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The goal of this note is to show that the Riemann-Hilbert problem to find multivalued analytic

functions withSL(2,C)-valued monodromy on Riemann surfaces of genus zero withn punc-

tures can be solved by taking suitable linear combinations of the conformal blocks of Liouville

theory atc = 1. This implies a similar representation for the isomonodromic tau-function. In

the casen = 4 we thereby get a proof of the relation between tau-functionsand conformal

blocks discovered in [GIL]. We briefly discuss a possible application of our results to the

study of relations between certainN = 2 supersymmetric gauge theories and conformal field

theory.

1. Introduction

The problem to describe isomonodromic deformations of ordinary differential equations has

attracted a lot of attention in the past. This is due to the existence of a large number of ap-

plications in various areas of mathematics and theoreticalphysics, as well as the mathematical

beauty and depth of the problem itself.

A first striking relation with quantum field theory was exhibited in a series of papers of Sato,

Miwa and Jimbo which appeared at the end of the 1970’s, see in particular [SMJ79], and

[SMJ80] for a review. The results include the identificationof the isomonodromic tau-functions,

the generating functions for the Hamiltonians of the isomonodromic flows, with certain corre-

lation functions in a quantum field theory of chiral free fermions.

The main result of this paper is another relation between conformal field theory and the
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isomonodromic deformation problem: The tau-functions forisomonodromic deformations of

flat SL(2)-connections onn-punctured spheres coincide with certain linear combinations of the

Liouville conformal blocks atc = 1. This result leads in particular to a proof of the relation

between Liouville conformal blocks and the tau-function ofPainlevé VI that was discovered in

[GIL].

We are going to show that our result can be understood as a sortof bosonization of the fermionic

representations of tau-functions. To this aim we are going to show that our construction is

essentially equivalent to a bosonic construction of the so-called twist fields whose insertion

generates a singularity for the fermion field with specified monodromy. In our approach the

twist fields are constructed from the chiral vertex operators of the Virasoro algebra.

Expressing the isomonodromic tau-functions in terms of Liouville conformal blocks appears

to have certain advantages compared to the previously knownrepresentations. The famous

formula for the asymptotics of Painlevé VI found by Jimbo [Ji], for example, is an easy con-

sequence. More generally, one may take advantage of the various results known about the

Liouville conformal blocks in order to get detailed information on the isomonodromic tau-

functions. Conversely, one may use this connection to find highly non-trivial new results about

the Liouville conformal blocks atc = 1 [ILT].

As an interesting application we are going to show how the known algebro-geometric solutions

of the Schlesinger system onC0,n [KK] arise from conformal blocks of the Ashkin-Teller critical

model [Za, ZZ].

In the conclusions we’ll discuss a possible application of our results to the study ofN = 2

supersymmetric gauge theories: They can be used to connect two recently discovered relations

between certain classes ofN = 2, d = 4 supersymmetric gauge theories on the one hand, and

two-dimensional conformal field theories on the other hand.

The paper is organised as follows. In Section 2 we review the basic formulation of the Riemann-

Hilbert problem together with some basic material on the parameterization of monodromy

groups. The following Section 3 collects the necessary background on Liouville conformal

blocks. Our main result is described in Section 4. We define infinite linear combinations of

the Virasoro conformal blocks, and show that the result solves the Riemann-Hilbert problem.

Section 5 describes how to reformulate our results to get a bosonic construction of twist fields

creating singularities for fermion fields with specified monodromy. The following Section 6 de-

scribes two applications: We first rederive Jimbo’s formulafor the asymptotics of Painlevé VI

from our results, and show that specializing our construction to Ashkin-Teller conformal blocks

reproduces the algebro-geometric solutions found in [KK].In the conclusions we indicate inter-

esting directions for future research including the application to supersymmetric gauge theories

mentioned above.
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2. The Riemann-Hilbert problem

2.1 Formulation of the Riemann Hilbert problem

The fundamental groupπ1 of C0,n := P1 \ {z1, . . . , zn} hasn generatorsγ1, . . . , γn subject to

one relationγ1 ◦ γ2 ◦ · · · ◦ γn = 1. Representationsρ of π1(C0,n) in SL(2,C) are specified by

collections of matricesMk := ρ(γk) ∈ SL(2,C), k = 1, . . . , n satisfyingMn · Mn−1 · · · · ·

M1 = 1 up to overall conjugation with elements ofSL(2,C). We will be interested in the cases

where the matricesMk are diagonalizable with fixed eigenvaluese±2πimk . The space of all such

representations ofπ1(C0,n) is then2(n− 3)-dimensional.

It will be convenient to choose a base-pointy0 onC0,n. The dependence on the choice ofy0 will

turn out to be inessential. We may then represent the generatorsγk by closed paths starting and

ending aty0. The Riemann-Hilbert problem is to find a multivalued analytic matrix function

Y (y) onC0,n such that the monodromy alongγk is represented as

Y (γk.y) = Y (y)Mk , (2.1)

whereY (γk.y) denotes the analytic continuation ofY (y) alongγk.

The solution to this problem is unique up to left multiplication with single valued matrix func-

tions. In order to fix this ambiguity we need to specify the singular behavior ofY (y), leading

to the following refined version of the Riemann-Hilbert problem: Find a matrix functionY (y)

such that the following conditions are satisfied.

i) Y (y0) = 1 ,

ii) Y (y) is a multivalued, analytic and invertible onC0,n,

iii) There exist neighborhoods ofzk, k = 1, . . . , n whereY (y) can be represented as

Y (y) = Ŷ (k)(y) (y − zk)
µk , Mk = e2πiµk , (2.2)

with Ŷ (k)(y) being holomorphic and invertible aty = zk andµ1, . . . , µn ∈ sl(2,C).

If such function Y (y) exists, it is uniquely determined by the monodromy dataµ =

(µ1, . . . , µn).

The refined Riemann-Hilbert problem naturally arises in thestudy of rank 2 flat connections on

C0,n. Any flat connection onC0,n is gauge equivalent to a holomorphic connection of the form

∂y − A(y), withA(y) of the form

A(y) =

n
∑

k=1

Ak

y − zk
, (2.3)
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whereA1, . . . An ∈ sl(2,C),
∑n

k=1Ak = 0. One may then consider the fundamental matrix

solutionY (y) of the differential equation

∂

∂y
Y (y) = A(y)Y (y) , (2.4)

normalized byY (y0) = 1. It will automatically satisfy ii) and iii) for certainµ1, . . . , µn, pro-

vided that the eigenvalues±mk of Ak satisfy the condition2mk /∈ Z. Any representationρ :

π1(C0,n) → SL(2,C) can be realized as monodromy representation of such a Fuchsian system,

which means that a solution to the Riemann-Hilbert problem formulated will generically exist.

The Riemann-Hilbert correspondence between flat connections∂y − A(y) and representations

ρ : π1(C0,n) → SL(2,C) allows us to identify the moduli spaceMflat(C0,n) of flat sl(2,C)-

connections onC0,n with the so-called character varietyHom(π1(C0,n), SL(2,C))/SL(2,C).

2.2 Trace coordinates

Useful sets of coordinates forMflat(C0,n) are given by the trace functionsLγ := tr ρ(γ) asso-

ciated to any simple closed curveγ onC0,n. Minimal sets of trace functions that can be used

to parameterizeMflat(C0,n) can be identified using pants decompositions. In order to have uni-

form notations let us replace the puncturesz1, . . . , zn by little holes obtained by cutting along

non-intersecting simple closed curvesδk surrounding the punctureszk, k = 1, . . . , n, respec-

tively. A pants decomposition is defined by cuttingC0,n alongn − 3 simple closed curvesγr,

r = 1, . . . , n− 3 onC0,n. This will decomposeC0,n into a disjoint union ofn − 2 three-holed

spheresCt
0,3, t = 1, . . . , n− 2. The collectionC = {γ1, . . . , γn−3} of curves will be called the

cut system.

To each curveγr ∈ C let us associate the union of the two three-holed spheres that haveγr in

its boundary, a four-holed sphereCr
0,4. It will be assumed that the curvesγr, r = 1, . . . , n − 3

are oriented. The orientation ofγr allows us to introduce a natural numbering of the boundaries

of Cr
0,4. We may then consider the curvesγrs andγrt which encircle the pairs of boundary com-

ponents ofCr
0,4 with numbers(1, 2) and(2, 3), respectively. The corresponding trace functions

will be denoted asLr
s andLr

t . The collection of pairs of trace functions(Lr
s, L

r
t ), r = 1, . . . , n−3

can be used to parameterizeMflat(C0,n).

