mapsV, toV,_,, for all p. We will from now on

assume that the vertex operatéfg  (z) are normalized by (3.18) wittV (ps, p», p1) being
chosen as

N(p37p27p1) = (442)

_ G(1+p3 —p2 —p1)G(1 4+ p1 — p3s — p2)G(1 4+ p2 — p1 — p3)G(1 + ps +p2 + 1)

whereG(p) is the Barneg7-function that satisfie&'(p + 1) = I'(p)G(p).

Consider the matri¥/ (y; yo) which has elements

)2 (1 | V-o (y0)s(y) | O )

where
|©P(0,7)) = He’"”’|@ (c+7)). (4.43b)
neZN r=1

We have introduced := n — 3, and the summation is over vectots= (ny,...,ny) in Z".
We claim that¥,(y; yo) represents the sought-for solution to the Riemann-Hilpesblem.
The proof of this statement is given in the following subget. At this point we only remark
that the prefactor i (4.43a) ensures the normalization; o) = 1.

The observations above provide the input needed to applsetsoning presented in [CIL] to
show that the isomonodromic tau-function is nothing but

T(z):<mn|@0D>. (4.44)

Our results for the case = 4 yield in particular a proof of the relation between the taoction
for Painlevé VI and Virasoro conformal blocks discovenedGIL].

4.2 Existence of classical monodromies

We may calculate the monodromies by the algorithm formdlateSubsection 3.412 with input
datarF", andB,(a) now given by

cos m(py + Sopj — $1P;)

FUil —
1 sin 27p;

S1,82

, (4.45a)
B,(p) = e ™57, (4.45Db)

The operatoV, may now be represented ¥ = ¢'%, whereq, = Let us denote the

resulting operator-valued monodromy matricesvby.

;0
Vo
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We may now make a key observation: the monodromy matitebave matrix elements that
are rational functions o), = ¢?™t andV, which generate @ommutativesubalgebra of the
algebra of all operat(ﬁsactlng on the space of conformal blocks.

In order to see thaltl, depends only o, rather thar(V,): let us note that each curve of the
cut system traversed on the way must be crossed a second giore lone can return to the
starting point. In a similar way one may see that depends om, only via U, = e*™7: the
elements of the matnce@s[1 s, are linear combinations of the forme™?t + Be~™"t, As the
product of matrices representiivy, will always contain an even number of matrices depending
on a given variable,, it follows thatM., depends om; only via e*™t,

But this means that the algebra generated by the matrix elsnod M., becomes classical
(commutative) in the limit — 1! This allows us to diagonalize the operatdy by taking
linear combinations of the conformal blocks of the fofim @8} The transformation (4.4Bb)
diagonalized/, with eigenvalue:'t, while 2™t will act on ¥, by multiplication. The matrix
obtained fromM., by means of the transformatidn (4.43b) will be denatéd

4.3 Calculation of monodromies

In order to formulate the rules for the calculation of the mdrmomy matrices/,, let us assume
without loss of generality that the path connecting boupdamponent,, to §,, passes through
the trinionsty, to, . . ., t, in the given order, each trinion being traversed exactlyeof'¢e claim
that we may then calculate the monodromy matritksas

My =05 [ClEVE Ol (B2 [ClEvE ..Cl - o, (4.46)

[Fric] [7171] Gric]” [7171]

whereo; = (§ _9) andC;7} is defined as

Cly = Fy - (TB)", (4.47a)

[71] [ji

with matricesF , and(TB)"" defined as

(FL.) _ sin 7 (pj, + 32]?3- — s1ph)
7]/ 51,52 2 sin 27

(TB)"]4rey = 04y _yy W2V es2aT e v o2rl, (4.47¢)

7 ]8182 §1,—S2

, (4.47b)

In order to derive these rules let us note that applicatigdgh@flgorithm formulated in Subsec-
tion[3.4.2 will produce monodromy matrict, of the following form:

My, = [ClEve . Clm )™l (BUE)2 . [Cleve L cin ] (4.48)