A closely related set of coordinates forMflat(C0,n) is obtained by parameterizingLr
s andLr

t in

terms of complex numbers(σr, τr) as

Lr
s = 2 cos 2πσr , (2.5a)

(sin(2πσr))
2 Lr

t = C+(σr) e
iτr + C0(σr) + C−(σr) e

−iτr , (2.5b)
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where

C+(σr) = −4
∏

s=±1

sin π(σr + s(σr
1 − σr

2)) sin π(σr + s(σr
3 − σr

4)) , (2.6a)

C0(σr) = 2
[

cos 2πσr
2 cos 2πσ

r
3 + cos 2πσr

1 cos 2πσ
r
4

]

(2.6b)

− 2 cos 2πσr
[

cos 2πσr
1 cos 2πσ

r
3 + cos 2πσr

2 cos 2πσ
r
4

]

,

C−(σr) = −4
∏

s=±1

sin π(σr + s(σr
1 + σr

2)) sin π(σr + s(σr
3 + σr

4)) . (2.6c)

In order to defineσr
i , i = 1, . . . , 4 in (2.6) let us note that the boundary ofCr

0,4 with labeli may

either be a curveγr′ ∈ C, or it must coincide with a curveδk surrounding puncturezk. We will

identifyσr
i ≡ σr′ in the first case, whileσr

i will be identified with an eigenvalue ofµk otherwise.

The collection of data(σr, τr), r = 1, . . . , n− 3 will be denoted as(σ, τ). We observe that the

coordinates(σ, τ) are forn = 4 close relatives of the parameters used in [Ji]. They are also

closely related to the coordinates used in [NRS].

2.3 Isomonodromic deformations and tau-function

Let us briefly recall the well-known relations to the isomonodromic deformation problem.

Given a solutionY (y) to the Riemann-Hilbert problem we may define an associated connection

A(y) as

A(y) ≡ A(y|z) := (∂yY (y)) · (Y (y))
−1 , (2.7)

It follows from (2.2) that

A(y|z) =

n−1
∑

k=1

Ak(z)

y − zk
. (2.8)

It is well-known that variations of the positionszr will not change the monodromies of the

connectionA(y) provided that the matrix residuesAk = Ak(z) satisfy the following equations,

∂zkAk = −
∑

l 6=k

[Ak, Al]

zk − zl
,

∂zlAk =
y0 − zk
y0 − zl

[Ak, Al]

zk − zl
, k 6= l ,

∂y0Ak = −
∑

l 6=k

[Al, Ak]

y0 − zl
. (2.9)

In the limit y0 → ∞ one finds the Schlesinger equations

∂zkAk = −
∑

l 6=k

[Ak, Al]

zk − zl
,

∂zlAk =
[Ak, Al]

zk − zl
, k 6= l .

(2.10)
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The Schlesinger equations define Hamiltonian flows, generated by the Hamiltonians

Hk :=
1

2
resy=zk trA

2(y) =
∑

l 6=k

tr(AkAl)

zl − zk
, (2.11)

using the Poisson structure

{

A (y) ⊗, A (y′)
}

=

[

P

y − y′
, A (y)⊗ 1 + 1⊗ A (y′)

]

, (2.12)

whereP denotes the permutation matrix. The tau-functionτ(z) is defined as the generating

function for the HamiltoniansHk,

Hk = ∂zk log τ(z) . (2.13)

Integrability of (2.13) is ensured by the Schlesinger equations (2.10).

3. Chiral vertex operators and conformal blocks

Let us introduce the necessary definitions and results on therepresentation theory of the Vira-

soro algebra which has generatorsLn, n ∈ Z and relations

[Ln , Lm ] = (n−m)Ln+m +
c

12
n(n2 − 1)δn+m,0 . (3.14)

Although we will ultimately be interested in the casec = 1, it will be useful to consider more

general values ofc in some of our arguments. Highest weight representationsVα are generated

from vectors|α〉 which satisfy

Ln |α 〉 = 0 , n > 0 , L0 |α 〉 = ∆α |α 〉 , (3.15)

where∆α = α(Q − α) if c is parameterized asc = 1 + 6Q2. The representationsVα can be

decomposed into the so-called energy-eigenspaces

Vα ≃
⊕

n∈Z≥0

V(n)
α , (3.16)

defined by the conditionL0v = (∆α + n)v for all v ∈ V(n)
α .

3.1 Chiral vertex operators

Chiral vertex operatorsV α
β2β1

(z) can be defined as operators that mapVβ1
→ Vβ2

such that

Ln V
α
β2β1

(z)− V α
β2β1

(z)Ln = zn(z∂z +∆α(n + 1))V α
β2β1

(z) . (3.17)
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We have in particular

V α
β2β1

(z) | β1 〉 = N(β2, α, β1) z
∆β2

−∆β1
−∆α

[

| β2 〉+O(z)
]

, (3.18)

with a normalization factorN(β2, α, β1) that will be specified later. It is well-known that the

conditions (3.17) definez∆β1
+∆α−∆β2V α

β2β1
(z) uniquely in the sense of formal power series inz,

V α
β2β1

(z) = z∆β2
−∆β1

−∆α

∞
∑

n=0

znW α
β2β1

(n) , W α
β2β1

(n) : V(k)
β1

→ V(k+n)
β1

. (3.19)

It has furthermore been argued in [T03] that the compositionV α2

β3β2
(z)V α1

β2β1
(w) of such vertex

operators exists for|w/z| < 1, and that matrix elements such as

〈αn | V
αn−1

αnβn−3
(zn−1)V

αn−2

βn−3βn−4
(zn−2) · · ·V

α2

β1α1
(z2) |α1 〉 , (3.20)

are represented by absolutely convergent power series inzk/zk+1, k = 2, . . . , n− 2.

From each chiral vertex operatorV α
β2β1

(z) one may generate a family of vertex operators called

descendants ofV α
β2β1

(z). The descendants ofV α
β2β1

(z) are labelled by the vectors inVα, and the

descendant corresponding tov ∈ Vα will be denoted asV α
β2β1

[v](z). The descendants may be

defined by means of the recursion relations

V α
β2β1

[|α〉](z) ≡ V α
β2β1

(z) , (3.21a)

V α
β2β1

[L−1v](z) ≡ ∂zV
α
β2β1

[v](z) , (3.21b)

V α
β2β1

[L−2v](z) ≡ : T (z)V α
β2β1

[v](z) : , (3.21c)

where the following notation has been used in (3.21c):

: T (z)V α
β2β1

[v](z) :≡
∑

k<−1

z−k−2Lk V
α
β2β1

[v](z) +
∑

k≥−1

z−k−2 V α
β2β1

[v](z)Lk . (3.22)

The recursion relations (3.21) suffice to defineV α
β2β1

[L−nv](z) for all n > 0 thanks to the

Virasoro algebra (3.14).

Using the descendants one may define a trilinear formC0,3 : Vα3
⊗ Vα2

⊗ Vα1
→ C as

C0,3(v3 ⊗ v2 ⊗ v1) := 〈 v3 | V
α2

α3α1
[v2](z) | v1 〉 . (3.23)

This trilinear form can be identified with the conformal block associated to the three-punctured

sphereC0,3.

The definition of descendants allows us to introduce anotherway to compose chiral vertex

operators. We may e.g. consider

V β3

β2β1

[

V α2

β3α1
[v2](w − z)v1

]

(z) , (3.24)
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which is defined a priori as a formal power series inw − z. Quadrilinear forms such as

C0,4(v4 ⊗ . . .⊗ v1) := 〈 v4 | V
β
α4α1

[

V α3

βα2
[v3](w − z)v2

]

(z) | v1 〉 , (3.25)

will define absolutely convergent series inw − z for all v4, . . . , v1 of finite energy. The quadri-

linear formsC0,4(v4 ⊗ . . .⊗ v1) can be identified with conformal blocks associated to the four-

punctured sphereC0,4.

By using the two types of composition of chiral vertex operators introduced above one may con-

struct conformal blocks associated to arbitrary pants decompositions ofn-punctured spheres.