[Fric] [7171] [Fric] [71i1]

SWe mean operators acting on the conformal blocks built fpend,, .
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The matricesct”’, v € Z, represent the contribution of the segments connectingndbemy
component to; |ntr|n|ont RecallthatCt” = Sy, - (BY)”. The matrices;;; and(S;;)~ Lare
explicitly given as

e _ L [=sinm(p+py—pi—3) sinw(p pg DY [0 e
VI sin2mph \ —sinm(ph +ph +pl— 2) sinw(ph —ph +pt— 1)) \e2% 0
_ L (ersing(y —P§ —pl) e 2 sina(pl, + pl — pl)
sin 2mp) \ —e3% sinm(pf, — p +pl) e 3% sinw(p] + pf + pl)
(St.) ! = 1 sinm(pl, +pl +plle 2% —sinm(pl, +pl — phe 2%
[ji] sin2mp! \ sin7(pl, — pt +pl)e™2%  —sin7(pl, — pt — ph)etI%

In order to calculate the effect of the transformation (#)48is convenient to move the opera-
torse*'* to the left in [4.49). To this aim let us analyze the dependait/,, onp;, = p/* and
the shift operatoe'@«, whereq, = q;*. The dependence aff- can be made explicit by writing
M, as

Mk _ [Cta72-..t1]—1. [Ct(‘k1,1'/a71:|—1‘ [BEZ]_VG' M;c,a . (Bzztz)ya thfl,yafl . |:Cta72---t1:| ’ (449)

[Ja—1%a—1] [Ja—1%a—1]
where
. ta,Va tr,vr . ta+171’a+1 -1 . tr, tr,vr . ta+17Va+1 . ta,Va
= [Sie] - [Ctys - Gt ) T (B[Ol - Gt ] - S

It is easy to see that the dependence of the madfix one'* is of the form

, _( (M) yy —e % <m;,a>+_>
k,(l - 3 / / Y

—elde (mk,a)——i— (mk,a)——

wherem; , is the matrix one would obtain by replaciag by 0 and Ff; ia] by F[tj(;ia] from the

very beginning. The extra minus sign is the result of the iappbn of the exchange relation
sin 7 (pr, + pj. + pi,)e 9 = —e7% gin 7 (py, + Pj. + Dia) -

The only matrices in[(4.49) to the left &, , containing dependence on the variaple are
[Cf;;ll’;’:j]]‘l and[B;“]~"=. The matrix elements of boEB‘f"*1 andBta are both anti-periodic
under shiftsp, — p, + 1. Moving e*'% through the produc[tCt“ 11’1”“711]] - [Bi#] == will for

a > 1 produce an extra sigf)'*"=. This sign is taken into account by means of the factor
i*2ve in (4.47¢). The extra sigf—)' = should be replaced bi-)"= in the case: = 1. Thisis

taken into account by means of conjugation within (4.46).

Calculating the trace function’s; and L] using the algorithm above shows that the parameters
(o, 7) coincide with those introduced in Subsection 2.2. The tetae given in AppendixJA.
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5. Non-Abelian fermionization

It was shown in the work of Sato, Jimbo and Miwa that the isoatwamic tau-functions can be
represented in terms of free fermion correlators. Our tegive a “bosonic” representation for
the isomonodromic tau-functions in terms of Virasoro vedperators. In this section we will
clarify the relation between these two constructions byshg that our construction is essen-
tially equivalent to a bosonic construction of twist fieldeating singularities with nontrivial
monodromy. It seems natural to regard our construction @ddsonization of the fermionic
construction of twist fields presented by Sato, Jimbo andaJliw

5.1 Fermions from degenerate fields
Let us introduce a free field,,

polwhgo(z) ~ —3log(w — 2).