3.2 Degenerate fields

Of particular importance for us will be the special case where α = −b/2, assuming thatQ is

represented asQ = b + b−1. If furthermoreβ2 andβ1 are related asβ2 = β1 ∓ b/2, the vertex

operatorsψs(y) ≡ ψβ1,s(y) := V
−b/2
β1−sb/2,β1

(y) are well-known to satisfy a differential equation

of the form

∂2yψβ1,s(y) + b2 : T (y)ψβ1,s(y) := 0 , (3.26)

with normal ordering defined in (3.22). The chiral vertex operatorsψβ1,s(y) are called degener-

ate fields. It follows from (3.26) that matrix elements such as

F(α; β | z | y0 | y ) := 〈αn |ψs′(y0)ψs(y) |Θ 〉 , (3.27)

|Θ 〉 := V
αn−1

αn+(s+s′) b
2
,βn−3

(zn−1)V
αn−2

βn−3βn−4
(zn−2) · · ·V

α2

β1α1
(z2)V

α1

α1,0
(z1)| 0 〉 ,

will satisfy the partial differential equationDBPZF = 0, with

DBPZ :=
1

b2
∂2

∂y2
+

∆− b
2

(y − y0)2
+

1

y − y0

∂

∂y0
+

n−1
∑

k=1

(

∆αk

(y − zk)2
+

1

y − zk

∂

∂zk

)

, (3.28)

together with a similar differential equation fory0. Using this differential equation it may be

shown thatF(α; β | z | y0 | y ), considered as a function ofy, can be analytically continued to a

multivalued analytic function onC0,n.

3.3 Braiding and fusion of degenerate fields

The differential equations (3.26) satisfied by the degenerate fields can be used to get a precise

description of the monodromies of the conformal blocksF(α; β | z | y0 | y ) defined in (3.27).

Let us briefly summarize the relevant results. There are three ways to compose a degenerate

field with a generic chiral vertex operator,

(1) V α2

α3,α1−s b
2

[v2](z)ψs(y) ,

(3) ψ−s(y)V
α2

α3−s b
2
,α1

[v2](z) ,
(2) V

α2−s b
2

α3,α1

[

ψs(y − z)v2
]

(z) . (3.29)
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[13] [21] [23]

1 2 31’ 2’3’

Figure 1:A sphere with three holes. The arrows indicate our orientation conventions.

The three ways (3.29) to compose these vertex operators correspond to having the degenerate

field ψs(y) located in the vicinity of the boundary components with labels 1, 2 and 3, respec-

tively, referring to Figure 1 for the notations. The conformal blocks defined using the three

compositions (3.29) are single valued and analytic in neighborhoods of the black dots marked

in Figure 1 on the boundaries of the three holes ofC0,3, respectively. We are going to describe

their analytic continuation to the universal cover ofC0,3. It will be helpful to introduce a sepa-

rate notation for the vertex operatorψs(y) when it is inserted at the antipodal point of the circle

|y| = const,

ψ′
β,s(y) = Bs(β)ψβ,s(e

−πiy) , Bs(α) = e
πi(∆

α−s b
2

−∆α−∆
− b

2

)
. (3.30)

The vertex operatorsψ′
β,s(y) are single-valued in an open neighborhood containing segments of

the negative real axis. One may naturally consider compositions (1)’-(3)’ of the form (3.29), but

with ψs(y) replaced byψ′
s(y). Regions onC0,3 where the compositions (1)’-(3)’ define single-

valued analytic conformal blocks are neighbourhoods of thesmall empty circles in Figure 1.

The main building block for the monodromies will be the following relations,

ψ−s1(y)V
α2

α3−s1
b
2
,α1

[v2](z) =
∑

s2=±1

F [23]
s1,s2

V
α2−s2

b
2

α3,α1

[

ψs2(y − z)v2
]

(z) (3.31a)

V α2

α3,α1−s1
b
2

[v2](z)ψs1(y) =
∑

s2=±1

F [21]
s1,s2 V

α2−s2
b
2

α3,α1

[

ψ′
s2(y − z)v2

]

(z) , (3.31b)

ψ′
−s1

(y) V α2

α3−s1
b
2
,α1

[v2](z) =
∑

s2=±1

F [13]
s1,s2

V α2

α3,α1−s2
b
2

[v2](z)ψ
′
s2
(y) . (3.31c)

The relevant transport matrices are given respectively as

F [ji]
s1,s2

=
Γ(1 + s1b(2αi −Q))Γ(s2b(Q− 2αj))

∏

s3=± Γ
(

1
2
+ s1b(αi −Q/2)− s2b(αj −Q/2) + s3b(αk −Q/2)

) , (3.32)

valid if the vertex operatorsV α
β2,β1

(z) are normalized via (3.18) withN(α3, α2, α1) ≡ 1.
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Remark1. Comparing with the Moore-Seiberg formalism let us note that

F [21]
s1,s2

≡ F
[

α2

α3

−b/2
α1

]

s1s2
≡ F

α1−s1
b
2
;α2−s2

b
2

[

α2

α3

−b/2
α1

]

, (3.33a)

F [23]
s1,s2

≡ F
[

−b/2
α3

α2

α1

]

s1s2
≡ F

α3−s1
b
2
;α2−s2

b
2

[

−b/2
α3

α2

α1

]

, (3.33b)

F [13]
s1,s2

≡ F
[

α3

−b/2
α2

α1

]

s1s2
≡ F

α3−s1
b
2
;α1−s2

b
2

[

α3

−b/2
α2

α1

]

, (3.33c)

The relevant fusion matrices are related to each other by thesymmetries

F
[

α2

α3

−b/2
α1

]

s1s2
= F

[

−b/2
α1

α2

α3

]

s1s2
= F

[

α3

α2

α1

−b/2

]

s1s2
, (3.34)

together with

F
[

α2

α3

−b/2
α1

]−1
= F

[

α1

α3

−b/2
α2

]

. (3.35)

The definition of the antipodal vertex operatorsψ′
β,s(y) in (3.30) is related to the elementary

braid relation

[V α2

α3,α1
(y) V α1

α1,0
(z)| 0 〉 ]

	
= Ωα3

α2,α1
V α1

α3,α2
(z) V α2

α2,0
(y)| 0 〉 , (3.36)

with left hand side defined by means of analytic continuationmakingy encirclez in the anti-

clockwise sense. It is easy to see that the “half-monodromy”used in (3.30) is related to the

composition of analytic continuation (3.36) with a suitable translation. It follows that the braid-

ing phase factorBs(α) is related to the factorsΩα3

α2,α1
in (3.36) asBs(α) = Ω

α−sb/2
−b/2,α .

In the normalisation whereN(α3, α2, α1) ≡ 1 one may observe that the conformal blocks and

the fusion matricesF [ji] are perfectly analytic with respect to the central chargec. We may

in particular take the limitc → 1 without encountering any problem. This is not the case for

the kernel of the integral transformation relating conformal blocks associated to different pants

decompositions.

3.4 Monodromy action on spaces of conformal blocks

Using these ingredients it is straightforward to show that the analytic continuation of the matrix

elementsF(α; β | z | y0 | y ) along the closed pathsγk can be expressed as a linear combination

of the matrix elementsF(α; β ′ | z | y0 | y ) having parametersβ ′
r that differ fromβr by integer

multiples of the parameterb. In order to have a convenient notation let us define the shift

operatorsVr which acts on functionsto the leftas

F(α; β | z | y0 | y ) · Vr = F(α; β − ber | z | y0 | y ) , (3.37)

whereer is the vector inCn−3 with componentsδrs.
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3.4.1 Geometrical set-up

It will be useful for us to refine the pants decompositions as follows. On each curveγ in the

extended cut system̂C := {γ1, . . . , γ2n−3}, whereγn−3+k := δk for k = 1, . . . , n let us mark

two points, a black one and a white one. On each pair of pants with label t let us introduce

a collection of two non-intersecting arcs[23]t, and [13]t that connect marked points on the

boundary components labelled by1, 2 and 3, respectively. These contours are depicted in

Figure 1.

Let us next note that any generatorγk of π1(C0,n) may be represented as a concatenationη1 ◦

η2 ◦ · · · ◦ ηN of oriented arcsηa, each contained within a three-holed sphereCt
0,3. It will not

cause a loss of generality to assume that each arcηa is of the following two types:

• An arc [ji]t onCt
0,3 running from the marked point on boundary componenti of trinion t

to the one on boundary componentj as depicted in Figure 1,

• An arcbti connecting the two marked points on boundary componenti of Ct
0,3 with positive

orientation.

We will assume that the pointy0 is located on the boundary circleδn of C0,n. It will be useful

to introduce the notation[jiν ]t for the composite arcs(bti)
ν ◦ [ji]t, ν ∈ Z.

3.4.2 The algorithm

Using the results from Subsection 3.3 and the definitions from 3.4.1 we may now formulate a

simple algorithm for calculating the result of the analyticcontinuationF(α; β | z | y0 | y ) along

γk. We will use the geometrical set-up introduced in Subsection 3.4.1, in particular the decom-

position of the pathsγk into a collection of arcs. Note that the basic building blocks are close

relatives of the moves introduced in (3.31) such as

ψs2(y)V
α2

α3,α1
[v2](z) = ψs2(y)V

α2

α3+s2
b
2
,α1

[v2](z) · V
1

2
s2

α3

=
∑

s1=±1

F
[23]
−s2,s1 V

α2−s1
b
2

α3,α1

[

ψs1(y − z)v2
]

(z) · V
1

2
s2

α3 . (3.38)

In this way we find that the arcs[jiν ]t are represented by the matrices

St
[ji] := Ft

[ji] · T
t
i , C

t,ν
[ji] := St

[ji] · (B
t
i)

ν , (3.39a)

where
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• Ft
[ji] is obtained fromF [ji] by replacingαi → αt

i, i = 1, 2, 3 and transposition4,

• Tt
i is defined as

(Tt
i)s1s2 = δs1,−s2

(Vt)
1

2
s2 , (3.39b)

whereVt is the shift operator which shifts the variableαt ≡ αt
i as defined in equation

(3.37). The operatorsVt act to the left in the product of matrices.

• Bt
i is the matrix with elements

(Bt
i)s1s2 = δs1s2 Bs1(αi) . (3.39c)

Arcs bti will be represented by the matrixBt
i. If γk is a simple closed curve onC0,n starting and

ending aty0 represented by the ordered concatenationη1◦η2◦· · ·◦ηK of the arcs defined above,

we will define

Mk = NK · NK−1 · · · · · N1 , (3.40)

whereNk are the2×2-matrices associated to the arcsηk. We may thereby define the sought-for

collection of matricesMk, k = 1, . . . , n describing the action of monodromies of the degenerate

fields on spaces of conformal blocks.

One should not forget that the resulting monodromy matrix isoperator-valued: it is a matrix

which has elements containing the operatorsVt shifting the parametersβ.

4. Solving the Riemann-Hilbert problem

We shall now specialize toc = 1. For that case we shall replace the parametersαk andβr
by variablesmk andpr giving the conformal dimensions as∆mk

= m2
k and∆pr = p2r, for

k = 1, . . . , n andr = 1, . . . , n− 3, respectively.

4.1 The construction

Let us now consider,

Fs′s

(

m; p | z | y0 | y
)

:=
〈

mn |ψ−s′(y0)ψs(y) |Θs−s′
〉

, (4.41)

|Θǫ 〉 = V
mn−1

mn+
ǫ
2
, pn−3

(zn−1) . . . V
m3

p2,p1
(z3) V

m2

p1,m1
(z2) |m1

〉

,

4We are here representing fusion and braid moves by matrix multiplication from the right to be consistent with

(2.1). This differs from the conventions used in [DGOT] where multiplication from the left was used. The matrices

written below are therefore related to those of [DGOT] by transposition.
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whereV m
p2,p1(z) mapsVp1 to Vp2 andψs(y) mapsVp to Vp−s/2 for all p. We will from now on

assume that the vertex operatorsV m
p2,p1

(z) are normalized by (3.18) withN(p3, p2, p1) being

chosen as

N(p3, p2, p1) = (4.42)

=
G(1 + p3 − p2 − p1)G(1 + p1 − p3 − p2)G(1 + p2 − p1 − p3)G(1 + p3 + p2 + p1)

G(1 + 2p3)G(1− 2p2)G(1− 2p1)
,

whereG(p) is the BarnesG-function that satisfiesG(p+ 1) = Γ(p)G(p).

Consider the matrixΨ(y; y0) which has elements

Ψs′s(y; y0) :=
πs′(y0 − y)

1

2

sin 2πmn

〈

mn |ψ−s′(y0)ψs(y) |ΘD
s−s′

〉

〈

mn |ΘD
0

〉 , (4.43a)

where

|ΘD
ǫ (σ, τ) 〉 :=

∑

~n∈ZN

N
∏

r=1

einrτr |Θǫ(σ + ~n) 〉 . (4.43b)

We have introducedN := n − 3, and the summation is over vectors~n = (n1, . . . , nN) in ZN .

We claim thatΨs′s(y; y0) represents the sought-for solution to the Riemann-Hilbertproblem.

The proof of this statement is given in the following subsections. At this point we only remark

that the prefactor in (4.43a) ensures the normalizationΨ(y0; y0) = 1.

The observations above provide the input needed to apply thereasoning presented in [GIL] to

show that the isomonodromic tau-function is nothing but

τ( z ) =
〈

mn |Θ
D
0

〉

. (4.44)

Our results for the casen = 4 yield in particular a proof of the relation between the tau function

for Painlevé VI and Virasoro conformal blocks discovered in [GIL].

4.2 Existence of classical monodromies

We may calculate the monodromies by the algorithm formulated in Subsection 3.4.2 with input

dataF [ji]
s1,s2 andBs(α) now given by

F [ji]
s1,s2 = s1

cos π(pk + s2pj − s1pi)

sin 2πpj
, (4.45a)

Bs(p) = e−πi s p . (4.45b)

The operatorVt may now be represented asVt = eiqt, whereqt = i ∂
∂pt

. Let us denote the

resulting operator-valued monodromy matrices byMγ.
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We may now make a key observation: the monodromy matricesMγ have matrix elements that

are rational functions ofUt = e2πipt andVt which generate acommutativesubalgebra of the

algebra of all operators5 acting on the space of conformal blocks.

In order to see thatMγ depends only onVt rather than(Vt)
1

2 let us note that each curve of the

cut system traversed on the way must be crossed a second time before one can return to the

starting point. In a similar way one may see thatMγ depends onpt only viaUt = e2πipt: the

elements of the matricesF [ji]
s1,s2 are linear combinations of the formAeπipt + Be−πipt. As the

product of matrices representingMγ will always contain an even number of matrices depending

on a given variablept, it follows thatMγ depends onpt only viae2πipt.

But this means that the algebra generated by the matrix elements of Mγ becomes classical

(commutative) in the limitc → 1! This allows us to diagonalize the operatorVt by taking

linear combinations of the conformal blocks of the form (4.43b). The transformation (4.43b)

diagonalizesVt with eigenvalueeiτt, while e2πipt will act onΨs′s by multiplication. The matrix

obtained fromMγ by means of the transformation (4.43b) will be denotedMγ .

4.3 Calculation of monodromies

In order to formulate the rules for the calculation of the monodromy matricesMk, let us assume

without loss of generality that the path connecting boundary componentδn to δk passes through

the trinionst1, t2, . . . , tL in the given order, each trinion being traversed exactly once. We claim

that we may then calculate the monodromy matricesMk as

Mk = σ3 ·
[

CtL,νL
[jLiL]

. . . Ct1,ν1
[j1i1]

]−1
· (BtL

k )2 ·
[

CtL,νL
[jLiL]

. . . Ct1,ν1
[j1i1]

]

· σ3, (4.46)

whereσ3 =
(

1 0
0 −1

)

andCt,ν
[ji] is defined as

Ct,ν
[ji] := F t

[ji] · (TB)t,νi , (4.47a)

with matricesF t
[ji], and(TB)t,νi defined as

(F t
[ji])s1,s2 = s2

sin π(ptk + s2p
t
j − s1p

t
i)

sin 2πptj
, (4.47b)

[(TB)t,νi ]s1s2 = δs1,−s2 i
s2νes2

i

2
τ ti e−πi ν s2 pti . (4.47c)

In order to derive these rules let us note that application ofthe algorithm formulated in Subsec-

tion 3.4.2 will produce monodromy matricesMk of the following form:

Mk =
[

C
tL,νL
[jLiL]

· . . .Ct1,ν1
[j1i1]

]−1
· (BtL

k )2 ·
[

C
tL,νL
[jLiL]

· . . .Ct1,ν1
[j1i1]

]

. (4.48)

5We mean operators acting on the conformal blocks built frompt, ∂pt
.
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The matricesCt,ν
[ji], ν ∈ Z, represent the contribution of the segments connecting boundary

componenti to j in trinion t. Recall thatCt,ν
[ji] = St

[ji] · (B
t
i)

ν . The matricesSt
[ji] and(St

[ji])
−1 are

explicitly given as

St
[ji] =

1

sin 2πptj

(

− sin π(ptk + ptj − pti −
1
2
) sin π(ptk − ptj − pti +

1
2
)

− sin π(ptk + ptj + pti −
3
2
) sin π(ptk − ptj + pti −

1
2
)

)(

0 e−
i

2
q
t
i

e
i

2
q
t
i 0

)

=
1

sin 2πptj

(

−e
i

2
q
t
i sin π(ptk − ptj − pti) e−

i

2
q
t
i sin π(ptk + ptj − pti)

−e
i

2
q
t
i sin π(ptk − ptj + pti) e−

i

2
q
t
i sin π(ptk + ptj + pti)

)

,

(St
[ji])

−1 =
1

sin 2πpti

(

sin π(ptk + ptj + pti)e
− i

2
q
t
i − sin π(ptk + ptj − pti)e

− i

2
q
t
i

sin π(ptk − ptj + pti)e
+ i

2
q
t
i − sin π(ptk − ptj − pti)e

+ i

2
q
t
i

)

.