Note furthermore that we have
1

A yp|,_, = 1 A, =1. (5.50)
Construct the fields
U,(z) = €@y (2),  Uy(z) = e Py (2), (5.51)
These fields have the OPE
U (w)Wy(z) ~ regular, (5.52a)
U (w)Uy(z) ~ j‘fz (5.52b)

This means that the fieldg, (w), ¥, (w) generate a representation of the fermionic vertex op-
erator algebr&. The action of these fields can be restricted to the spagesdefined as

Fori= @@ 7L T =Ve P (5.53)

kleiZ
k+IEZ

with F_ being the free boson Fock space with eigenvalder the zero mode ofy,. Note
that the action ofl(z), W,(z) shifts k + [ by an integer amount. In order to get a label
for inequivalent representations ¢f (5.52) we may restrieindr to 0 < R(o) < 1/2 and

0 < R(7) < 1, respectively.

The restriction of¥ (), ¥,(2) to F, . has monodromy

\I/S<€27ri2) — e27ri(7'—so) \IIS(Z) : \i/s(e%riz) — e—27ri(7'—so) @3(2) ) (554)
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Other representations of the fermionic vertex operatoelaig [(5.5P) can be defined by taking
linear combinations

= Y Cali(z),  B(2) =Y (CTHaW(2), (5.55)

t==+

for any element’ of GL(2). The representation is characterized by®ig2)-monodromy

e’z Z M ®y(z D (¥'z) = Z(M_l)stci)t(z> ’
= (5.56)
where M = C~e27”D~C_ , D :=diag(t — 0,7+ 0).

It seems natural to consider equivalence classes of rapieggams defined by identifying rep-
resentations related by the similarity transformatlo®%p. Slightly abusing notations we will
denote the representations characterized by monodronmgdbtm [5.56) by7,, ..

It will be useful to decomposé, ; as

o,7 )

For = For @ F2, where Fioi= @ FE, (557)
kezZ,leiz
k+IEZ

assuming that € 1Z,. The action of a fieldv,(w), ¥,(w) mapsF?, to F,/* and vice-versa.

5.2 Chiral vertex operators for free fermion representatins

Let us then define the vertex operators

P22 €2,43 (Z) : ‘Fo'lﬂ'l - f’oS’TS , (558)

03,73 5 01,71

_ . . . k1+er,l
by defining their action on arbitrary vectars € ]—“(Llff-{ vl 10 be

P22 €2, (JS( ) _ 62@7’2@0 Z equ VUO'2 €2 J4n s 01—k — 51( )1)1; (559)

03,73 ;01,71 61+52
ne”Z

we assume that; = 7 + 7, and defingle] = 0if e € Z, [] = 1/2if e € Z+ L. The
definition is such that the restriction @272 2 %3 () to the subspacé;!  of 7, ,, yields an

operator with image contained in the subsp&Ge’-> of 7, -,. This selection rule expresses
conservation the quantum numbet %Z2.

The relationd(3.31¢) combined with the standard braidiozia of normal ordered exponentials
imply the following exchange relations between the vertperatorsdg27: ¢2%(z) and the
fermion fieldsW,(w),

i ('LU + ZO) o2 eg,q;( ) Po2T2 5 €2,G3 (Z) Z \I/t(w + ZO) Bi(q3)t,sa

03,73 ;01,71 03,73 ;01,71

~ - (5.60)
Uy (w 40) PP 2B (2) = PI2T2 526 () Z Wy (w £i0) B (q3)1,s ;

03,73 ;01,71 03,73 ; 01,71
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The matricesB;,(¢3) andB;,(gs) are explicitly given as

Bi(q:),)t,s — tmine JFri(sos—tor) i(les+3]—es—5)as F[ }(0370.2 _ 62,01),

Bi(q3)t,s _ e$7rm-2 e:l:m(scrg toy) 62([634-2} €3+3 2 )q3 FLS} t(0.370.2 - 62,0'1) )

(5.61)

The exchange relations (5]60) express the fact &ifaf? i 2% (z) is an intertwiner between
the representations,, ., and.*,, ,, of the free fermion algebrg. It also follows from these
observations that the vertex operat®g 72 : ©>% (z) represent twist fields: They create states
in which the fermionsl,(z) have monodromy3~(¢3)(B™(¢3))~! arounds.

An important consequence df (5]60) is the fact that matremants of compositions of the
vertex operator®?2:72: ¢ %(z) such as

03,73 ;01,71

(€6t | DT (25) BT 2 () [ €t ) (5.62)
represent conformal blocks for the free fermion alge®ral ¢; ) is the product of highest
weight vertors inV,__. ® F,. It follows from the conservation of the quantum numbehat
such conformal blocks are non-vanishing only,if= ¢; + €5 + €3 mod 1. Conservation of the
zero mode ofpy implies furthermore that, = 7 + 7 + 73.

The free fermion conformal blocks factorize as

| PIBT2 5 €3 () PIBTRF R (1)) |1 ) = (5.63)

< 0477'4 04,74 ; O,T 0,75 01,71 01,71

_ <7_4 | 62“'3900(23) 62”2900 z2) | ) >

X Z mq (74 — €4 ‘ VUZS 523 o— e1+e2]+n( ) V;Q efi—e2]+n o1—€1 ('22) ‘ 01— € >Liou .

nez

The factor in the last line was previously identified as theftanction associated to isomon-
odromic deformations &§1.(2)-connections, the free-field conformal block in the secamelils
nothing but the multiplier needed to get the tau-functiocssoaiated to thé&1(2)-connections.

6. Examples

We now look at some of the applications of the above generahdbsm to the theory of
monodromy preserving deformations. We start by providif @8 derivation of the Jimbo’s
asymptotic formulal[Ji] for the tau function of Painlevé ®guation. Next we show how the
known algebro-geometric solutions of the SchlesingeresysinCy, ,, [KK] arise from confor-
mal blocks of the Ashkin-Teller critical model [Za, ZZ].
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6.1 Painlee VI and Jimbo’s formula

Consider the simplest nontrivial case of four puncturese findamental groug,(Cy,4) is
isomorphic to free group of rank 3. Lef, ..., 4 be the four loops shown in Figuré 2a, then

7T1(Co,4) = <71>72773,74 | Y1 O7Y2073074 = 1> . (6.64)

We denote byM;, ..., M, € SL(2,C) the monodromy matrices associated to these loops,
satisfying M, M;M,M; = 1. Conjugacy classes of irreducible representations; 6f' 4) in
SL(2, C) are uniquely specified by seven invariants

Ly =Tr My, = 2 cos2mmy, k=1,...,4, (665&)
Ls ="Tr MlMQ, Lt =Tr MQMg, Lu =Tr MlMg, (665b)

generating the algebra of invariant polynomial functionsHom (7, (Cy 4), SL(2,C)). These
traces satisfy the quartic equation

LiLoLsLy+ LL;L,+ L+ L7+ L2+ LI+ L3+ L5+ L5 = (6.66)
— (LyLy + LsLy) Ly + (LoLs + LyLy) Ly 4 (LyLs + LyLy) Ly, + 4.

Figure 2:Basis of loops ofr, (C 4) and the decompositiafiy, = Cj's U Cfl.

The affine algebraic variety defined lyy (6.66) is the charaeteety ofCy, 4. For every choice of
mi, ..., my, itdefines a cubic surface @’ in the variabled.,, L., L,,. If we further fix the trace
function L, = 2 cos 270, the resulting quadric i, L,, admits rational parameterization/[Ji]

(L2—4)Ly= Dyys + Dy _s™' + Dy, (6.67a)
(L2 —4) Ly, = Dy s+ Dy _s™' + Dyyp. (6.67b)
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with coefficients given by

Dt70 = Ls (Lng + L2L4) -2 (L1L4 + L2L3) , (6688.)

Dyo = Ls(LyLy+ LyiLy) — 2 (L1 L3 + LaLy), (6.68b)

D,y =16 H sinm (mg F o + emq)sinm (ms F o + emy) , (6.68c)
e=+

Du,:l: = —Dt7:|:6:':2m0. (668d)

The local coordinategr, s) parameterize the spaceif(2, C)-representations of; (Cj 4) with
fixed local monodromy exponents;, . .., m4. Let us connect this pair to the parameters used
in the conformal block representation of the fundamentatima (y).