In order to calculate the effect of the transformation (4.43b) it is convenient to move the opera-

torse±iqt to the left in (4.49). To this aim let us analyze the dependence ofMk onpia ≡ ptaia and

the shift operatoreiqa , whereqa ≡ qtaia . The dependence oneiqa can be made explicit by writing

Mk as

Mk =
[

Cta−2...t1
]−1

·
[

C
ta−1,νa−1

[ja−1ia−1]

]−1
· [Bta

ia
]−νa ·M′

k,a · (B
ta
ia
)νa · Cta−1,νa−1

[ja−1ia−1]
·
[

Cta−2...t1
]

, (4.49)

where

M′
k,a :=

[

S
ta,νa
[jaia]

]−1
·
[

C
tL,νL
[jLiL]

· · ·Cta+1,νa+1

[ja+1ia+1]

]−1
· (BtL

k )2 ·
[

C
tL,νL
[jLiL]

· · ·Cta+1,νa+1

[ja+1ia+1]

]

· Sta,νa
[jaia]

.

It is easy to see that the dependence of the matrixM′
k,a oneiqt is of the form

M′
k,a =

(

(m′
k,a)++ −e−iqa (m′

k,a)+−

−eiqa (m′
k,a)−+ (m′

k,a)−−

)

,

wherem′
k,a is the matrix one would obtain by replacingqa by 0 andFta

[jaia]
by F ta

[jaia]
from the

very beginning. The extra minus sign is the result of the application of the exchange relation

sin π(pka + pja + pia)e
−iqa = −e−iqa sin π(pka + pja + pia) .

The only matrices in (4.49) to the left ofM′
k,a containing dependence on the variablepia are

[C
ta−1,νa−1

[ja−1ia−1]
]−1 and[Bta

ia ]
−νa . The matrix elements of bothSta−1

[ja−1ia−1]
andBta

ia are both anti-periodic

under shiftspa → pa + 1. Moving e±iqa through the product[Cta−1,νa−1

[ja−1ia−1]
]−1 · [Bta

ia
]−νa will for

a > 1 produce an extra sign(−)1+νa . This sign is taken into account by means of the factor

is2νa in (4.47c). The extra sign(−)1+νa should be replaced by(−)νa in the casea = 1. This is

taken into account by means of conjugation withσ3 in (4.46).

Calculating the trace functionsLr
s andLr

t using the algorithm above shows that the parameters

(σ, τ) coincide with those introduced in Subsection 2.2. The details are given in Appendix A.
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5. Non-Abelian fermionization

It was shown in the work of Sato, Jimbo and Miwa that the isomonodromic tau-functions can be

represented in terms of free fermion correlators. Our results give a “bosonic” representation for

the isomonodromic tau-functions in terms of Virasoro vertex operators. In this section we will

clarify the relation between these two constructions by showing that our construction is essen-

tially equivalent to a bosonic construction of twist fields creating singularities with nontrivial

monodromy. It seems natural to regard our construction as the bosonization of the fermionic

construction of twist fields presented by Sato, Jimbo and Miwa.

5.1 Fermions from degenerate fields

Let us introduce a free fieldϕ0,

ϕ0(w)ϕ0(z) ∼ −
1

2
log(w − z) .

Note furthermore that we have

∆−b/2

∣

∣

b=i
=

1

4
, ∆−b

∣

∣

b=i
= 1 . (5.50)

Construct the fields

Ψs(z) := eiϕ0(z)ψs(z) , Ψ̄s(z) := e−iϕ0(z)ψ−s(z) . (5.51)

These fields have the OPE

Ψs(w)Ψs′(z) ∼ regular , (5.52a)

Ψs(w)Ψ̄s′(z) ∼
δs,s′

w − z
. (5.52b)

This means that the fieldsΨs(w), Ψ̄s(w) generate a representation of the fermionic vertex op-

erator algebraF. The action of these fields can be restricted to the spacesFσ,τ , defined as

Fσ,τ :=
⊕

k,l∈ 1

2
Z

k+l∈Z

F [k,l]
σ,τ , F [k,l]

σ,τ := Vσ−k ⊗ Fτ+l . (5.53)

with Fτ being the free boson Fock space with eigenvalueτ for the zero mode of∂ϕ0. Note

that the action ofΨs(z), Ψ̄s(z) shifts k + l by an integer amount. In order to get a label

for inequivalent representations of (5.52) we may restrictσ and τ to 0 ≤ ℜ(σ) < 1/2 and

0 ≤ ℜ(τ) < 1, respectively.

The restriction ofΨs(z), Ψ̄s(z) toFσ,τ has monodromy

Ψs(e
2πiz) = e2πi(τ−sσ) Ψs(z) , Ψ̄s(e

2πiz) = e−2πi(τ−sσ) Ψ̄s(z) . (5.54)
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Other representations of the fermionic vertex operator algebra (5.52) can be defined by taking

linear combinations

Φs(z) :=
∑

t=±

CstΨt(z) , Φ̄s(z) :=
∑

t=±

(C−1)stΨ̄t(z) , (5.55)

for any elementC of GL(2). The representation is characterized by theGL(2)-monodromy

Φs(e
2πiz) =

∑

t=±

MstΦt(z) , Φ̄s(e
2πiz) :=

∑

t=±

(M−1)stΦ̄t(z) ,

where M = C · e2πiD · C−1 , D := diag(τ − σ, τ + σ) .

(5.56)

It seems natural to consider equivalence classes of representations defined by identifying rep-

resentations related by the similarity transformation (5.55). Slightly abusing notations we will

denote the representations characterized by monodromy of the form (5.56) byFσ,τ .

It will be useful to decomposeFσ,τ as

Fσ,τ = F0
σ,τ ⊕F1/2

σ,τ , where F ǫ
σ,τ :=

⊕

k∈Z, l∈ 1

2
Z

k+l∈Z

F [k+ǫ,l]
σ,τ , (5.57)

assuming thatǫ ∈ 1
2
Z2. The action of a fieldΨs(w), Ψ̄s(w) mapsF0

σ,τ toF1/2
σ,τ and vice-versa.

5.2 Chiral vertex operators for free fermion representations

Let us then define the vertex operators

Φσ2,τ2 ; ǫ2, q3
σ3,τ3 ; σ1,τ1

(z) : Fσ1,τ1 → Fσ3,τ3 , (5.58)

by defining their action on arbitrary vectorsv1 ∈ F [k1+ǫ1,l1]
σ1,τ1 to be

Φσ2,τ2 ; ǫ2, q3
σ3,τ3 ; σ1,τ1(z) v1 := e2iτ2ϕ0

(z)
∑

n∈Z

einq3 V σ2−ǫ2
σ3−[ǫ1+ǫ2]+n ; σ1−k1−ǫ1

(z) v1 ; (5.59)

we assume thatτ3 = τ2 + τ1, and define[ǫ] = 0 if ǫ ∈ Z, [ǫ] = 1/2 if ǫ ∈ Z + 1
2
. The

definition is such that the restriction ofΦσ2,τ2 ; ǫ2, q3
σ3,τ3 ; σ1,τ1

(z) to the subspaceF ǫ1
σ1,τ1

of Fσ1,τ1 yields an

operator with image contained in the subspaceF ǫ1+ǫ2
σ3,τ3

of Fσ3,τ3 . This selection rule expresses

conservation the quantum numberǫ ∈ 1
2
Z2.