The Riemann surfacé€, is glued from two three-holed spheré€§,, C{'; as shown in Fig-
ure[2b. The local coordinatép, 7) associated to this pants decomposition parameterize trace
functions via [(2.5)+(216) (as well as their counterpartsfig). Comparing these expressions
with (6.67)(6.68), we find that

sinm (o —my + mg)sinm (0 + mg — my)

o=p, s = e, (6.69)

sin (0 —my —mg)sinm (0 — mz — my)

Going back to the Schlesinger equations (2.10), note thaetregular singularities;, z3, 24
can be brought t®, 1 and co using Mobius transformations. The Schlesinger system the
reduces to Painlevé VI equation

1
= (2(z — 1)¢")? = (6.70)
2mi 2('=C  Ami+mi 4+ mi —mi
= det 20— ¢ 2m3 (z—=1)¢" =¢ :
¢'+mi+mi+mi—mi (z—1)¢" ¢ 2m3

satisfied by the logarithmic derivative of the tau function

d
((z) =2(z — 1)£ InT. (6.71)
(22 - 21)(24 - 23)
(23 — 21) (21 — 22)
In the case o€’ 4, the representation (444) ofz) as a Fourier transform of the= 1 Virasoro
conformal block is more explicitly written as

Herez =

denotes the cross-ratio of the singular points.

T(2) = (ma | Vs, (V2 (2) | ma) e (6.72)

ne”L
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Figure 3:Labeling of pairs of pants for the conformal bloBKm | p, p’ | z).
Assuming without loss of generality tha{% < Rp < % letting = — 0 in the last formula,
and taking into account the normalizatién (4.42) of thealhrertex operators, we deduce the
asymptotics

7(2) = Z N(my, ms, p+ n)N(p + n,mg, my )& 2+ =mizms .
n=0,%1

+0 (ZPQ—M%—"@H) . (6.73)

This is equivalent to the famous Jimbo’s asymptotic fornfdiaTheorem 1.1] expressing the
critical behavior of the Painlevé VI tau function in termfsnsonodromy data. The relation of
Jimbo parameters to ours is given by (6.69).

6.2 Algebro-geometric solutions of the Schlesinger system

Consider the pants decomposition(@f,,. . schematically depicted in Figuré 3, and denote by
B(m|p,p'|z) the corresponding = 1 conformal block. Its external legs are combined into
g + 1 pairs. The momenta obtained by fusing different pairs areneoted to a “black box”.
Its internal structure is not essential for the final resHlibwever, to fix the notations, we will
choose it in a particular way and parameterize igby 2 internal momenta, . .., p/,_,.

As explained in Sectidn 4, summation of conformal blocks avieger shifts of momenta gives
an isomonodromic tau function of the Schlesinger system,
7(z) = Z Z Bm|p+n,p +n'|z)emrm" " (6.74)
neZI n/€Z9—1

The variableg, p/, 7, 7’ provide a set of local coordinates on tfg — 2)-dimensional space
of monodromy data.

Let us impose a free-field-like conservation constraint @amranta of the unshifted conformal
block at each vertex inside the box. These conditions deterthe black box momenta =
P (p) in terms ofp. Explicitly,

(D) = i1 (p) + Prr1, Dy(P) = p1-
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Also,fork =1,...,9 — 1 we define

lp =n) — Nj_y — Nk, ny = ny.
Since Barnes--function vanishes at negative integer values of the arguniee form of the
normalization coefficien{(4.42) restricts the sum (6. d4he domair?y,...,¢,_; > 0. Inthe
limit

Tj = —i00, T} — 100, (6.75a)
T+ YT =&, =0,  j=1,...,4 (6.75h)
this sum further reduces to the valugs= ... = ¢,_; = 0. We thus get 2g-parameter family
of tau functions
=Y " B(m|p+np(p+n)|z)em. (6.76)
nez9

Notice that at each of — 1 internal vertices of conformal blocks which appear[in (§, T6e
corresponding momenta satisfy the same conservationtommglas in the unshifted case.