The relations (3.31c) combined with the standard braid relations of normal ordered exponentials

imply the following exchange relations between the vertex operatorsΦσ2,τ2 ; ǫ2, q3
σ3,τ3 ; σ1,τ1

(z) and the

fermion fieldsΨs(w),

Ψs(w ± i0) Φσ2,τ2 ; ǫ2,q3
σ3,τ3 ; σ1,τ1

(z) = Φσ2,τ2 ; ǫ2,q3
σ3,τ3 ; σ1,τ1

(z)
∑

t=±

Ψt(w ± i0)B±(q3)t,s ,

Ψ̄s(w ± i0) Φσ2,τ2 ; ǫ2,q3
σ3,τ3 ; σ1,τ1(z) = Φσ2,τ2 ; ǫ2,q3

σ3,τ3 ; σ1,τ1(z)
∑

t=±

Ψ̄t(w ± i0) B̄±(q3)t,s ;
(5.60)
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The matricesB±
t,s(q3) andB̄±

t,s(q3) are explicitly given as

B±(q3)t,s = e±πiτ2 e∓πi(sσ3−tσ1) ei([ǫ3+
1

2
]−ǫ3−

s
2
)q3 F

[13]
st (σ3, σ2 − ǫ2, σ1) ,

B̄±(q3)t,s = e∓πiτ2 e±πi(sσ3−tσ1) ei([ǫ3+
1

2
]−ǫ3+

s
2
)q3 F

[13]
−s,−t(σ3, σ2 − ǫ2, σ1) .

(5.61)

The exchange relations (5.60) express the fact thatΦσ2,τ2 ; ǫ2,q3
σ3,τ3 ; σ1,τ1

(z) is an intertwiner between

the representationsFσ1,τ1 andFσ3,τ3 of the free fermion algebraF. It also follows from these

observations that the vertex operatorsΦσ2,τ2 ; ǫ2,q3
σ3,τ3 ; σ1,τ1

(z) represent twist fields: They create states

in which the fermionsΨs(z) have monodromyB−(q3)(B
+(q3))

−1 aroundz.

An important consequence of (5.60) is the fact that matrix elements of compositions of the

vertex operatorsΦσ2,τ2 ; ǫ2, q3
σ3,τ3 ; σ1,τ1

(z) such as

〈 eǫ4σ4,τ4 |Φ
σ3,τ3 ; ǫ3, q4
σ4,τ4 ; σ,τ (z3) Φ

σ2,τ2 ; ǫ2, q3
σ,τ ; σ1,τ1 (z2) | e

ǫ1
σ1,τ1 〉 (5.62)

represent conformal blocks for the free fermion algebraF. | eǫσ,τ 〉 is the product of highest

weight vertors inVσ−ǫ ⊗ Fτ . It follows from the conservation of the quantum numberǫ that

such conformal blocks are non-vanishing only ifǫ4 = ǫ1 + ǫ2 + ǫ3 mod 1. Conservation of the

zero mode ofϕ0 implies furthermore thatτ4 = τ1 + τ2 + τ3.

The free fermion conformal blocks factorize as

〈 eǫ4σ4,τ4
|Φσ3,τ2 ; ǫ3,q4

σ4,τ4 ; σ,τ (z3) Φ
σ2,τ2 ; ǫ2,q3
σ,τ ; σ1,τ1

(z2) | e
ǫ1
σ1,τ1

〉FF = (5.63)

= 〈 τ4 | e
2iτ3ϕ0(z3) e2iτ2ϕ0(z2) | τ1 〉0

×
∑

n∈Z

einq〈 σ4 − ǫ4 | V
σ3−ǫ3
σ4−ǫ4, σ−[ǫ1+ǫ2]+n(z3) V

σ2−ǫ2
σ−[ǫ1+ǫ2]+n; σ1−ǫ1

(z2) | σ1 − ǫ1 〉Liou .

The factor in the last line was previously identified as the tau-function associated to isomon-

odromic deformations ofSL(2)-connections, the free-field conformal block in the second line is

nothing but the multiplier needed to get the tau-functions associated to theGL(2)-connections.

6. Examples

We now look at some of the applications of the above general formalism to the theory of

monodromy preserving deformations. We start by providing aCFT derivation of the Jimbo’s

asymptotic formula [Ji] for the tau function of Painlevé VIequation. Next we show how the

known algebro-geometric solutions of the Schlesinger system onC0,n [KK] arise from confor-

mal blocks of the Ashkin-Teller critical model [Za, ZZ].
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6.1 Painlev́e VI and Jimbo’s formula

Consider the simplest nontrivial case of four punctures. The fundamental groupπ1(C0,4) is

isomorphic to free group of rank 3. Letγ1, . . . , γ4 be the four loops shown in Figure 2a, then

π1(C0,4) = 〈γ1, γ2, γ3, γ4 | γ1 ◦ γ2 ◦ γ3 ◦ γ4 = 1〉 . (6.64)

We denote byM1, . . . ,M4 ∈ SL(2,C) the monodromy matrices associated to these loops,

satisfyingM4M3M2M1 = 1. Conjugacy classes of irreducible representations ofπ1(C0,4) in

SL(2,C) are uniquely specified by seven invariants

Lk = TrMk = 2 cos 2πmk, k = 1, . . . , 4, (6.65a)

Ls = TrM1M2, Lt = TrM2M3, Lu = TrM1M3, (6.65b)

generating the algebra of invariant polynomial functions on Hom (π1(C0,4), SL(2,C)). These

traces satisfy the quartic equation

L1L2L3L4 + LsLtLu + L2
s + L2

t + L2
u + L2

1 + L2
2 + L2

3 + L2
4 = (6.66)

= (L1L2 + L3L4)Ls + (L2L3 + L1L4)Lt + (L1L3 + L2L4)Lu + 4.

Figure 2:Basis of loops ofπ1(C0,4) and the decompositionC0,4 = CL
0,3 ∪ C

R
0,3.

The affine algebraic variety defined by (6.66) is the character variety ofC0,4. For every choice of

m1, . . . , m4, it defines a cubic surface inC3 in the variablesLs,Lt,Lu. If we further fix the trace

functionLs = 2 cos 2πσ, the resulting quadric inLt, Lu admits rational parameterization [Ji]

(

L2
s − 4

)

Lt = Dt,+s +Dt,−s
−1 +Dt,0, (6.67a)

(

L2
s − 4

)

Lu = Du,+s+Du,−s
−1 +Du,0. (6.67b)
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with coefficients given by

Dt,0 = Ls (L1L3 + L2L4)− 2 (L1L4 + L2L3) , (6.68a)

Du,0 = Ls (L2L3 + L1L4)− 2 (L1L3 + L2L4) , (6.68b)

Dt,± = 16
∏

ǫ=±

sin π (m2 ∓ σ + ǫm1) sin π (m3 ∓ σ + ǫm4) , (6.68c)

Du,± = −Dt,±e
∓2πiσ. (6.68d)

The local coordinates(σ, s) parameterize the space ofSL(2,C)-representations ofπ1(C0,4) with

fixed local monodromy exponentsm1, . . . , m4. Let us connect this pair to the parameters used

in the conformal block representation of the fundamental matrix Y (y).

The Riemann surfaceC0,4 is glued from two three-holed spheresCL
0,3, C

R
0,3 as shown in Fig-

ure 2b. The local coordinates(p, τ) associated to this pants decomposition parameterize trace

functions via (2.5)–(2.6) (as well as their counterparts for Lu). Comparing these expressions

with (6.67)–(6.68), we find that

σ = p, s =
sin π (σ −m1 +m2) sin π (σ +m3 −m4)

sin π (σ −m1 −m2) sin π (σ −m3 −m4)
eiτ . (6.69)

Going back to the Schlesinger equations (2.10), note that three regular singularitiesz1, z3, z4
can be brought to0, 1 and∞ using Möbius transformations. The Schlesinger system then

reduces to Painlevé VI equation

−
1

2
(z(z − 1)ζ ′′)

2
= (6.70)

= det







2m2
1 zζ ′ − ζ ζ ′ +m2

1 +m2
2 +m2

3 −m2
4

zζ ′ − ζ 2m2
2 (z − 1)ζ ′ − ζ

ζ ′ +m2
1 +m2

2 +m2
3 −m2

4 (z − 1)ζ ′ − ζ 2m2
3






,

satisfied by the logarithmic derivative of the tau function

ζ(z) = z(z − 1)
d

dz
ln τ. (6.71)

Herez =
(z2 − z1)(z4 − z3)

(z3 − z1)(z4 − z2)
denotes the cross-ratio of the singular points.

In the case ofC0,4, the representation (4.44) ofτ(z) as a Fourier transform of thec = 1 Virasoro

conformal block is more explicitly written as

τ(z) =
∑

n∈Z

〈m4 | V
m3

m4,p+n (1) V
m2

p+n,m1
(z) |m1〉 e

inτ . (6.72)
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Figure 3:Labeling of pairs of pants for the conformal blockB (m | p, p′ | z).