Conformal blocks of this form withn = mar = (1, ..., 1) describe correlation functions of
the Ashkin-Teller critical model[Za, ZZ]. They can be exgged in terms of certain quantities

associated to the hyperelliptic cur¥eof genusy defined by

2g+2

N=1]w-=) (6.77)

k=1
Let us fix the canonical homology basis @f and b-cycles onX as shown in Figurgl4. The
g-dimensional space of holomorpHigforms onX is spanned by

Yy ldy
)\ Y

dwy = k=1,...,9.

Theg x g matrices olu- andb-periods

ajk :% d(.Uj, bjk: :% dwj, (678)
ag bk

determine the symmetric period matfix= a~'b of . The hyperelliptic Riemann theta func-
tion with characteristicép, ¢] € C% is defined as the following series:

0] p, {L’ | Q Z emi(n+p)- Q- (ntp)+2mi(ntp)-(v+q) (6.79)
nez9
Even characteristidys, ¢s ] correspond to its non-trivial half-periods and are indexggarti-
tionsS = {{za;, - -1 %a,1 11281, - - - » 28,4, } } Of the set of ramification points into two subsets
of equal size.
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Figure 4:Canonical homology basis on.

In this notation, the Ashkin-Teller conformal block is givby [Z&,[ZZ]

inp-Q-p
B (mar |1/ (7)|2) = S0)K(:) g (6.80)
cosTp, 4 CA;2(p’_1 + 1)
Gp) = g =17 3) 6.81
(p) - " ) (6.81)
K(z) = ( ?ili(zaj ;jlak) ?Ilﬁ(zﬁj - Zﬁk)) ’ ‘ (6.82)
gk (Zaj - Zﬁk)

Here we denote:(p) = ggtg The prefactorG(p) comes from our normalization (4.42)
of the chiral vertex operators. Taking into account the memce relationG (p+1) =

—7 (sinmp) " G (p), we see that the suri(6176) reduces to the theta functioassEsizD),
so that

0lp,q](0]9)
7(z) = const - K(z , (6.83)
=) ( )9[2957615](0\9)
with e?miar = —C;ﬁriy”jleifk. We thus reproduce thy-parameter family of tau functions found

in [KK]. The elliptic caseg = 1 corresponds to Picard solutions of Painlevé VI.

At last let us compute the actual monodromy matricesiioe mar applying the rules formu-
lated in Subsection 4.3. Up to overall conjugation, one has

k1 A(k,..., +1,171-L [ pk'\2 ~K'\1 A, +1,1
Moy = [Clig CICEi 7 (BY) Oy CoaCgs, (6.84)
k0 ~[k,..., +1,17=1  pk/\2 ~K' 0 ~E,..., +1,1
My = [Cog CPIICEEH T (BY)” g O 9O, (6.85)
with Okl — C[’;’ilCﬁgl’O ...Cfiy andk = 2,...,g. The conservation of momenta at the

verticesk, . .., g — 1 implies that all matrices in the product® 9! are lower triangular. This
enables one to explicitly calculate the monodromies inithé (6.75). Again up to conjugation,
the result is

-1
Mk:<>0 Ly, >, k=1,...,29+2, (6.86)
w0
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with Hog+1 = 627rip;71’ H2g+2 = 1and

Lop_1 = e%i(pﬁc,ﬁqk)’ Lo = —2mi(p)_y+ar) (6.87)

Note in particular that in the chosen basis the prodi¢is | Mo, and Moy, Moy, are given by
diagonal matrices, cf [KK, Theorem 3.2].

7. Outlook

To conclude we will discuss some further applications ars$jibe directions of future research
suggested by our results.

7.1 Possible applications to the study ol = 2 supersymmetric gauge theories

Our results appear to have interesting implications foisthely of a certain class dfD N = 2
supersymmetric gauge theories which is nowadays ofterctalassS. The gauge theories
Gc in classS are associated to Riemann surfac¢égossibly withn punctures. The so-called
instanton partition functions [LNS, MNSL, MNS2/ N, NO] calimportant non-perturbative
information about the physics of such gauge theories, diefithe complete description of their
low-energy physics via Seiberg-Witten thedry [N, NO]. Otitree instanton partition functions
one may form the so-called dual instanton partition fundiby means of a generalization of
the Fourier series [N, NOJ.

It was observed in [N, LMN, NOJ that the dual instanton pastitfunctions of some supersym-
metric gauge theories from classhave free fermion representations, and therefore represen
tau-functions for certain integrable equations. Consitiens of the geometric engineering of
such gauge theories within string theory have led to thesstgun that the dual instanton parti-
tion functions of the gauge theories from classhould be related to the partition functions of
chiral free fermion theories; this was first suggested ingBiction 4.3], and similar ideas were
discussed in more detail in [DHSYV, DHS]. These relationssamaetimes referred to as BPS-
CFT correspondence [CNO]. The relevant theory of chira fexmions is expected [CI\IEN]O

be defined on the Riemann surfaCespecifying the gauge theoty..

In another important recent development it was found thattstanton partition functions of
these supersymmetric gauge theories are related to therowaifblocks of the Toda conformal
field theories, in the simplest case the Liouville theory [HIGThe correspondence between
instanton partition functions and Liouville conformal bks is called the AGT-correspondence.

5In some of the earlier references cited above, it was prapimseonsider free fermions on the Seiberg-Witten
curveX which for theories of clasS is a branched cover of the cur¢édefiningGc. The proposal that the curve
that is relevant in this context (S rather thart: was formulated explicitly in [CNO].
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However, up to now it was not clear how exactly BPS-CFT-gpomndence and AGT-
correspondence are related. Our paper provides a basisderstanding these connections
by establishing a direct relation between the conformal file€ory of chiral free fermions on a
Riemann sphere with punctures’ ,, on the one hand, and the conformal blocks of Liouville
theory atc = 1 on (), on the other hand. Our result opens the interesting perspeotderive
thec = 1 case of the AGT-correspondence from the BPS-CFT-correspae. It would suffice
to characterise the relevagy-operators whose determinants should represent the duiahion
partition function according the BPS-CFT-correspondemoee precisely. To this aim it may
be convenient to use the language proposed in [DHS]. Theewmbiom between the relevant
determinants of);-operators and the isomonodromic tau-functions studi¢hisnpaper should
then follow from the results of [P]. To complete the derigatof the AGT-correspondence for
¢ = 1 from the BPS-correspondence it will suffice to observe thatRourier-transformation
appearing in the relatiof (4.43) between conformal blockktau-functions is exactly the trans-
formation from instanton partition functions to the duadtemton partition functions.

7.2 Verlinde loop operators and quantisation ofMg. (C')

Forc # 1 one may use the operator-valued monodromies construcgstiion 3.4 to define the
so-called Verlinde loop operators [AGGTV, DGOT]. Thesemapers generate a representation
of the quantised algebra of algebraic functions/efa..(C') on the spaces of Virasoro confor-
mal blocks [TV13]. The definition of the Verlinde loop operet given in [AGGTV, DGOT]
can easily be rewritten as deformed traces over productseobperator-valued monodromy
matrices defined in Sectién 3.4.

In the normalisation for the conformal blocks defined byisgtiV(5,, o, 5;) = 1 in (3.18) one
may analytically continue both the conformal blocks anddbgesponding representation of
the Verlinde loop operators with respect to the parametergeneric complex values of this
parameter. It is not hard to check that

¢ the definition of the Verlinde loop operators reduces tortgkheordinary trace of the
matricesM;, defined in Section 412 at= 1,

e the algebra generated by the Verlinde loop operators becocomemutativet this value of
the central charge, and

e the transformation relating Virasoro conformal blocks @o-functions diagonalizes all
Verlinde loop operators simultaneously with eigenvalugisd the trace functiong (2.5).