Assuming without loss of generality that−1
2
< ℜp < 1

2
, letting z → 0 in the last formula,

and taking into account the normalization (4.42) of the chiral vertex operators, we deduce the

asymptotics

τ(z) =
∑

n=0,±1

N(m4, m3, p+ n)N(p + n,m2, m1)e
inτz(p+n)2−m2

1
−m2

2+

+O
(

zp
2−m2

1−m2
2+1
)

. (6.73)

This is equivalent to the famous Jimbo’s asymptotic formula[Ji, Theorem 1.1] expressing the

critical behavior of the Painlevé VI tau function in terms of monodromy data. The relation of

Jimbo parameters to ours is given by (6.69).

6.2 Algebro-geometric solutions of the Schlesinger system

Consider the pants decomposition ofC0,2g+2 schematically depicted in Figure 3, and denote by

B (m | p, p ′ | z) the correspondingc = 1 conformal block. Its external legs are combined into

g + 1 pairs. The momenta obtained by fusing different pairs are connected to a “black box”.

Its internal structure is not essential for the final result.However, to fix the notations, we will

choose it in a particular way and parameterize it byg − 2 internal momentap′1, . . . , p
′
g−2.

As explained in Section 4, summation of conformal blocks over integer shifts of momenta gives

an isomonodromic tau function of the Schlesinger system,

τ(z) =
∑

n∈Zg

∑

n′∈Zg−1

B (m | p+ n, p′ + n′ | z) ein·τ+in′·τ ′. (6.74)

The variablesp, p′, τ , τ ′ provide a set of local coordinates on the(4g − 2)-dimensional space

of monodromy data.

Let us impose a free-field-like conservation constraint on momenta of the unshifted conformal

block at each vertex inside the box. These conditions determine the black box momentap′ =

p′(p) in terms ofp. Explicitly,

p′k(p) = p′k−1(p) + pk+1, p′0(p) ≡ p1.
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Also, for k = 1, . . . , g − 1 we define

ℓk = n′
k − n′

k−1 − nk+1, n′
0 ≡ n1.

Since BarnesG-function vanishes at negative integer values of the argument, the form of the

normalization coefficient (4.42) restricts the sum (6.74) to the domainℓ1, . . . , ℓg−1 ≥ 0. In the

limit

τj → −i∞, τ ′k → i∞, (6.75a)

τj +
∑g

k=j τ
′
k−1 → ξj, τ ′0 ≡ 0, j = 1, . . . , g, (6.75b)

this sum further reduces to the valuesℓ1 = . . . = ℓg−1 = 0. We thus get a2g-parameter family

of tau functions

τ(z) =
∑

n∈Zg

B (m | p+ n, p′(p+ n) | z) ein·ξ. (6.76)

Notice that at each ofg − 1 internal vertices of conformal blocks which appear in (6.76), the

corresponding momenta satisfy the same conservation conditions as in the unshifted case.

Conformal blocks of this form withm = mAT ≡
(

1
4
, . . . , 1

4

)

describe correlation functions of

the Ashkin-Teller critical model [Za, ZZ]. They can be expressed in terms of certain quantities

associated to the hyperelliptic curveΣ of genusg defined by

λ2 =

2g+2
∏

k=1

(y − zk) . (6.77)

Let us fix the canonical homology basis ofa- andb-cycles onΣ as shown in Figure 4. The

g-dimensional space of holomorphic1-forms onΣ is spanned by

dωk =
yk−1dy

λ
, k = 1, . . . , g.

Theg × g matrices ofa- andb-periods

ajk =

∮

ak

dωj, bjk =

∮

bk

dωj, (6.78)

determine the symmetric period matrixΩ = a−1b of Σ. The hyperelliptic Riemann theta func-

tion with characteristics[ p, q ] ∈ C2g is defined as the following series:

θ[ p, q ]
(

x |Ω
)

=
∑

n∈Zg

eπi(n+p)·Ω·(n+p)+2πi(n+p)·(x+q). (6.79)

Even characteristics[ pS, qS ] correspond to its non-trivial half-periods and are indexedby parti-

tionsS = {{zα1
, . . . , zαg+1

}, {zβ1
, . . . , zβg+1

}} of the set of ramification points into two subsets

of equal size.
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Figure 4:Canonical homology basis onΣ.

In this notation, the Ashkin-Teller conformal block is given by [Za, ZZ]

B (mAT | p, p
′ (p) | z) = G(p)K(z)

eiπp·Ω·p

θ[ pS, qS ]
(

0 |Ω
) , (6.80)

G(p) =
cosπp′g−1

π

Ĝ2(p′g−1 +
1
2
)

∏g
k=1 Ĝ

2(pk)
, (6.81)

K(z) =

(

∏g+1
j<k(zαj

− zαk
)
∏g+1

j<k(zβj
− zβk

)
∏g+1

j,k (zαj
− zβk

)

)
1

8

. (6.82)

Here we denotêG(p) = G(1+p)
G(1−p)

. The prefactorG(p) comes from our normalization (4.42)

of the chiral vertex operators. Taking into account the recurrence relationĜ (p+ 1) =

−π (sin πp)−1 Ĝ (p), we see that the sum (6.76) reduces to the theta function series (6.79),

so that

τ(z) = const · K(z)
θ[ p, q ]

(

0 |Ω
)

θ[ pS, qS ]
(

0 |Ω
) , (6.83)

with e2πiqk ≡ − sin2 πpk
cos2 πp′g−1

eiξk . We thus reproduce the2g-parameter family of tau functions found

in [KK]. The elliptic caseg = 1 corresponds to Picard solutions of Painlevé VI.

At last let us compute the actual monodromy matrices form = mAT applying the rules formu-

lated in Subsection 4.3. Up to overall conjugation, one has

M2k−1 =
[

Ck′,1
[13]C

[k,...,g]Cg+1,1
[13]

]−1(
Bk′

1

)2
Ck′,1

[13]C
[k,...,g]Cg+1,1

[13] , (6.84)

M2k =
[

Ck′,0
[23]C

[k,...,g]Cg+1,1
[13]

]−1(
Bk′

2

)2
Ck′,0

[23]C
[k,...,g]Cg+1,1

[13] , (6.85)

with C [k,...,g] = Ck,−1
[23] C

k+1,0
[13] . . . Cg,0

[13] andk = 2, . . . , g. The conservation of momenta at the

verticesk, . . . , g − 1 implies that all matrices in the productC [k,...,g] are lower triangular. This

enables one to explicitly calculate the monodromies in the limit (6.75). Again up to conjugation,

the result is

Mk =

(

0 iµ−1
k

iµk 0

)

, k = 1, . . . , 2g + 2, (6.86)
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with µ2g+1 = e2πip
′
g−1, µ2g+2 = 1 and

µ2k−1 = e2πi(p
′
k−2

+qk), µ2k = −e2πi(p
′
k−1

+qk). (6.87)

Note in particular that in the chosen basis the productsM2k−1M2k andM2kM2k+1 are given by

diagonal matrices, cf [KK, Theorem 3.2].

7. Outlook

To conclude we will discuss some further applications and possible directions of future research

suggested by our results.

7.1 Possible applications to the study ofN = 2 supersymmetric gauge theories

Our results appear to have interesting implications for thestudy of a certain class of4D N = 2

supersymmetric gauge theories which is nowadays often called classS. The gauge theories

GC in classS are associated to Riemann surfacesC, possibly withn punctures. The so-called

instanton partition functions [LNS, MNS1, MNS2, N, NO] carry important non-perturbative

information about the physics of such gauge theories, including the complete description of their

low-energy physics via Seiberg-Witten theory [N, NO]. Out of the instanton partition functions

one may form the so-called dual instanton partition functions by means of a generalization of

the Fourier series [N, NO].

It was observed in [N, LMN, NO] that the dual instanton partition functions of some supersym-

metric gauge theories from classS have free fermion representations, and therefore represent

tau-functions for certain integrable equations. Considerations of the geometric engineering of

such gauge theories within string theory have led to the suggestion that the dual instanton parti-

tion functions of the gauge theories from classS should be related to the partition functions of

chiral free fermion theories; this was first suggested in [N,Section 4.3], and similar ideas were

discussed in more detail in [DHSV, DHS]. These relations aresometimes referred to as BPS-

CFT correspondence [CNO]. The relevant theory of chiral free fermions is expected [CNO]6 to

be defined on the Riemann surfaceC specifying the gauge theoryGC .

In another important recent development it was found that the instanton partition functions of

these supersymmetric gauge theories are related to the conformal blocks of the Toda conformal

field theories, in the simplest case the Liouville theory [AGT]. The correspondence between

instanton partition functions and Liouville conformal blocks is called the AGT-correspondence.

6In some of the earlier references cited above, it was proposed to consider free fermions on the Seiberg-Witten

curveΣ which for theories of classS is a branched cover of the curveC definingGC . The proposal that the curve

that is relevant in this context isC rather thanΣ was formulated explicitly in [CNO].
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However, up to now it was not clear how exactly BPS-CFT-correspondence and AGT-

correspondence are related. Our paper provides a basis for understanding these connections

by establishing a direct relation between the conformal field theory of chiral free fermions on a

Riemann sphere withn puncturesC0,n on the one hand, and the conformal blocks of Liouville

theory atc = 1 onC0,n on the other hand. Our result opens the interesting perspective to derive

thec = 1 case of the AGT-correspondence from the BPS-CFT-correspondence. It would suffice

to characterise the relevant∂̄E-operators whose determinants should represent the dual instanton

partition function according the BPS-CFT-correspondencemore precisely. To this aim it may

be convenient to use the language proposed in [DHS]. The connection between the relevant

determinants of̄∂E-operators and the isomonodromic tau-functions studied inthis paper should

then follow from the results of [P]. To complete the derivation of the AGT-correspondence for

c = 1 from the BPS-correspondence it will suffice to observe that the Fourier-transformation

appearing in the relation (4.43) between conformal blocks and tau-functions is exactly the trans-

formation from instanton partition functions to the dual instanton partition functions.

7.2 Verlinde loop operators and quantisation ofMflat(C)

Forc 6= 1 one may use the operator-valued monodromies constructed inSection 3.4 to define the

so-called Verlinde loop operators [AGGTV, DGOT]. These operators generate a representation

of the quantised algebra of algebraic functions onMflat(C) on the spaces of Virasoro confor-

mal blocks [TV13]. The definition of the Verlinde loop operators given in [AGGTV, DGOT]

can easily be rewritten as deformed traces over products of the operator-valued monodromy

matrices defined in Section 3.4.

In the normalisation for the conformal blocks defined by settingN(β2, α, β1) ≡ 1 in (3.18) one

may analytically continue both the conformal blocks and thecorresponding representation of

the Verlinde loop operators with respect to the parameterc to generic complex values of this

parameter. It is not hard to check that

• the definition of the Verlinde loop operators reduces to taking theordinary trace of the

matricesMk defined in Section 4.2 atc = 1,

• the algebra generated by the Verlinde loop operators becomescommutativeat this value of

the central chargec, and

• the transformation relating Virasoro conformal blocks to tau-functions diagonalizes all

Verlinde loop operators simultaneously with eigenvalues being the trace functions (2.5).

We note that the quantum counterparts of the coordinates(σ, τ) that can be defined away from

c = 1 [TV13] remain non-commutative whenc→ 1. However, the algebra of all operators that
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can be constructed from the quantised coordinates(σ, τ) contains the important sub-algebra

generated by the Verlinde loop operators. The fact that thissub-algebra becomescommutative

for c = 1 leads to the existence ofnewrepresentations for the quantised algebra of functions

onMflat(C) related to the usual one by the transformation defined in Section 4.1. This repre-

sentation isnot unitarily equivalent to the one studied in [TV13] as the measure defining the

scalar product forc > 25, the Liouville three-point function, can not be analytically continued

to c = 1. It should be interesting to investigate this phenomenon and possible generalisations

further.

7.3 Other relations between isomonodromic deformations and Liouville theory

There are further relations between the isomonodromic deformation problem and Liouville the-

ory: The semiclassical limit of the null-vector decouplingequations in Liouville theory yields

Hamilton-Jacobi - like equations that define the Hamiltonians generating the isomonodromic

deformation flows. This was first pointed out in [T11], a special case was later rediscovered in

[LLNZ].

It seems remarkable that there exist relations between Liouville conformal blocks and isomon-

odromic tau-functions both in the casesc = 1 andc → ∞. A good explanation remains to be

found.
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A. Calculation of the trace functions

Let us compute the trace functionsLr
s andLr

t in terms of the parametersmr
1...4, σr, τr using the

algorithm developed in Subsection 3.4.2 along with the rules of Subsection 4.3. The reader is

referred to Figure 2b (withp replaced byσr) for the labeling of pairs of pants and boundary

components.

The trace functions are determined by the classical monodromies around the puncturesz1, z2,

z3. To find them explicitly, we first note that the correspondingoperator-valued monodromy
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matrices are given by

M1 =
[

C
R,0
[13]C

L,1
[13] · C

]−1(
BR
1

)2
C
R,0
[13]C

L,1
[13] · C, (A.88a)

M2 =
[

C
R,−1
[23] C

L,1
[13] · C

]−1(
BR
2

)2
C
R,−1
[23] C

L,1
[13] · C, (A.88b)

M3 =
[

C
L,0
[23] · C

]−1(
BL
2

)2
C
L,0
[23] · C. (A.88c)

Here the common factorC corresponds to the part of analytic continuation path whichrelates

the base-pointy0 to the boundary component3 of CL
0,3 (the neighborhood of the black dot on

the boundary circle in Figure 1). The factor next to it depends on what one wants to achieve at

the subsequent step: the black circle on the boundary2 or the empty circle on the boundary1

of CL
0,3. In the latter case, for instance, the arc[13]L should be preceded by the half-turnbL3 .

The observations of Subsection 4.3 allow one to get rid of theshift operators in the computation

of classical monodromies by replacing the operator-valuedmatricesCt,ν
[ji] by the ordinary matri-

cesCt,ν
[ji] defined by (4.47). We may therefore setC = 1 in the calculation of the trace functions.

Also note that the resulting expressions are independent ofthe parameterτ4 associated to the

boundary curveδ4: this is a consequence of the factorization

(TB)t,νi =
(

B̃t
i

)−ν

(

0 e−
i

2
τ ti

e
i

2
τ ti 0

)

, B̃t
i = i σ3B

t
i . (A.89)

We can now writeLr
s, L

s
t as the traces

Lr
s = tr

(

[

CR,−1
[23]

]−1(
BR

2

)2
CR,−1

[23]

[

CR,0
[13]

]−1(
BR

1

)2
CR,0

[13]

)

=

= tr
(

(

B̃R
3

)−1
FR
[32]

(

B̃R
2

)2
FR
[23] B̃

R
3 F

R
[31]

(

B̃R
1

)2
FR
[13]

)

, (A.90a)

Lr
t = tr

(

[

CL,1
[13]C

R,−1
[23]

]−1(
BR

2

)2
CR,−1

[23] C
L,1
[13]

[

CL,0
[23]

]−1(
BL

2

)2
CL,0

[23]

)

. (A.90b)

The first of the equations (2.5) then follows from the easily verified identity

F t
[31]B̃

t
1 F

t
[12]B̃

t
2 F

t
[23]B̃

t
3 = i, (A.91)

which should be understood as a version of the Moore-Seiberghexagonal relation. To demon-

strate the second equation, observe that (A.90b) may be rewritten as

Lr
t = GR

+−G
L
+−e

iτr +
(

GR
++G

L
−− +GR

−−G
L
++

)

+GR
−+G

L
−+e

−iτr ,

GR =
[

FR
[23]B̃

R
3

]−1(
B̃R

2

)2
FR
[23]B̃

R
3 , GL = B̃L

1 F
L
[12]

(

B̃L
2

)2[
B̃L

1 F
L
[12]

]−1
.

The rest of the computation is straightforward.



28

References

[AGT] L. F. Alday, D. Gaiotto, and Y. Tachikawa,Liouville Correlation Functions from Four-

dimensional Gauge Theories, Lett. Math. Phys.91 (2010) 167–197.

[AGGTV] L. F. Alday, D. Gaiotto, S. Gukov, Y. Tachikawa, H. Verlinde,Loop and surface operators in

N = 2 gauge theory and Liouville modular geometry, J. High Energy Phys.1001(2010) 113.

[CNO] E. Carlsson, N. Nekrasov, A. Okounkov,Five dimensional gauge theories and vertex operators.

Preprint arXiv:1308.2465.

[DHSV] R. Dijkgraaf, L. Hollands, P. Sułkowski, C Vafa,Supersymmetric gauge theories, intersecting

branes and free fermionsJHEP 02 (2008) 106 (doi:10.1088/1126-6708/2008/02/106)

[DHS] R. Dijkgraaf, L. Hollands, P. Sułkowski,Quantum curves andD-modules, JHEP 11 (2009) 047

( doi:10.1088/1126-6708/2009/11/047)

[DGOT] N. Drukker, J. Gomis, T. Okuda, J. Teschner,Gauge Theory Loop Operators and Liouville

Theory, J. High Energy Phys.1002(2010) 057.

[GIL] O. Gamayun, N. Iorgov, O. Lisovyy,Conformal field theory of Painlevé VI, J. High Energy
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