We note that the quantum counterparts of the coordinates that can be defined away from
¢ = 1 [TV13] remain non-commutative when— 1. However, the algebra of all operators that
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can be constructed from the quantised coordin&tes) contains the important sub-algebra
generated by the Verlinde loop operators. The fact thatsiiisalgebra become®mmutative

for ¢ = 1 leads to the existence okewrepresentations for the quantised algebra of functions
on Mg, (C) related to the usual one by the transformation defined in@€4tl. This repre-
sentation isnot unitarily equivalent to the one studied in [TV13] as the meagdefining the
scalar product for > 25, the Liouville three-point function, can not be analytigalontinued

to ¢ = 1. It should be interesting to investigate this phenomenahpossible generalisations
further.

7.3 Other relations between isomonodromic deformations ahLiouville theory

There are further relations between the isomonodromiaaetton problem and Liouville the-
ory: The semiclassical limit of the null-vector decouplieguations in Liouville theory yields
Hamilton-Jacobi - like equations that define the Hamiltosigenerating the isomonodromic
deformation flows. This was first pointed out in [T11], a spécase was later rediscovered in
[LLNZ].

It seems remarkable that there exist relations betweerviliewonformal blocks and isomon-
odromic tau-functions both in the cases- 1 andc — oo. A good explanation remains to be
found.

Acknowledgements. The present work was supported by the Ukrainian SFFR project
F53.2/028, the Program of fundamental research of the physid astronomy division of
NASU, and the IRSES project “Random and integrable modetisathematical physics”.

J.T. would like to thank the Euler Institute (St. Petershbundhere this work was first presented
in the workshop "Gauge theories and integrability” for hibesljty.

A. Calculation of the trace functions

Let us compute the trace function$ andL; in terms of the parameters] ,, o,, 7, using the
algorithm developed in Subsectibn 3]4.2 along with thesrolieSubsectioh 413. The reader is
referred to Figuré€l2b (withy replaced byv,) for the labeling of pairs of pants and boundary
components.

The trace functions are determined by the classical momoigaround the punctures, z,
z3. To find them explicitly, we first note that the correspondopgrator-valued monodromy
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matrices are given by

—1 2
ML = [CiigChy - €] (B it ¢ (1.882)
R—1,L,1 -1 2 ~R,—1,L,1
M,y = [C[QS] c[m]q (B) Coy Ciiy - G (A.88b)
-1 2
M3 = [Chy - C] (BY) Chy - C. (A.88c)

Here the common factdf corresponds to the part of analytic continuation path wihitates
the base-poiny, to the boundary componeatof C&s (the neighborhood of the black dot on
the boundary circle in Figuid 1). The factor next to it degead what one wants to achieve at
the subsequent step: the black circle on the bounglanythe empty circle on the boundaty
of C5. In the latter case, for instance, the @rg], should be preceded by the half-tuzn

The observations of Subsectionl4.3 allow one to get rid ottt operators in the computation
of classical monodromies by replacing the operator-val'aatticesc’[fj’.’;} by the ordinary matri-
cesC[tj’.i”} defined by[(4.4l7). We may therefore §et 1 in the calculation of the trace functions.
Also note that the resulting expressions are independethieoparameter, associated to the
boundary curvé,: this is a consequence of the factorization

=i\~ 0 e 2™ St
(TB)" = (B)) ( . ) Bl =iosB. (A.89)
We can now writel?, L7 as the traces

r =[Oy (B Ol Ol (Bl ¢l -

= o (B) ™ Rl (B ity BY By (BN R (A.90a)
L =tr ( [ChiCh T (B Oyt (O] (BE)? qgg;) . (A.90b)

The first of the equations (2.5) then follows from the easdyified identity
F[t31]Bf iy B} F[t23]B§ =1 (A.91)

which should be understood as a version of the Moore-Sehmtggonal relation. To demon-
strate the second equation, observe that (A.90b) may bétewas

Ly =GE GL e + (GR,GE_+ GE_GL,) + GEL.GE e,

G = [FiyB] T (BY) iy B, G' = BiFy (B [Bi L]

The rest of the computation is straightforward.
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